
© Copyright 1994

Martin J. Sirkin

A Software System Generator

For Data Structures

by

Martin J. Sirkin

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

University of Washington

1994

Approved by

(Chairperson of Supervisory Committee)

Program Authorized
to Offer Degree

Date

Doctoral Dissertation

In presenting this dissertation in partial fulfillment of the requirements for

the Doctoral degree at the University of Washington, I agree that the Library

shall make its copies freely available for inspection. I further agree that exten-

sive copying of this dissertation is allowable only for scholarly purposes, con-

sistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for

copying or reproduction of this dissertation may be referred to University

Microfilms, 1490 Eisenhower Place, P.O. Box 975, Ann Arbor, MI 48106, to

whom the author has granted “the right to reproduce and sell (a) copies of the

manuscript in microform and/or (b) printed copies of the manuscript made

from microform.”

Signature _________________________

Date ______________________________

University of Washington

Abstract

A Software System Generator
For Data Structures

by Martin J. Sirkin

Chairperson of the Supervisory Committee: Professor David Notkin

Department of Computer

Science and Engineering

Although data structures are a fundamental part of most applications, using and writing

data structures is time-consuming, difficult, and error-prone. Programmers often select inap-

propriate data structures for their applications because they do not know which data struc-

ture to use, they do not know how to implement a particular data structure, or they do not

have an existing implementation of the data structure to use.

This dissertation describes a model and a technology for overcoming these problems. Our

approach is based on non-traditional parameterized types (NPTs). NPTs are an extension to

traditional parameterized types (TPTs), which are already familiar to most programmers. Our

NPTs are based on the GenVoca domain modeling concepts, vertical parameterization, a con-

sistent high-level interface, and a transformational compiler.

Our research has led to the construction of a software system generator for data struc-

tures called Predator. Predator is able to transform data structure declarations and data

structure-independent functions into efficient code. Predator also allows programmers to

adjust a data structure’s implementation by simply changing its declaration and recompiling.

This dissertation discusses our model (and how it differs from standard models), our Pred-

ator compiler, and the results of our validation efforts.

i

Table of Contents

List of Figures . v

List of Tables . vii

Chapter 1: Introduction . 1

1.1 The burden of data structure programming. 1

1.2 A programming example . 2

1.3 Characteristics of an acceptable solution . 4

1.4 Potential solutions . 5

1.4.1 Software component libraries . 5

1.4.2 Transformation systems . 6

1.5 An optimizing compiler approach . 6

1.6 Goal . 8

1.7 Overview. 8

Chapter 2: Traditional parameterized types . 10

2.1 Description . 10

2.2 Limitations of TPTs . 12

2.2.1 Difficulty of specialization. 12

2.2.2 Complex compositions . 14

2.2.3 Type transformations . 16

2.2.4 Ad hoc interfaces . 17

2.2.5 Evolution and maintenance . 18

2.2.6 Scalability . 18

2.2.7 Code efficiency . 19

2.3 Conclusions. 19

Chapter 3: Non-traditional parameterized types . 20

3.1 The GenVoca model . 21

3.1.1 Components and realms . 21

3.1.2 Type equations . 22

ii

3.1.3 Symmetry .23

3.2 Basic concepts .23

3.3 NPT features .27

3.3.1 Realm partitioning .27

3.3.2 Consistent interface .28

3.3.3 Vertical parameterization .29

3.3.4 High-level interface .33

3.3.5 Compiler environment .35

3.3.6 Domain-specific optimizations .38

3.4 Overcoming TPT limitations .39

3.4.1 Difficulty of specialization .39

3.4.2 Complex compositions .41

3.4.3 Type transformations .42

3.4.4 Ad hoc interfaces. .42

3.4.5 Evolution and maintenance .43

3.4.6 Scalability .44

3.4.7 Code efficiency .44

Chapter 4: Predator: an NPT implementation. .46

4.1 The Predator compiler .46

4.1.1 Two-pass compilation .47

4.1.2 Functional templates .48

4.1.3 Recursive macro processing .50

4.1.4 Code optimization. .51

4.2 Layers .56

4.2.1 DS realm layers .56

4.2.2 LINK realm layers .59

4.3 Link cursors. .62

4.3.1 Using link cursors to emulate composite cursors .65

4.4 Conclusions .68

Chapter 5: Validation .70

iii

5.1 Programmer productivity . 71

5.1.1 Coding a simple data structure. 72

5.1.2 Programming more complex data structures. 74

5.1.3 Productivity conclusions . 75

5.2 Predator quicksort . 76

5.2.1 Comparing Predator versus BSD . 78

5.2.2 Varying the structure size . 79

5.2.3 Segmented sorting . 81

5.2.4 The rwho utility . 82

5.2.5 Quicksort conclusions . 83

5.3 Comparing against data structure libraries. 84

5.4 Emulating a production system compiler . 86

5.4.1 OPS5. 87

5.4.2 LEAPS . 90

5.4.3 The RL driver. 92

5.4.4 Emulating simple production systems . 93

5.4.5 Production systems with joins . 96

5.4.6 Adding negation to condition elements . 100

5.4.7 Persistent production systems . 107

5.4.8 Future work . 108

5.4.9 RL conclusions . 109

5.5 Validation conclusions . 109

Chapter 6: Related work. 111

6.1 Software reuse . 111

6.2 Software component libraries . 113

6.3 Transformation systems . 114

6.4 Other approaches . 116

6.5 GenVoca systems . 117

Chapter 7: Evaluation. 118

7.1 Conceptual limitations. 118

iv

7.2 Implementation limitations .123

Chapter 8: Conclusions .127

8.1 Summary .127

8.2 Future work. .128

8.3 Contributions. .129

Bibliography .132

Appendix A: Productivity experiments .138

Arrays. .138

Queues .140

Multiple lists .144

Interlinked data structures. .147

Appendix B: LEAPS test cases .151

LEAPS test cases. .151

RL driver for puz.ops test case .165

Appendix C: Quicksort sample code .182

Appendix D: Benchmark source code .189

Appendix E: Supermarket macros .192

Appendix F: Functional templates .194

Snippet functions. .194

Delete .195

Reset. .195

Advance/Reverse .195

Foreach. .196

Find .196

Insert .196

Update .197

Others. .197

v

List of Figures
Figure 1.1: Supermarket elements . 3

Figure 2.1: A stack of strings and a stack of integers instantiated from a generic stack 11

Figure 2.2: A traditional parameterized type: a list of trees . 12

Figure 2.3: A binary tree/linked list data structure . 15

Figure 2.4: Two interlinked lists . 16

Figure 3.1: A container of customer elements . 24

Figure 3.2: A Simple Container Transformation . 30

Figure 3.3: Binary Tree Transformation. 31

Figure 3.4: A segmentation data structure. 37

Figure 3.5: A Semi-transparent stack. 41

Figure 4.1: Predator authoring sequence . 47

Figure 4.2: Two approaches to a predicate-based index. 58

Figure 4.3: A pointer-based linkage . 60

Figure 5.1: Quicksort of 48 byte records . 79

Figure 5.2: Quicksort of 1000 records . 80

Figure 5.3: Quicksort of 99000 records . 80

Figure 5.4: A segmented quicksort array . 82

Figure 5.5: A LEAPS authoring cycle . 90

Figure 5.6: Execution speed of no_join1.ops . 94

Figure 5.7: Execution speed of no_join2.ops . 95

Figure 5.8: Execution speed of basic_cycle.ops. 95

Figure 5.9: Execution speed of triples.ops . 98

Figure 5.10: Execution speed of big_join.ops . 99

Figure 5.11: Execution speed of puz.ops . 100

vi

Figure 5.12: Execution speed of big_num.ops .103

Figure 5.13: Compile times of jig25.ops .104

Figure 5.14: Execution speed of jig25.ops .105

Figure 5.15: Execution speed of waltz.ops .106

Figure 7.1: Predicate indexing with PINDEX . 119

vii

List of Tables
Table 3.1: DS realm interface . 33

Table 3.2: LINK realm syntax . 35

Table 4.1: DS realm layers. 56

Table 4.2: LINK realm layers . 59

Table 4.3: Link cursor functions . 63

Table 4.4: Parent/child functions for link cursors. 63

Table 4.5: Table (T1) of clauses for a composite cursor . 66

Table 4.6: Table (T2) of cursors for a composite cursor . 66

Table 5.1: Results of Array experiment. 73

Table 5.2: Results of the queue experiment . 75

Table 5.3: Results of multiple list experiment . 75

Table 5.4: Source code size comparison. 77

Table 5.5: Size of benchmark programs . 85

Table 5.6: Execution speed of benchmark programs . 85

Table 5.7: Relational equivalents of OPS5/LEAPS concepts . 92

Table 5.8: Execution times for persistent production systems 107

Table F.1: Snippet functions . 194

viii

Acknowledgments

So many to thank, and such a small space...

First, and most importantly, I want to thank my wonderful wife, Jeanne. Without her, I

never would have completed this dissertation. Not only did she provide love and encourage-

ment, she’s given me three of the best reasons a man has ever had for going home each night.

She’s also a great technical editor. Thanks, love.

And I want to thank Dirk, Julian, and Rachel. You have made my life so complete and my

days so very, very long. But I wouldn’t trade it for anything in the world. Taking care of you

three is more fun than anything I’ve ever done before.

I also want to thank Don Batory. His guidance throughout this research, his insights into

computer science and software engineering, his prodding, his patience, and (most impor-

tantly) his friendship have all been invaluable. I will always appreciate what you’ve done for

me.

I want to also thank several people at UW. I want to thank all of the members of my com-

mittee, particularly David Notkin, for their careful reading of my dissertation. Their insight-

ful suggestions have improved the dissertation greatly. I also want to thank Frankye Jones,

the only other Susan Butcher fan I know. She has put up with altogether too many registra-

tion snafus with my name on them. I really appreciate all that she’s done.

Within the Predator group at UT, I thank all those students who shared their ideas and

their time with me. Special thanks to Vivek Singhal and Jeff Thomas for innumerable and

invaluable research discussions. I just wish that you two didn’t like Mexican food so much.

Finally, I want to thank my family, particularly my mother and father, for their support

and encouragement over all these many years. I learned to love learning from my parents and

brothers, and I can think of no greater gift I could have received.

ix

Dedication

I dedicate this dissertation to my father, Julius H. Sirkin. Dad, I just wish you could have

been here to see this work completed.

x

1

Chapter 1

Introduction

1.1 The burden of data structure programming

Designing, writing, and debugging programs is a time-intensive task. Of the different aspects

of writing programs of moderate to large complexity, implementing data structures often con-

sumes a disproportionately large portion of a programmer's time. Given the pervasiveness of

data structures in software, it is not surprising that there have been a number of attempts to

automate the generation of data structure code. Further, since this task is fairly general,

many of the proposed solutions for automation have come from different research communi-

ties, such as reuse, software components, object orientation, transformation systems, and per-

sistent object bases [Kru92, Par83, Lam91]. While many of the proposed solutions have merit,

most have concentrated on one area of software engineering, thereby not including useful fea-

tures from others.

Eliminating the drudgery of programming data structures is clearly an important, but

still unsolved, problem. Our thesis is that a practical solution rests on a software component

technology that integrates concepts of parameterized types, standardized interfaces, domain

modelling, and compiler optimizations [Bat92a, Sir93, Pri91]. Integration of these concepts is

both technically challenging and a fertile area of research. More importantly, it leads to a

technology for assembling complex data structures from pre-written and standardized compo-

nents.

The key to a successful component technology for data structures, and reusable software

components in general, is choosing an appropriate set of abstractions. If the abstractions are

not fundamental, the likelihood of producing reusable components is reduced. There are sev-

eral basic technical reasons why we believe that other well-trodden approaches to construct-

ing software components - in particular, data structures - will ultimately not succeed. In this

2

thesis, we explain our views on the limitations of traditional approaches, as well as our pro-

posed solutions to overcome their limitations.

A common problem is that programmers often hard-code their choice of data structures

into the design of their programs. This makes it difficult to later modify the data structure

and its code. (Modifications are often needed to add features and enhance performance). This

is a problem of maintenance and evolution [Hor84]. Some projects [Sno89] have features

which specifically aid program maintenance and evolution, but which also make other phases

of programming more difficult. Our goal is to provide a standardized, high-level interface for

our components to increase reuse and allows for simpler system evolution. In addition, we

envision a mechanism to extend component interfaces to simplify program maintenance. This

approach is orthogonal to that taken by others [Sno89, Gar92], and allows us to add features,

such as invariants and assertions, without affecting our overall model.

A further goal of our research is to be able to capture certain programming features which

are not normally considered to be data structures (such as concurrency, inheritance, client/

server storage, before and after actions, statistics gathering) in our model. A major portion of

our effort has been to show how these non-data structure concepts are implementable, as sim-

ple components within our libraries of plug-compatible components.

A primary result of our research is a prototype system which allows programmers to gen-

erate code for complex data structures more easily and faster than previously possible. The

prototype is called Predator, which is an acronym for PREcompiler for DAta sTRuctures. We

believe that Predator is a first step towards a powerful and practical tool for writing data

structures that will offer gains in software productivity and increased code efficiency.

1.2 A programming example

This section briefly describes a task which is data structure intensive. The basic structures

and interconnections of the system will be described, as well as some of the basic operations to

be performed. The reason for this is to demonstrate that even elementary tasks give rise to a

large degree of data structure complexity. This explosion of complexity is a prime motivation

for our approach of automatic code generation.

Consider a simulation of a supermarket (for exposition purposes, we will discuss only a

portion of the effort needed for a full simulation). Suppose a supermarket is composed of the

3

following entities (elements): items, checkout lines, cash registers, customers, and employees.

The following figure depicts some attributes each of the elements might possess:

Figure 1.1: Supermarket elements

Now, consider the checkout area of the supermarket. A checkout area consists of a set of

checkout lines, perhaps modeled as an array. Each of those lines must contain a set of custom-

ers, waiting to check out. A common implementation is to use a queue of customers. Custom-

ers check out one at a time, and are enqueued at the back of the line. Each customer has a

basket of items. An item list might be stored as a simple linked list. Finally, employees must

work the cash register at the head of each open line, and employees can only work the hours

they are scheduled to work.

While this seems straightforward, a closer investigation reveals complicating consider-

ations:

1. Customers may wish to exit from the middle of the queue, or add items to their basket

while in the middle of the queue, both of which are difficult to express with standard

queue semantics.

2. Join relationships must be maintained between cash registers and the employees cur-

rently manning them.

Item Employee Checkout
Line

Cash
Register

Customer

name
cash
items

item_num
name
unit price

emp_num
name
schedule

reg_num
cash_avail

num
open_close
reg_num
custs

4

3. While most of the data can be stored in transient memory, certain data (such as items

stocked at the store) must be stored persistently.

4. As our simulation evolves, we may wish to improve our employee scheduling algo-

rithm, requiring a new, more efficient, data structure to be used for schedules. We

would like to make this change with as little impact as possible (or none) to the exist-

ing code utilizing employee schedules.

Obviously, we could make this simulation far more complex. However, even this simple

example demonstrates the complexity explosion of data structure programming. Managing

this complexity is a significant undertaking.

1.3 Characteristics of an acceptable solution

A major focus point of this research has been to determine what properties are required

for a tool to aid programmers in writing efficient data structures. We believe that such a tool

should:

1. Allow programmers to code data structures faster and more easily than by hand,

2. Allow programmers to utilize efficient data structures, even if they do not fully under-

stand how those data structures work,

3. Enable programmers to debug their programs without having to see or interact with

the code generated by the system (i.e. debug at the algorithmic, not data structure,

level),

4. Allow programmers to change the underlying data structure implementation in a pro-

gram without having to modify the application code,

5. Generate code that is at least as efficient (in execution time) as that which could be

generated by hand by the “average” programmer (i.e. within 10% of highly-tuned and

hand-optimized code).

6. Aid the programmer in the evolution process by enabling the addition of new features

and implementations without having to rewrite existing applications.

5

1.4 Potential solutions

As mentioned earlier, there have been many attempts to create tools which provide the func-

tionality described in the previous section. In general, these attempts can be grouped into

three categories: component libraries, object-oriented libraries, and transformation systems.

Most of the solutions that we review straddle these rough categorizations; they are hybrids, as

is our proposed system. A more detailed description of several of the more significant efforts

can be found in Chapter 6. Each of the categories described below share one concept: the soft-

ware component (or module, layer). The component is a fundamental unit which encapsulates

a behavior, and which presents an external interface. Details such as implementation, exten-

sibility and scalability may differ by category, but they all share components as their underly-

ing basis.

1.4.1 Software component libraries

Component libraries are perhaps the most common solution to data structure programming.

Component libraries can be found almost everywhere today, from stand-alone libraries

[Boo87, Boo90, Gor90] to libraries that are included with compilers [Bor92] and operating sys-

tems [Lea88]. In a component library, many different data structures are represented, each by

its own component in the library. These components are atomic and are treated as indivisible

units of computation. Each component presents its interface to the outside world. Most often

that interface is unique for each component, but this is not a requirement. Component librar-

ies may or may not be object-oriented. Object-oriented component libraries tend to be struc-

tured as a forest of related trees of components, where each tree is structured by inheritance.

Also, programmers who use object-oriented component libraries can easily create new compo-

nents via inheritance.

An important feature of component libraries is that the code which implements the com-

ponents is static and fixed. That is, the code for each component is written by the library

author and is provided to the user. While the code may be heavily optimized, components can-

not be modified to suit the context of the application without having to understand and modify

the code of the original component.

Components are often parameterized to allow them to represent a family of related com-

ponents. Most component libraries with which we are familiar provide some level of parame-

terization, but usually only for such things as bounds, ranges, and generic instantiations.

6

Generic instantiations allow one, for example, to parameterize a linked-list component to cre-

ate a linked-list of customers, or a linked-list of bank accounts.

While components cannot be broken apart, they can often be composed. The composition

facility in most libraries is fairly rigid, which limits the number and types of compositions

allowed. Illustrative examples of this will be presented in Section 3.3.

1.4.2 Transformation systems

Another (broad) category of systems is so-called transformation systems. Transformation sys-

tems are characterized by the transformations they perform on components to create new

components which are tailored to the data structure or environment desired. Examples of

data structure transformation systems include [Sno89, Coh89, Coh93, Nov83, Nov92].

The chief feature which distinguishes transformation systems from library approaches is

their ability to dynamically alter their components as needed. This flexibility allows them, in

principle, to be more task-specific, and hence more efficient.

Transformation systems do not retain the notion of atomic (or indivisible) components. A

component may be modified during transformation, based on meaning-preserving transforma-

tion rules. Transformation systems do not imply any particular compositional technique, nor

do they restrain (as do OO approaches) the interfaces of the differing components.

1.5 An optimizing compiler approach

While many of the approaches described above are indeed useful, it is clear to us that no one

approach is inherently better than the others; each has strengths and weaknesses. In fact, if

one looks at commercially available data structure programming aids [Boo87, Lea88, Boo90,

Lam91], no one approach seems to dominate over any other.

The subject of software architectures is gaining importance [Gar93]. Software architec-

tures deal with the scalability issues of programming-in-the-large. GenVoca is but one

approach to create scalable domain-specific software architectures [Hei90, Hei91, Cam92,

Wei90]. It is a model of hierarchical software construction that has been used in software gen-

erators for a variety of rather disparate domains (databases [Bat88, Bat90], network commu-

nication [Hut91, Oma90], and avionics [Cog93]). Its key feature is that it exploits the

maturity of domains by standardizing their fundamental abstractions, and then standardiz-

7

ing the way in which software systems of the domain are built from these abstractions. We

will discuss GenVoca at greater length in Section 3.1 [Bat92b].

The relevance of GenVoca became evident when we realized that data structures are hier-

archical; they can be understood as compositions of plug-compatible layers. Although GenVoca

offered a basis for understanding how data structure code might be generated, it was our

experience that the GenVoca concepts were insufficient, by themselves, to lead to a data struc-

ture programming environment. To achieve the goals we stated in Section 1.3, we feel that it

is necessary to augment concepts from other disciplines. While those concepts will be fully

explored later in this dissertation, a few will be mentioned here:

1. We have included a consistent, high level interface often found in persistent object

bases [Lam91] and databases [Acm91, Bat88, Bat90, Dat83].

2. Our system relies heavily on compiler and transformation technology. Our components

are always created dynamically to suit the particular data structures and operations

needed.

3. Utilizing compiler technology also allows us to extensively explore the area of domain-

specific optimizations. We feel that this is crucial for generating high-performance

components.

4. We have extended the notion of component parameterization from classical work

[Gog86] to allow components to be parameterized by fields, as well as the more stan-

dard constants, functions, and data types.

5. We have defined a series of specializations that allow us to customize components with

new functions, and to add new functions without affecting existing components or

application code. In addition, our specialization model provides a recursive macro pro-

cessor, which allows components to augment their “standardized” interfaces.

The name “GenVoca” was given to the model that unified the designs of two software sys-

tem generators: Genesis, a generator of database systems, and Avoca, a generator of network

protocols. Just as our project developed from Genesis, another language/compiler-based

project [Abb92] was spawned from Avoca. It is worth noting that this follow-on project to

Avoca added a set of features to GenVoca that is almost identical to ours. We believe that this

is a confirmation of our findings.

8

1.6 Goal

We have motivated the need for automatic generation of data structure code, and mentioned

several approaches that have already been explored. We believe that the design and construc-

tion of an efficient, easy-to-use tool in this area is an important area of research. Such a tool, if

designed and implemented, could be of tremendous use in both academia and industry.

Our research goals are (1) to identify the concepts that are needed for a scalable data

structure generator, (2) to construct a compiler that validates these concepts, and (3) to con-

duct a series of experiments to demonstrate that our compiler satisfies the characteristics of

an acceptable solution (discussed earlier in Section 1.3).

The next section describes the contents of this thesis in greater detail.

1.7 Overview

Chapter 2 introduces the concepts of traditional parameterized types (TPTs). The chapter

describes TPTs, explains how classical solutions attempt to solve the data structure program-

ming problem with TPTs, and details some of the inherent limitations of the TPT model as an

acceptable solution.

In Chapter 3, we describe a variation of TPTs, which we call NPTs (non-traditional

parameterized types). We begin by describing the GenVoca domain modelling concepts, on

which NPTs are based. The individual features of NPTs are then described. Chapter 3 also

defines how we express the data structure domain in terms of realms, includes a recapitula-

tion of the identified limitations of TPTs, and shows how NPTs overcome these limitations.

We describe our prototype in chapter 4. Sections are included on terminology, a descrip-

tion of DS and LINK realms, the realm language syntax, the actual compiler and its environ-

ment, and examples of use. This chapter also includes many of the design decisions made

during the implementation, and suggestions for future further implementations of NPTs.

As mentioned before, validation of the implementation was a crucial part of this effort. In

chapter 5 we describe the methodology for validating our work, present a series of experi-

ments that were conducted on the prototype, and report the results of the validation effort.

9

We compare and contrast our work to related work in chapter 6. Since our work is in a

field which is defined by the intersections of several other disciplines, we also distinguish

where we believe the boundaries of that intersection lie.

Chapter 7 presents an evaluation of this work. Sections are included discussing design

decisions made, as well as implementation notes and concerns.

In chapter 8 we present a summary of our research and results. In addition, we offer our

thoughts on future work in the area of data structure precompilers.

10

Chapter 2

Traditional parameterized

types

2.1 Description

A traditional parameterized type (TPT) is a conventional expression of a generic, abstract data

type. It is abstract in that the data type externalizes the interface, while hiding implementa-

tion details. A TPT is a data type that has been parametrically generalized to compactly rep-

resent a family of related types. A generic stack, for example, could be instantiated to form a

stack of integers or a stack of strings. Generics in Ada [Ghe87, Coh90] and templates in C++

[Str91] are well-known implementations of TPTs.

In this section, we examine the current uses and assumptions of TPTs. We then expose

fundamental limitations in the design of TPTs, current implementations of TPTs, and in the

concept of TPTs itself.

Goguen [Gog86] has proposed a model of parameterized programming in which two dis-

tinctly different forms of parameterization were identified: horizontal and vertical. Horizontal

parameterization is equivalent to TPTs: the interface of the component is parameterized by

other data types (as well as by constants). Vertical parameterization corresponds to the notion

of layering. That is, the internal implementation of the data type is parameterized by other

data types. We find that while TPTs are rich in horizontal parameterization, they are lacking

in vertical. We will describe our augmentation of TPTs with vertical parameterization in

Chapter 3. The rest of this chapter will describe horizontal parameterization and composition

with TPTs.

11

Below, we present the two common methods of TPT composition: instantiation of a base

type and instantiation of another generic data type.

1. The most common use of generics is in the instantiation of the base type. In the exam-

ple introduced above, a generic stack might be instantiated with integers at one time

and with strings at another, thus creating two new types. Each of these types, in turn,

can be instantiated into real data structures. Figure 2.1 shows a generic stack, which

is instantiated into a stack of integers and a stack of strings. It further shows instances

of each of these new types. Note that this horizontal parameterization does not affect

the internal implementation of the stack, only the externalized interface.

Figure 2.1: A stack of strings and a stack of integers instantiated from a generic stack

2. Generics can also be instantiated with other generics as their base type. An example of

this type of instantiation is the composition of a list generic with a binary tree generic.

This yields a list of trees in which each node of the list is a pointer to the root of a

binary tree. That is, the base element type for each node of the list is the header struc-

ture of a binary tree (i.e. pointer to the root node). Figure 2.2 shows such a data struc-

ture.

Note that the order of composition is significant. The composition of a binary tree of

lists is completely different than that shown in Figure 2.2.

fred

car

pred

23

13

45

hello

Integers

Strings

A stack of strings A stack of integers

Instance
Creation

Instance
Creation

Type:
Generic
Stack

Type:
Stack of
Integers

Type:
Stack of
Strings

12

Figure 2.2: A traditional parameterized type: a list of trees

We will show in Section 3.3 that there are different kinds of generic abstractions. We call

the one presented above traditional parameterized types (TPTs), because the basic concepts

are well understood and established, even if they are not used as often as they should be in

practice.

2.2 Limitations of TPTs

We have identified three general areas in which TPTs are deficient:

• Conceptual deficiencies (specialization, complex compositions, type transformations).

• Design deficiencies (ad-hoc interfaces, evolution, scalability).

• Implementation deficiencies (code efficiency)

Each of these limitations are elaborated in the following sections.

2.2.1 Difficulty of specialization

A TPT offers operations that its author believes are adequate for a wide variety of applica-

tions. However, in the context of a specific application, it is often the case that additional oper-

ations, unforeseen by the TPT author, are needed [Gar92, Sul92]. As the following examples

illustrate, the penalty for non-extensible TPT interfaces can be severe inefficiencies or aban-

doning the use of the TPT altogether.

List header

13

Consider a queue with the interface: enqueue, dequeue, is_empty, is_full. Suppose that it is

necessary to delete items located in the interior of the queue. Using only the previously men-

tioned operations, one must dequeue each item from the queue, check to see if it is the

requested element, and enqueue it if it is not. Typically the end of the loop is determined by

either knowing the size of the queue or by placing a special end-marker on the queue before

iterating. Clearly this is both inefficient and awkward, as it requires a dequeue and enqueue

for each of the n items on the stack.

The situation is worse for stacks, whose interface is: push, pop, is_empty, is_full. It can be

easily seen that, unlike queues, a second data structure (stack) is required for the deletion.

The top item of the stack is popped. It is then pushed onto the second stack. When the item to

be deleted is popped it is discarded. Then, each item from the second stack is popped, and

pushed back onto the original stack (to retain the original ordering). Deleting an item in the

interior of a stack is not only inefficient in time, but also in space.

Although the preceding examples may seem a bit contrived, they are not. Recall the

checkout lines at a supermarket described in the introduction. One could easily model this as

an array of queues. Using only operations provided by the queue interface, common events

cannot be easily programmed. Consider the following:

• A customer in line realizes that he needs another item and leaves the middle of the line

to do more shopping.

• A “10 items or fewer” line opens up. People leave other lines to queue up.

• Someone in a line “holds the place” for another person, who arrives, and enters the

middle of the line.

• Every third customer in a given line is given a new promotional item (i.e. candy bar)

while in line. (This is an example of modifying an element interior to a data structure.)

Each example clearly shows the need to specialize TPT definitions. Specialization is the

process of modifying a type to augment its interface so that it conforms to what is needed by

an application programmer. There are three alternatives, each of which has inherent flaws.

1. The TPT author tries to envision all specializations in advance and provides an

expanded interface to cover all cases. This is difficult, if not impossible. Even if it could

be accomplished, the approach often backfires - complex interfaces can be intimidating;

programmers may choose not to use this expanded TPT by opting for simplicity. Note

14

that the “philosophy” of TPT design is to provide a clean and generic abstraction. Com-

plex interfaces contradict this premise.

2. The author provides the TPT source, so that programmers can create their own spe-

cializations. This essentially nullifies many of the productivity advantages of TPTs, as

programmers must now understand someone else’s code, as well as the TPT module,

and must program and debug the extensions as needed. Inheritance can be used to

help reduce the specialization work required, but experience has shown that even this

approach requires considerable additional programming work for customized applica-

tions [Tan89].

3. Don’t use TPTs. In production level code, many component libraries are shipped in

object form only. It is up to the programmer to either live with the TPT interface pro-

vided, or to not use TPTs at all.

None of these alternatives is satisfactory. We feel that components provided to a program-

mer must be able to be specialized easily and without much knowledge of the inner workings

of the TPTs.

2.2.2 Complex compositions

It is widely believed that TPTs are the appropriate abstraction for encapsulating primitive

data structures [Boo87, McN86a, McN86b, Pal90]. More complex structures are assumed to

be created through TPT compositions. This is the case for the data structure depicted in

Figure 2.2. In general, however, TPTs are far from adequate.

Many data structures that are used in practice are unlikely to be available in TPT librar-

ies. A simple example is a data structure that simultaneously links its elements onto a binary

tree (to maintain one ordering of the elements) and onto a linked list (to maintain a second

ordering.) Figure 2.3 illustrates this structure. Each node contains pointers for both a binary

tree and a linked list. Note that the root of the tree need not be the same as the head of the

list.

It is important to recognize that the structure in Figure 2.3 cannot be created by parametric

instantiation of the tree and linked list TPT module. Neither a list of trees nor a tree of lists is

the same as the structure depicted in Figure 2.3.

15

Figure 2.3: A binary tree/linked list data structure

There are TPT solutions for creating the structure shown above. For example, multiple

inheritance can be used to capture the behavior of both the binary tree and the linked list.

There are two potential problems with this approach. The first is a naming conflict problem1.

The inherited characteristics may share names among data or functions2. The other problem

is that, depending on the modules inherited, “glue code” may need to be written for the mod-

ules to inter-operate successfully. Glue code is programming added to integrate the code frag-

ments from multiple components. An example of this might be a data structure with both a

dynamic memory allocation scheme and an avail-list allocation scheme. The code inherited

from these two modules are interrelated. That is, simply macro expanding the code from them

(in arbitrary order) would not be sufficient. Languages such as SELF [Cha89] provide more

sophisticated inheritance mechanisms, but still suffer from lack of knowledge about the

domain (necessary to create merged, efficient components).

Mapping TPTs [Boo87] can be used to simulate (but not exactly match) the data structure

shown in Figure 2.3, but “glue” code is still required, and the indirections from the mapping

layer(s) incur additional (and possibly unacceptable) performance penalties.

Elements stored within a data structure seldom exist in isolation. Real systems often have

elements in one structure linked to elements in other data structures (e.g. via pointers).

Figure 2.4 shows a container of employees and a container of departments; each department

1. The name resolution problem is unresolved, with several possible solutions [Kai89].
2. This is particularly true in the case where the same component is inherited multiple times.

Tree pointers

List pointers

Root of tree

Head of list

16

is connected to the employees in that department via a link. Consistency constraints, such as

the existence (or nonexistence) of data items in other structures, are often coupled with such

linkages.

In general, structures like Figure 2.3 and Figure 2.4 arise frequently in practice. Because

TPTs offer little help in their construction, the TPT abstraction for encapsulating primitive

data structures is not sufficient. Component composition is a basic operation of a data struc-

ture compiler. A fundamental goal of such a compiler is to automatically generate efficient

“glue” code. Thus, we feel that TPTs without compilation and domain-specific knowledge opti-

mizations are not sufficient to define complex data structures.

Figure 2.4: Two interlinked lists

2.2.3 Type transformations

Data structures can be modelled as mappings or type transformations; where an abstract

type, devoid of any data structure implementation details, is mapped to a concrete type where

the details of the transformation are now visible. For example, a linked list TPT adds the

previous and next fields to each data element it stores, and introduces algorithms to main-

tain the consistency of the fields.

Employees

Links

Emp: A
Dept: 1

Emp: B
Dept: 2

Emp: C
Dept: 1

Emp: D
Dept: 5

Dept: 1

Dept: 5

Dept: 2

Depart-
ments

17

Inheritance is a simple, but common, method of realizing such transformations. That is,

inheritance can add new fields and new operations to data types. However, there are many

other type transformations that cannot be expressed in terms of new fields and/or operations.

These include transformations where fields or operations are deleted, where the original data

structure is partitioned into two or more sub-structures, and where the original fields are

transformed into different types and/or sizes. Of these different type transformations, only the

first two are native to TPT implementations. The others require additional capabilities.

Examples of algorithmic operations which require these more complicated type transfor-

mations include: segmentation, partitioning (fix sized), compression, and encryption (both

fixed and variable sized). Because TPTs rely on mechanisms such as inheritance and mapping

to transform types by field and operation addition, TPTs are unable to express certain type

transformations as simple data structures, and thus cannot express important classes of data

structures.

2.2.4 Ad hoc interfaces

Most TPTs have unique interfaces. This means that the TPT interface for lists is (typi-

cally) different from that of arrays, binary trees, etc. When an application program is written

using a specific TPT, it is often difficult to change the underlying data structure (TPT) without

triggering a substantial rewrite [Nov92]. While changing from a static array to a dynamic

linked list may not be too difficult, going to a more complex structure entails considerable

effort.

It is often the case that one does not understand all of the factors which affect the choice of

data structures (TPTs) until well beyond the point where design changes can be easily made.

If TPTs have unique interfaces, then it may be too expensive to retrofit a better suited data

structure into existing code. Being able to change data structures “on the fly” (i.e. with mini-

mal side effects) is highly desirable. The uniqueness of TPT interfaces actually inhibits exper-

imentation with alternative implementations. It is often the case that a programmer’s first

working solution to a problem is also his last.

18

2.2.5 Evolution and maintenance

TPTs by themselves do provide a small amount of support for program maintenance and sys-

tem evolution [Gar92, Sul92]. Certainly, data hiding helps when maintaining a program, and

having the ability to change the implementation of a module without having to rewrite the

caller’s program allows systems to evolve over time. However, TPTs, by themselves, do not

provide further support for these important problems.

For example, declaring and maintaining invariants among data structures is useful when

evolving a system. Programmers should have the ability to either declare that a relationship

always be maintained by the TPT as an invariant, or (after manual insertions or deletions) to

test by assertion a relationship with a TPT supplied interface. Although the latter functional-

ity can be found in [Sno89] as part of the environment, the ability to declare and maintain

invariants is generally absent from the TPT model.

2.2.6 Scalability

Current TPT libraries are populated with components that represent a unique combination of

features that the TPT author believes are necessary. The Booch C++ Components [Boo90], for

example, implements over 400 distinct data structures such as stacks, lists, hash tables,

queues, and trees. The large number of components arises from feature combinatorics; compo-

nents are differentiated according to their support for concurrency (e.g., sequential, guarded,

concurrent, multiple), basic data structures (list, queues, stacks, etc.), space management

(bounded vs. unbounded, managed vs. unmanaged), and features offered (iterator vs. noniter-

ator, balking vs. nonbalking, etc.). Every legal combination of features yields a distinct data

structure. Because there are many possible combinations, it is not surprising that this library

is large.

Feature combinatorics are inherent to all libraries [Kru92]. Such libraries are inherently

unscalable, simply because the number of features that programmers need is open-ended.

Moreover, library components are typically written by hand, with occasional use of inherit-

ance to minimize gross code replication. A methodology is required to allow the size of the

component library to scale gracefully as new components are added3. The monolithic nature of

3. The problem of scalability is detailed further in [Bat93a].

19

TPT components makes this a difficult goal to attain.

2.2.7 Code efficiency

A standard method of implementing TPTs is to compile the code for each TPT component sep-

arately, with references and manipulations of generic objects performed via pointers [Ghe87].

This introduces an additional run-time overhead for resolving inter-TPT references. Another

method of implementation is macro expansion, which is not always sufficient to provide effi-

cient code [Nov92]. We feel that these composition mechanisms, by themselves, do not gener-

ate sufficiently efficient code.

In the domain of data structures, where performance is often critical, large run-time over-

heads or inefficient code are simply not acceptable.It is the nature of monolithic TPT compo-

nents that they have no specialized knowledge either of other components, or how they will be

composed with other components. This precludes them from being able to take advantage of

domain-specific knowledge. Both partial evaluation and composition-based optimization

(domain-specific) are mechanisms by which more efficient TPT implementations can be con-

structed.

Another problem with TPT implementations is that the TPT modules are written to be

general. As we mentioned in Section 2.2.1, TPTs tend to implement every operation that the

TPT author believes may be necessary. Often, a particular application needs only a fraction of

the operations available, or only a portion of a particular operation. Since TPTs do not typi-

cally rely on compiler technology for dynamic instantiation, it is difficult, if not impossible to

remove the undesired sections of the TPT from the main body of the component. This can

result in an increase in program size, decrease in performance, or both.

2.3 Conclusions

The TPT (i.e. generic abstract data type) is an abstraction which is commonly believed to be

an appropriate mechanism to solve a number of software engineering problems. While the

concept of TPTs is useful, TPTs possess basic limitations which have not been fully appreci-

ated by the software community. We feel that a more powerful mechanism is required. Our

proposed solution is outlined in the next chapter.

20

Chapter 3

Non-traditional

parameterized types

A non-traditional parameterized type (NPT) is a generalization of the TPT. It is based on the

GenVoca model (Section 3.1), and Goguen’s concept of vertical parameterization [Gog86].

Application writers use NPTs much as they use TPTs. Our NPTs provide a series of primi-

tive functions (such as INSERT, DELETE, FOREACH...) which augment a high-level lan-

guage (such as C). With NPTs, a programmer writes a program which consists of standard

high-level code, as well as NPT function calls. NPTs also provide a mechanism for program-

mers to declare type equations (or annotations). Type equations specify the implementation of

data structures used in the program. Finally, the programmer executes an NPT precompiler,

which translates the NPT primitive function calls into efficient high-level code, based on the

type equations. The resultant code is then compiled and linked with a standard language com-

piler and linker, producing an executable program.

In this chapter we introduce the GenVoca domain modelling approach, from which NPTs

are derived. We define terminology necessary for NPTs, and discuss NPT concepts. We then

explain how NPTs overcome the deficiencies of TPTs that we noted in Section 2.2.

The concepts, examples, and arguments in favor of NPTs presented in this chapter are

programming-language independent. For clarity, however, we have chosen to code the exam-

ples in the C programming language. The reader should not, therefore, infer from this that

NPTs are in any way dependent on the C programming language.

21

3.1 The GenVoca model

GenVoca is a domain-independent model for defining scalable families of hierarchical systems

as compositions of reusable components. Other system generators [Hei90, Haa90] also possess

organizations similar to GenVoca. As mentioned in Section 1.5, GenVoca is derived from two

independently-conceived software system generators, Genesis [Bat88, Bat90] and Avoca

[Hut91, Oma90]. The foundation for GenVoca has its roots in Parnas’ families of systems

[Par76], Habermann’s FAMOS project [Hab76], and Goguen’s model of parameterized pro-

gramming [Gog86, Tra93]. GenVoca is characterized by realms (or libraries) of plug-compati-

ble components, symmetric components, and type equations.

3.1.1 Components and realms

A hierarchical software system is defined by a series of progressively more abstract virtual

machines. A component (or layer) is an implementation of a virtual machine. The set of com-

ponents that implement the same virtual machine is called a realm.

The components of a realm can be enumerated. Consider realms R and S:

R = { a, b, c }

S = { d[x : R], e[x : R], f[x : R] }

The notation above signifies that realm R contains three members (a, b, and c). Each of

these is a different implementation of the virtual machine for realm R. Realm S also contains

three components (d[], e[], and f[]), which are distinct implementations of the virtual

machine for realm S.

Components may be parameterized in terms of realms. For example, each component of

realm S requires a single parameter of realm R. This means that each component of realm S

exports the virtual machine interface of realm S, and imports the virtual machine interface of

realm R.

Components can be understood as transformations. Component d[], for example, can be

seen as a transformation that maps objects and operations of virtual machine S to objects and

operations of virtual machine R. The importance of this concept is that the transformation

performed by d[] does not depend on any specific implementation of R (i.e. which component

22

of realm R is provided). In other words, component d[] encapsulates a complex mapping

between the two realm interfaces.

3.1.2 Type equations

GenVoca systems are modeled as type equations. Consider the following two systems:

System_1 = d[b];
System_2 = f[a];

System_1 is a composition of d[] with b; System_2 is a composition of f[] with a. Note that

both systems are of type S. This means that both systems implement the same virtual

machine and are interchangeable implementations of the interface of realm S. They are inter-

changeable in that both System_1 and System_2 provide the same interface, and usually

perform the same work. Even in the (very small number of) cases where the two systems do

not perform the same work, they still provide equivalently compileable programs. While this

may seem to be a weak constraint, it turns out that defining systems in this manner is quite

powerful and useful. In our experience, it is actually very difficult to construct two systems (of

the same type) which do not perform the same work.

Realms and their components define a grammar whose sentences (i.e. composite composi-

tions) are software systems. Adding a new component to a realm is akin to adding a new rule

to the grammar; the family of systems is automatically enlarged. Because large families of

systems can be built using relatively few components, the GenVoca model is a scalable method

of software construction.

In principle, any component of realm R can be inserted into component d[] to instantiate

it. However, there are always certain combinations of components that do not make sense,

even though the type equation is well-formed. Examples of well-formed type equations that

perform no useful work are provided later in this dissertation. A short example (from the data

structure domain) would be a data structure such as:

delflag[malloc[]];

which is defined to do nothing more than malloc elements (which can be logically deleted) on

the heap. In other words, elements are not interlinked in any way, and thus a FOREACH state-

23

ment would be unable to traverse through the elements in the data structure. Even so, the

type equation would generate compileable code (even for the FOREACH statement).

In an automated system (such as our NPT compiler), additional domain-specific design

rules can be used to preclude illegal or pointless combinations. In the example described

above, it is somewhat trivial for an NPT compiler to note that there exists a conflict between

the FOREACH operation and the type equation provided. The compiler can then return the

appropriate warning or error to inform the programmer of the mismatch. Attribute grammars

appear to be a unifying formalism that can be used to define realms, their components, and

design rules [Bat92c].

3.1.3 Symmetry

Recursion, in the form of symmetric components, is fundamental to GenVoca. Symmetric com-

ponents have the unusual property that they can be composed in arbitrary ways. A component

is considered to be symmetric if it exports the same interface that it imports (i.e. a symmetric

component of realm T has at least one parameter of type T). In the realm below, components

n[] and m[] are symmetric whereas component p is not.

T = { n[x : T], m[x : T], p }

Because n[] and m[] are symmetric, compositions such as n[m[p]], m[n[p]], n[n[p]],

m[m[p]] are possible. Note that the latter two demonstrate that a symmetric component may

be composed with itself. In general, the order in which components are composed is signifi-

cant. It may affect the semantics, performance, and behavior of the resulting software system.

Care must be taken that the system specified with a given type equation properly models the

behavior for the desired software system.

3.2 Basic concepts

Before discussing the features of NPTs, we define some basic terms.

Elements are the basic building blocks from which data structures are built. NPT ele-

ments are nothing more than instances of structures (or records); they are the tuples stored in

a data structure. For example, the customer elements shown in Figure 3.1 as individual fig-

ures might have the following definition:

24

struct customer
{
char name[30];
int age;

}

Figure 3.1: A container of customer elements

A container is a receptacle of elements of a particular base type. Typical data structures

that programmers commonly use are nothing more than implementations of the container

abstraction. The semantics of storage and retrieval (e.g. the container is an array of elements

or a linked list of elements) will be discussed in a later section. The container depicted in

Figure 3.1 holds eight customer elements.

Cursors are objects which allow programmers to access individual elements in a con-

tainer. Cursors may be set to reference individual elements of a container, advanced to the

next element in the container (or reversed to the previous element), or used to traverse each

element in a container. The cursor shown in Figure 3.1 references the shaded customer ele-

ment within the container. Cursors are completely opaque, in that the programmer has no

idea of how a specific cursor is implemented.

Note that the only way in which elements can be retrieved, modified, or deleted from a

container is through a cursor.

A schema is a description of a data structure (i.e. a container), including both the base ele-

ment type of the data structure and implementation details. It is, in effect, a data type for a

data structure. Each schema is tightly coupled to a single base element type. In addition, a

schema defines both the implementation of the data structure (i.e. the layering), as well as the

Container

Cursor

25

implementation of the primitive functions that operate on the data structure. Schemas are

declared as follows:

SCHEMA <schema_name> ON ELEMENT <base_element> = <implementation>;

where <schema_name> is the name of the schema definition, <base_element> is the name

of a declared element (structure), and <implementation> is a valid type equation. Type

equations are fundamental to our work, and were described in Section 3.1.1.

It is important to understand that schemas are not physical objects. Schemas are nothing

more than templates that describe how an NPT data structure should be created. The actual

data structure described in the schema does not exist until at least one container (of that

schema type) is declared. NPTs do not restrict the number of container instantiations of a par-

ticular schema that a programmer may declare.

All of the entities listed above are declarative constructs. The following example declares

a single schema which implements an array of customers, a container and a pointer to a con-

tainer of that schema type, and a single cursor which traverses the declared container:

SCHEMA a_schema ON ELEMENT CUSTOMER = array[100];
a_schema a_cont, *ptr_cont;
CURSOR a_curs ON a_cont;

In the above example, we defined one schema type, a_schema. We then declared one con-

tainer (data structure) of that schema type, a_cont, and a pointer variable which points to a

container of that type, ptr_cont. Finally, we defined a cursor, a_curs, which is declared to

range over elements in the a_cont container.

A link is a relational join which connects together elements from two containers. For

example, a container of customers and a container of orders (of merchandise) could be linked

together so that each customer is connected to all orders that he has placed. Links are speci-

fied via a relational predicate, which determines which pairs of cursors satisfy the link. Links

are declared as follows:

LINK <link_name> ON <cardinality> <parent_container>
TO <cardinality> <child_container>
USING <implementation>
WHERE <link_predicate>;

26

where cardinality is either ONE or MANY, <link_name> is the name of the link, <parent_-

container> and <child_container> are declared containers, <implementation> is a

valid LINK type equation, and <link_predicate> is a selection predicate, involving terms

of the two containers, to qualify which elements in the two containers participate in the link.

A composite cursor is a construct used to traverse (one or more) links. Composite cursors

provide the same function for links that cursors do for containers. A composite cursor is a set

of n distinct container cursors which range over potentially distinct containers. Each con-

tainer cursor used within a composite cursor is responsible for referencing an element in a

specific container. Thus, a composite cursor’s state can be represented by all of the container

elements of the composite cursor. At any given moment, the container cursors of a composite

cursor reference elements which satisfy the composite cursor’s predicate. Composite cursors

are defined in terms of a predicate, which is a conjunctive expression including expressions on

cursors and link predicates. A composite cursor is declared as follows:

COMPCURS <cc_name> USING {<c1> <cont1>}+ WHERE <cc_pred>;

<cc_name> is the identifier of the composite cursor, and one cursor-container pair is declared

for each container that participates in the composite cursor. The <cc_pred> is a selection

predicate. The predicate may be composed of any combination of relational expressions on

containers and links previously declared. For example, the composite cursor defined below

will traverse pairs of employee and department elements, where the employee is the depart-

ment’s manager, and the employee is 64 years old:

LINK man_link ON ONE employee TO ONE dept
WHERE employee.emp_id == dept.manager_id;

COMPCURS cc_man USING emp_curs employee dept_curs dept
WHERE man_link && emp_curs.age == 64;

Composite cursors may be extended to range over as many different containers as neces-

sary. Composite cursors may also be self-referential. Self-referential composite cursors declare

at least two container cursors that range over the same container. For example, consider a

container which stores employee records for a company. A self-referential composite cursor

which returns all employees in the company, their department, and their manager, would be

declared as follows:

27

LINK manager ON ONE employee TO ONE dept
WHERE dept.manager == employee.emp_id;

LINK works_in ON ONE dept TO MANY employee
WHERE dept.dept_num == employee.dept_num;

COMPCURS cc_manages USING e1 employee d1 dept e2 employee
WHERE manager(e1, d1) && works_in(d1, e2);

To implement self-referential composite cursors, syntax must be added to each <cc_pred>

clause to inform the compiler as to which container cursors are used for the clause. 1

3.3 NPT features

In Chapter 2, we noted that TPTs implement horizontal parameterization. The GenVoca

model, on the other hand, defines a set of layers that implement vertical parameterization.

Our NPT model for data structures incorporates both horizontal and vertical parameteriza-

tion. The following sections detail the specific augmentations we have made to the TPT model.

3.3.1 Realm partitioning

With our NPT model, we have chosen a broad decomposition of the data structure domain.

All components which operate on elements within a single container are defined to belong to

the realm of components called DS (for data structures). The DS realm includes most common

data structures. Examples include arrays, lists, trees, and indexes. In addition, many other

data transformations, which are not normally thought of as data structures, are representable

as DS components. The complete list of DS components we have implemented can be found in

Section 4.2.1.

DS = {array[], malloc[], persist[], delflag[x : DS], dlist[x : DS],
bintree[x : DS], avail[x : DS]...}

Components within DS are defined to be either terminals or non-terminals. Terminal com-

ponents are responsible for allocation and de-allocation of physical storage. Examples include

array, malloc, and persist. All other components in DS are non-terminals. Non-terminal com-

1. Self-referential links are not supported in the current version of the compiler. However,
Section 7.1 describes how to augment our system to support this feature.

28

ponents must be parameterized with at least one instance of another DS component (i.e, they

are GenVoca symmetric components). For example, the component for unordered, doubly

linked lists has the following definition:

dlist[x : DS] : DS

This component imports a virtual machine of type DS, and also exports the DS virtual

machine. In other words, dlist is a simple non-terminal (symmetric) layer with no additional

arguments.

In our model of data structures, we have defined one other realm called LINK. Members

of LINK implement relational joins between two (and only two) containers. LINK compo-

nents include join implementations such as nested loop and pointer-based links.

LINK = {linknest[x : LINK], linkpoint[x : LINK],
linkterm[x : DS]...}

As with DS, the LINK realm implements both terminals and non-terminals. In the set

above, linknest and linkpoint are symmetric components, whereas linkterm is not. The

LINK realm is somewhat specialized, and not used as often as DS. For simplicity, in the sec-

tions that follow we will confine our general discussions to components within DS, even

though the discussion applies to components of the LINK realm as well.

3.3.2 Consistent interface

One of the cornerstones of NPTs is that all components in a given realm share a consistent

interface. Consistency is defined syntactically in that all components of a given realm imple-

ment exactly the same external interface (i.e. virtual machine). This consistency of interface is

different than that of conventional data structure components. Different TPTs, for example,

typically export different interfaces. With consistent interfaces, however, each member of

realm DS exports exactly the same interface. Thus, the binary tree has the same external

interface as the static array component, as does the timestamp component.

Consistent interfaces yield several benefits, chief among them being plug compatibility.

Programmers may use any component (or valid composition of components) any place where a

single DS component is called for. Perhaps the greatest advantage of consistent interfaces is

that application programmers write to only one interface for all data structures. Thus, when

new data structures are used by a programmer, no additional time is required to learn the

29

new data structure’s interface. Debugging time is also greatly reduced. The result is a poten-

tially large gain in programmer productivity.

Consistent interfaces also ease the burden of writing new components. Component writers

for NPT components know, in advance, what functions they need to write. In addition, they

can, in many cases, scavenge code from other components to help in writing new components.

The major problem brought on by consistent interfaces is that TPT-like functions are lost.

For example, there is no inherent push or pop operators for a stack component. These compo-

nent-specific functions are easily regained with NPTs with the use of a macro language which

will be described in Section 4.1.3. Combining macros with a domain-specific optimizer (see

Section 3.3.6) produce TPT-specific functions with competitive performance. Thus, application

programmers attain the benefits of both plug compatibility and TPT-like behavior.

3.3.3 Vertical parameterization

NPTs utilize a compositional method different than that of TPTs. NPT data structure declara-

tion is accomplished via type equations. While the syntax of type equations is not dissimilar

from that of TPTs, the semantics are quite different (see Section 2.1). Each component defined

in an NPT type equation adds (deletes, or modifies) fields to the base element structure,

resulting in a new, more concrete element type. The new type is more concrete in that it con-

tains more of the fields that implement the data structure in the type equation than did the

original base element type. Resolving a type equation, therefore, is the process of applying

successive transformations to the user-defined element type to create the element type used

by the target data structure.

Thus, a long and complex type equation is responsible for generating one and only one

data structure - not a composition as defined with TPTs. The following description of the

transformations involved is somewhat more formal.

Let P be a program and C be a container that is referenced by P. We will write this as

P(C). P refers to C using the generic cursor operations outlined in Table 3.1. This means that

P is data structure generic - i.e., it is not dependent on the data structure implementation of

C.

Now suppose C is mapped, via a type equation, to a container C’ which exposes all or

part of the implementation of C. Concomitantly, P must be transformed into a program P’

30

that operates on C’ and preserves the semantics of P(C). Thus, plugging in a data structure

as a (possibly partial) implementation of C transforms P(C) to P’(C’).

It follows that a data structure layer (component) for containers is a pair of functions,

where C is the domain of containers and P is the domain of programs (gκ: C→C, gπ: P→P).

gκ is a container mapping function which transforms an abstract container C into a concrete

(or less abstract) container C’. gπ is a program mapping function which deterministically

transforms a program P into a corresponding program P’. The following are examples of con-

tainer and programming mapping functions.

Consider a component for unordered lists (LISTκ: C→C, LISTπ: P→P). LISTκ is a con-

tainer mapping function. It links together all objects of the input container onto an unordered

list. Figure 3.2a shows a container C with six customer objects. Figure 3.2b shows the result-

ing container LISTκ(C). This container has exactly the same objects as C, with the addition

that each object has a next attribute that is used to reference the next object in the list. The

container itself is also augmented with the attribute head to reference the head of the list.2

Figure 3.2: A Simple Container Transformation

2. Note that the order in which objects are linked onto containers reflects the order in which
objects were inserted. This ordering is defined by the LISTπ function. Thus, there is a unique
container that results from a LISTκ mapping.

(a) Container C with 6 customers (b) LISTκ(C)

List
Head

31

LISTπ: P→P is the corresponding program mapping function. LISTπ replaces each oper-

ation on C with the corresponding code fragment that operates on LISTκ(C). For example, an

insertion into C is mapped to an insertion into LISTκ(C) followed by a linking of the object

onto a list. That is, the operation:

INSERT(C, obj, curs);

of program P is mapped to:

INSERT(κ, obj, curs);
UPDATE(curs, Next, κ.head);
κ.head = curs.CURSOR_POS;

of program P’ where κ is the container LISTκ(C). Writing transformations for other cursor

operations on C for LIST is straightforward.

Now consider the component for binary trees: (BINTREEκ: C,A→C, BINTREEπ:

P,A→P) where A is the domain of attributes for key fields. BINTREEκ is a container map-

ping function. Given a container and a key field, BINTREEκ produces a container where all

objects of the input container are linked together onto a binary tree. Each object in C is trans-

formed by the addition of two fields (left and right) that are needed to maintain binary tree

linkages. The container itself is also augmented with the attribute root to reference the root

of the binary tree. Figure 3.3 shows the mapping of C to BINTREEκ(C, A) where A is an

attribute of the objects in C.

Figure 3.3: Binary Tree Transformation

(a) Container C (b) BINTREEκ(C, A)

Root

32

BINTREEπ is the corresponding program mapping function. It transforms operations on

C to operations on BINTREEκ(C, A). As an example, inserting an object into C is mapped to

an insertion of the object into BINTREEκ(C, A) followed by a linking of the object into the

binary tree.

A key feature of this component abstraction is the symmetry of their mappings: contain-

ers are mapped to containers and programs are mapped to programs; the standard container

interface remains invariant with respect to component transformations. This means that

many different combinations and permutations of components are possible; each yields a dif-

ferent data structure and its support algorithms.

Recall that Figure 2.3 depicts an implementation of container C that is implemented by a

composition of the binary tree and list components: LISTκ(BINTREEκ(C)). First, the binary

tree fields left and right are adorned onto each object of C, and then each adorned object is

augmented with the list field next. The resulting program LISTπ(BINTREEπ(P)) transforms

an object insertion in C into an insertion into container LISTκ(BINTREEκ(C)), a link of the

object onto the list, and then a linkage of the object onto the binary tree.

NPTs, therefore, deal with program transformations. Programmers write data-structure

independent algorithms, and specify container implementations as compositions of compo-

nents. The transformation of programs and data types are done automatically through the

use of in-line expansion and partial evaluation. More details on transformational processes

can be found in [Par83, Gri90, Bal85, Coh93].

Containers are first-class objects. Thus, the more traditional forms of composition, such as

that in Figure 2.2 can easily be supported. That is, a list of trees would be represented as fol-

lows: a container, which is a binary tree of elements would first be declared. Then a second

container, which used the first container as its primitive element type would be declared. The

declarations for this example would be:

SCHEMA bin_tree ON ELEMENT customer = bintree[malloc[]];
SCHEMA composition ON ELEMENT bin_tree = dlist[malloc[]];

The combination of both the (vertical parameterization) compositional semantics of NPTs

and support for more traditional methods of compositions allows for a very large set of NPT

data structures.

33

3.3.4 High-level interface

Because all the components in a given realm share the same interface, it is important that the

interface be robust.

Our interface for DS largely reflects work performed in databases [Bat88, Bat90, Kor91]

and persistent object bases [Lam91]. It is high-level, in that the interface provides little more

than basic relational operations. The following table lists the primary operations of the DS

realm interface:

Table 3.1: DS realm interface

Function Call Meaning

INSERT(k, o, c [, h]) Insert object o into container k. Cursor c is an output parame-
ter which is positioned on o in k. h is an optional hint about
where to place object o (i.e., AT_END, AT_FRONT, AFTER or
BEFORE (the position indicated by cursor c that has been posi-
tioned previously). If no hint is supplied, the layer semantics
determine the positioning of the new objecta.

DELETE(c) Delete the object referenced by cursor c.

UPDATE(c, a, v) Assigns the value v to the attribute a of the object referenced by
cursor cb.

c.a = v Same as UPDATE(c, a, v).

RESET(c, h) Repositions cursor c either to the start of the container or to the
end (based on the h argument).

ADVANCE(c) Repositions cursor c on the next qualified object in c’s container.
A status code is set in the cursor to GOOD if the advance suc-
ceeds, EOR otherwise.

REVERSE(c) Repositions c to the previous qualified object in the container.
The status code is set as in ADVANCE.

c++ Same as ADVANCE(c).

c-- Same as REVERSE(c).

LAST_CURS_OP(c) Return the status of the last cursor operation on the cursor c
(EOR or GOOD).

c.a Return the value of attribute a of the object referenced by cur-
sor c.

FOREACH(c) {code} Execute the code fragment code for each object that can be ref-
erenced by cursor c. c is reset to the start of the container and
is iterated through the container.

FIND(c, p) Position cursor c to the next object that satisfies c’s predicate
and the additional predicate p. The status code is set as in
ADVANCE.

34

All layers and composition of layers in DS implement the interface of Table 3.1. However,

not all layers actually implement code for each of the functions of the interface. For example,

the size layer is responsible for keeping track of the size of a given container (i.e. how many

elements are stored in the container). The advance function is responsible for moving a cur-

sor from one element in a container to the next element of the container. Since the size layer

is only concerned with the size of the container, and not the interconnections among the ele-

ments, it is unable to assist in the advance operation. Thus, it generates no code for the

advance function. In a similar vein, the swap operation generates no code for layers that are

ordered. The actual mechanics of code generation will be discussed in Section 3.3.5.

The other realm we have defined is LINK. Links are responsible for connecting together

two elements from one or more containers, based on a declared predicate. As with the DS

a. Note that INSERT will not override the semantics of a data structure. For example,
if a programmer attempts to insert an element AT_FRONT of an ordered layer, the ele-
ment will placed at the “correct” location, even if it is not the front. The compiler we
have implemented will warn the programmer of this possible semantic violation at
compile time.

b. Synthesized attributes (such as a next field for a linked list) which are added by the
NPT compiler are not visible to the application programmer, and may not be altered
with functions such as UPDATE.

GETREC(c, o) Retrieve the object referenced by cursor c and place it into the
buffer specified by o.

c.CURSOR_POS Return the location (untyped pointer) of the object referenced by
cursor c.

c.CURSOR_POS = v Position cursor c on the object with location v.

SWAP(c1, c2) Swap the objects referenced by cursors c1 and c2. Both cursors
are referencing objects in the same container.

Table 3.1: DS realm interface

Function Call Meaning

35

realm, all layers of the LINK realm share a common interface. That interface is described in

the table below:

Containers and cursors are first-class objects. They may be stored as variables, passed as

arguments, and de-referenced via pointers. This allows programmers to treat and manipulate

data structures in much the same manner as any other variable in their program.

3.3.5 Compiler environment

We implemented our NPT model as a multi-pass compiler, with a scanner and parser, a sym-

bol table, semantic tree, optimizer, and code generator. The compiler’s main task involves

reading and storing data structure descriptions, and transforming the primitive functions

(such as insert) into valid source code that implements the function based on the type equa-

tion of the container.

In performing these transformations, the compiler performs three major functions: valida-

tion (type, name, and bounds checking), generation of “glue” code to allow for seamless compo-

sition of the different layers, and optimization to improve the performance of the generated

NPT code. Optimization is important, and will be discussed in Section 3.3.6.

One of the main tasks of the NPT compiler is to verify and validate the programmer’s use

of data structures. Name and type verification is performed on all objects. The compiler also

warns of data structures declared, but not used, as well as data structures referenced that

Table 3.2: LINK realm syntax

Function call Meaning

FOREACH(cc) {code} For each n-tuple of container cursors of the composite cursor
cc, execute the code fragment specified by code.

RESET(cc) Reset the composite cursor cc to the first n-tuple of container
cursors for cc.

ADVANCE(cc) Advance the composite cursor cc to the next n-tuple of con-
tainer cursors for cc.

REVERSE(cc) Move the composite cursor cc to the previous n-tuple of con-
tainer cursors for cc.

LAST_CURS_OP(cc) Return the status of the last cursor operation on the composite
cursor cc (EOR or GOOD).

36

were not declared. Most importantly, the compiler notifies the programmer of operations per-

formed on data structures where the operation is legal, but semantically invalid.

Simple components of the DS realm (such as array and list) can be composed via macro

expansion. The code for each component is independent, and combining the two components

requires no additional effort. More complex layers, however, present difficulties. Layers that

modify the original element’s structure often require the compiler to insert additional code

which “glues” together the code from different layers. We have defined several NPT layers

that either change the original element fields, remove them entirely, or move the fields into

new and different data structures.

An example of this is the segment layer. The segment layer partitions the original con-

tainer into two (or more) new containers. Thus, each element that is added to the (abstract)

segmented container is broken up into two (or more) sub-elements. Whereas the programmer

is dealing with the original element at the conceptual level, the compiler must now generate

and integrate code for multiple data structures each time a primitive function is evaluated.

For example, consider the following schema:

struct customer
{
char f_name[20];
char l_name[20];
int age;
char addr[50];

}

SCHEMA test_seg ON ELEMENT customer =
segment[dlist[malloc[]],

l_name,
array[100],
age,
malloc[]];

This rather complex expression requires that each element of the declared data structure be

broken up into three different sub-elements, each of which is stored in a separate data struc-

tures. So, for example, if we added the following customer:

{f_name = Jack, l_name = Smith, age = 44, addr = 55 Shady Lane}

to the segmented container, the first two fields would be added to the primary segment (con-

tainer), the age field would be added to the secondary segment, and the address to a third. The

37

primary sub-element would then have pointers to the other sub-elements, and would be

linked to other elements in the primary segment.

Figure 3.4 depicts such a segmented container, with two elements stored.

Figure 3.4: A segmentation data structure

Now consider an INSERT operation. For each insert of a customer element, three new ele-

ments must be created. The first element contains all of the fields in the original customer up

to and including l_name. The element is dynamically allocated, and placed on a linked list.

The second element contains all of the fields from customer from l_name up to (and including)

age. The element is placed in a static array. The final element contains the rest of the fields

from customer, and is simply malloc’ed. All three new elements must be interlinked (so the

compiler can find them later). All of this code must be generated by the compiler, hidden from

the programmer’s view. In addition, the segment example requires that the compiler perform

field and element renaming, to keep the sub-segments properly referenced.

Finally, the ordering of layers in type equations often is significant. Since code generation

is performed in the order shown in the type equation (from left to right), cases do exist where

changing the order of layers will result in radically different, but predictable, behavior.

List
head

Primary segment (name fields)

Secondary segment (age field)

Tertiary segment (addr)

44 32

Jack
Smith

Fred
Jones

101 Main Street

55 Shady Lane

38

3.3.6 Domain-specific optimizations

One of the greatest strengths of NPTs is that they allow for a large number of domain-specific

optimizations to be performed. We feel that these optimizations are a key to producing compo-

nents with competitive performance characteristics. As we mentioned in the introduction,

NPT components must perform well, or they will not be used. Our compiler thus contains an

NPT optimizer module.

Domain-specific optimizations are possible with NPTs, mainly because of the consistent

interface they present. Since the form and content of each component is restricted by the

interface, we can make assumptions about components and can perform optimizations on the

generated code.

For example, the segment example shown in the previous section affords the compiler a

chance to perform an optimization. For each cursor declared on a segmented container, the

compiler actually declares and maintains three distinct cursors - one for each of the sub-con-

tainers. Now consider a FOREACH operation. The code that is generated for a segmented

FOREACH requires that in each iteration of the FOREACH statement’s loop that each of the sub-

cursors be set to reference the proper element. Consider the following FOREACH:

FOREACH(seg_curs)
{
printf(“Last name is: %s\n”, l_name);

}

In this example, each iteration of the FOREACH operation only needs to access the contents of

the fields in the element in the primary sub-container. The optimizer has knowledge about

both the segmentation component and the type equation for the schema, and can thus elimi-

nate the pointer assignments for the other sub-containers (for this FOREACH statement only).

 In addition, our compiler also assumes that the component writers use a consistent nam-

ing scheme for variables in the code generated by the components. This allows the compiler to

make assumptions about type information, based on identifier names.3 Not only does each

component export a standardized interface, but the code each component generates (for a

given externalized interface) must follow certain rules and conventions set up by the opti-

3. P2 provides the xp (eXPand) tool to help generate components from specifications. A tool
such as this can be used to standardize identifier names.

39

mizer. These rules have to do mainly with code structure - to allow the optimizer to combine

code fragments from different components in the best possible way. Note that these are not

optimizations which would be performed by a language compiler, but rather are optimizations

at the higher “code fragment” level.

There are several categories of domain-specific optimizations possible with NPTs:

1. Query optimization allows the compiler to select the component that a cursor will use

to traverse a specific container.

2. Layer manipulations are operations performed by the compiler which alter the original

type equation provided by the programmer.

3. Traditional code optimizations such as common sub-expression removal, dead-code

removal, and useless code removal are performed by the compiler.

In Chapter 4 we will discuss each category of optimization in detail, illustrating with

examples from our prototype compiler4.

3.4 Overcoming TPT limitations

In the following sections, we again list the limitations of TPTs that we introduced in Chapter

2. For each limitation, we briefly describe how the NPT features described above help over-

come it.

3.4.1 Difficulty of specialization

We raised the objection in Chapter 2 that TPT authors cannot envision all specializations in

advance [Gar92, Sul92]. Even attempting to do so would yield overly large interfaces that

would inhibit TPT use. We have observed that the container and link abstractions are

remarkably durable. They were recognized in the early 1960’s and are omnipresent today. The

basic interfaces to these abstractions have been very robust. Despite the robust nature of the

interface, the number of generic operations that one needs to perform on containers and links

is actually quite small5.

4. Each class of optimization described in this dissertation has been implemented in our pro-
totype. Since Predator is a prototype, we have implemented only a few examples of each type
of optimization.

40

It is crucial, however, that containers be able to have customized interfaces - in some cases

radically different from the operations we have provided. This can be performed with NPTs

simply by placing a relatively thin veneer on top of a container. The programming language

Pascal/R [Sch77], for example, allowed users to customize the interface to relations by letting

them place their own ADT interfaces on top of relations and to implement ADT operations as

calls to relational operators. All the power of relations (containers) remained, but a custom-

ized interface could be used in place of a relational interface.

We, like many others [Boo87], generalize ADT interfaces to generic ADT interfaces.

Stacks and queues are examples of generic containers (TPTs) that have special operations

(push, dequeue, etc.). These operations can be implemented in terms of container operations

(INSERT, DELETE). Herein lies the key idea for eliminating the difficulty of specializing TPTs.

The problem of efficiency for TPT operations is resolved by the compiler and its optimizer,

which is responsible for combining the code generated by different components into more effi-

cient source-level constructs.

To place this solution into perspective, Figure 3.5 represents the code of a stack TPT. All

implementation details about the stack are inside the cube. Older models of programming

expose all of these details to a programmer; specialization is accomplished by recoding the

body of the code. This is called the transparent model of programming: all details are visible.

At the other extreme, one finds an alternative model of programming where no internal

details are exposed (TPTs). This effectively corresponds to the availability of TPTs in object

(i.e., compiled) form only. As we noted earlier, TPT specialization in this case is not often

attempted because of the inefficiencies that ensue. This is classically called the opaque model

of TPT programming.

Neither the opaque nor the transparent model of TPT programming offers a practical

means of TPT specialization. We contend that a semi-transparent approach, one that exposes

some, but not all, implementation details is a better solution. The details of container imple-

mentation are not exposed; only the customized container interface and the mappings of its

operations to standard container operations are visible and available for modification. This

makes TPT specialization significantly easier.

5. Evidence to support this statement also comes from network protocols where a simple and
standardized interface has worked well for the x-Kernel [Pet90, Hut91, OMa90].

41

Figure 3.5: A Semi-transparent stack

As an example, a simple (push, pop) interface to a stack container is shown below:

MACRO push(container, element)
{
 INSERT(container, element, container.stack_head, AT_END);
};

MACRO pop(container, element)
{
 if (!is_empty(container))
 {
 GETREC(element, container.stack_head));
 DELETE(container.stack_head);
 REVERSE(container.stack_head);
 }
};

It has been our experience that the DS interface we proposed has been more than ade-

quate to emulate TPT-native functions, as well as applications for which we have desired cus-

tomized ADT interfaces. An example of this, the supermarket checkout example, is shown in

Appendix E.

3.4.2 Complex compositions

Both of the examples shown in Section 2.2.2 are complex compositions which are not easily

representable with TPTs. NPTs, however, deal with these compositions in a simple and direct

fashion. Compositions of multiple data structures over a single element type are nothing more

top

bottom

INSERT()
DELETE()
RESET()
ADV()
REV()
FOREACH()
UPDATE()

Transparent OpaqueSemi-transparent

PUSH()
POP()
EMPTY()
FULL()

PUSH()
POP()
EMPTY()
FULL()

42

than the vertical parameterization described in Section 3.3.3. Our NPT model allows for as

many layers as needed to be composed over any base element type.

The other example of a complex composition is a simple instance of a LINK realm instan-

tiation. One of the strengths of the NPT approach is that radically different classes of layers

(such as interlinking elements from different containers) can be classified into a new realm

which inherits strengths from the other NPT features. While we have needed only two realms

for our work, it is entirely conceivable that further work in the data structure domain might

uncover other realms, which we could easily add to our system.

Finally, the complex compositions we have described are possible because of the compiled

environment we impose on TPTs. As described previously, simple macro-expansion is not suf-

ficient for some of the compositions we have encountered. Coupled with a domain-specific opti-

mizer, NPTs have considerable expressibility.

3.4.3 Type transformations

Our NPT model is a compiled transformation system, not unlike those of [Coh89, Coh93,

Sno89]. Our type equations take an abstract description of a data structure schema and trans-

form it (via our compiler technology) to a concrete realization of the schema. The abstract/con-

crete paradigm is followed rigorously as the type equation is being resolved. Each layer is

responsible for an abstract-to-concrete transformation. The layer is unaware of the implemen-

tation details for any of the layers “below” (further to the right) in the type equation. We can

map from an abstract to concrete stream of code, for any primitive function, simply by recur-

sively evaluating the type equation, one layer at a time.

Thus, all of the element and container transformations we have described (such as seg-

mentation and compression) are easily encapsulated as NPT layers. Each of these layers per-

forms its mapping, unaware of mappings performed either above or below in the type

equation.

3.4.4 Ad hoc interfaces

The consistent, high level interface of NPTs is ideal for dealing with the limitation of ad-hoc

interfaces. Since we restrict the interfaces of all layers belonging to a given realm, we can sub-

stitute, with no loss of generality, any combination of layers in a type equation and recompile

43

it successfully. That is not to say that the new type equation will be desirable, or even correct;

only that it will compile successfully. In most cases, however, simple layer substitution will

generate correct working replacements for the original program. The number of legal but

meaningless compositions is fairly small.

The small differences in semantics are usually restricted to marginal areas such as

bounds and scanning. For example, the malloc layer will dynamically allocate memory up to

the available memory of the machine. If one were to replace the malloc layer with an array

layer (which is of fixed size), it is possible that an application might receive an “out-of-bounds”

error, whereas the malloc version of the program would continue to function properly. These

minor semantic differences are easily tracked and present few problems in practice.

In addition, NPT macros are implemented in terms of the consistent high-level interface.

Thus, they too can be recompiled for most data structures with little difficulty. For example,

priority queues are often implemented with either arrays or tree-version heaps. But there is

no reason that an NPT implementation of a priority queue could not be compiled with an AVL-

tree or a hash table. It might not be particularly efficient, but it will compile and execute cor-

rectly.

3.4.5 Evolution and maintenance

We have previously stated that a major goal of this research is to allow programmers to write

data structure programming faster and more easily than before. This concept extends well

beyond the initial writing of an application program. Our NPT model allows application writ-

ers to maintain and evolve their systems.

Our NPT model provides several evolution and maintenance benefits. The consistent,

high level interface allows programmers to write their programs much closer to the actual

algorithmic level. Future modifications of their program are also made at the higher level and

are, therefore, simpler. The vertical parameterization of NPTs allows for more complex com-

positions to be created. This allows programmers to arrive at their desired data structures in

fewer iterations. Further, our NPT interface can be specialized via the compiler’s macro facil-

ity. This allows programmers to add new functionality to existing programs without having to

rewrite the data structure (layer) module.

Finally, our model allows for the declaration of both intra-container and inter-container

invariants. Cursor selection predicates and predicate indexing layers allow programmers to

44

declaratively state search conditions on containers, which the compiler maintains automati-

cally. Further, the LINK realm layers maintain invariants on the link conditions. They will

automatically maintain the declared invariant, and will notify the program (via status codes)

of attempts to violate the invariant. This allows application programmers to maintain a

higher level of control over their programs as they evolve.

3.4.6 Scalability

A primary goal of this work is to allow the size of our NPT layer library to scale gracefully

with the size of the feature set it supports. We feel it is crucial that our NPT design avoid the

combinatorics problems presented by libraries such as [Boo87, Lea88, Boo90].

Our NPT layering structure has been specifically designed so that all of the NPT layers

are effectively orthogonal to other layers within the same realm. In other words, each new

layer that is added to an existing realm is completely independent of any existing layers

within that same realm. There is no requirement for any layer to possess knowledge about

any other layers, or their interactions. We accomplish this mainly via our compiler strategy.

Each layer is responsible for producing the code fragment that implements the requested fea-

ture of its layer. It is the responsibility of the compiler to gracefully merge the code fragments

from the different layers to construct an overall code fragment that possesses the proper

semantics. A discussion of one implementation of this combination strategy (with functional

templates) is provided in the next chapter. An in-depth discussion of NPT scalability is given

in [Bat93a].

3.4.7 Code efficiency

Efficiency is a key concern in this research. It is crucial that our compiler generate efficient

data structure code.

The compiler is responsible for generating only the code necessary for the declared opera-

tions. Unlike more traditional database systems [Kor91, Bat90, Bat93b], NPT-generated code

is not general. It is geared specifically for the type equation of a particular container, and

incurs only the overhead for the mechanisms to support the primitive functions used in a

given application. Thus, a different application which uses the same type equation, but differ-

ent primitive functions, would not generate the same code. In a similar vein, two copies of the

45

same application, instantiated with different type equations, would also generate different

output code. The key to generation of efficient code is to eliminate excess overhead.

The optimizer is also responsible for improving the efficiency of NPT-generated code. The

combination of consistent, high-level interfaces, vertical and horizontal parameterization, and

a compiler enables us to perform domain-specific optimizations which are not possible for pre-

written (monolithic) or inherited components.

It is possible to write many of these optimizations manually. It is our experience, however,

that most of these optimizations are not placed in hand-written code, due to the additional

time required to code and debug them. It is our hope that the automatic generation of these

optimizations will yield a net efficiency gain over most hand-coded applications.

46

Chapter 4

Predator: an NPT

implementation

We validated our NPT concepts by building a prototype data structure compiler, called Preda-

tor. Predator is a two-pass optimizing compiler. It is comprised of approximately 17,000 lines

of code, 7,000 of which implement seventeen distinct layers in the DS and LINK realms.

Descriptions of the layers currently implemented are presented in Section 4.2.1 and

Section 4.2.2. Predator is written in the C programming language, and has been ported to the

following operating systems: Ultrix, SunOS, AIX, OS/2 and DOS.

This chapter discusses several important parts of our Predator implementation.

Section 4.1 describes the actual Predator compiler. We discuss how Predator programs are

written and compiled, the structure of the compiler, how functional templates and Predator

macros are used to generate code, and the types of domain-specific optimizations possible. In

Section 4.2 we list and describe the DS and LINK realm layers we constructed for our proto-

type. Finally, Section 4.3 details our link cursors and the mechanisms we used in implement-

ing them. Our NPT model specified that link cursors were to exist only as an internal, hidden

construct. They turned out to be so useful, however, that we augmented our model and

exposed their interface to the application programmer.

4.1 The Predator compiler

Predator programs are C programs which have been augmented with Predator declara-

tions and statements. These programs are called .dac source files (short for data structure C).

Predator translates .dac files into C-language source files, include files, and a makefile for

47

compiling the program. The Predator-generated files are then compiled and linked by any

standard C-language compiler. The Predator authoring sequence is shown in Figure 4.1.

Figure 4.1: Predator authoring sequence

This chapter examines the more significant aspects of the Predator prototype, as well as

trade-offs made in our implementation.

4.1.1 Two-pass compilation

As mentioned above, Predator is a two-pass optimizing compiler. Note that Predator dif-

fers from standard compilers only in the first-pass optimization stage:

1. Symbol table creation. Primitive entities such as elements (structures), schemas,

containers, cursors, and links are recorded in the symbol table. As Predator parses the

input text, the relevant information about each entity is evaluated and stored. Preda-

tor also notifies the programmer of any declared entities that are not used in the

source program, and removes them from the symbol table for the second (code genera-

tion) pass.

2. Errors and warnings. Predator notifies programmers of common problems, such as

syntax errors. In addition, Predator issues diagnostic messages when it detects incor-

rect usage of any primitive function. It notices when incorrect or badly formed argu-

ments are presented, as well as missing arguments.

3. Optimization. Predator performs a series of optimizations at the end of the first pass.

Mostly these are modifications of the tree representations of type equations that Pred-

ator stores in the symbol table. Predator may add, delete, modify, or reorder layers

within type equations.

Predator
compiler

C
compiler

.dac
source
files

Executable
program

Predator
generated
source
code

48

The second pass of Predator performs code generation and code optimization. While the

discussion of the detailed approaches and algorithms Predator uses to generate and optimize

code would be far too long to include in this dissertation, three important second-pass features

will be described: functional templates, recursive macro processing, and code optimizations.

4.1.2 Functional templates

Predator augments the standard C-language with several primitive functions such as

INSERT, DELETE, FOREACH, etc. When Predator encounters a primitive function it must

generate a code fragment that implements the function for the associated container and cur-

sor types. The primary method that Predator uses is that of a functional template.

A functional template is comprised of code fragments; some are dependent on the type

equation (i.e., data structure), while others are not (and are included in a conceptual layer,

which is used internally by the compiler, but never declared by the application programmer).

As an example, a functional template for the FOREACH statement is shown below. Each

underlined function generates a code fragment that is type-equation dependent; non-under-

lined code is type-equation independent.

Predator generates code for primitive functions by traversing the type equation tree for

each of the underlined functions, thus generating the code to fill the place holders. The gener-

ated code is combined with the non-underlined sections. The overall code fragment is then

passed on to the optimizer, and is finally placed on the output code stream. The implementa-

tion of templates is accomplished with Predator macros, which are described in Section 4.1.3.

The FOREACH function template is:

set_to_first_item();
while !(past_end_of_container?())
{
if ((cursor’s predicate) &&

!(disqualification_predicate()))
{

/* Code fragment for FOREACH goes here */
}
advance_cursor();

}

Underlined functions are called snippet functions; these are the functions that are

exported (and implemented) by Predator layers. Generally, snippet functions do NOT corre-

49

spond to the set of functions that are exported to Predator users; rather, they are more primi-

tive functions which are needed for code generation. For more information about snippet

functions, see Appendix F.

As an example, four snippet functions are referenced in the FOREACH template. The first

positions the cursor to the first element in the container. The second generates a boolean test

to determine if the cursor has finished traversing the container. The third adds any additional

tests that layers in the type equation might require to ensure that the code of the FOREACH

will be executed for the current element. An example of a layer that would contribute code for

this snippet function would be the delflag layer (don’t execute code for deleted elements). The

fourth snippet function is responsible for moving the cursor to the next element of the con-

tainer.

The layer-based code sections are generated as follows: Predator uses a dispatch table to

call on the appropriate snippet function for the layer which is located at the root of the equa-

tion tree. This function may or may not generate a code fragment. If a layer is terminal, it

returns its generated code fragment up the call chain. If a layer is a non-terminal, it calls on

each of its child layers in turn via the dispatch table (most layers only have one child layer),

and appends any returned code to the end of its code fragment. The snippet function returns

the code fragment it generates (with the appended fragments from lower layers). Correctness

of layer-dependent code is dependent on the compiler macro expanding the code based on both

the type equation tree and the fact that the DS layers specified are orthogonal. Also, the code

optimizer must ensure that the correctness of the code is not affected.

Other sections of code (such as the cursor’s predicate or the FOREACH code body) have

their cursor references expanded as necessary and are then placed directly in the template’s

output buffer. The entire code fragment, once optimized, is placed on the code generator’s out-

put stream for further evaluation. Appendix F lists code templates for the major primitive

functions of the DS realm.

Consider the following declarations:

SCHEMA cust_schema ON ELEMENT CUSTOMER = delflag[array[100]];
cust_schema a_cust_cont;
CURSOR cust_curs ON a_cust_cont WHERE age == 30 || age == 44;

A Predator user might write a FOREACH statement such as:

50

FOREACH(cust_curs)
{
printf(“Name: %s, %s\n”, l_name, f_name);

}

Predator would expand the FOREACH to the following:

cust_curs.cur_item = a_cust_cont.elements0;
while (!(cust_curs.cur_item >= a_cust_cont.next_element0))
{
if ((cust_curs.cur_item->age == 30 ||

cust_curs.cur_item->age == 44) &&
!(cust_curs.cur_item->delflag0))

{
printf(“Name: %s, %s\n”, cust_curs.cur_item->l_name,

cust_curs.cur_item->f_name);
}
cust_curs.cur_item++;

}

As in the template definition above, the code generated by the layer’s snippet functions is

underlined.

4.1.3 Recursive macro processing

Predator includes a recursive macro processor. Predator macros are not simple text substi-

tutions (as in the C preprocessor), but are conditional text substitutions which are evaluated

at compile-time. There are two distinct advantages of Predator macros:

1. Predator macros are evaluated during (not before) the main compile phase. Thus,

macro processing (text substitution) may be interleaved with other compilation opera-

tions. Therefore, Predator macros may contain references to Predator primitive func-

tions, and visa versa. This allows the compiler to evaluate (and optimize) functions,

which may then include additional Predator macros. The macros are evaluated in turn.

Using a standard macro facility, it would be impossible to code the Predator functions

in terms of macros. Being able to do this greatly simplified the writing of both the com-

piler and the layers.

2. Predator macros are recursive. Thus, it is possible to have a macro reference itself.

Note that this must be done using conditions, or the recursion would be infinite. Preda-

tor uses recursive macros seldom, but to great effect. For example, FOREACH is defined

51

as a conditional, recursive macro. FOREACH, when applied to a composite cursor, can

generate additional FOREACH macros, which will operate over container cursors. It is

up to the conditional code to ensure that the recursion terminates. This differs from

the standard C macro facility, which allows no recursion within macros. The condi-

tional tests in Predator macros are based on an optional final argument in the formal

parameters of the macro. If the conditional test fails, the macro is not evaluated. Since

the evaluation is performed at compile-time, only certain static comparisons can be

performed.

Predator templates (see Section 4.1.2) can therefore be implemented as Predator macros.

Most of the code which implements Predator layers and function templates utilizes the macro

facility, and is simple and high-level. This approach was taken because explicit layering in

data structures often introduces unacceptable performance penalties. [Dav92] is but one work

which demonstrates that in-lining (macro expansion) can be very beneficial in generating effi-

cient code.

Predator also exports its macro facility. Programmers may write their own macros and use

them anywhere in their source text. We used this method to provide data structure indepen-

dent push, pop, enqueue, and dequeue routines for our supermarket example.

Most of the tokens that the Predator code generator scans will be neither macros nor

primitive Predator functions. Rather, they will be the other constructs (including comments)

that make up the rest of the source program. Predator simply transmits these tokens. It does

not evaluate them, but rather places them directly into the target source file. Only the pre-

compiler directives, primitive functions, and Predator macros are expanded.

4.1.4 Code optimization

In the previous chapter, we briefly discussed the compiler’s optimization engine. This section

details several of the code optimizations we have implemented. While these optimizations are

specific to our compiler (and domain), we believe that the general categories of optimizations,

such as layer manipulations and code optimizations (e.g., dead code, useless code), can be per-

formed on other domains.

Layer manipulations. In general, NPT components are implemented exactly as they are

described by the type equations written by programmers. However, there are certain times

and cases where the NPT compiler will change the type equation specified by the programmer.

52

These changes involve adding, removing, and reordering layers within the type equation to

help generate more efficient code.

Layers are removed by the compiler if it finds that the programmer has not utilized the

layer in any function calls. Layers are often added by other layers (such as a link layer, which

will append a new DS layer, to the type equation, to implement part of the linkage). Finally,

layers can be moved within the type equation to improve performance or correctness of the

resulting code. An example of this is the segment layer, which will move all non-scanning lay-

ers to the primary segment in order to keep the generated code correct and efficient. This

modification is unimportant at the abstract (programmer) level, but is crucial at the imple-

mentation level. For example, the following type equation:

segment[dlist[malloc[]], a_field, size[malloc[]]];

places the size layer on the secondary partition. Thus, the size function would access both

the primary and secondary segments, because the size field is defined in the secondary seg-

ment, and the primary segment is accessed on all queries. However, if the size layer were to

be defined on the primary segment, only that (primary) segment would be accessed by the

size function. Thus, the Predator optimizer changes the above type equation to the following:

segment[size[dlist[malloc[]]], a_field, malloc[]];

While there is no difference (to the programmer) in the above two type equations, the latter

will generate more efficient code than the former.

For any given type equation, there may be several layer manipulations that can be

applied successfully. In the current Predator implementation, we have only defined manipula-

tions which are orthogonal and can, therefore, be applied in any order. Clearly, there are

manipulations which will realize different performance results based on the order in which

they are applied. However, we have not concentrated on this issue, and it has been left for

future work.

Query optimization. One of the more common optimizations performed by the compiler is

query optimization. Most layers provide a mechanism for traversing a data structure of the

implemented container. For example, array, linked list, and binary trees implement contain-

ers in different ways; each has its own distinct algorithm for container traversal. It is the com-

piler’s responsibility for choosing the layer whose retrieval performance would be most

efficient (on average).

53

Cursor syntax allows for the optional declaration of a WHERE clause, which is used to des-

ignate the subset of elements visible to the cursor. The compiler uses this clause and a series

of metrics1 (about the query type) to rank each data structure (from most efficient to least effi-

cient) for processing the query. Given a query, it is possible to determine which layer most

likely offers the most efficient processing for the query. The compiler adjusts its internal sym-

bol table so that all functions which reference the cursor utilize the proper layer. Consider the

following declarations:

SCHEMA query_opt ON ELEMENT customer =
predind[sarray[100, emp_id],

state == “TX” || state == “WA”];
query_opt a_container;

CURSOR c1 ON a_container WHERE emp_id > 50;
CURSOR c2 ON a_container WHERE state == “TX || state == “WA”;

The container in this example has two possible ordering layers, a sorted array, ordered by

employee id, and a predicate index (which only indexes records satisfying the supplied predi-

cate). The query optimizer determines that cursor c1 is best suited for the sorted array, since

they are both ordered by emp_id (and Predator can use binary search to improve cursor oper-

ations on cursor c1). On the other hand, the optimizer will select the predicate indexing layer

for cursor c2, because the predicate for the layer matches the predicate for the cursor exactly.

Sub-expression removal. When snippet functions from multiple layers each produce a code

fragment for a primitive function (such as INSERT), it is often the case that more than one of

them will generate the same fragment of code. In certain cases it is possible to recognize this

fact, and remove all but one copy of the fragment from the output source generated. Currently,

Predator is able to perform sub-expression removal only on a set of well-known fragments.

These are stored internally in the symbol table. While this may seem to be restrictive, remem-

ber that the consistent interface of Predator leads to regularly structured layer modules.

Hence, the text matching is not as restrictive as it might otherwise be. In future versions of

Predator we hope to expand the ability to recognize and remove common sub-expressions.

 An example of removing common sub-expressions is setting the cursor status flag. The

status flag within a cursor is set at the completion of several of the DS realm functions (such

1. Currently, Predator uses ordering (for ordered layers) and textual matching (for predicate
indexing layers) as its metrics for query optimization.

54

as INSERT, ADVANCE, RESET). Most layers can generate a code fragment which sets the status

flag. If multiple layers all generate this same fragment, only one of the fragments will be

needed. The compiler removes the other fragments from the code generation stream.

Removing dead code. In some cases, snippet functions may produce code fragments which

will execute, but do nothing useful. The layer itself does not have this knowledge, but the com-

piler (being at a higher level) does. In these cases, the compiler can safely remove the frag-

ment(s) of code from the generation stream. For example:

SCHEMA dead ON ELEMENT customer =
segment[array[100],

name,
array[100]];

dead a_cont;
CURSOR curs ON a_cont;

FOREACH(curs)
{
printf(“The name field is: %s\n”, name);

}

where curs is a cursor declared on a container of type dead, and the name field is located in

the first (primary) segment. Under normal circumstances, the segment layer generates point-

ers which traverse each segment during the FOREACH function. However, the compiler is able

to determine that the only fields of the customer element that are referenced in the FOREACH

(in the printf statement) are located in the primary segment. Thus, it discards the (dead)

code that would set and advance the pointers for the secondary segment(s). The code before

dead code removal is shown below:

curs_seg0.cur_item = a_cont_seg0.elements0;
if (curs_seg0.cur_item != NULL)

curs_seg1.cur_item = curs_seg0.cur_item->seg_1;
while (!(curs_seg0.cur_item >= a_cont_seg0.next_element0))
{
printf(“The name field is: %s\n”, curs_seg0.cur_item->name);
curs_seg0.cur_item++;
if (!(curs_seg0.cur_item >= a_cont_seg0.next_element0))

curs_seg1.cur_item = curs_seg0.cur_item->seg_1;
}

The underlined code fragments perform no work (since the secondary segment is not refer-

enced in the body of the FOREACH), and are removed by the optimizer.

55

Removing non-executing code. There are cases where a snippet function for a layer can

produce code which will not execute. As in the case above, there is no way that the layer itself

can know this fact. The compiler is responsible for determining that the fragment will never

execute, and removes it from the code stream. An example of this would be as follows:

CURSOR curs ON a_container WHERE age > 30;

FIND(curs, age < 30);

The FIND statement will search for the first element that the curs cursor can find whose age

is less than 30. The FIND function of the scanning layer generates the appropriate code. But

the compiler has knowledge that all FIND functions are further qualified by the cursor’s pred-

icate. Since that predicate invalidates the find (no age can be less than and greater than 30),

the interior of the body of the find can be removed. Note: the entire body of the find cannot be

removed in this case. The code for setting the status flags must be maintained.

Predator currently pre-defines a general set of code patterns to be searched for locating

code fragments that do not execute. As a result, the optimization is not commonly used. We

have hopes, however, that a small rules engine could drive such a mechanism in a more com-

prehensive manner. Of course, we also hope that programmers do not generally define type

equations, cursors, and primitive functions which generate non-executing code.

Bounds checking. Ordered layers offer possibilities for bounds optimizations. Consider the

following schema which defines a doubly-linked list, ordered by the age field:

SCHEMA bounds ON ELEMENT customer = dlist[malloc[], age];

CURSOR curs ON a_container WHERE age < 30;

FOREACH(curs)
{
printf(“Name: %s\n”, name);

}

where a_container is a container on bounds, and name and age are fields of customer. The

FOREACH statement is responsible for printing the name field of each element in a_con-

tainer where the age field is less than 30. In this instance, the compiler can notice that the

linked list and the cursor selection predicate are ordered on the same field. Additional bounds

checking code is added, so that the FOREACH will stop when the age field of the elements

equals or exceeds 30. Again, this is knowledge that the layer itself does not possess. The com-

56

piler optimizer is required to combine the two pieces of information to process the optimiza-

tion.

Other optimizations. Other optimizations exist (such as loop unrolling) which we have not

investigated which are analogous to classical compiler optimizations. We believe that a gen-

eral-purpose compiler should be able to handle many of these optimizations. It should be men-

tioned that the code generated by Predator (and by its optimizer) is not designed to help the

optimizer of the language compiler used to compile the Predator output. The Predator output

code should be no easier or harder to compile and optimize than any other C-language source.

Optimization interaction. We recognize that there are opportunities for optimizations of

one type to be performed based on optimizations of another type. For example, it is possible

that reordering the layers within a type equation might cause a code fragment (generated by

a reordered layer) to become a piece of useless code and be eligible for removal. The whole

issue of interacting optimization features has not been addressed in the current prototype,

and has been left for future work.

4.2 Layers

This section describes each of the layers that we have implemented in our prototype compiler.

Both DS and LINK realm layers are discussed. In addition to a general description of the lay-

ers, we present a short discussion of some of the more special layers and the difficulties they

imposed on the design of Predator.

4.2.1 DS realm layers

The following table lists each of the DS realm layers we have implemented. The parameter ds

is instantiated with an expression of type DS.

Table 4.1: DS realm layers

Layer Description

ARRAY[n] Unsorted, static array of size n.

DELFLAG[ds] Logical deletion layer. Provides a delete-flag field.

MALLOC[] Forces elements to be dynamically allocated.

DLIST[ds (, fld)*] Doubly-linked list. Unsorted, or sorted by ordering spec-
ified by optional fld(s).

57

There are four terminal layers currently defined in Predator. ARRAY causes elements to be

stored in an unsorted, statically declared array. The size of the array is a parameter. SARRAY

is similar to array, only the elements are sorted based on the fields specified in the type equa-

tion. MALLOC causes elements to be allocated and freed dynamically from a heap. Finally,

PERSIST allows elements to exist in a memory-mapped persistent store. The file name and

size of the store are parameters of PERSIST.

AVAIL is not a terminal, but is tightly coupled with the terminal layers. It provides an

avail-list of previously deleted elements. When an element is deleted from the container it is

not destroyed, but simply placed on the avail-list. When the next INSERT call is made, an ele-

ment is taken from the avail-list (if one is present). This layer is useful because it is often

faster to reclaim previously allocated space than to use the allocation algorithm of the native

terminal layer (such as MALLOC or PERSIST), and because it helps reclaim space from the

interior of arrays (Predator arrays do not provide element reclamation).

AVAIL[ds] Avail list for deletion and allocation.

SIZE[ds] Counts the size of the container.

SEGMENT[ds0, fld0, ds1 (,
fldn, ds(n + 1))*]

Partitions the element into multiple data structures.
Partition the element at fields fld0, fld1...fldn. Sub-data
structures are specified by the ds0, ds1...ds(n + 1) type
expressions.

PREDIND[ds, pred] Predicate-based indexing. Elements are added to index
if they satisfy predicate pred.

BINTREE[ds, (fld)+] Binary tree ordered by field(s) fld+.

ACTION[ds, fctn, hint, code] Provides before and after actions for functions. Perform
code fragment code for primitive function fctn. hint is
either BEFORE or AFTER.

USAGE[ds] Allows MRU and LRU for container access.

PINDEX[ds, pred] Another implementation of predicate indexes.

TIMEST[ds, hint] Global or local time stamps for each element. hint deter-
mines global or local timestamp.

PERSIST[file, size] Elements are stored persistently in file file whose maxi-
mum size is size.

SARRAY[size, (fld)+] Sorted, statically declared, fix-sized array of size size.
fld determines the ordering fields.

Table 4.1: DS realm layers

Layer Description

58

Some layers provide basic ordering and indexing operations. DLIST declares a sorted (or

unsorted) doubly linked list. BINTREE provides an ordered binary tree. There are currently

two predicate indexing layers: PREDIND and PINDEX are very similar, differing mainly in

their internal representation. The former utilizes data fields within the elements to store

pointers of the predicate index, whereas the latter stores pointers of the predicate index out-

side of the elements. Both are illustrated below in Figure 4.2 for an index which links ele-

ments where: (age == 5) || (age == 3).

Figure 4.2: Two approaches to a predicate-based index

Several of the layers export their own unique functions. The SIZE layer is responsible for

keeping track of the size of a container and exports the size function to do that. The USAGE

layer keeps track of the most and least recently used elements in a container. It exports the

functions MRU and LRU. The TIMEST layer maintains either local (to the container) or global

(to the system) timestamps for each item. Timestamps are automatically updated on INSERT,

DELETE, and UPDATE operations. The layer exports the TIMEST function.

The ACTION layer allows programmers to specify special code fragments which are per-

formed either before or after a specified primitive function. For example:

action[malloc[], INSERT, AFTER, printf(“Hello!\n”)];

would cause the printf statement to be placed after each INSERT function called in a program.

However, this will only be done for those INSERT statements which take place on containers

whose type equations contain the action layer. All other INSERT statements are not affected.

Age: 5 Age: 7 Age: 3

Age: 5 Age: 7 Age: 3

Container

Container

predind layer

pindex layer

59

DELFLAG is a layer that encapsulates logical deletion. Each element is augmented with a

boolean variable to denote whether or not it has been deleted. Insertion clears this flag, while

deletion sets it. Cursor retrievals examine the flag to ensure that deleted elements are not

returned to users.

The SEGMENT layer encapsulates a form of element fragmentation. Each element of the

container is partitioned into two (or more) new elements, where corresponding sub-elements

are stored in their own separate container. These new sub-containers are also created by the

segment layer. Segment, therefore maps between the unfragmented view of elements (visible

to the application) and the fragmented implementation. While segment is transparent to the

application programmer, it can have significant performance effects. An example of this is

presented in Chapter 5.

4.2.2 LINK realm layers

Links are declarative constructs in Predator. Links connect two containers together within a

link relationship. It is important to remember that this relationship is between containers,

not schemas. It is possible to declare multiple containers for a given schema, only one of which

participates in a link.

The following table lists the implemented layers in the LINK realm:

In the table above, the argument lnk represents either a LINK or DS realm layer. Thus,

type equations can be adorned with any number of LINK layers followed by only DS layers

(since no DS realm layer is parameterized in terms of LINK layers). Thus, LINK can be

thought of as a super-realm of DS, implementing the entire DS interface, as well as those

functions shown in Table 4.3 and Table 4.4.

Currently there are only two link layers implemented. Nested loop linking (LINKNEST) is

very simple. No actions are taken by the link layer for inserts, deletes, or updates. For each

cursor traversal, a cross-product of the two containers is performed (via a FOREACH statement

Table 4.2: LINK realm layers

Layer Description

LINKNEST[lnk] Nested-loop link algorithm.

LINKPOINT[lnk] Pointer-based link algorithm.

60

for each container), with qualification being determined by applying the link predicate to each

pair of cursors.

Pointer-based links (such as LINKPOINT) are more complicated. The LINKPOINT layer is

responsible for maintaining physical linkages between elements that are logically related in

different containers. Figure 4.3 shows a LINKPOINT implementation between department

objects and the employees in those departments. Note that each element in each container is

connected to a list of pointers to the elements in the other container to which it is logically

related. Moreover, each container is adorned with a header field to another linked list, which

identifies elements which participate in the join (This, in effect, implements a semijoin

[Kor91] of that container with the other container). Figure 4.3 depicts a populated link with

the following declaration (the numbers in each element are the dept_num):

LINK one dept TO many employee USING linkpoint
WHERE dept.dept_num == employee.dept_num;

Figure 4.3: A pointer-based linkage

Parent
Container
(dept)

Child
Container
(employee)

Dept: 4

Dept: 2

Dept: 3

Dept: 1 Cust: A
Dept: 1

Cust: B
Dept: 3

Cust: C
Dept: 1

61

While links are discrete entities on the abstract level, Predator actually implements links

as part of the DS realm containers. When a link is declared in a Predator program, the com-

piler places a layer in the type equation of both the parent and child containers. Remember

that type equations are based on schemas (not containers), and there can be more than one

container which shares a particular schema declaration.

Since a given link only applies to one pair of containers, Predator must ensure that the

link only applies to the containers of the link, and not to any other containers which share the

type equations of the containers in the link. Predator achieves this by adorning the link layer

in the type equation with a text field that identifies the container for that link. The link layer

added to the type equation will only be traversed for operations for the specific container of

the link. Consider the following declarations:

SCHEMA cust_schema ON ELEMENT customer = dlist[malloc[]];
SCHEMA dept_schema ON ELEMENT customer = array[1000];

cust_schema cust1, cust2;
dept_schema dept1;

LINK a_link ON ONE dept1 TO MANY cust1 USING linkpoint
WHERE cust.dept_num == dept.dept_num;

In this example, both container cust1 and container cust2 share the same type equation.

Predator adds additional layers to the type equation for container cust1 for the purposes of

code generation for link a_link. Since container cust2 does not participate in a_link, it is

important that the added layers be able to be differentiated, so that the layers are used when

the type equation is traversed for cust1, but not when traversing the type equation for

cust2.

Thus, Predator modifies the two type equations above into these new type equations:

SCHEMA cust_schema ON ELEMENT customer =
linkpoint[dlist[malloc[]], cust1];

SCHEMA dept_schema ON ELEMENT customer =
linkpoint[array[1000], dept1];

The link layers implement a superset of the DS realm snippet functions. This is necessary

because the link layers not only have to support LINK realm functions, but may also have to

generate code fragments for such DS realm operations as INSERT and DELETE. For example,

each time a container linked via linkpoint has an INSERT operation performed on it, the link-

point layer must add a code fragment which determines if the new element should be linked

62

with any existing elements in the other container. If so, the code fragment must add all of the

proper linkages to elements in both the parent and child containers. The size of this code frag-

ment can be large, but Predator hides the complexity from the application programmer.

4.3 Link cursors

In Chapter 3, we described the LINK realm and its interface. In our Predator prototype, we

chose to implement the abstraction of link traversal with a link cursor. Link cursors have

been a very useful construct because their simplified interface (coupled with the recursive

macro facility) greatly eased the task of writing link layers. Link cursors have been so useful

that we have exported them to the application programmer.

Link cursors are declared as follows:

LCURSOR <lcursor_name> ON <link_name>
USING <parent_curs>, <child_curs>;

where <lcursor_name> is the name of the link cursor, <link_name> is the name of a

declared link, and <parent_curs> and <child_curs> are the names of two cursors

declared on the parent and child containers for the link. Multiple link cursors may be declared

on a single link, and there is no limit to the number of link cursors that may share a particu-

lar parent or child container cursor.

A link cursor is an abstraction for a runtime object that traverses a link. At any given

time, the link cursor references a pair of elements, one in the parent container of the link, and

one in the child container (where the parent and child containers are usually different con-

tainers). Advancing a link cursor causes it to reference the next pair of elements that satisfies

the link’s predicate. The end result of using a link cursor is that the two constituent container

cursors are set to the proper elements in the containers (independently of the LINK layer

used).

Programmers reference link cursors either through the container cursors or through the

link cursor itself. For example,

LCURSOR my_lc ON my_link USING par_curs, child_curs;

declares a link cursor on the link my_link. Suppose that my_lc is later set to point to a valid

pair of elements in the link. The programmer could refer to a field in the parent element with

any of the following expressions:

63

par_curs.fld;
my_lc.parent.fld;
my_lc.par_curs.fld;
my_lc.fld; /* This assumes that fld is defined only

in the parent container */

Link cursors are used in primitive functions in the application code, much the same way

as in container cursors. The following table lists the syntax available for link cursors:

Table 4.4 describes a set of primitive functions which are used (internally) to implement

the functions of Table 4.3. However, they also allow programmers to access link cursors in

another way. Being able to bind one of the two container cursors of a link cursor (outside of

link cursor operations) can be useful in processing complex queries. We will see examples of

this later. For now, we note that Predator offers primitive functions that operate on only one

cursor of a link cursor (while assuming that the other cursor’s position has already been

fixed). There two sets of such functions; one set operates on unbound parent cursors (assum-

ing a bound child cursor), while the other operates on unbound child cursors (assuming a

bound parent cursor). Corresponding function names in each set have the same name, except

that the final character is either p or c (for parent or child). Table 4.4 summarizes these func-

tions.

Table 4.3: Link cursor functions

Function call Meaning

RESETL(lc) Reset link cursor lc to the first pair of elements that satisfies
the link.

ADVL(lc) Advance link cursor lc to the next pair of elements that satisfies
the link.

ENDL(lc) Test to see if link cursor lc is past the end of the link, or refer-
ences a valid link element.

FOREACHL(lc)
{code}

Execute code fragment code for each pair of container cursors
referenced by link cursor lc.

Table 4.4: Parent/child functions for link cursors

Function call Meaning

FIRSTC(lc) Position the child cursor to the first child for the given parent.

LASTC(lc) Position the child cursor to the last child for the given parent.

NEXTC(lc) Position the child cursor to the next child for the given parent.

64

The following is an example utilizing these functions:

LCURSOR lm ON manages USING pc, cc;

FOREACHL(lm)
{
printf(“Two department numbers are: %d %d\n”,

pc.dept_num, cc.dept_num);
}

This FOREACH statement would be expanded to:

FOREACH(pc)
{
RESETC(lm);
while (!ENDC(lm))
{

printf(“Two department numbers are: %d %d\n”,
pc.dept_num, cc.dept_num);

NEXTC(lm);
}

}

This example iterates through all pairs of the link, executing the printf statement for each

pair of elements that satisfy the link. Predator generates code first to iterate through all ele-

ments of the parent container, via a FOREACH(pc) statement. Then (with the parent cursor

bound), each child for that parent is examined. This is performed by resetting the child cursor

PREVC(lc) Position the child cursor to the previous child for the given par-
ent.

ENDC(lc) Test to see if the child cursor is past the last child for the given
parent.

FOREACHC(lc)
{code}

Execute code fragment code for each child of the given parent.

FIRSTP(lc) Position the parent cursor to the first parent for the given child.

LASTP(lc) Position the parent cursor to the last parent for the given child.

NEXTP(lc) Position the parent cursor to the next parent for the given child.

PREVP(lc) Position the parent cursor to the previous parent for the given
child.

ENDP(lc) Test to see if the parent cursor is past the last parent for the
given child.

FOREACHP(lc)
{code}

Execute code fragment code for each parent of the given child.

Table 4.4: Parent/child functions for link cursors

Function call Meaning

65

to the first child (for that parent) with the RESETC(lm) function. Then, while the last child

has not been found, the printf statement is executed, and the next child is visited with the

NEXTC(lm) statement.

In fact, the code fragment above is actually the code template for the FOREACHL() func-

tion. When Predator evaluates a FOREACHL(), the code section above is instantiated,

expanded, and placed in the output code stream. This is an example of the recursive macro

facility described in Section 4.1.3.

4.3.1 Using link cursors to emulate composite cursors

In Chapter 3 we defined composite cursors. This section briefly describes the method that

Predator uses (during the code-generation pass) to resolve complex composite cursors into the

source-level code that implements them.

For each composite cursor FOREACH statement that is parsed, Predator constructs a code

fragment, comprised of link cursor functions, parent/child link cursor functions, and container

cursor functions, which implements the composite cursor. This code fragment is passed back

to the scanner/tokenizer/parser for re-evaluation.

 A short example illustrates the process:

LINK lnk1 ON many cont1 TO many cont2 USING linknest
WHERE cont1.fld1 == cont2.fld2;

LINK lnk2 ON many cont2 TO many cont3 USING linkpoint
WHERE cont2.fld3 > cont3.fld4;

LINK lnk3 ON many cont4 TO many cont5 USING linknest
WHERE (cont4.age == cont5.age) ||

(cont4.id == cont5.id);

COMPCURS my_cc USING c1 cont1 c2 cont2 c3 cont3 c4 cont4
c5 cont5 WHERE lnk1 && lnk2 && lnk3 &&
c1.fld1 > 4 && c3.fld4 < 6;

where the containers and container cursors have already been declared. Predator generates

implicit link cursors for each link clause listed in the composite cursor. For example, lnk1_lc

would be used to traverse lnk1. These implicit link cursors are used for code generation.

Predator generates a code fragment as follows2: A table (T1) is created which stores one

entry for each conjunctive clause of the WHERE clause of the composite cursor. Another table

66

(T2) is created with one entry for each container cursor of the composite cursor. The composite

cursor shown above would have the following tables:

The following algorithm is used to generate the code fragment:

1. Order clauses in T1 so all link clauses precede all container
cursor clauses.

2. Mark all entries in T1 and T2 as not bound.
3. For each link clause in T1:

A. If parent and child cursors are not bound (in T2),
generate a FOREACHL statement, else

 If parent is bound (in T2), and child is not,
generate a FOREACHC statement, else

If child is bound (in T2), and parent is not,
generate a FOREACHP statement,

 If parent and child cursors are both bound (in T2),
generate a conditional test based on clause.

B. Mark clause as bound in T1. Mark parent and child cursors for
the clause as bound in T2.

2. Ordering of clauses in the code fragment (from the composite cursor) is based on many fac-
tors, such as container and link implementation, hints, and physical order in which the links
are declared.

Table 4.5: Table (T1) of clauses for a composite cursor

Clause
Link
Clause?

Parent
Cursor

Child
Cursor

Already
Bound?

lnk1 Yes c1 c2 No

lnk2 Yes c2 c3 No

lnk3 Yes c4 c5 No

c1.fld1 > 4 No c1 No

c3.fld4 < 6 No c3 No

Table 4.6: Table (T2) of cursors for a composite cursor

Container
Cursor

Already
Bound?

c1 No

c2 No

c3 No

c4 No

c5 No

67

C. For each non-link clause in T1:
1. If the clause references either the parent or child cursor

of the link clause, and the clause is marked as not
bound:

a. Generate a conditional test based on the clause.
b. Mark non-link clause as bound.

4. For each non-link clause in T1 which is marked as not bound
(i.e. a clause which references a container cursor which is not
referenced in any link clause):
A. Generate a FOREACH for the cursor.
B. Mark the clause (in T1) as bound.
C. Mark the cursor (in T2) as bound.

5. Generate the code fragment for the body of the FOREACH.

Consider the algorithm for the example above. In this example, Predator first generates a

FOREACHL statement for lnk1 using the link cursor lnk1_lc, because neither the parent nor

the child cursor have been previously bound. Next, Predator determines that one non-link

clause in T1 references one of the two cursors of lnk1. A conditional test is generated. Since

no other non-link clauses reference C1 or C2, another link clause, lnk2, is investigated. Since

the parent of lnk2 (c2) is already bound, a FOREACHC statement is generated. Again, one of

the non-link clauses references a cursor of the current link (c3), and a conditional test is gen-

erated. The next link clause to be investigated, lnk3, references two previously unbound cur-

sors, c4 and c5. Predator generates a FOREACHL statement for the clause. Since no other link

clauses exist in table T1, step 3 terminates. Since all of the non-link clauses in table T1 have

been bound at this point, step 4 does no work. Finally, Predator inserts the code which makes

up the body of the FOREACH statement on the composite cursor.

The code generated for the example FOREACH(my_cc) would be:

FOREACHL(lnk1_lc)
{
if (c1.fld1 > 4)
{

FOREACHC(lnk2_lc)
{
if (c3.fld4 < 6)
{

FOREACHL(lnk3_lc)
{
/* Code here */

}
}

}
}

68

Note that there are many possible resultant code fragments for the sample composite cur-

sor; the one shown is just one example.

Composite cursor generation is a good illustration of the evaluative nature of the Predator

code generator. A FOREACH() statement on a composite cursor requires a minimum of four

levels of expansion/optimization to generate the eventual output source code. Those steps are

shown below:

1. The FOREACH(my_cc) statement is decomposed into statements on link cursors, par-

ent/children of link cursors, and container cursors, such as FOREACHL(), FOREACHC(),

and FOREACH().

2. The link cursor statements are decomposed into statements operating on container

cursors, usually FOREACH() statements.

3. The FOREACH() statements are then expanded into code fragments, including element

field references of the form cursor.field.

4. The cursor.field references are expanded into proper code expressions, based on the

composition of layers that make up the containers.

This is by no means the largest number of levels of expansion that may be performed.

Rather, it is a minimum. Data structure-specific optimizations may be performed on any of

the code fragments at any level of decomposition (based on the composition of layers which

make up the containers and links), which may further alter the process. Finally, it should be

noted that the entire expression is not evaluated at one time on each level. A lazy algorithm is

used, and only small amounts of code are evaluated at one time. Thus it is possible to have

code fragments at various stages of completion on the evaluation stack at any time.

4.4 Conclusions

Predator is a result of applying design and implementation decisions to our NPT model. This

chapter has described the overall Predator system, the layers we implemented, and several of

the more interesting implementation decisions we made. Many of the choices we made were

not the best possible; in Chapter 7 we discuss several of the choices, their ramifications, and

possible solutions.

69

Despite these choices, the prototype and layers we constructed have been sufficient to

demonstrate our primary thesis. The validation experiments we ran on our prototype, as well

as the results we obtained, are detailed in the next chapter.

70

Chapter 5

Validation

The implementation of NPTs in the Predator compiler has been incrementally validated as

the compiler has been developed. As we stated in the introduction, the goals of our work were

to provide a domain-specific solution for data structures which would:

1. Allow programmers to code data structures faster and more easily than by hand,

2. Allow programmers to utilize efficient data structures, even if they do not fully under-

stand how those data structures work,

3. Enable programmers to debug Predator programs without having to see or interact

with the code generated by Predator (i.e. debug at the algorithmic level),

4. Allow programmers to change the underlying data structure in a program without hav-

ing to modify the application code,

5. Generate code that is at least as efficient (in execution time) as that which could be

generated by hand by the “average” programmer.

6. Aid the programmer in the evolution process by enabling the addition of new features

and implementations without having to rewrite the existing code base.

With this in mind, a series of experiments to validate Predator were designed and imple-

mented. These experiments were conducted at different stages of the research, with user pro-

ductivity experiments being performed early on, and more complicated (systems level)

experiments coming later.

The validation work for this research was partitioned into four primary areas:

1. User productivity in writing data structure programming.

71

2. Comparison of Predator’s performance against a commonly used and highly-tuned

data-structure component.

3. A view of how the abstractions of NPTs and the Predator code compared against other

available solutions for the data structure domain.

4. Use of the Predator compiler to rewrite an existing large-scale application.

5.1 Programmer productivity

A series of experiments were conducted to gauge how a group of programmers would adapt to

programming in an NPT environment. Specifically of interest were three questions:

1. How much time would it take to write a working solution to a problem in both Predator

augmented C and native C?

2. What would be the efficiency of the resulting programs?

3. How would the above two results change when the data structure changed?

Four different programming problems were created. The tasks varied from very simple

(adding, deleting and printing customers using an array) to fairly complicated (maintaining

join relationships between an ordered binary tree and a linked list). All of the experiments

involved tasks which are fairly common in data structure programming.

Many of the experiment’s subjects were professional programmers. Of the total sample of

18 programmers who participated in these experiments, eight of them were full-time C pro-

grammers at IBM Austin. The rest were undergraduate or graduate students in the Com-

puter Science department at UT Austin. A full explanation of the experiments can be found in

Appendix A.

In each experiment, the subjects were asked to write a C-language version of the program,

a Predator version, and an optimized version of the original C code. For comparison purposes

we were most interested in the programmer’s first working solution. This is because a first

working solution to a problem is often the last, due to time constraints.

Only a few of the subjects involved wrote Predator versions of their solutions. Of those

who did, half of the subjects wrote the Predator version first, and visa versa. No advantage

was found in writing either version first. Each of the programmers who used Predator were

72

allowed to “play” with the compiler first, to get acquainted with Predator’s syntactic additions

to the C programming language.

Each of the experiments measured both the time it took programmers to write their solu-

tions (programmer productivity), and the speed of the resulting program (program efficiency).

All programs were compiled with the gcc compiler (version 2.4.5), compiled with optimization

(-O2), and results compiled using prof. All program executions were performed on a DecSta-

tion 5000/240 running with 32 megabytes of main memory.

For each experiment, the programmers were provided with the data structure element

definitions and all input and output routines. This was done for two reasons:

1. All of the solutions to the experiments looked the same, and could use the same input

data file. This made for easier data analysis.

2. The measured differences in performance came only from the data structure specific

code added by the programmers.

5.1.1 Coding a simple data structure

The first experiment involved asking the programmer to add, delete, and traverse the most

elementary of all data structures - the array. The programmers were given a basic C structure

and a static array of data. They were asked to declare a new array and to insert eight different

data records, then to delete several of the records (by marking a deletion bit in the record)

based on the contents of the age field. Finally, they were to traverse the array and print out

the remaining (non-deleted) names. While inherently relational in nature, the required sub-

tasks of this experiment are common for data structure programming.

The results of this experiment were quite surprising. With both a simple data structure

and simple task to perform, we expected both the programmer productivity and the speed of

the resulting programs to be fairly similar for the programmer’s first solution and the Preda-

tor version. The table below shows that this was far from the results we obtained1.

The Predator versions of the program ran, on average, 5% faster than the programmer’s

first approach, and about the same as the “optimized” versions. (One programmer’s solution

averaged 7.4 seconds, 3% faster than the Predator average). Even for this simple program, it

1. The execution time was arrived at by running the basic loop of the program 10,000 times.

73

is possible to write more efficient code than that generated by Predator; but, in general, Pred-

ator generated code was quite competitive.

Even more surprising was the observed improvement in programmer productivity. When

Predator was first envisioned, it was assumed that Predator would yield a dramatic increase

in productivity for complex data structures. What this experiment shows, however, is that

even for simple tasks on simple data structures, Predator improves productivity. All of the

subjects were experienced C programmers, and all of them had written array data structures

many times. Nevertheless, to write the sample task with arrays was quicker in Predator. The

programmers reported that most of the gain seemed to be due to the fact that they did not

need to worry about conditional tests for deletion and ranges in their Predator versions.

An interesting side-note to this experiment has to do with the uniformity of the Predator

solutions. Since the syntax of Predator is fairly restrictive, there are fewer ways to write

many common syntactic constructs. For example, the basic type equation in all of the Preda-

tor solutions was:

SCHEMA cust_ds ON ELEMENT customer = delflag[array[10]];

Another example: the programmers were asked to iterate through the array and print out

and delete all names whose age is greater than 40, and who were not already deleted from the

array. In Predator, the following expression is so simple that it is hard to see how this loop

FOREACH(older)
{
printf(“%s\n”, name);
DEL(older);

}

a. The time shown (34.9 min) is the average total time for the optimized version,
including the time required to code the first pass.

Table 5.1: Results of Array experiment

Programming system
Number of

subjects
Average time
to write (min)

Average
execution
time (sec)

Hand code (1st pass) 18 22.2 ± 7.7 8.0 ± .3

Hand code (optimized) 9 34.9 ± 9.2a 7.7 ± .2

Predator 9 8.0 ± 2.6 7.6 ± .1

74

could be written in many other ways. As a result, most of the Predator programs were identi-

cal (save the identifier names). This leads to the interesting supposition that it may be easier

to understand and reuse Predator programs written by others, since the high-level constructs

yield more standardized programming. This, however, cannot be tested until there is a suffi-

ciently large community of Predator users.

5.1.2 Programming more complex data structures

While programmers often use trivial data structures (such as arrays) in their programs, they

also commonly use more complicated data structures.

Three other experiments, involving queues, multiple index-lists, and interlinked data

structures were designed and given to the subjects. Descriptions of these experiments can be

found in Appendix A. Each of the experiments was designed to simulate an interesting facet

of data structure programming. The experiments were:

1. Queue experiment: The programmers were given a presupplied component library (for

a queue), whose interface was not sufficient to program all parts of a given task.

2. Multiple list experiment: The programmers were required to create a data structure

which needed multiple copies of the same list indexing structure. They were faced with

the dilemma of repeating code or of parameterizing (and generalizing) their data mod-

ule.

3. Interlinked experiment: The programmers were requested to maintain links among

different data structures for easy and quick traversal.

Despite the fact that many programmers undertook each of the three experiments listed

above, very few completed them. None of the programmers finished the final experiment (our

reference solutions took 130 and 21 minutes for the C and Predator versions respectively).

The results for those who did finish are summarized below.

While the completion rate of the experiments was disappointing, it did reinforce the pri-

mary motivations behind these experiments. Programming complex data structures by hand

takes too long. Ten of the subject programmers began hand-coding one or more of these exper-

iments, only to stop after an average of three hours per experiment. When combined with the

results of those who did complete the experiments, it suggests that Predator does indeed offer

75

the potential of significant productivity benefits. This will be observed more later in this chap-

ter.

5.1.3 Productivity conclusions

The four productivity experiments show that, given experience with both programming sys-

tems, Predator shows promise of increased programmer productivity over hand-coding the

equivalent data structures. And, as the data structures become more and more complex, the

gains should increase. This is due to the fact that the Predator syntax needed to describe com-

plex data structures is no more complex than that for simple structures.

The experiments also showed another strength of the Predator approach. Before each sub-

ject was sent a copy of the experiment descriptions, they were asked to describe their knowl-

edge of various data structures. While most of the respondents knew the details of linked lists,

binary trees and relational links, some did not. And those who did not were able to program

those data structures (in Predator) as quickly and easily as those who did understand the

inner workings of those data structures. This is a major benefit of both TPTs and object orien-

tation, which Predator shares.

Finally, an unexpected result was observed. It was shown (primarily with the array exper-

iment) that the efficiency of code generated by Predator often is superior to that generated by

hand coding. This will be further explored in the following sections.

Table 5.2: Results of the queue experiment

Programming
system

Number of
subjects

Average time to
write (min)

Average
execution time

(sec)

Hand code 2 135 18.2

Predator 3 10 15.8

Table 5.3: Results of multiple list experiment

Programming
system

Number of
subjects

Average time to
write (min)

Average
execution time

(sec)

Hand code 2 210 16.4

Predator 3 11 9.9

76

5.2 Predator quicksort

While the productivity experiments are interesting, one could claim that the scenarios for the

experiments are somewhat artificial. While it is true that the scope of these experiments was

limited, they do include many of the basic functions performed on all basic data structures.

The next experiment was designed to address the following concern: How can it be shown

that Predator-generated code compares favorably with component-level code that is commonly

used, and highly hand-optimized? This is a crucial question. If Predator can not generate code

that compares favorably with code used by programmers every day, this work will be of aca-

demic interest only.

With this in mind, it was decided to select a code sample and recode it with Predator. We

selected the quicksort routine from the BSD version of UNIX for several reasons:

1. It is common used, and is a trusted UNIX utility.

2. Sorting is well understood.

3. It is highly optimized.

Amplifying point 3, we note that the BSD quicksort routine has been refined over many

versions such that it highly tuned. In fact, the BSD version of quicksort has been tuned so

much that the function operates down to both the byte and bit level - thus making the func-

tion quite difficult to read and understand. This will be expanded on later.

We attempted to convert the BSD quicksort routine directly into Predator syntax. This

approach failed for multiple reasons. The largest problem with the code port was that the

BSD version was written to be quite specific for one data structure. Unlike the eventual Pred-

ator version, the BSD quicksort can only sort one data structure - a fixed size array. Since

Predator programs are written to be data-structure independent, the conversion was just too

difficult. Also, NPTs are designed so that the resultant code will mirror the underlying algo-

rithm as closely as possible, and the BSD quicksort is very unlike the standard quicksort algo-

rithm, due to the byte-level manipulations they include for performance.

The next attempt at providing a Predator-based quicksort was far more successful. Since

the algorithm for quicksort is common and well understood, we took an existing version of the

algorithm from [Aho83] as the base. The conversion of the algorithm to Predator code took

less than 30 minutes.

77

The converted version, while a working quicksort algorithm, was not yet ready to compare

against the BSD version. This was because:

1. The pivot selection algorithm was different in the two versions of quicksort. We had to

modify the AHU version to match the BSD pivot selection algorithm.

2. The base-case selection for the two implementations was also different. The Predator

version was changed to perform a bubble sort for sub-cases of size 5 or less, to match

the BSD version.

3. The AHU algorithm contains an optimization that the BSD version does not. Specifi-

cally, it notes the special case that all elements of a sub-case have the same value. In

this case, no additional sorting or recursion need be done. If there are a lot of dupli-

cates in a given test case, there can be considerable time savings. The BSD version con-

tains no such optimizations. None of our data included duplicates, to ensure that we

did not utilize this optimization.

All of these coding changes were made to the Predator version to make it as similar to the

BSD version as possible. When completed, the size of the programs were as follows:

The table above demonstrates some interesting behavior of Predator programs. The

actual source of the Predator version is 70% of the size (in words)2 of the BSD version. Taken

as a rough metric of complexity, the Predator version is smaller and simpler than the equiva-

lent “optimized” BSD version. Complete copies of the two source files can be found in

Appendix C.

2. Words were used as a rough measure of complexity, since bytes can be influenced by long
symbol names, and lines counts are affected by the number of words per line.

Table 5.4: Source code size comparison

Source file Number of words

BSD quicksort 460

Predator source 323

Array (generated) 462

Segment (generated) 531

78

5.2.1 Comparing Predator versus BSD

Tests were then run to compare the efficiency of the two versions of quicksort. A sample

driver was written, which did nothing more than place data items in an array, randomize all

elements, call on the appropriate quicksort (BSD or Predator), and output the sorted array to

a file. The data records that were sorted were C structures with the following declaration:

struct customer
{
char l_name[22];
char f_name[22];
int age;

}

The size of the name fields of the customer structure were chosen carefully. According to

the documentation of BSD quicksort, it is optimized for a structure size of 48 bytes. This is

due to the byte by byte calculations performed in the inner loop of the algorithm. For our ini-

tial experiments we decided to use the BSD “best-case” size.

The sorting of the records was performed with the last name field as the primary key, the

first name as the secondary, and the age field as the tertiary key. There were no duplicates in

any of the data sets. Two different Predator versions were tested. The first is an array of

100,000 records. The second is a more complex data structure called a segment, and is

explained in detail in Section 5.2.3.

Each run of the program produced a different randomization of the elements, and thus a

different execution time. The initial comparison was performed on 48 byte records, with the

size of the data set varying from 1,000 records to 110,000.

Each of the numbers shown in this graph resulted from 10 executions of the program on a

given data set size. All of the standard deviations were well within one sigma.

The Predator and BSD versions both demonstrated the same asymptotic complexity. The

ratio of their execution times varied by (at most) 2.5% when ranged over three orders of mag-

nitude. This is very important. If the base case selection (or pivot selection) differed in the

slightest, they would have different complexity classes, and there would be a discernible dif-

ferential in the ratio of their executions as the number of records was increased. By modifying

the Predator version to use the same base case and pivot selection as BSD, we are able to say

that we are comparing the same program - not just two different implementations of quick-

sort.

79

Figure 5.1: Quicksort of 48 byte records

The other lesson from this experiment was one of performance. Measured with a record

size of 48 bytes, which should be BSD quicksort’s best, Predator’s array implementation of

quicksort was approximately 30% faster than BSD quicksort. The ratio varied from a low of

67% to a high of 71%. Note that there is not a growing difference of ratio points - the ratio fluc-

tuates about a mean of 69%. The segment implementation ran, by contrast, some 41% faster

than BSD quicksort (on average). Its ratio varied from 57% to 62%.

The results of this test suggest that, even for production level, highly-optimized code, that

the prototype Predator compiler generates competitive versions.

5.2.2 Varying the structure size

The BSD version of quicksort claims that it is optimized for 48 byte structures. This leads to

the following question: How does changing the record size affect the speed difference between

the Predator and BSD versions? Tests were run on both the BSD and Predator versions in

which the number of records sorted was kept constant, while the number of bytes per record

was varied. Two different tests were run. In the first, 1000 records were sorted. In the second,

99,000 records were sorted. This was done to ensure that, given two orders of magnitude dif-

ference, the same behavior would be observed as the size of the records was increased.

0 50000 100000 150000

Number of records

0

10

20

30

40

Ti
m

e
(s

ec
)

48 byte records

BSD Quicksort

PRED Array

PRED Segment

80

In each test, the size of the records was varied from a low of 4 bytes per record to a high of

200 bytes per record (over one order of magnitude). The results of those tests are shown below.

Figure 5.2: Quicksort of 1000 records

Figure 5.3: Quicksort of 99000 records

It is interesting to note from these tests is that as the number of bytes per record

increases, Predator performs better and better relative to the BSD implementation. The rea-

son for this is simple: the BSD implementation uses a byte-by-byte copy mechanism for record

swapping. Predator uses a “whole record copy” scheme (i.e. rec1 = rec2). The Predator

approach has a start-up cost, which causes it to be less efficient for small record sizes. The

BSD Quicksort

0 50 100 150 200
Record size (bytes)

0

2

4

6

8

Ti
m

e
(s

ec
)

Varying record size

PRED Array

PRED Segment

0 20 40 60 80 100
Record size (bytes)

0

20

40

60

80

T
im

e
(s

ec
)

Varying record size

BSD Quicksort

PRED Array

PRED Segment

81

per-record overhead, however, is fairly small. The BSD version, on the other hand, has a

smaller start-up cost, but a much higher cost per byte copied. Thus, there is a crossover point

at which the two approaches have comparable efficiencies. This occurs at a record size of 8

bytes. In the many cases in which records are larger than 8 bytes, Predator will provide better

performance than BSD quicksort.

5.2.3 Segmented sorting

In all of the results shown above, there is a second Predator version shown: segmented sort-

ing. The reason for investigating a segmented version of quicksort is simple. The BSD version

of quicksort is capable only of sorting elements stored in a static array. And, as shown above,

the time to sort an array increases linearly with the size of the record. This is due to the fact

that there is simply more data to swap when one has larger records.

If one could somehow keep the size of the data swapped constant, no matter how large the

actual data record became, it should result in superior performance for large record sizes.

That is exactly what Predator segmented records do.

For the segmented case, we defined the data record as follows: segment each data record

into two parts. The primary segment contains none of the fields of the original data record.

This primary segment is stored in the static array. The secondary segment contains all of the

data of the record, and is not stored in a data structure, but is simply malloc’ed on the heap.

The Predator declaration for the segmented structure is:

SCHEMA cust_ds ON ELEMENT customer =
segment[array[100000],
,
malloc[]];

The second argument to the segment layer is the field at which to split the data records. In the

example above, no such field is declared. Thus Predator places no data fields in the first seg-

ment, and all of the data fields in the second segment.

A sample populated array of data might look as follows:

82

Figure 5.4: A segmented quicksort array

The pointer in the primary segment (pointing to the secondary segment) is automatically

allocated and maintained in the Predator code. As far as the application programmer is con-

cerned, they have, at the abstract level, a simple container of data.

The advantage to this data structure is that swapping is cheap (no data is ever swapped).

Thus, performance is constant with respect to the size of the data record, significantly

improved over the standard array-based quicksort. Further, since all of the segmentation code

is automatically generated, only one line of code in the Predator program needed changing,

which took less than 30 seconds. Again, this demonstrates the power of the Predator

approach.

It is true that segmentation can be added to the BSD quicksort code. However, it is some-

thing which they chose not to add to their code. As part of this work we did, in fact, alter the

actual BSD quicksort routine to work with segmentation. Due to the complexity of the BSD

code, the effort took many hours, and even then we were not able to match the execution time

of the Predator-generated version (Our modified BSD quicksort was slower than the Predator

version). The ability to change data structures quickly is a real productivity benefit.

5.2.4 The rwho utility

There exist many applications which rely on the BSD quicksort routine. Some common UNIX

utilities (such as ls, df, rwho...) consist of little more than data collection (into an array),

sorting, and reporting. As a further exploration of quicksort we modified the rwho utility to

work with Predator.

1 2 3 42

83

rwho is a utility which prints a list of users who are currently logged on to machines in a

local network. It obtains this information from a data file, stores the data in an array, sorts

the array, and then prints the output data in one of a number of formats, based on command-

line switches.

The rwho program will fail if the number of user entries exceeds 100. This is because

rwho stores the data in a static array (of size 100) so the data can be sorted by the BSD quick-

sort routine. This is an example of a feature existing due to the limitation of the data struc-

ture module, rather than due to an inherent limitation of the system.

It is possible to increase the size of the array, but that does not solve the problem, rather it

delays it. We modified the rwho program to work with Predator, and then changed the under-

lying data structure to be a linked list. Since linked lists are unbounded (up to the available

memory of the machine), the limitation is removed. The modified rwho program is, in fact,

slightly faster than the original, and has the arbitrary restriction removed.

The total time required to investigate the rwho program, rewrite it to use Predator, sub-

stitute lists for arrays, and measure the performance was less than one hour. One could fur-

ther augment rwho to operate even faster in certain cases. rwho provides the -h switch, which

sorts and prints users by host names. For this option it might be desirable to create a version

of rwho that uses a different container implementation (such as hash tables or binary trees).

With Predator, the change would involve no more than changing a single declaration, and

recompiling.

This experiment shows that the data structure independent nature of Predator allows

programmers to avoid arbitrary restrictions on program features and functions normally

imposed by tying the program to a specific data structure.

5.2.5 Quicksort conclusions

The investigations performed with the BSD version of quicksort were illuminating. The

following observations can be made:

1. The Predator version more closely resembles the actual high-level algorithm. It is eas-

ier to read and debug3. In addition, new features for improving the algorithm (such as

3. The source code for both versions can be found in Appendix C.

84

adding segmentation) are easier to add to the Predator version. The BSD version is so

highly optimized, that modifying it is difficult.

2. For the large majority of useful record sizes, the Predator version is faster than the

highly-tuned BSD version. The Predator version is also easily modified (with the seg-

ment layer) to be even faster, which improves the complexity class of the solution.

3. The Predator version can be made to work on virtually any unordered data structure in

a matter of minutes. This can be useful in adding new features, and can also allow for

programmer experimentation to discover the best choice of data structure for a given

data set. This contrasts with BSD quicksort, which is tightly coupled to the array data

structure.

We believe that the results we obtained with BSD quicksort are not at all unusual. We

selected quicksort because we felt that if any function was commonly used and highly opti-

mized, it would be sorting. We selected BSD quicksort, specifically, because of the length of

time it has been in the public domain. Many other basic algorithms exist (such as Ziv-Lempel

encoding) that might have been equally good candidates. It is our belief that the benefits

shown here are not uncommon and will be true of many other basic code functions currently

used.

5.3 Comparing against data structure libraries

Many libraries of data structure modules are currently available for programmers to use

when writing their applications. It is logical to ask, therefore, how Predator-generated code

compares against that available in those libraries. This section reports on a benchmarking

effort, which is reported in greater detail in [Bat93a].

A spell checker benchmark was written. When invoked, the program reads in a dictionary

file of 25,000 words, in randomized order, which it places in a data structure. Next, a docu-

ment is read in from standard input. Duplicates are discarded, and each unique word is

placed in a second data structure (of the same type as the first). Finally, the second data struc-

ture is scanned, and each word is looked up in the dictionary. Words which are not found are

then printed out to standard output.

Standard input and output routines were written, and used in each of the programs.

Three different library systems (Booch components for C++ [Boo90], libg++ [Lea88], and Pred-

85

ator) were benchmarked. Each of the systems was benchmarked against unsorted and sorted

arrays, unordered lists, and ordered binary trees. The Predator source of the array version

can be found in Appendix D.

Each of the programs was executed against a standard document (the Declaration of Inde-

pendence), and timed. Each program was executed 5 times, and the mean values were

rounded to the nearest second. This level of accuracy is sufficient to illustrate the differences

among the programs4.

It can be seen from Table 5.5 that the Predator versions of the benchmark are signifi-

cantly smaller than those written for the other libraries. When it is considered that 211 of the

words in all of the programs are the common I/O routines, one can see that the data structure

code in the Predator versions is rather concise.

More importantly, it took a mere few minutes to change the type equations to modify the

Predator array benchmark to create the other Predator versions, whereas recoding the bench-

4. Two of the three libraries were compiled with the gnu C/C++ compiler. The Booch library
requires the Sun C++ compiler (for library compatibility).

Table 5.5: Size of benchmark programs

Component Library
Unordered

list
Unordered

array
Sorted
array

Binary
tree

Booch C++ Components 2.0 320 words 360 words 398 words 481 words

libg++ 2.4 336 words 386 words 474 words 336 words

Predator 281 words 281 words 287 words 285 words

Table 5.6: Execution speed of benchmark programs

Component Library
Unordered

 list
Unordered

array
Sorted
array

Binary
tree

Booch C++ Components 2.0
(compiled with Sun CC 3.0.1 -O4)

70.9 sec 54.6 sec 11.1 sec 15.4 sec

libg++ 2.4
(compiled with G++ 2.4.5 -O2)

41.9 sec 34.3 sec 5.4 sec 4.1 sec

Predator
(compiled with GCC 2.4.5 -O2)

40.2 sec 33.3 sec 6.3 sec 3.0 sec

86

mark for a new data structure (for both Booch and libg++) entailed considerable effort (due to

the fact that their interfaces differ for each data structure). Not only did Predator save time

for the benchmark programmer, but (in the future) additional data structures can be easily

tested with Predator, simply by changing the type equations.

In the future, we hope to expand both the number of data structures measured and the

number of data structure libraries5. Also, a project is underway to construct an automatic

data structure benchmark generator. This generator will be capable of generating code (via a

script language) to test many common data structure functions (such as insert, delete, update,

scan, search, retrieve etc.) for many different software component libraries.

5.4 Emulating a production system compiler

Our acid-test validation was to verify that our approach could scale well to a system which

contains a large number of data structures and code modules. We felt that a good candidate

system should:

1. be sufficiently large.

2. include large amounts of data structure code.

3. be complete, so that performance data would exist for comparison purposes.

4. be state-of-the-art in its field.

5. be a well-written system.

We selected the LEAPS production system compiler project. LEAPS [Mir90, Mir91] (Lazy

Evaluation Algorithm for ExPert Systems) is a production systems compiler which converts

OPS5 rule sets into a C-language program, which can then be compiled, linked, and run. In

simpler terms, LEAPS takes a general description of a production system (rules) and produces

an imperative version of that production system. The executable can then be run against ini-

tial data sets. LEAPS offers many advantages for emulation:

1. It is a mature project with many performance results published.

2. It is a state-of-the-art system with results that compare favorably against other sys-

tems in its field [Mir90].

5. In the near future we hope to add additional libraries [Gor87, Fon90] to our benchmark.

87

3. It contains a large number of data structure instances (containers) in its run-time

library.

4. It uses many different data structures (schemas) including lists, stacks, predicate

indexes, and links.

5. The code that implements LEAPS is very complicated. Debugging of this system

(mainly due to errant pointers) has been reported to be very difficult. Further, certain

new features have not yet been added due to the complexity of the existing code and

the difficulty of integrating new features.

6. LEAPS is a University of Texas project. Technical assistance was available.

Given all these advantages, we decided to take several LEAPS test cases (rule sets), emu-

late them with Predator equivalents, and study the results.

5.4.1 OPS5

OPS5 [For81] is a language for describing production (expert) systems. It is a mature system,

which is used widely in the AI community. OPS5 is a mature language, and LEAPS is but one

of many approaches [McD78a, McD78b] designed to evaluate OPS5 programs. OPS5 syntax is

based on LISP, and OPS5 is a dynamically-typed language. This has serious ramifications

which will be explained later. For now, we will only discuss statically-typed issues of OPS5.

There are a few basic concepts of production systems which must be defined. The database

is the collection of data for the production system, and consists of a set of data tuples, each of

which is a n-ary relation of data items.

Using Predator terms, one can envision a database as being a set of containers. Each data

tuple is an element which is a member of a particular container, and which is defined by a spe-

cific schema. For example, a database for a sample production system might consist of data

tuples from two containers: a container of customers and a container of departments. The fol-

lowing could represent the state of the sample database at a given time:

{{name = Joe Smith, id = 3, dept_# = 42},
{name = Sam Spade, id = 6, dept_# = 23},
{dept_num = 42, name = A department, num_employees = 3},
{name = Marion Librarian, id=7, dept_# = 42}
}

88

The database above contains three employee tuples, and one department tuple. The order in

which they are shown is of no consequence.

A basic construct in OPS5 is the rule. A rule is constructed of two parts: the condition and

the action. A condition is a set of boolean predicates joined together conjunctively. Each indi-

vidual condition element (or CE) is a predicate performed on some part of the database for the

system. An action is a set of executable clauses which can be performed on the database.

A sample rule is shown below:

(p first_rule
(employee ^id 4)

-->
(write “We found employee number 4!!”)

)

This is a very simple rule (or production), whose name is first_rule. This rule contains one con-

dition element. That CE tests to see if there is any employee present in the container employee

whose id field is equal to 4. If there is one that satisfies this condition, the action set for the

rule is fired. In this case, a text string is written to the standard output.

A rule is satisfied if one or more elements exist in the database which will cause the condi-

tion of the rule to evaluate to true. More than one rule can be satisfiable at a given time. It is

up to the algorithm implementing OPS5 to select which of the satisfiable rules will be exe-

cuted and in what order.

A more interesting rule is:

(p second_rule
(employee ^dept_num <x> ^name <y>)
(department ^dept_num <x> ^num_employees <z>)

-->
(modify 2 ^num_employees (compute <z> + 1))
(write <y> “ is in the join in department “ <x>)]
(remove 1)

)

This rule creates a join between the employee and department containers. For each employee

and department pair where the dept_num fields are the same, the num_employees field of the

department record is incremented, an output message is printed, and the employee record is

deleted. The numbers in the remove and modify actions refer to the condition element number

in the condition section of the rule. For example, (remove 1) means that the record referred

89

to in the first condition element (the employee element with dept_num == <x>) will be

deleted from its container.

Containers are defined with the literalize statement. This statement is optional, but is

used in all of the OPS5 rule sets given to us for evaluation. A sample literalize statement

might look like:

(literalize employee
name
id
dept_#

)

Literalize is a very simple construct. It does nothing more than declare the name of a con-

tainer, and the field names for an element of the container. Note that no types are shown. It

was mentioned earlier that OPS5 is dynamically typed. There are three basic types in OPS5:

integer, float, and string (symbol). Any field of an element may, at any time, contain an entity

of any of the types. In reality, a given field usually only contains values of a specific type. All of

the OPS5 rule sets we were given to emulate were statically typed. Our automated RL com-

piler (currently under construction) extends the Predator version of OPS to handle dynamic

typing.

The final major OPS5 concept that must be understood is the production system (PS). A

production system is a set of OPS5 rules. To execute a PS, one populates the database with

initial data values, and executes a production cycle. A production cycle consists of locating a

satisfiable rule and firing the actions for that rule. The actions may change the state of the

database, which may affect the rule selection for the next cycle. When the system arrives at a

state where no rules are satisfiable, the database is said to be at a fix point (steady state), and

the program terminates.

The model we used for OPS5 programs is as follows:

load in initial data into database;
while (there is a satisfiable rule) /* match/conflict resolution*/
{
execute the action for the selected rule;

}

One iteration of steps through the while loop above constitutes one production cycle.

Within the production cycle, match/conflict resolution is the crucial step. Exhaustively search-

ing the database for a satisfiable rule (on each production cycle) is relatively easy to program,

90

but is grossly inefficient in time. LEAPS has improved on classical OPS5 systems by devising

a good method for representing the state of the database, and using that representation to

locate efficiently a good candidate satisfiable rule.

5.4.2 LEAPS

LEAPS is a compiler which converts an OPS5 production system description into a C pro-

gram. That program is then compiled into an executable image. LEAPS adds a driver-like

front-end to each production system to allow for initial data to be loaded, commands to be run

and primitive debugging to be performed. A sample LEAPS authoring cycle is shown in

Figure 5.5.

In the LEAPS system, the database is also called the working memory. Working memory

elements (WMEs) are data elements (tuples). WMEs contain a class name (a Predator schema

name) and a set of attribute-value pairs. This structure for WMEs owes much to the LISP ori-

gins of OPS5.

Figure 5.5: A LEAPS authoring cycle

Each WME also contains a timestamp. A timestamp is an integer that denotes the cycle

number in which the object was last written (created or updated).

The wait list is an ordered linked list, which LEAPS uses to reference WMEs quickly in

timestamp order. Each time a WME has a write access (for creation, update, or deletion), it is

either added to, removed from, or moved within the wait list.

LEAPS
compiler

C
compiler

OPS5
runtime

OPS5
source
file

Production
system

Input
data

Output
data

Generated
C
files

91

Alpha memories (α-memories) are another important concept. An α-memory is a chained

indexing method used to reference WMEs which satisfy a specific predicate. It is possible,

under LEAPS, for many different α-memories to be defined on a single container.

The dominant object for a given cycle is that object (element) in the database which has

the most recent timestamp (this definition will be expanded somewhat with the inclusion of

joins below).

It was mentioned above that matching and conflict resolution is the most difficult phase of

a production cycle. This is due to the fact that in most cycles many different k-tuples of objects

exist (O1, O2, ... Ok) which could satisfy a rule in that cycle. The gain to be made from an effi-

cient algorithm is to find a satisfiable rule in the least amount of time. LEAPS is based on lazy

evaluation. The basic match/conflict resolution algorithm is as follows6:

while (there are still objects on wait list)
{
remove dominant object from the wait list;
do
{
locate next most specific rule whose predicate
references dominant object;

} while (rule exists && rule cannot be satisfied with
elements in working memory);

if (rule was found)
exit match/conflict resolution; /* exit while loop */

}

A rule R1 is more specific that a rule R2 if R1 references more containers than R2. If two

rules are equally specific, then LEAPS first tests the rule which occurs earlier in the source

text, and then the rule that occurs later in the source text.

It so happens that all of the basic concepts described above can be mapped to relational

equivalents. Table 5.7 shows the correspondences.

6. This is not the complete LEAPS match/conflict resolution algorithm. In succeeding sec-
tions, we will augment the basic form of the algorithm shown here.

92

5.4.3 The RL driver

A sample driver for RL (Re-engineered LEAPS) was constructed. In comparing the effi-

ciency of the RL code versus the LEAPS code, it was important for the comparison to be fair. It

is not sufficient that the RL version read the same input and produce the same output as the

LEAPS version. To ensure that the LEAPS algorithm was followed faithfully, our RL driver

had to perform exactly the same work as the LEAPS program. The following five conditions

are necessary:

1. The RL driver had to read the same input data files as the LEAPS version.

2. The RL driver had to produce exactly the same output as the LEAPS version7. This

required (among other things) that the RL driver write the LEAPS copyright state-

ment to standard output!

3. The RL driver had to fire the same rules in the same order as the LEAPS version.

4. The RL driver had to investigate the same dominant objects in the same order as the

LEAPS version.

5. The RL driver had to both retrieve k-tuples and test the rules for satisfiablity in the

same order as LEAPS.

Before any of the speed/performance tests were run to compare LEAPS and RL, a set of

compatibility tests were run. For all of the tested production systems (and for all input data

7. Comparisons were made with the UNIX diff program to ensure byte-by-byte matches.

Table 5.7: Relational equivalents of OPS5/LEAPS concepts

OPS/LEAPS concept Relational Equivalent

Class Container

WME Element

Attribute Field

Database Collection of containers

Condition Element Conditional test

α-memory Predicate index

Production System Program

Rule Conditional test/action

Join Link/join

93

sets for those PS), both LEAPS and RL were placed in diagnostic mode. In this mode, a dump

was made of each dominant object, k-tuple, rule tested, and rule fired in the system. The

dumps for RL and LEAPS were then compared. Thus, the RL driver, for every production sys-

tem we tested, does exactly the same work, in the same order, as the LEAPS production sys-

tem it is emulating.

After we verified that our RL programs performed exactly the same work as their LEAPS’

counterparts, we removed all writeln output statements from both programs, and recom-

piled. We did this to base our timing comparisons, as much as possible, on the actual RL and

LEAPS algorithms and code, not on the system-supplied output routines.

5.4.4 Emulating simple production systems

The match/conflict resolution algorithm given above is sufficient to execute simple production

systems. Simple production systems are those in which rules have a maximum arity of 1.

While it is difficult to produce a simple production system which does much that is interest-

ing, it was useful to write (and test) several simple production systems to ensure that a proper

RL driver was constructed.

Three simple rules sets were evaluated and run; all displayed similar behavior. One of

those, nj1.ops (no joins), will be described in detail here.

nj1.ops is a single-rule production system, which does nothing more than count from a

starting value (typically 0), up to some upper bound. In essence, it is nothing more than a pro-

duction system version of a for-loop. By varying the upper bound of the loop we were able to

compare the efficiency of the Predator and LEAPS versions of the system. The following is the

no-join1.ops rule set:

(literalize foo
 bar)

(p no-join-test
 (foo ^bar {<x> < 500})
-->
 (write “bar has value” <x>)
 (modify 1 ^bar (compute <x> + 1))
)

The single rule (no-join-test), has a single CE, which does nothing more than test to see if

the bar field of a foo element has a value less than 500. If it does, an output statement is

94

written, and the bar field of that element is then incremented by one. The initial data for this

PS is a single foo element with a bar field of 0. Successive production cycles cause the value

to be incremented until the element has a bar value of 500. At that point, the dominant object

satisfies no rules, there are no further dominant objects, and the system reaches a fix-point

and terminates.

The following graph shows the performance of both the LEAPS and RL versions of no-

join1, for a range of maximum values.

Figure 5.6: Execution speed of no_join1.ops

The difference in execution speed was somewhat surprising, as we found that they were

both linear, but with different slopes. There are many contributing factors, but the largest is

that LEAPS is based on LISP, and causes each data item to be stored in a CONS cell. Travers-

ing these structures (as opposed to simple C malloc’ed structures for RL) is not particularly

efficient.

Two other simple rules sets were translated to RL and evaluated. The OPS5 code for those

systems (as well as all other PS tested) can be found in Appendix B. The results of testing

these other simple PS show similar results to that of no-join1.

0.0 200.0 400.0 600.0 800.0 1000.0
Upper bound

20.0

30.0

40.0

50.0

C
P

U
 ti

m
e

(1
0

m
s)

LEAPS
RL

95

Figure 5.7: Execution speed of no_join2.ops

Figure 5.8: Execution speed of basic_cycle.ops

0.0 1000.0 2000.0 3000.0
Maximum number

0.0

20.0

40.0

60.0

80.0

100.0

C
P

U
 ti

m
e

(1
0

m
s)

LEAPS
RL

20000.0 40000.0 60000.0 80000.0 100000.0
Maximum number

0.0

500.0

1000.0

C
P

U
 ti

m
e

(1
0

m
s)

LEAPS
RL

96

In summary, for simple wait-list production systems, Predator generates more efficient

code. Useful production systems, however, require additional features.

5.4.5 Production systems with joins

Most useful production systems require joins. Any time a rule contains two CEs which refer-

ence more than one element from one or more containers, it implies a join.

Joins are an area where LEAPS has made significant improvements over other OPS5-

based systems. LEAPS defines a wait-stack in addition to the wait-list. The wait-stack is a

stack of partially completed joins, ordered by timestamp8. Every time that LEAPS finds a rule

to satisfy that utilizes a join, it fires the rule on the first tuple of that join, and then places the

state of that join on the wait-stack. The timestamp of a wait-stack entry is the timestamp of

the dominant object of that join. At a later time, the state of the join will be restored, and the

execution cycle will determine if the join produces any further tuples which satisfy the rule. If

one does, the join is again placed on the wait stack for later execution. This lazy algorithm dif-

fers from a more classical approach, in which a join, once started, must exhaust all of its pos-

sible tuples before any other dominant objects may be investigated. The advantage of this

approach is that the chain of execution of one tuple of a join may cause state changes which

remove branches from the join’s search tree. In other words, it delays action on tuples which

may not need to be ever considered.

The basic execution cycle of RL must be modified for the addition of joins. The match/con-

flict resolution phase is augmented.

while (there are still objects on wait list and/or wait stack)
{
remove dominant object from the wait list or wait stack;
if (dominant object is from wait list)

do
{
locate next most specific rule whose predicate
references dominant object;

} while (rule exists && rule cannot be satisfied with
elements in working memory);

else

8. In actuality, the wait-stack is used in simpler production system for partial results. It is
described in this section only to avoid making the original explanation too complicated.

97

{
restore state of partial join;
locate next tuple that satisfies the selected rule;

}
if (rule was found)
{

if (tuple found is part of a partial join)
place state of join on wait stack;

exit match/conflict resolution; /* exit while loop */
}

}

The basic execution cycle of LEAPS is now augmented so that, on a given cycle of the pro-

gram, LEAPS looks at both the wait-stack and the wait-list. The object that is selected as

dominant is the object which has the greater timestamp of the two. If it is the wait-list object,

LEAPS continues as before. If the dominant object resides on the wait-stack, LEAPS restores

the state of the join, and tries to find another tuple which satisfies the join. If one exists, the

join is returned to the wait-stack and the satisfying rule is fired. If the join produces no fur-

ther satisfiable rules, it is removed from the wait-list and another basic cycle begins.

LEAPS introduces another optimization for rule conflict resolution. When considering a

given rule R with condition element set E, LEAPS breaks down set E into two sets, E1 and E2.

E1 consists of all condition elements which reference the dominant object. E2 consists of all

the other CEs (that reference other elements). E1 is called the local predicate, and E2 is called

the residual. Speed can be increased in the conflict resolution phase in the following way: Sup-

pose that a dominant object D is selected, and a rule R is the most specific rule to check.

LEAPS first checks to see if D satisfies the local predicate E1. If it does not, there is no reason

to check the residual. If it does, then the residual is checked. Note, also, that the residual is

now a join over n-1 containers, whereas E was a join over n containers (i.e. the arity of the join

is reduced by 1).

Note that while this can save considerable time, it does generate additional code. LEAPS

must generate a local and residual predicate for each container type that participates in the

condition elements for each rule. RL fully supports this optimization. Each rule satisfaction

procedure is broken down into local and residual sections. Further, RL has one satisfaction

function for each container type for each rule in the PS.

Join algorithms are important in LEAPS. The standard LEAPS algorithm uses simple

nested loops for join implementations. In Predator, links are nothing more than another realm

(which is a subtype of DS). Predator currently implements multiple link implementations,

98

including nested loop. It was possible, therefore, to run multiple RL executions for each join

test case, by simply changing the LINK statement in the RL driver, and recompiling.

The test results from the triples.ops test case follows. triples.ops is a PS which locates all

triples <x, y, z> of integers less than n, where x < y < z (i.e., the sequence is strictly

increasing). Two different versions of RL were written for triples.ops. One is a nested loop

algorithm, the same as LEAPS uses. The other is a pointer-based link algorithm. For more

information about pointer-based links, see Section 4.2.2.

A major advantage of RL over LEAPS can be seen from this test case. The link implemen-

tation for RL can be changed by simply changing the type equation and recompiling. Pointer-

based links are more efficient for triples.ops than are nested loop links. This points out the

flexibility of NPTs - the LEAPS programmers have wanted to add pointer-based links to their

system, but because the coding of it was too daunting, it has not yet been added.

Figure 5.9: Execution speed of triples.ops

As can be seen, both of the RL versions of triples.ops outperformed the LEAPS version.

The nested loop version of RL retains all of the performance advantages mentioned in the pre-

vious section.

0.0 10.0 20.0 30.0 40.0 50.0
Number of tuples

0.0

200.0

400.0

600.0

C
P

U
 ti

m
e

(1
0

m
s)

LEAPS

RL/Point
RL/NL

99

The pointer-based method of links outperforms nested loop (for this test) because the cross

product of the containers is traversed a large number of times. While the pointer-based

method of links does have additional maintenance overhead when compared to the nested

loop method, it generates the interlink connections when the elements are added to the con-

tainers. This overhead is dwarfed by the time saved due to the reduced number of traversals

of the whole join. Note that in certain production systems, nested loop links will be more effi-

cient than pointers. The advantage to the NPT approach is that the programmer may make

that choice for each individual production system.

Two other join production systems were also evaluated. Again, they demonstrated similar

results to triples.ops.

Figure 5.10: Execution speed of big_join.ops

0.0 200.0 400.0 600.0 800.0 1000.0
Upper bound

0.0

200.0

400.0

600.0

C
P

U
 ti

m
e

(1
0

m
s)

LEAPS

RL/Point
RL/NL

100

Figure 5.11: Execution speed of puz.ops

5.4.6 Adding negation to condition elements

Negation is another major feature of OPS5 that is implemented in LEAPS. Negation is the

process of placing a − (does not exist) symbol in front of a condition element of a rule. For

example:

(p neg_test
(test_cont ^value <x>)
(other_cont ^other_val = <x>)
-(test_cont ^value > <x>)
-->
(write “action here!”)
)

The rule above will be satisfied for the element in the test_cont container which has the

largest value field, and has a matching record in the other_cont container. The reason is that

all elements in test_cont satisfy the first CE, but only one element can satisfy the condition

that “there does not exist another test_cont element whose value field is larger than <x>.

0.0 10.0 20.0 30.0 40.0
Number of piles

20.0

30.0

40.0

50.0

C
P

U
 ti

m
e

(1
0

m
s)

LEAPS
RL/NL

101

While negation may be a difficult concept to grasp, it is relatively simple to implement in

RL. Each time a join condition is evaluated, each negated CE is placed at the end (innermost

location) of the residual for that join. For example, in the above rule, RL might generate the

following condition test:

CURSOR c0 ON test_cont;
CURSOR c1 ON test_cont;
CURSOR c2 ON other_cont;

int check_neg_test(CURSOR c0)
{
FOREACH(c2)
{
if (c2.other_val == c0.value)
{

FOREACH(c1)
{
if (c1.value > c0.value)

goto next_c2;
}
return(TRUE);

}
next_c2: ;
}
return(FALSE);

}

The code above is not actually what would be found in RL, but is a simplified version (RL

would use links and composite cursors; too complicated to show here). The above example

assumes that the three cursors shown are defined over the containers, and that the function is

called with the dominant object already set in the c0 cursor. It then checks all non-negated

CEs (the one join clause). When it finds a join relation that satisfies the two clauses, it checks

the negated clause. If an element is found that causes clause 3 to fail, another c2 must be

found. If no c1 is found, the entire condition set is satisfied, and the function returns TRUE. If

all c2 values fail, the rule is not satisfiable for that dominant object, and the function returns

FALSE.

Because LEAPS utilizes lazy evaluation, negation causes an unusual side-effect. When a

rule’s action requires an element to be deleted, it may be impossible to do so. The element in

question may still be involved in a suspended partial join that resides on the wait-stack, and

cannot be purged (permanently removed) from memory until it no longer participates in any

joins. If LEAPS were to purge it prematurely, incorrect output could result.

102

It so happens that, while this is a difficult feature to implement in LEAPS, it is not too dif-

ficult to add to RL. Consider the following type equation from Predator:

SCHEMA test ON ELEMENT elem =
predind[delflag[predind[malloc[],

<condition>]],
<condition>];

By placing two different predicate index layers with the same condition on either side of

the delflag it is possible to allow RL to “delete” the element from the outer predicate index,

while leaving it on the inner (because the delflag layer does not pass DELETE operations to its

lower layers). This action causes any future new (wait-list based) searches to not see the ele-

ment (since it has been deleted from the outer predicate index), but joins which are pulled

from the wait stack can still locate the element based on the inner predicate index. When the

element can no longer participate in any joins (when the item is marked for deletion, and the

dominant object in the system has a smaller timestamp than the to-be-purged object), the ele-

ment is purged, which removes it from both the inner index and memory. In LEAPS, this is a

fairly complicated operation, and is still not fully implemented. Due to NPTs high-level

nature, the algorithmic behavior was fairly simple to capture and code. This is another exam-

ple of Predator simplifying the programming task. It is very simple to create the two predicate

index layers and to allow Predator’s query optimizer to select the proper layer to use for both

types of scans.

Three different negated CE test cases were executed and compared. The results for the

simplest of these, big_num.ops, is shown below. big_num.ops is little more than the example

covered above.

Due to a problem in the prototype RL driver (self-referential links not implemented auto-

matically for pointer-based links), only the results for nested-loop links are shown for these

test cases.

As with other test cases shown, the RL driver code is more efficient than LEAPS, and

shows a consistent linear improvement.

103

Figure 5.12: Execution speed of big_num.ops

The next test case, jig25.ops, demonstrates another strength of the Predator approach

over LEAPS. jig25 solves a two-dimensional puzzle. What makes it interesting is, unlike the

other OPS5 test cases, the input data is not stored in an input file, but in an initial “start-up”

rule. In other words, the input data file contains one WME, which causes the start-up rule to

fire. As we increased the size of the input data set (to measure performance of LEAPS vs. RL),

we discovered that the time required to compile the LEAPS-generated C code was growing

exponentially (whereas the RL code compile time grew linearly). At a size of 700 input items,

the LEAPS program required 1 hour and 23 minutes to compile. At 800 items, the compiler

core dumped after 2 hours and 30 minutes. The compile times are shown in the graph below.

We could only get the LEAPS implementation to compile for data sets larger than 700

items by moving the initial data from the program to a data file. Speaking to the LEAPS pro-

grammer, we found out that this is a major limitation of their approach. They add consider-

able code for each make statement that is located in the rules themselves. They have found no

compiler that can handle large data sets in the rules9. RL, by contrast, had no difficulty scal-

0.0 2000.0 4000.0 6000.0 8000.0
Maximum number

0.0

100.0

200.0

300.0

C
P

U
 ti

m
e

(1
0

m
s)

LEAPS
RL

104

ing to large data sets in the rules themselves. Each make (OPS 5 data assignment) statement

in the OPS5 rule was replaced by a single function call to a routine that inserted the data item

into working memory. This is a major limitation in the LEAPS compiler’s design, that the

Predator compiler handles with ease.

Figure 5.13: Compile times of jig25.ops

The following performance graph, therefore, shows four different traces. For each system

(LEAPS, Pred) there is a trace for data from a data file and one for data located in the pro-

gram10.

9. They would prefer to have the data in the rules (for faster execution speed), but are forced,
for “large” data sets to place the data in an input data file, which must be read at run-time.
10. The lower two traces are from Predator, and the lower trace for both Predator and LEAPS
are for the executions where data was stored statically in the program.

0 500 1000 1500 2000
Data set size (tuples)

0

20

40

60

80

100

C
om

pi
le

 ti
m

e
(m

in
)

LEAPS
RL

105

Figure 5.14: Execution speed of jig25.ops

This test case shows an even larger performance differential between Predator and

LEAPS than in previous test cases. In addition to the performance advantages mentioned in

previous sections, there is another reason why the RL version of jig25.ops performs better

than LEAPS. In both systems, predicate index nodes are linked in the following way: Each

predicate index node that refers to a given WME is linked in a chain, with a head pointer

stored in the WME. This provides quick reference to all of the predicate index nodes for the

WME (if the WME is deleted or updated). If, in a given rule set, there are many different pred-

icates (from many different rules) which are the same predicate, LEAPS will create one predi-

cate index per predicate. To illustrate:

(p rule_1
(a ^b > 5)
-->
(action1)
)

(p rule_2
(a ^b > 5)
(other CEs)
-->
(action2)
)

0 500 1000 1500 2000
Number of tuples

0

500

1000

C
P

U
 ti

m
e

(1
0

m
s)

LEAPS/File

RL/File
RL/Prog

LEAPS/Prog

106

LEAPS would generate two different predicate index chains for the predicate shown here. As

each WME is inserted in the database, not only does it potentially have to be added to two dif-

ferent predicate index chains, but those predicate index nodes also have to be interlinked.

This is quite inefficient, particularly as the number of predicate indexes and number of WMEs

grow large.

RL, by contrast, can “share” the predicate indexes. It will generate only one predicate

index for the example above. In a given rule set there can be a great many condition elements

which are exactly the same. Thus, the efficiency gain can be dramatic.

This is yet another case where the high-level abstractions of Predator allow for features to

be added simply to the system. The LEAPS programmers are aware of this inefficiency. It’s

just too difficult (currently) to rewrite the code to remove the problem. With Predator, the

change can be effected with little trouble.

The final negation test case is called waltz.ops, and is very large (4 containers and 33

rules). waltz.ops is a PS to solve a complicated two-dimensional puzzle. The LEAPS team uses

waltz.ops as a standard of large production systems. This was our last and most complicated

test case to emulate. Not only did we emulate waltz.ops, but the RL version outperforms the

LEAPS version (for all the reasons described earlier).

Figure 5.15: Execution speed of waltz.ops

0.0 50.0 100.0 150.0
Number of tuples

50.0

100.0

150.0

200.0

C
P

U
 ti

m
e

(1
0

m
s)

LEAPS
RL

107

5.4.7 Persistent production systems

All of the test cases described above utilize main-memory data structures. There is no reason,

however, that both the production system’s data and/or the control structures must reside in

main memory.

Adding persistency to production systems produces two major benefits:

1. Significantly larger data sets can be processed in this manner.

2. A production system can be stopped in the middle of processing, and restarted at a

later time.

A persistent version of LEAPS, called DATEX [Bra93a, Bra93b], already exists. DATEX

programs are used to handle very large data sets, but cannot be stopped and restarted.

A memory-mapped version of persistency was added to Predator as a layer. Due to the

data structure independent nature of Predator, any of the production systems generated by

RL can be made persistent. Several of the test cases were made persistent. The following is a

type equation from the persistent RL version of waltz.ops.

SCHEMA stage_struct ON ELEMENT stage =
dlist[timest[persist[waltz.per,

20000],
GLOBAL]];

In addition, the control structures (including the wait-list and wait-stack) were also

declared to be persistent. A test version of waltz.ops was created that would execute 10 pro-

duction cycles each time it was executed, with the intermediate results stored in the persis-

tent data structure. It reached the same correct fix point as the memory-resident version.

Three of the main-memory test cases were compiled and evaluated as persistent produc-

tions systems for both DATEX and RL. The results of those tests is shown inTable 5.8.

Table 5.8: Execution times for persistent production systems

Production
 system

Input set
size

Persistent
RL time

(sec)

% of main-
memory

RL

DATEX
time
(sec)

% of main
memory
LEAPS

big-join 1000 4.3 108% 506.3 7110%

jig25 (prog) 100 0.2 111% 21.0 6960%

triples 35 1.5 111% 178.7 8123%

108

Adding persistency to the RL driver caused it to execute approximately 10% slower than

the main memory version of the same driver. DATEX, on the other hand, suffered a perfor-

mance penalty that caused it to run approximately 70-80 times slower than the LEAPS ver-

sion for the same production system. While this number is huge in comparison to the RL

equivalent, it can mostly be dismissed. DATEX utilizes persistency via the JUPITER module

of the GENESIS database system [Roy91]. JUPITER is a general purpose system, which is

not particularly efficient. Thus, comparing it performance-wise to a simple memory-map is

not particularly meaningful.

It is interesting, however, to see how long it took to add persistency to both LEAPS and

RL. The LEAPS programmer estimates that it required approximately two months of pro-

grammer time to add and debug JUPITER to LEAPS to create DATEX. Persistency in RL,

however, consisted of one new layer to make calls into the memory-map library module, which

required less than two days to program and debug.11 Again, the layered architecture of NPTs

yielded improvements in programmer productivity.

5.4.8 Future work

All of the test cases reported in previous sections consisted of two sections:

1. The RL main driver, which is common to all the test cases.

2. A test-case specific section of code containing the condition elements and actions for

the rule set.

For all of the production systems described in this chapter, the specific portion was writ-

ten by hand. Even though it was custom-written, the code is extremely regular. It was written

in such a manner that it could be the result of a mechanical translation of the original OPS5

rule set.

An automated RL generator is currently under construction. When completed, it will read

OPS5 source files and produce Predator code. That Predator code can then be precompiled,

combined with the RL driver module, compiled, and linked to produce an executable. When

11. This time also includes the time required to add stop and start functionality, which
DATEX cannot do.

109

finished, the automated RL precompiler will be able to generate all of the test cases which can

currently be generated by the LEAPS compiler.

5.4.9 RL conclusions

The LEAPS/OPS investigation has proven extremely helpful. It has demonstrated that many

of the advantages of the NPT model do extend to large, complex program development. Specif-

ically, we were able to emulate all of the LEAPS test cases while retaining the following

advantages:

1. Performance. The RL programs were all faster than their LEAPS counterparts. This

was due to design decisions, as well as to tighter, optimized code generated by Preda-

tor.

2. Programmer productivity. The RL compiler, when completed, will have taken a lot less

time to write and debug than did LEAPS. Much of this is due to the fact that the

LEAPS programmers wrote many thousands of lines of data structure code, which took

significant time to write and debug. The equivalent RL code was automatically gener-

ated, and did not need to be debugged.

3. Extensibility. RL contains some features (such as persistent start and stop, multiple

link implementations, ability for input data to be located in the rules themselves, shar-

ing of predicate indexes, and automatic static-typing) not found in LEAPS. This is due

to the simpler high-level design of the RL code. In addition, new features should be

easier to add to RL in the future.

5.5 Validation conclusions

When this research was begun, we hoped to design and construct a prototype system which

would make programming data structures much easier. We also hoped that the efficiency of

the generated code would be “good”. At the time we defined “good” as within 10% of hand writ-

ten and optimized code.

We designed a series of experiments, ranging in size from function, to component, to sys-

tem level. The experiments were designed to measure programmer productivity, ease of pro-

gramming, and performance. Also, the tests were designed to compare this approach against

more traditional methods of coding.

110

The results obtained from these experiments have been better than we had hoped for.

While we had expected to see productivity gains over traditional methods, we had not

expected to see the types of performance gains we have seen from our Predator prototype12.

We feel that the range of results obtained from these experiments clearly shows that the

original design objectives for this research have been met:

• In all of the experiments described, writing Predator code has taken less time than

writing the code either by hand or by using presupplied modules (queue, Booch,

libg++). Predator appears to improve programmer productivity.

• Programmers have used data structures about which they knew very little. Both in the

queue experiment and the RL experiments, programmers used data structures without

knowing the inner workings of the data structures involved.

• Programs were debugged at the algorithmic level, without having to observe the inner

workings of the data structures.

• Programmers were able to substitute data structure implementations (in the spelling

checker, quick sort, and RL experiments) without having to change the actual applica-

tion code. Only the data declaration was changed.

• Programmers were able to add additional features (segmentation, index sharing, per-

sistent start and stop etc...) easily, due to the high-level algorithmic code of Predator.

• All of the generated code produced performance that was within 10% of hand written

code. In almost all cases, the Predator code was superior to that either written by hand

or supplied by previously written data structure modules.

12. The expectation was that better performance would depend on more domain-specific code
optimizations being added to the prototype.

111

Chapter 6

Related work

We mentioned several approaches in Chapter 1 which have been explored to simplify the bur-

den of data structure programming. In this chapter, we highlight representative systems of

those approaches, discuss their strengths, and explain how they differ from our work. In addi-

tion, we examine the problems of general software reuse [Big89a, Big89b]. There are many

researchers in software reuse who are not addressing data structure reuse in particular, but

whose insights are relevant to our work. Finally, we mention several projects which are

related to ours in that they use the GenVoca domain modelling concepts.

6.1 Software reuse

A comprehensive exploration of software reuse was made by Krueger [Kru92]. He pro-

poses a taxonomy of five key attributes which are claimed to be common to all software reuse

approaches:

1. The artifacts the approach uses.

2. How the artifacts are abstracted into usable features.

3. Selection defines how the software reuser can find usable artifacts to reuse.

4. Specialization refers to the process of refining a generalized artifact into a more spe-

cific one via parameterization and feature selection. Note that this is a more restrictive

form of specialization than we defined in Chapter 3.

5. Integration describes the framework that the reuse technology uses for combining the

selected and specialized artifacts into an existing application or framework.

 He then defines eight approaches to software reuse: high-level languages (not generally con-

sidered a reuse technique - but Krueger makes a good argument for considering it so), design

112

and code scavenging, source-code components, software schemas, application generators, very

high-level languages, transformation systems, and software architectures. Each approach is

illustrated by an exemplar system.

Krueger defines the term cognitive distance to be a rough, intuitive gauge to compare dif-

ferent reuse abstractions in terms of the intellectual effort required to use the abstractions.

He describes three rough metrics to use in measuring cognitive distance:

1. Using abstractions (both fixed and variable) that are both succinct and expressive.

2. Maximizing the hidden part of the abstraction.

3. Automatically mapping from abstraction to realization (implementation).

These metrics are both intuitive and easily measured. We feel that NPTs measure up well

in a cognitive distance measuring. To a large degree, e this is borne out by Krueger’s measure-

ments which, overall, rank application generators, transformational systems, and software

architectures as among the best approaches for minimizing cognitive distance.

A slightly different, but also useful view of reuse can be found in [Raj89]. Raj concentrates

on object-oriented languages and software reuse. His thesis is that inheritance-based schemes

of software reuse are often inadequate. He advocates, instead, a compositional method of com-

ponent creation for such systems.

He begins by developing metrics to gauge the effectiveness of object-oriented languages in

terms of methods, classes, and applications. He then applies these metrics to several object-

oriented systems. He notes that most inheritance hierarchies tend to be more broad than they

are deep (thus questioning the amount of inheritance truly necessary), and notes several con-

flicts that inheritance has with conformance and locality.

He proposes a compositional model and prototype (the Jade programming language)

based on the Emerald programming language [Bla86, Bla87]. His language advocates a Lego-

block composition similar to that of GenVoca, by extending Emerald with constructs which

allow for the declaration of compositional names and dependencies, and by including of parts

of other components previously defined. Jade also provides an environment for component

reuse via a set of tools, such as component browsers.

Another point of similarity is that Raj discusses black-box and white-box reuse, which are

analogous to opaque and transparent components. Much as we note (see Section 3.4.1) the

need for semi-transparent access to components, Raj describes grey-box reuse, in which the

113

internals of the component are exposed, but not modified. This is somewhat more open than

our semi-transparent approach, mainly because his compositional model allows different com-

ponents to have different interfaces. Thus, it is important to be able to view the internals of

components to determine the proper interconnections.

Raj also argues that compositional methods are often superior to object-oriented ones. He

investigates four large (> 30,000 lines of code) object-oriented systems, and measures the

amount of class reuse in the hierarchy. He notes that each of the systems reviewed have very

little reuse of classes. The inheritance tree for each project is very broad and shallow. This

runs counter to the objectives of object-oriented programming, in which deep class trees are a

goal. His arguments support our NPT compositional view of the world, in which components

share a similar interface and are composed to create new components.

As with many of the other systems reviewed in this chapter, Jade is primarily general-

purpose. Thus, it differs from our work, which is targeted at a specific domain. Further, Raj

provides a compositional mechanism for defining components with different interfaces and a

system for implementing the compositions. Our work differs in that it deals with components

that share a common interface, and we provide only a static mechanism (vertical parameter-

ization) for composition. We do not support dynamic realm creation.

6.2 Software component libraries

There are many software component libraries currently available, and creating a good compo-

nent library is a complex task [Kic92]. A large subset of available libraries implement data

structure components. In this section we will discuss two of them.

The Booch components are a set of monolithic data structure components. The original set

of components [Boo87] were written in Ada. There are a large number of components in the

library (more than 400), and the interfaces of these components are mature, high-level, and

well-defined. Booch has defined an interface that includes such items as constructors, itera-

tors, selectors, and exceptions. He also has defined a set of tools, such as sorting, character

manipulations, numerics, and list operations. These tools are implemented across the family

of components. He also has implemented components for concurrent and persistent data

structures.

Booch components are also available for C++ [Boo90]. The conversion to C++ takes advan-

tage of object-oriented features of C++, and allowed Booch to dramatically reduce the size of

114

the components, while retaining the same interface and overall performance as the Ada ver-

sion.

The Booch components possess many of the limitations that we outlined in Chapter 2.

Specifically, the component interfaces are not consistent, the Booch model does not allow for

arbitrary compositions, the performance (as seen in Section 5.3) is not competitive with other

TPT libraries, and the library is not scalable [Bat93a].

libg++ is another C++-based component library [Lea88]. libg++ is a collection of classes

and support tools that is part of the GNU1 tools distribution. As such, it is freely available,

and has been heavily used and tested. Lea notes the distinctions of libraries (such as OOPS

[Gor87]) which are based on a single, consistent hierarchy tree of classes; and libraries such

as libg++, which are based on a forest of smaller trees of related classes. He discusses the

issues of usability versus performance, which are typical trade-offs for generality versus spec-

ificity. libg++ contains a fairly complete set of data structure container classes and operations

to access them. Again, the interface is not too dissimilar to that of the Booch components. This

leads to many of the same strengths and weaknesses found in the Booch library.

6.3 Transformation systems

Another class of systems mentioned previously are transformation systems. There are many

examples of transformation systems both within and without the data structure domain. A

survey of several early transformation research efforts can be found in [Par83]. Partsch and

Seinbrüggen describe many relevent research efforts, such as SETL [Sch79], Draco [Nei80,

Nei84], and the Programmer’s Apprentice [Ric79, Ric90]. Gries [Gri90] also presents a good

formal introduction to transforms as a language construct.

The Interface Description Language (IDL) [Sno89] allows users to define a system as a

pipeline of tools (or processes), each of which performs a specific task. The interface between

these tasks is then specified in a rigorous way. The IDL compiler creates input and output

routines for the different tasks. The generated code can be instantiated to utilize different

data structures and modules to transform the generated code to a more efficient form. In addi-

tion, IDL provides an assertion capability which allows data invariants to be declared and ver-

ified.

1. GNU stands for “Gnu’s not unix”, and is a product of the Free Software Foundation.

115

IDL provides a number of benefits, including the formality of the specification, data struc-

ture and source language independence, and maintainability. IDL-generated routines can be

moved among different applications, compilers and systems with little effort. The assertion

capability, coupled with the separation of the IDL protocols from the task’s implementation,

allows for simpler maintenance and evolution.

IDL does have limitations. IDL programs are inherently sequential and are used prima-

rily for pipelined software architectures. The assertion capability is also restricted to the IDL

I/O data types; data cannot be asserted while it is being manipulated by a task, only after it

has been output from one stage and before it is input to the next.

GLISP [Nov83, Nov92] is a transformation system which allows generic procedures to be

specialized through a concept known as view clusters. View clusters are similar to NPT type

equation instantiations, except that view clusters are not layered. However, GLISP has the

additional advantage that view clusters allow fields in a data element to be shared among dif-

ferent view clusters, and thus used for different purposes within different views. Also, GLISP

supports both in-lining and optimizations. Further, GLISP provides the capability for opera-

tions to be side-effect free, which can improve program correctness. GLISP is unlike NPTs in

that it does not support consistent, layered interfaces or flattened data structures.

Another LISP-based data structure transformation system is AP5 [Coh89, Coh93]. AP5 is

a common-lisp derived system which augments the standard lisp syntax with constructs

which are transformed into calls in a run-time library. Like our system, AP5 is relational and

uses a high-level interface. AP5 extends the model by allowing annotations to be made to

transform data and improve efficiency. AP5 also supports invariants through consistency

rules, which are stated invariants coupled with repair actions to be taken if the invariant is

violated.

While the basis of AP5 is relational, the syntax is lisp-based and does not resemble classi-

cal relational database syntax [Kor91]. AP5 relies on the concept of the fact, which is a LISP

list, where the car of the list is the relation name, and the cdr of the list is the data for the

tuple. Operations on the facts can then be expressed as a different list, where the car of the

list is the operation to perform on the fact, and the cdr is the fact itself. AP5 also supports the

notion of the annotation to declare the relation (container) implementation.

116

While AP5 has an interface which is consistent and fairly closely resembles the NPT

interface, it, too, suffers from the lack of component layering. Thus, we feel there are limita-

tions on scalability, complex compositions, and type transformations that it can perform.

6.4 Other approaches

The fields of software reuse and data structure programming are vast. This section briefly

describes several other approaches researchers have investigated in these areas.

Module Interconnection Languages [Pri86, Raj89] are another approach to the data struc-

ture programming problem. MILs concentrate on defining the interfaces of software compo-

nents, how to import and export the interfaces, and how to interconnect the components

together to form a new, higher-level component. This is useful in creating complex data struc-

tures, and offers opportunities to build more complicated data structure components from

other smaller, interconnected components.

There are many object-oriented languages which offer useful features for NPT systems.

Object-oriented programming is currently becoming a method of choice in data structure pro-

gramming. Object-orientation offers many advantages; it provides a consistent abstraction

(the object), allows for reuse via inheritance, and is a well-understood and appreciated para-

digm. Many object-oriented systems and languages have been used for data structure pro-

gramming and libraries. Some of these are Smalltalk [Gol83], C++ [Str91], Modula-3 [Har92],

SELF [Cha89], Eiffel [Mey88], and Meldc [Pop91]. All of these suffer from the limitation that

they possess no native knowledge about specific problem domains. Thus, they cannot natively

perform domain-specific optimizations. We have also detailed, in Chapter 2, the composi-

tional difficulties object-oriented approaches possess when dealing with complex composi-

tions. In recognition of these lacks, we are investigating a system which combines object-

oriented programming and our NPTs [Sin93].

Many of the concepts and techniques we use in this research have also appeared in other

research projects. Parameterization is one example. The NPT model is based heavily on

parameterization. Goguen has formalized aspects of component design in a model called

parameterized programming [Gog86]. This model identifies two kinds of parameters: vertical

parameters (which specify lower layer components) and horizontal parameters (which corre-

spond to type and constant values). Both horizontal and vertical parameterization are used in

NPTs.

117

Software templates for NPTs were described in Section 4.1.2. [Vol85] describes a methodol-

ogy for software templates. He recognizes the importance of separating algorithms from the

implementation of the data structures. However, without layering (i.e. vertical parameteriza-

tion), we find templates insufficient to model the full range of data structures available with

NPTs.

6.5 GenVoca systems

Our NPT work is based on the GenVoca domain modelling approach [Bat92b]. The concepts

for GenVoca are based on two independent projects; Genesis [Bat88, Bat90], which is a gener-

ator of database systems, and Avoca [Oma90], which is a generator of network protocols.

Despite the radically different domains for the two projects, it was observed that they

approached the generation of software systems in a similar manner. A number of subsequent

projects have embraced the GenVoca approach. In the domain of data structures, both this

work (Predator) and Predator-2 (P2) [Bat93a] address the generation of efficient data struc-

ture code. P++ [Sin93] provides an extension of the C++ language which allows definition and

combination of realms and components, based on the lessons learned from Predator. [Abb92]

describes a protocol customization compiler which is based on the Avoca project and bears

many similarities to the Predator system. ADAGE [Cog93] is a GenVoca-based system in the

domain of avionics software. Finally, FICUS [Hei90, Hei91] provides a layered approach for

customizing file systems which is based on concepts similar to those in GenVoca.

118

Chapter 7

Evaluation

This chapter presents an assessment of our research. As documented in Chapter 5, we feel

that we have achieved our major goals. However, in looking back at our efforts over the past

18 months, we feel that it is appropriate to note the limitations of our effort, as well as choices

we made which have not turned out for the best, and which we would change if we were to

start over. The evaluation is organized into two sections, one dealing with conceptual limita-

tions of our work and the other dealing with implementation limitations of our work. It should

be mentioned that corrections for most of the limitations we discovered during our research

have been incorporated into our next generation tool, P2.

7.1 Conceptual limitations

In this section we discuss some of the conceptual problems we see with our NPT model for

data structures.

Physical pointers within cursors. A feature of our NPT design was to store all element

references (within cursors) as a single untyped pointer (a C-language void * type). Further,

we imposed the restriction that element references within cursors could not be augmented by

the components. For example, while a PREDIND component might wish to augment a cursor

definition with an extra pointer, our model did not allow this. While limiting cursor definitions

to single pointers has an advantage of simplicity, it also has the drawback that certain data

structures are difficult to represent. Some structures, such as B+ trees, do not assign fixed

addresses to records. Record pointers for such structures are logical (i.e., key-valued) rather

than physical (i.e., addresses). Consequently, our choice of cursor implementation makes it

difficult for us to implement B+ tree-like data structures.

119

We implemented a layer which illustrates the problem of physical pointer references. The

PINDEX layer performs predicate-based indexing, with a list of elements which satisfy the

predicate being stored externally to the elements. Figure 7.1 depicts a two populated PIN-

DEX structures with the following declarations:

SCHEMA test_schema ON ELEMENT customer =
pindex[pindex[malloc[],

age == 30],
strcmp(state, “TX”) == 0];

To build and maintain layers such as PINDEX or BTREE requires that we augment the

cursor declaration. Whereas it is normally possible to represent a cursor’s current position

with a simple physical pointer, it now becomes necessary to point to the external PINDEX

node, rather than the element itself. This allows for operations such as ADVANCE and

REVERSE to be performed properly. There are other possibilities available in which hybrid

pointers (to both the element and the external structure) are possible. Additional work is

required, however, to fully understand the performance trade-offs (as well as the needed addi-

tional language support) for the various options.

Figure 7.1: Predicate indexing with PINDEX

Age: 25
State: TX

Age: 30
State: WA

Age: 30
State: TX

Age: 25
State: WA

Container

Index chain for “age”

record

Index chain
for “state”

“age” index head

“state” index head

120

Inter-layer knowledge. Our current NPT model specifies that layer-specific knowledge

should not be passed among layers. More formally, if two layers, L and M, are declared in type

equation T, with L being declared above (before) M, then L can have no knowledge of M’s type

or implementation. M can possess knowledge about L, since the original element’s type will

have been modified by L before M receives the type as input.

The realization of our model, however, did not maintain a clean abstraction in all cases.

There were certain layers which we found difficult to implement without breaking layer

encapsulation. A good example of this was segmentation. For efficient implementation, we

found that some of the details for segmentation were pushed up into the compiler itself. This

helped improve the computation speed of compilation, and made the layer easier to write.

We broke encapsulation on only a few layers. Nevertheless, a more formal handling of this

is required. Either the layers all need to be written within our stated abstraction, or we need

to declare formally when and how it is possible to break the barrier. Failing that, future layer

writers might be tempted to break the barrier in various ways, which could quickly get out of

hand.

No “order-by” in cursors. Our current cursor declaration syntax allows for an optional

WHERE clause, but does not allow an ORDER BY clause. This was an oversight, which has

become an increasingly larger problem as time has gone by. Although it is possible to emulate

the ORDER BY clause by manually placing ordered layers in the type equations, using those

layers for scanning, this mechanism is cumbersome.

Supporting this feature explicitly is more difficult than simply externalizing the process

described in the previous paragraph. Parsing the syntax and managing the symbol table for

ORDER BY are not too difficult. The major hurdle with this feature is as follows: It is possible,

when one can explicitly declare an ORDER BY clause, for an application writer to require that

retrieved elements be ordered by a particular field when the container’s type equation does

not specify that particular ordering for any of its layers. The following example illustrates the

problem:

SCHEMA order_by_schema ON ELEMENT customer =
dlist[malloc[], age];

order_by_schema order_by_container;
CURSOR order_curs ON order_by_container ORDER BY l_name;

There is simply no knowledge present in the container definition as to how to order the con-

tainer properly for the cursor’s needs. There are several solutions to this problem:

121

1. Require the compiler to generate the (database-like) code necessary to order the

records whenever a read access is made to the ordered cursor. This has the problem

that the resulting code would be quite slow.

2. Have the compiler automatically insert an ordering layer (such as an ordered list or

ordered tree) in the type equation to handle the cursor’s needs. This solution would add

overhead to operations such as INSERT and DELETE because there would be more lay-

ers than the programmer specified. This maintains the ordering required by the ORDER

BY clause at all times.

3. Not allow this feature. It would be fairly easy to have the compiler report this mis-

match as an error. In this case, the application programmer could either add the order-

ing layer to the type equation, or change the definition of the cursor.

Of the three solutions presented above, we prefer the second. It is fairly simple to imple-

ment (we have written similar support for link layers), it simplifies the work of the program-

mer (over the third solution), and it will be more efficient in program speed (in general) than

the first solution. The drawback to this solution, though, is that the compiler does not under-

stand the programmer’s algorithm, and may be adding a layer which will be very inefficient.

We propose that option 3 above also be implemented, so that the compiler will report a warn-

ing (not an error) that it is augmenting the type equation for the programmer. This notifies

the programmer of the mismatch, and allows them to further investigate, if desired.

Layer-specific primitive functions. In Section 3.3.4, we described a high-level interface

that we believe is sufficient for most common data structure programming tasks. There are

layers, however, which require that additional primitive functions be provided. A good exam-

ple of this is the size layer, which adds an integer field to the container record. The integer

field records the current size of the container (i.e. number of elements stored in the container).

None of the predefined functions can handle reporting on the new field that size adds. Other

layers, such as action and timestamp, also add new functions.

Our current solution to this problem is to add a primitive function to every layer for the

new layer’s function. So, in our example, a new get_size function was added to each existing

layer. The only get_size function that generates code is the one in the size layer. All of the

other layers simply ignore the function, and pass it to the next lower layer.

122

As the number of custom layers increases, this solution suffers from the same scalability

problems we noted with TPTs. Placing a large number of empty functions in existing modules

each time a custom layer is added is not a viable or scalable solution.

We believe that the solution rests with augmenting both the layer definition we use and

the dispatch table used by the code generator to traverse the type equation tree for a primitive

function. Essentially, we propose that each layer specify (as part of its definition) any addi-

tional functions it requires. When the NPT compiler starts, it would load the names of these

functions into a special portion of the symbol table. When a special function name is token-

ized, the compiler would call on a new part of the dispatch table routine, which would do noth-

ing more than traverse the type equation tree until it arrives at the layer that provides the

function. It would call on that function, and add the resulting code to the output stream. Thus,

existing components would not need to ever have any knowledge of these new functions; as

the compiler and the layer would be responsible for generating the correct behavior. This

dynamic extension of the realm interface is also the solution used in similar system genera-

tors for other domains [Hut91, Hei91, Pag90].

Self-referential links. In Chapter 5, we mentioned the lack of self-referential links. That is,

the composite cursor declaration syntax we defined did not allow for more than one reference

to be made to a particular cursor/container pair. Because of this, several of our tests could not

be performed using both nested loop and pointer-based link algorithms. In addition, some of

the code we wrote for the OPS5 test cases was expressed in terms of link cursors and con-

tainer cursors, instead of the higher-level composite cursor constructs. Neither of these were

serious problems for our work. However, they both required us to spend additional time and

effort to duplicate what should have been trivial operations. This experience ran contrary to

our goals for our NPT work. All of this effort could have been avoided if we had seen the need

for self-referential links before we began their design and implementation.

Adding self-referential links to our model is not difficult. Consider the following aug-

mented declaration for composite cursors:

COMPCURS <cc_name> USING {<c1> <cont1>}+

WHERE <cc_pred1> (&& <cc_pred2>)*;

The composite cursor declaration is similar to that presented in Chapter 3. The only differ-

ence is that each <cc_pred> clause which is a link reference is augmented with the container

cursor(s) that operate on it. For example:

123

link2(p_curs, c_curs)

refers to a link in which p_curs and c_curs are the parent and child cursors to use when

instantiating the link. Thus, the ambiguity caused by having more than one container cursor

reference the same container is removed. The compiler then possesses enough information to

process the composite cursor. The following code demonstrates this new feature:

LINK manages ON ONE employee TO ONE dept
WHERE employee.emp_num == dept.manager;

LINK works_in ON MANY employee TO ONE dept
WHERE employee.dept_num == dept.dept_num;

COMPCURS cc USING e1 employee e2 employee d1 dept
WHERE manages(e1, d1) && works_in(e2, d1);

This composite cursor will find all employees who work in a given department, along with

their manager. Even though more than one container cursor refers to the employee container,

the compiler can properly resolve the references.

7.2 Implementation limitations

The following is a list of the major limitations of our current prototype. Because Predator is a

prototype, it was designed in an incremental fashion. Many of its features simply grew over

time. This section describes those features that we feel would be crucial to design better in a

future version of Predator. In fact, many of them have been improved in P2.

No proper scanner/parser/tokenizer. This is a major problem with the current implemen-

tation of Predator. The initial version of Predator was intended simply as a throwaway tech-

nology demonstration. It was not intended to be the base for our prototype. The scanner/

parser/tokenizer was custom-made, and only intended to operate on a very limited grammar.

As time passed, we simply kept adding to the grammar that our parser recognized. The

enlarged grammar revealed holes in our parser/tokenizer, which we patched as well as we

could.

Our prototype is almost at the breaking point. There are far too many patches and

workarounds for this system. It is unlikely that we could add many new features before the

parser would become totally unmanageable.

124

We believe that the correct solution is to use tools such as lex and yacc to generate these

sub-systems. By starting with a proper C grammar (which is commonly available), we can

then augment the grammar with our NPT constructs. This is exactly what has been done with

both P2 and P++. In hindsight, we would have saved ourselves a great deal of time if we had

taken the time to backtrack with this approach long ago.

Limited dynamics. Our NPT design does not differentiate between static and dynamic enti-

ties (containers and cursors). As we built the prototype compiler, we discovered that all of our

initial test cases only required static entities; as a result, we concentrated on statics. Upon

reflection, we realize that this was a mistake. While there is no conceptual difference between

our static and dynamic entities, there is a significant difference in their implementation. Our

compiler implementation would need to be improved in two areas to allow for dynamic enti-

ties. The first is that we need to be able to parse and type check constructs such as type casts

of C variables to Predator types. This should be fairly simple to accomplish with the improved

parser described above.

The second item that needs to be modified to support dynamics is better run-time support.

There are many tasks having to do with initialization, allocation, and optimization which are

currently handled by the compiler (for static entities). The data structures to handle these

features exist only at compile-time. For dynamics, many of these data structures and algo-

rithms need to be brought forward to the run-time code. This is not difficult, but the main con-

cern would be to design these algorithms to be efficient in time. Currently, we have

emphasized correctness over efficiency in these operations, since speed is not a concern in the

compilation stage. That would change for run-time processing.

No multiple file support. All of the code for a Predator program must currently be located

in one source file. This restriction is due to the fact that we have provided no support for

including secondary source files as part of the compilation process. We proposed a #preda-

tor_include directive for our programs, similar to the C preprocessor, but it has not been

implemented. The reason for this is that our testing has involved relatively small source files.

Also, Predator is not mature enough that we have built large libraries of support functions

which we would want to include into our source files. Implementing this function is not diffi-

cult, and has been done in P2. In P2, the C pre-processor is run before the Predator compiler,

and thus the secondary source files are expanded and merged together into one source file.

This was not possible with the original Predator, due to the fragile nature of our parser (dis-

cussed earlier).

125

Simplify layer writing. Predator layers are fairly simple to write. Nevertheless, they are

more complicated than they ultimately need to be. As the number of layers increased, the

complexity of each layer also increased (slightly). This was due to the fact that we had no

proper mechanism in place to handle layer-specific functions (see above). We implemented a

tool called layergen to help with this task. layergen is a program which creates the con-

stants, variables and type equation parsing routines for each layer. It is called as part of the

compiler’s make file, and aids in adding new layers. The idea is that the writer of new layers

should not have to know anything about the internals of compiler.

Helping the layer author write the layer module is a different task. Much of the code

within each layer is the same as all other layers. Code scavenging among layers helps some,

but a layer generation tool seems to be the proper direction. Based on this, P2 has included

the xp tool. xp takes a series of layer specification files (in a standardized format) and gener-

ates the layer modules. In the future it should be possible to use such a tool to help standard-

ize the identifier names used in the layer modules, as an aid to the optimizer module.

Generated code size. In the current Predator environment, we generate code via macro

expansion and optimization. That is, for a given primitive function (e.g. INSERT) we gener-

ate a code fragment based on both the type equation for the container and the predicate of the

cursor. It is common in most application programs that there will be more than one call to a

given primitive function for a given container/cursor. For example, suppose a program has a

container named employees, and a cursor (defined on employees) named e. Further suppose

that there are multiple locations in the program where the primitive function DEL(e) is

called. Predator will generate exactly the same code fragment for each instance of the primi-

tive function. When one considers the number of repeated function calls in a program of even

moderate complexity, it is easy to see that the size of the generated code can be a problem.

There is a solution. It is possible to generate a new function for each primitive function/

container/cursor combination. Then, each call, in the source code, to a primitive function is

replaced by a simple function call in the generated code. There are two problems with this

approach. The first is that this solution creates additional run-time overhead for the new

function calls. The other problem is that not all of the primitive functions are used in a given

program. Since macro expansion only creates code for those functions which are used, it is

possible for the new program to be even larger than the one it is replacing. Therefore, care

must be taken to generate new functions only for the primitive functions which are used in a

given application program.

126

Deletion semantics. We took a very simple view of deletion in our prototype system. When

an element is deleted, cursor stability is ignored. That is, if there are any cursors which are

currently referencing the deleted element, it is up to the cursor (and the routines that use it)

to ensure that it be reset to a non-deleted value. With these semantics, it is possible for a pro-

grammer to access memory illegally if they do not first check the validity of the cursor’s value.

This restriction was not a problem for the sample programs we wrote for this research; but,

we realize that in many other environments, such as multi-threaded programs, this restric-

tion would be a real burden.

There are many possible solutions to this problem. The most obvious of them is to aug-

ment the generated code for the DELETE function so that it is responsible for setting all cur-

sors (not just the one referred to in the DELETE function) to the next elements in their

scanning paths (or to set their status flags to EOR if there are no more elements). This behav-

ior could be easily encapsulated in the DELFLAG layer. As with many of the other limitations

discussed in this chapter, more formalism is required to define the desired semantics. Work in

this area is currently being integrated into the P2 prototype.

127

Chapter 8

Conclusions

8.1 Summary

Data structure programming can be quite time and labor intensive. We have found that many

current solutions to the problem (e.g. TPTs) are insufficient to adequately handle issues such

as specialization, complex compositions, ad hoc interfaces, type transformations, evolution,

scalability, and code efficiency.

We have proposed a concept called non-traditional parameterized types (NPTs) which

resembles concepts and features from a variety of disciplines as the basis for practical soft-

ware generators for data structures. We have described the features of NPTs and shown how

they overcome a number of serious limitations of traditional parameterized types (TPTs).

A prototype generator named Predator was constructed. Predator is a system generator/

data structure precompiler which is able to construct customized data structures by compos-

ing primitive data structure components. Predator takes, as input, C-language programs

which have been augmented with Predator declarations and primitive functions, and gener-

ates standard C-language source which can be compiled and linked with standard tools. To

date, we have built 17 different components, which implement data structures such as arrays,

lists, trees, predicate-based indexing, timestamping, and segmentation. Predator generates

static and dynamic allocated structures, as well as transient and persistent structures. In

essence, Predator elevates data structure programming to the relational level where different

implementations of relations can be selected according to performance requirements.

We validated both our model and implementation with a series of experiments. The exper-

iments measured both programmer productivity and code efficiency. They ranged from small

programming tasks written by professional and non-professional programmers, to module

sized algorithms, to emulating a production system compiler. In each case, we noted the

128

advantages and disadvantages of our approach. We have compared Predator against both

hand-written, optimized code and pre-written data structure modules. Finally, we bench-

marked the performance and programmer productivity of our compiler against two commer-

cially available component libraries across four common data structures. Overall, we found

that Predator noticeably enhanced data structure programming productivity, as it eliminated

the mundane and complex details of writing data structure code. Moreover, the performance

of Predator-generated code was comparable, and most often faster, than hand-written data

structure code.

We have also evaluated our work. We noted decisions we made that did not turn out to be

for the best. We discussed both conceptual and implementation flaws of our work. Where

appropriate, we also discussed alternative approaches which might overcome the limitations

we have observed.

8.2 Future work

This research has spawned many ideas for future work. A few of the more important are:

More layers. The number of additional layers (and implementations of layers) that could

be written is unbounded. In our work we have uncovered no data structure that we feel could

not be encapsulated as an NPT. Some of the more interesting layers we would like to investi-

gate are hashing, concurrency, reference counting, assertions, and arbitrary graphs.

A second-generation tool. Our research group is currently constructing a second-gener-

ation Predator (P2) [Bat93a]. P2 is designed to improve on many of the defects discussed in

Chapter 7. P2 is also better structured to allow for easier writing of new layers.

A formal model. Now that we have demonstrated the feasibility of NPTs in data struc-

ture programming, we feel it is important to classify our layers and their interactions via a

more formal algebra. Such formalism would help us understand both the interactions and the

meaning of semantic equivalence among layers.

Domain-specific optimizations. We feel that domain-specific optimizations are a key to

further improving the efficiency of our generated code. In our research, we have only touched

the surface of the optimizations we believe possible. We require a much better understanding

of the general mechanisms needed to exploit each class of optimization.

129

Tool-based selection of type equations. Currently, the selection of the “proper” data

structure for a given program is somewhat of a black art. Our approach allows for the substi-

tution of implementations after a program is written. We envision a tool which would help

programmers traverse the tree of possible implementations, and would assist in the selection

of candidate type equations. A similar tool [Bat92c] has already been implemented for the

Genesis system.

Further validation. We believe that our effort must be further validated. Of particular

interest is more productivity experiments, the results of which would help us refine our DS

and LINK interfaces to better serve the needs of application programmers. Also, the auto-

mated RL compiler must be completed to support every feature of the OPS5 language. The RL

compiler is nearly complete and should be completed soon.

8.3 Contributions

In Chapter 1, we introduced six characteristics that we believe a system should possess to

properly address the data structure programming problem. We feel our work with NPTs and

Predator has made contributions in each of these areas:

Simplified programming. All of the sample Predator programming we (and our test

subjects) wrote took less time than the equivalent programming written either by hand or

with other component libraries. We attribute the increase in productivity to several factors.

Chief among these is the consistent, high-level interface of the DS and LINK realms. Once a

programmer learns and understands the interface for a given realm, they can easily program

almost any task involving any layers of that realm. This is in contrast to more traditional

component libraries for which programmers must be constantly learning new interfaces for

new components.

Use data structures without knowing implementation details. This is a common

benefit of component-based approaches, which our model shares. Our high-level interface and

declarative type equations ensure that programmers can declare and use data structures

without knowing how the layers are implemented. Several of our validation programs were

written by programmers who did not understand how to implement the data structures they

were using.

Debugging support. Predator optionally allows programmers to insert debugging state-

ments in their generated output, which causes debugging to be performed on the original .dac

130

file. Thus, programmers never need to view the Predator-generated code which implements

the high-level realm interface, and they view all primitive functions (such as INSERT, DELETE

etc.) as atomic operations in the debugger. We have demonstrated this capability in three dif-

ferent debuggers (for three different operating systems), and do not envision any impediments

towards implementing this support as a standard feature.

Changing the underlying implementation. Since all data structures (and links

between data structures) are represented by declarative type equations, programmers may

change the implementation of data structures simply and quickly. Our model further provides

for a compiled environment, so the new, customized components required for the new type

equations can be fabricated quickly by the applications programmer, rather than by a compo-

nent author. Further, we have demonstrated the usefulness of “plug-and-play data structures”

by comparing the time required to change the implementation of several of our validation

experiments, and comparing that time with the time required for a traditional recoding effort.

Also, we have shown that experimenting with multiple implementations in an existing pro-

gram is desirable and easy with our model. We see this as a major contribution from our work.

Generation of efficient code. We believe that the combination of consistent realm

interfaces, compiled environments, and domain-specific optimizations has helped us achieve

acceptable efficiency in our generated code. As stated previously, without efficient code gener-

ation, our effort may be interesting, but is not practical. By expending considerable effort in

the areas of code efficiency, we believe that our work stands as a foundation for eventual tech-

nology which can be used in commercial applications.

Evolution. The consistent realm interfaces we provide in our model allows our layer

implementation code to be extremely regular. The type equation mechanism we use for speci-

fying implementations forces all layer modules to export the same snippet function interface.

Finally, we provide a specialization mechanism for augmenting base interfaces via our macro

facility. Given all of these features, we have been able to add new layers and functions to exist-

ing Predator applications without having to rewrite either existing application code or exist-

ing layer implementation modules. We see our regular framework as a crucial base to allow

NPT systems to be maintained and to evolve.

A major achievement of our work has been to lay the foundation which is making P++

[Sin93] possible. P++ is a set of extensions to the C++ language, which should enable pro-

grammers to construct GenVoca system generators much more easily. In a sense, P++ will be a

131

generator of “system generators.” P++ borrows heavily on the lessons learned from this

research.

Another contribution of this work that we did not originally consider is that NPTs (and

Predator) have helped us further refine the GenVoca domain modelling concepts. With each

new GenVoca system constructed, we are able to further understand and refine our overall

domain model.

We also feel that our work has made contributions in the understanding of the scalability

of component libraries. We estimate that it would take approximately 40 NPT components to

provide equivalent functionality of component libraries [Boo90, Lea88] which contain 400

components, or more. Further, the vertical parameterization of NPTs would allow those 40

components to be composed into additional structures which do not exist in those other librar-

ies. We feel this is a major advantage, because our components are of comparable complexity

with those in the other component libraries.

In summary, we defined an original set of goals for this research which were ambitious.

We feel that our efforts have resulted in a base model and technology which shows a great

deal of promise in further exploration into the generation of software systems for data struc-

tures.

132

Bibliography
[Abb92] M. Abbott, and L. Peterson. A Language-Based Approach to Protocol Implementa-

tion. Technical Report 92-2, University of Arizona, 1992.

[Acm91] ACM. Next generation database systems. Communications of the ACM, 34(10),
October 1991.

[Aho83] A. Aho, J. Hopcroft, and J. Ullman. Data Structures and Algorithms, Addison-
Wesley, Reading, Mass, 1983.

[Bal85] R. Balzer. A Fifteen-Year Perspective on Automatic Programming. IEEE Transac-
tions on Software Engineering, SE 11, November, 1985.

[Bat88] D. Batory, J. Barnett, J. Garza, K. Smith, K. Tsukuda, B. Twichell, and T. Wise.
GENESIS: An extensible database management system. IEEE Transactions on
Software Engineering, November 1988.

[Bat90] D. Batory. The Genesis Database System Compiler: User Manual. Technical Report
90-27, University of Texas, 1990.

[Bat92a] D. Batory, V. Singhal, and M. Sirkin. Implementing a domain model for data
structures. International Journal of Software Engineering and Knowledge Engi-
neering, 2(3):375-402, September 1992.

[Bat92b] D. Batory, and S. O’Malley.The Design and Implementation of Hierarchical Soft-
ware Systems Using Reusable Components. ACM Transactions on Software Engi-
neering and Methodology, October 1992.

[Bat92c] D. Batory, and J. Barnett. DaTE: The Genesis DBMS Software Layout Editor. In
Conceptual Modeling, Databases, and CASE: An Integrated View of Information
Systems Development, P. Loucopoulos and R. Zicari, editors, John Wiley & Sons,
New York, 1992.

[Bat93a] D. Batory, V. Singhal, M. Sirkin, and J. Thomas. Scalable Software Architectures.
In Proceedings of the ACM SIGSOFT 93: Symposium on the Foundations of Soft-
ware Engineering, December 1993.

[Bat93b] D. Batory and D. Vasavada. Software Components for Object-Oriented Database
Systems. International Journal of Software Engineering and Knowledge Engineer-
ing 3(2):165-192, 1993.

[Big89a] T. Biggerstaff, and A. Perlis. Software Reusability. Vol I, Concepts and Models.
ACM Press, New York, 1989.

[Big89b] T. Biggerstaff, and A. Perlis. Software Reusability. Vol II, Applications and Experi-
ence. ACM Press, New York, 1989.

[Bla86] A. Black, N. Hutchinson, E. Jul, and H. Levy. Object Structure in the Emerald
System. In Proceedings for the First ACM SIGPLAN Conference on Object Ori-
ented Programming Systems, Languages, and Applications, pages 78-86, October
1986.

133

[Bla87] A. Black, N. Hutchinson, E. Jul, H. Levy, and L. Carter. Distribution and Abstract
Types in Emerald. IEEE Transactions on Software Engineering, 13(1):65-76, Jan-
uary 1987.

[Boo87] G. Booch. Software Components with Ada. Benjamin/Cummings, Menlo Park, CA,
1987.

[Boo90] G. Booch, and M. Vilot. The Design of the C++ Booch Components. In Proceedings
of the Conference on Object-Oriented Programming: Systems, Languages, and
Applications ‘90, ACM Press, New York, 1990.

[Bor92] OWL Classes. Borland C++ User’s Manual. Borland Inc, 1992.

[Bra93a] D. Brant. Inferencing on Large Data Sets. Ph.D. dissertation, Department of Com-
puter Sciences, University of Texas, May 1993.

[Bra93b] D. Brant, and D. Miranker. Index support for rule activation. In Proceedings of
1993 ACM SIGMOD, May 1993.

[Cam92] R. Campbell, N. Islam, and P. Madany. Choices, frameworks and refinement. Com-
puting Systems, 5(3):217-257, 1992.

[Cha89] C. Chambers, D. Unger, and E. Lee. An Efficient Implementation of SELF, a
Dynamically-Typed Object-Oriented Language Based on Prototypes. In Proceed-
ings of the Conference on Object-Oriented Programming: Systems, Languages, and
Applications ‘89, ACM Press, New York, 1989.

[Cog93] L. Coglianese, and R. Szymanski. DSSA-ADAGE: An Environment for Architec-
ture-based Avionics Development. In Proceedings of AGARD 1993. Also Technical
Report ADAGE-IBM-93-04, IBM Owego, May 1993.

[Coh89] D. Cohen. AP5 Training Manual. USC Information Sciences Institute, 1989.

[Coh90] S. Cohen. Ada 9X Project Report. 1990.

[Coh93] D. Cohen, and N. Campbell. Automating relational operations on data structures.
IEEE Software, 10(3):53-60, May 1993.

[Dat83] C. Date. An Introduction to Database Systems. Addison-Wesley, Reading, Mass,
1983.

[Dav92] J. Davidson. Subprogram Inlining: A Study of its Effects on Program Execution
Time. IEEE Transactions on Software Engineering, February 1992.

[Fon90] M. Fontana, L. Oren, and M. Neath. COOL — C++ object-oriented library. Texas
Instruments, 1990.

[For81] C. Forgy. OPS5 User’s Manual. Technical Report CMU-CS-81-135, Carnegie-Mel-
lon University, 1981.

[Gar92] D. Garlan, G. Kaiser, and D. Notkin. Composing Systems Using Tool Abstraction.
IEEE Computer, June 1992.

[Gar93] D. Garlan, and M. Shaw. An Introduction to Software Architecture. In Advances
in Software Engineering and Knowledge Engineering, Vol 1, World Scientific Pub-
lishing Company, New York, 1993.

134

[Ghe87] C. Ghezzi, and M. Jazayeri. Programming Language Concepts. John Wiley &
Sons, New York, 1987.

[Gog86] J. Goguen. Reusing and Interconnecting Software Components. IEEE Computer,
19(2):16-28, February 1986.

[Gol83] A. Goldberg, and D. Robson. Smalltalk-80 The Language and its Implementation.
Addison-Wesley, Reading, Mass, 1983.

[Gor87] K. Gorlen. An Object-Oriented Class Library for C++ Programs. USENIX C++
Conference, 1987.

[Gor90] K. Gorlen, S. Orlow, and P. Plexico. Data Abstraction and Object-Oriented Pro-
gramming in C++. John Wiley & Sons, New York, 1990.

[Gri90] D. Gries, and D. Volpano. The Transform - a New Language Construct. Structured
Programming, Springer-Verlag, New York, 1990.

[Haa90] L. Haas et al. Starburst Mid-Flight: As the Dust Clears. IEEE Transactions of
Knowledge and Data Engineering, March 1990.

[Hab76] A. Habermann, L. Flon, and L. Cooprider. Modularization and Hierarchy in a
Family of Operating Systems. Communications of the ACM, 19(5), May 1976.

[Har92] S. Harbison. Modula-3. Prentice-Hall, New York, 1992.

[Hei90] J. Heidemann, and G. Popek. An extensible, stackable method of file system devel-
opment. Technical Report CSD-9000044, University of California, Los Angeles,
December 1990.

[Hei91] J. Heidemann, and G. Popek. A layered approach to file system development. Tech-
nical Report CSD-910007, University of California, Los Angeles, March 1991.

[Hor84] E. Horowitz, and J. Munson. An Expansive View of Reusable Software. IEEE
Transactions on Software Engineering, SE-10(5):477-487, September 1984.

[Hut91] N. Hutchinson, and L. Peterson. The x-kernel: an architecture for implementing
network protocols. IEEE Transactions on Software Engineering, 17(1), January
1991.

[Kai89] G. Kaiser, and D. Garlan. Synthesizing Programming Environments From Reus-
able Features. In Software Reusability, Vol II, Applications and Experience, ACM
Press, New York, 1989.

[Kic92] G. Kiczales, and J. Lamping. Issues in the Design and Specification of Class
Libraries. In Proceedings of the Conference on Object-Oriented Programming: Sys-
tems, Languages, and Applications ‘92, ACM Press, New York, 1992.

[Kor91] H. Korth, and A. Silberschatz. Database System Concepts. McGraw-Hill, New
York, 1991.

[Kru92] C. Krueger. Software Reuse. ACM Computing Surveys, 24(2), June 1992.

[Lam91] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The ObjectStore Database Sys-
tem. Communications of the ACM, October 1991.

135

[Lea88] D. Lea. libg++, The GNU C++ Library. USENIX C++ Conference, 1988.

[McD78a] J. McDermot, A. Newall, and J. Moore. The efficiency of Certain Production Sys-
tems. Pattern Directed Inference Systems, Waterman, Hayes, Roth (ed), Academic
Press, New York, 1978.

[McD78b] J. McDermott, and C. Forgy. Production System Conflict Resolution Strategies.
Pattern Directed Inference Systems, Waterman, Hayes, Roth (ed), Academic Press,
New York, 1978.

[McN86a] D. McNicoll, C. Palmer, et al. Common Ada Missile Packages (CAMP) Volume I:
Overview and Commonality Study Results. AFATL-TR-85-93, May 1986.

[McN86b] D. McNicoll, C. Palmer, et al. Common Ada Missile Packages (CAMP) Volume II:
Software Parts Composition Study Results. AFATL-TR-85-93, May 1986.

[Mey88] B. Meyer. Object-oriented Software Construction. Prentice-Hall, New York, 1989.

[Mir90] D. Miranker, D. Brant, B. Lofaso, and D. Gadbois. On the Performance of Lazy
Matching in Production Systems. In Proceedings of the 1990 National Conference
on Artificial Intelligence, pages 685-692, 1990.

[Mir91] D. Miranker, and B. Lofaso. The Organization and Performance of a TREAT-
Based Production System Compiler. IEEE Transactions on Knowledge and Data
Engineering, pages 42-48, 1991.

[Nei80] J. Neighbors. Software Construction Using Components. Ph.D. dissertation, Tech-
nical Report 160, University of California, Irvine, 1980.

[Nei84] J. Neighbors. The Draco Approach to Constructing Software from Reusable Com-
ponents. IEEE Transactions on Software Engineering, WE-10(5): 564-574, Sep-
tember 1984.

[Nov83] G. Novak. GLISP: A LISP-Based Programming System with Data Abstraction. AI
Magazine, 4(3): 37-47, Fall 1983.

[Nov92] G. Novak. Software Reuse through View Type Clusters. In Proceedings of the 7th
Knowledge-Based Software Engineering Conference (KBSE-92), 1992.

[OMa90] S. O’Malley, and L. Peterson. A new methodology for designing network software.
Technical Report 90-29, University of Arizona, September 1990.

[Pag90] T. Page, G. Popek, R. Guy, and J. Heidemann. The Ficus Distributed File System:
Replication via Stackable Layers. Technical Report CSD-900009, University of
California, Los Angeles, April 1990.

[Pal90] C. Palmer, and S. Cohen. Engineering and Applications of Reusable Software
Resources. Aerospace Software Engineering: A Collection of Concepts, ed. C.
Anderson and M. Dorfman. Vol. 136, Progress in Astronautics and Aeronautics,
1990.

[Par76] D. Parnas. On the Design and Development of Program Families. IEEE Transac-
tions on Software Engineering, March 1976.

136

[Par83] H. Partsch, and R. Steinbrüggen. Program Transformation Systems. In ACM
Computing Surveys, 15(3):199-236, 1983.

[Pet90] L. Peterson, N. Hutchinson, H. Rao, and S. O’Malley. The x-kernel: A Platform for
Accessing Internet Resources. IEEE Computer (Special Issue on Operating Sys-
tems), May 1990.

[Pop91] S. Popovich, S. Wu, and G. Kaiser. An Object-Based Approach to Implementing
Distributed Concurrency Control. In 11th International Conference on Distributed
Computing Systems, pages 65-72, May 1991.

[Pri86] R. Prieto-Díaz, and J. Neighbors. Module interconnection languages. Journal of
Systems and Software, 6(4):307-334, November 1986.

[Pri91] R. Prieto-Díaz, and G. Arango. Domain Analysis and Software Systems Modeling.
IEEE Computer Society Press, 1991.

[Raj89] R. Raj, and H. Levy. A Compositional Model for Software Reuse. The Computer
Journal. 32(4), August 1989.

[Ric79] C. Rich, H. Shrobe, and R. Waters. Overview of the Programmer’s Apprentice. In
Proceedings of 6th International Joint Conference on Artificial Intelligence, 1979.

[Ric90] C. Rich, and R. Waters. The Programmer’s Apprentice. ACM Press, New York,
1990.

[Roy91] J. Roy. Design and Use of the Jupiter File Management System. M.Sc. Thesis,
Department of Computer Sciences, University of Texas, 1991.

[Sch77] J. Schmidt. Some High Level Language Constructs for Data of Type Relation.
ACM Transactions on Database Systems, 1977.

[Sch79] E. Schonberg, J. Schwartz, and M. Sharir. Automatic Data Structure Selection in
SETL. In Proceedings of 6th ACM Symposium on Principles of Programming Lan-
guages, pages 197-210, 1979.

[Sin93] V. Singhal, and D. Batory. P++: A Language for Software System Generators.
Technical Report, Department of Computer Sciences, University of Texas at Aus-
tin, September 1993.

[Sir93] M. Sirkin, D. Batory, and V. Singhal. Software components in a data structure pre-
compiler. In Proceedings of the 15th International Conference on Software Engi-
neering, May 1993.

[Sno89] R. Snodgrass. The Interface Description Language, 2nd edition. Addison-Wesley,
Reading, Mass, 1989.

[Str91] B. Stroustrup. The C++ Programming Language, 2nd edition. Addison-Wesley,
Reading, Mass, 1991.

[Sul92] K. Sullivan, and D. Notkin. Reconciling Environment Integration and Software
Evolution. ACM TOSEM, 1(3), July 1992.

137

[Tan89] D. Taenzer, M. Ganti, and S. Podar. Problems in Object-Oriented Software Reuse.
In Proceedings of the European Conference on Object-Oriented Programming ‘89,
1989.

[Tra93] W. Tracz. LILEANNA: A Parameterized Programming Language. In Proceedings
of the 2nd International Workshop on Software Reuse, March 1993.

[Vol85] D. Volpano, and R. Kieburtz. Software Templates. In Proceedings of the 7th Inter-
national Conference on Software Engineering, 1985.

[Wei90] D. Weiss. Synthesis Operational Scenarios. Software Productivity Consortium,
Inc. 1990.

138

Appendix A

Productivity experiments

This appendix contains the descriptions of the four productivity experiments:

A.1 Arrays

PURPOSE

The purpose of this experiment is to compare, in a very simple example, both the time it

takes to write and the efficiency of code generated by the PREDATOR precompiler and code

written by you, a sample programmer.

The program to be written has been kept purposefully simple. There is but one data struc-

ture - the array. The operations to be performed on the array are not complicated.

The basic concept of this experiment is that most programs are built from simple, smaller

components. This small example should give me some insight into the methods that different

programmers use to achieve the same result.

IMPORTANT NOTE: All programs will be kept completely anonymous. No names will ever

be used without permission, and names will NEVER be tied to specific programming solu-

tions.

PROGRAMMING METHOD

In programming this example, I am asking that you write, compile and test a solution to

the problem presented below. You are asked to write your first solution without worrying

about efficiency. Write your first solution such that it works. That is not to say that you should

139

not try to write it to be efficient. You should write it the way you normally would. Do not worry

too much about finding faster ways to do it.

Please time yourself. Do not try to rush to finish the program, but rather keep an approxi-

mate time that you spent getting the program to work. I’m curious if it takes 10 minutes, 1/2

hour, 1 hour or six hours, etc...

Please save the source (.C) file for this program. I will need this for time comparisons.

After you have a working program, you may *optionally* try to improve the efficiency of

the program. If you do, please keep track of the additional amount of time you spend on

improving it, and please keep a copy of the source file you end up with.

When you are done, please send me a copy of the source file(s), and the time(s) it took to

program them.

PROGRAM DESCRIPTION

The program is very simple. The source code provided in the next section should be used

to set up the data structures. The EMPTYPE structure is a record containing information

about an employee. The RECORD structure is an employee, augmented with a “delete flag”.

This is used to show if an employee record is deleted, or not.

The array, rawdata array is an array of employee records, used for input for the program.

Your program should do the following:

1. You should declare an array of RECORDS, large enough to hold all the data in the raw-

data array.

2. You should insert all of the data from the rawdata array into your new array. Remem-

ber that you also need to initialize the delete flag to “0” for each record to show that the

record is not deleted.

3. You should iterate through your new array. For each (of the 8) employees, if they are

not deleted (via the delete flag) you should print their name with the following state-

ment:

 printf(“%s\n”, /* reference to name here */);

140

4. You should iterate through all of the employees again. For each customer whose age is

over 40, you should print their name, and then delete them (with the delete flag).

5. You should make one final pass of the employees. Print the name of the employees who

are not deleted.

6. NOTE: There is a printf header at the start of each print loop. See sample output for

the text.

SAMPLE OUTPUT

The following is the output your program should produce:

All employees are:
Akers, Mark
Akin, Monica
Alexander, Joe
Anderson, Gwyn
Anderson, Mary
Anderson, Suzanne
Andrews, John
Andrews, Kay

Older employees are:
Akers, Mark
Akin, Monica
Anderson, Mary
Anderson, Suzanne
Andrews, John

Remaining employees are:
Alexander, Joe
Anderson, Gwyn
Andrews, Kay

A.2 Queues

PURPOSE

This experiment is a continuation of the PREDATOR/human programming tests. Once

again you will be asked to write and debug a fairly simple program. I will then compare both

the time it takes to write and the efficiency of the hand-written programs versus the same

program written with PREDATOR.

141

In this experiment you will be asked to write a program involving queues. You will be pro-

vided with a simple abstract data type module for queues. You are free to use this module, or not,

as you see fit. In addition, you may also cannibalize the module, if you wish.

The basic concept of this experiment is that off the shelf components are often used to help

simplify the programming task. But often they do not provide the full functionality needed by

the programmer. Thus, the programmer (you in this case) must decide how to proceed: use the

module as is, ignore the module, or use parts of the module.

IMPORTANT NOTE: All programs will be kept completely anonymous. No names will ever

be used without permission, and names will NEVER be tied to specific programming solu-

tions.

PROGRAMMING METHOD

In programming this example, I am asking that you write, compile and test a solution to

the problem presented below. Write a working solution to the problem. Before you begin you

should decide if you want to write a program that is as efficient as possible, or write one that

you can finish as quickly as possible. Both are acceptable solutions. Once you have decided

which approach you want to take, please inform us (by E-mail) of your decision. If too many

people pick one method we may have to request a few people to use their second choice solu-

tion method.

Please time yourself. Do not try to rush to finish the program, but rather, keep (an approx-

imate) time that you spent getting the program to work. I’m curious if it takes 10 minutes, 1/2

hour, 1 hour or six hours, etc...

Please save the source (.C) file for this program. I will need this for time comparisons.

PROGRAM DESCRIPTION

This program is a supermarket simulation. You have a total of five active cash registers,

each checking out customers. Each supermarket line is nothing more than a FIFO queue. A

queue module has been written and is provided for your optional use. The program must per-

form several operations on the queues and the customers in them.

The data structures for this program are fairly simple. A customer ELEMENT is a struc-

ture containing all of the information that is interesting about the customer: their name, how

142

many items they have, and an array of (up to 50) items. Items are stored as integers in this

simulation.

For those who decide to implement their own queues - you must make the queue so that it

can grow as large as necessary - this is why it is implemented as a linked list in the provided

module. For those who wish to use the QUEUE module as is - remember that all of the pro-

gram can be performed with the operations provided.

A sample data file “exp2.in” is provided. Each line of this file is a customer that is in one of

the checkout lines at the start of the program. An input routine is provided “setup_simula-

tion()”, which will read the input data, and put it in the data structure for you. NOTE: If you

write your own queue module you may have to modify this routine. Another routine “write_-

output” is also provided to write your data to an output file in a standard form. Again, you

may have to modify this routine if you write your own queue module. The write_output rou-

tine creates an output file named “exp2.out”. You can use the provided output file “exp2_cor-

rect.out” for comparison. Your output file should march the provided file exactly when your

solution is working properly.

Once you have read in the initial data, your program should perform the following steps in

the order they are listed. At the end of the program you should write the output data out to

the output file. The tasks your program must perform are:

1. Add customer Harold Hill with 10 items: 80 90 60 61 62 64 65 67 66 68 to lane 1.

2. Add customer Marion Librarian with 1 item: 13 to lane 1.

3. The first customer in lane 0 finishes checking out and leaves the store.

4. Customer Nancy Reagan (with 3 items: 8 8 8) cuts in line behind husband Ron (in front

of George Bush).

5. Every 3rd customer in lane 1 decides to buy the promotional candy bar (item 234) and

adds it to their cart. So, the first customer in line buys the item, the second and third

don’t, the fourth does etc.

6. Customer George Bush in lane 3 realizes he has forgotten some items he needs, and

leaves the shopping lane.

7. Lane 4, an 8 item or fewer lane, opens up. Each customer from lane 1who has 8 or

fewer items moves over to lane 4. They do this in reverse order, so the customer nearest

143

the end of lane 1 who can move over does so. The customer nearest the front of lane 1

moves over last.

The QUEUE module

A sample queue module (queue.h and q_funcs.c) has been written for your use. The follow-

ing functions are defined for in the queue module:

1. void init_queue(QUEUE *the_queue); - This function initializes the queue. It should be

called once for each queue, before the queue is used.

2. int enqueue(QUEUE *the_queue, ELEMENT *the_element); - Adds an ELEMENT onto a

QUEUE. Returns 1 (or TRUE) if the enqueue succeeds, or 0 otherwise.

3. ELEMENT *dequeue(QUEUE *the_queue); - Removes and returns a pointer to an item

from the QUEUE. Returns NULL if the queue is empty.

4. int queue_size(QUEUE *the_queue); - Returns an integer representing the size of the

queue.

5. int is_empty(QUEUE *the_queue); - Returns a boolean to inform if the queue is empty, or

not.

6. int is_full(QUEUE *the_queue); - Returns a boolean to inform if the queue is full, or not.

7. ELEMENT *make_elem(void); - Creates a new element, and returns a pointer to it.

8. void destroy_elem(ELEMENT **the_elem); - Destroys an element. It is passed a the

address of a pointer to an element.

9. void setup_simulation(void) - Initializes the data and reads in the initial values from an

input file.

10.void write_output(void) - Writes the current simulation state to an output file in a stan-

dardized format.

SAMPLE OUTPUT

The following is the output your program should produce

Lane 0:
 1. Gore, Al. 1 item (999)
 2. Brown, Ron. 1 item (999)

144

Lane 1:
 1. Smith, John. 16 items (3 151 3 1 4 6 37 82 7 12 13 76 75
 74 73 234)
 2. Smith, Mary. 12 items (2 200 2 200 1 100 1 100 3 300 3
 300)
 3. Hill, Harold. 11 items (80 90 60 61 62 64 65 67 66 68
 234)

Lane 2:
 1. Doe, Jane. 10 items (121 5 5 5 5 5 5 5 9 10)
 2. Sluggo, Mr. 6 items (8 101 4 14 111 542)
 3. Bill, Mr. 3 items (16 22 28)

Lane 3:
 1. Reagan, Ron. 3 items (9 9 9)
 2. Reagan, Nancy. 3 items (8 8 8)
 3. Quayle, Dan. 2 items (222 333)

Lane 4:
 1. Librarian, Marion. 1 item (13)
 2. Andrews, Fred. 2 items (67 76)

A.3 Multiple lists

PURPOSE

This experiment is a continuation of the PREDATOR/human programming tests. Once

again you will be asked to write and debug a fairly simple program. I will then compare both

the time it takes to write and the efficiency of the hand-written programs versus the same

program written with PREDATOR.

In this experiment you will be asked to write a program involving linked lists. You will be

provided with a simple data structure for representing bank customers, and an array of initial

data for your program. You will be asked to write some simple routines for ordered linked

lists. The interesting twist is that you will have to maintain three distinct orderings on the

same data. How you write your program to accomplish this is entirely up to you.

The idea behind this experiment is that many programming tasks involve repetitive oper-

ations on similar, but slightly different data structures. What I wish to observe is how differ-

ent programmers approach this problem, and the relative coding speeds of the different

approaches.

145

IMPORTANT NOTE: Once again, all programs will be kept completely anonymous. No

names will ever be used without permission, and names will NEVER be tied to specific pro-

gramming solutions.

PROGRAMMING METHOD

In programming this example, I am asking that you write, compile and test a solution to

the problem presented below. Write a working solution to the problem. Please time yourself.

Do not try to rush to finish the program, but rather, keep (an approximate) time that you

spent getting the program to work. I’m curious if it takes 10 minutes, 1/2 hour, 1 hour or six

hours, etc...

Please save the source (.C) file for this program. I will need this for time comparisons.

After you have a working program, you may *optionally* try to improve the efficiency of

the program. If you do, please keep track of the additional amount of time you spend on

improving it, and please keep a copy of the source file you end up with.

When you are done, please send me a copy of the source file(s), and the time(s) it took to

program them.

PROGRAM DESCRIPTION

This program simply prints out reports on a number of bank customers. Your code will be

responsible for taking the data from the static array provided, putting it in a list data struc-

ture of your design. Your program must keep the data ordered by name, account number and

balance (three distinct orderings). After all the data is stored in your data structure you must

perform the following operations:

1. Add a new customer: Nancy Reagan with account number 23 and a balance of:

6700000.

2. Change George Bush’es account number to: 56.

3. Remove Dan Quayle as a customer.

4. Print (to the output file exp3.out) the list of customers in alphabetic order.

5. Print the list in account order.

6. Print the list in balance order.

146

NOTE: The program template opens an output file with the handle “out_file”. You can

write directly to that file handle.

NOTE: The following printf statement should be used to print each customer for each list.

You will have to substitute your reference for the data structure fields.

fprintf(out_file, “Name: %s, %s Account: %d Balance: %d\n”,
<ref>.l_name, <ref>.f_name, <ref>.acct_num, <ref>.balance);

NOTE: You should place one blank line between each list in the output file.

You can use the provided output file “exp3_correct.out” for comparison. Your output file

should march the provided file exactly when your solution is working properly.

SAMPLE OUTPUT

The following is the output your program should produce:

Name: Anderson, Tim Account: 2 Balance: 5000
Name: Andrews, Joe Account: 6 Balance: 4202020
Name: Andrews, Kay Account: 5 Balance: 10000
Name: Bird, Larry Account: 11 Balance: 32020
Name: Bush, George Account: 56 Balance: 200023400
Name: Clinton, Bill Account: 12 Balance: 30000001
Name: Gore, Al Account: 7 Balance: 30000000
Name: Hill, Harold Account: 1 Balance: 100
Name: Librarian, Maria Account: 13 Balance: 89
Name: Librarian, Marion Account: 10 Balance: 90
Name: Reagan, Nancy Account: 23 Balance: 6700000
Name: Reagan, Ron Account: 3 Balance: 400000000
Name: Young, Fred Account: 4 Balance: 250000

Name: Hill, Harold Account: 1 Balance: 100
Name: Anderson, Tim Account: 2 Balance: 5000
Name: Reagan, Ron Account: 3 Balance: 400000000
Name: Young, Fred Account: 4 Balance: 250000
Name: Andrews, Kay Account: 5 Balance: 10000
Name: Andrews, Joe Account: 6 Balance: 4202020
Name: Gore, Al Account: 7 Balance: 30000000
Name: Librarian, Marion Account: 10 Balance: 90
Name: Bird, Larry Account: 11 Balance: 32020
Name: Clinton, Bill Account: 12 Balance: 30000001
Name: Librarian, Maria Account: 13 Balance: 89
Name: Reagan, Nancy Account: 23 Balance: 6700000
Name: Bush, George Account: 56 Balance: 200023400

Name: Librarian, Maria Account: 13 Balance: 89
Name: Librarian, Marion Account: 10 Balance: 90
Name: Hill, Harold Account: 1 Balance: 100

147

Name: Anderson, Tim Account: 2 Balance: 5000
Name: Andrews, Kay Account: 5 Balance: 10000
Name: Bird, Larry Account: 11 Balance: 32020
Name: Young, Fred Account: 4 Balance: 250000
Name: Andrews, Joe Account: 6 Balance: 4202020
Name: Reagan, Nancy Account: 23 Balance: 6700000
Name: Gore, Al Account: 7 Balance: 30000000
Name: Clinton, Bill Account: 12 Balance: 30000001
Name: Bush, George Account: 56 Balance: 200023400
Name: Reagan, Ron Account: 3 Balance: 400000000

A.4 Interlinked data structures

PURPOSE

This experiment is a continuation of the PREDATOR/human programming tests. Once

again you will be asked to write and debug a fairly simple program. I will then compare both

the time it takes to write and the efficiency of the hand-written programs versus the same

program written with PREDATOR.

In this experiment you will be asked to write a program involving binary trees, lists, and

links. You will be asked to write an efficient implementation of multiple data structures which

are interconnected.

IMPORTANT NOTE: Once again, all programs will be kept completely anonymous. No

names will ever be used without permission, and names will NEVER be tied to specific pro-

gramming solutions.

PROGRAMMING METHOD

In programming this example, I am asking that you write, compile and test a solution to

the problem presented below. Write a working solution to the problem. Please time yourself.

Do not try to rush to finish the program, but rather, keep (an approximate) time that you

spent getting the program to work. I’m curious if it takes 10 minutes, 1/2 hour, 1 hour or six

hours, etc...

Please save the source (.C) file for this program. I will need this for time comparisons.

148

After you have a working program, you may *optionally* try to improve the efficiency of

the program. If you do, please keep track of the additional amount of time you spend on

improving it, and please keep a copy of the source file you end up with.

When you are done, please send me a copy of the source file(s), and the time(s) it took to

program them.

PROGRAM DESCRIPTION

This program involves binary trees, linked lists and links.You will be provided with two

simple data structures - one for company employees and one for departments within the com-

pany. You will also be provided with initial data to load into these data structures. Your pro-

gramming task will be to add, delete and traverse these data structures, while using the

ordering of the list and binary tree, and using links.

Links require some explanation. A link is a connection between records in two different

data structures based on a predicate involving fields of the two records.In this assignment you

will maintain two linkages between the employee and department data structures.

1. The works_in link connects each employee record to the department record such that

the department number of the employee equals the department number of the depart-

ment record.

2. The manages link connects departments to one employee record such that the manager

field of the department record equals the emp_id field of the employee record.

Note that links are the same as database joins. For this assignment you must write your

code so that the links are maintained by insertions and deletions and updates. It is possible to

implement links by performing a cross-product on the two data structures, but for this assign-

ment you must implement links using pointers in the data structures themselves.

In this assignment you should implement the department data structure with a linked

list, ordered by department number. The employees should be organized in a binary tree,

ordered by name (last and then first).

Your program should begin by reading the input data into the two data structures, and

building the two links between them. Then your program should do the following:

1. Print out all the employees (their names and employee IDs) in departments 1 and 3.

Use the following printf statements for each department and then each employee.

149

fprintf(out_file, “Dept name: %s\n”, <ref>.dept_name);

fprintf(out_file, “ Name: %s, %s Emp num: %d\n”, <ref>.l_name,
 <ref>.f_name, <ref>.emp_id);

2. Add another employee: Nancy Reagan, age 75, in department 4 with employee id 20.

3. Maria Librarian moves to department 2, and Bruce Babbit is promoted to department

manager of department 6.

4. Print a list of department managers using the following fprintf statement.

fprintf(out_file, “Dept: %s Manager: %s, %s\n”, <ref>.dept_name,
 <ref>.l_name, <ref>.f_name);

5. Marion Librarian retires from the company, and is removed from the database.

6. Print a list of employees, by department. Use the statement in step 1 above to print the

data.

NOTE: The program template opens an output file with the handle “out_file”. You can

write directly to that file handle.

NOTE: You should place one blank line between each list in the output file.

You can use the provided output file “exp4_correct.out” for comparison. Your output file

should march the provided file exactly when your solution is working properly.

SAMPLE OUTPUT

The following is the output your program should produce:

Dept name: Accounting
 Name: Quayle, Dan Emp num: 9
 Name: Brown, Ron Emp num: 17
 Name: Andrews, Joe Emp num: 16

Dept name: Development
 Name: Bentsen, Lloyd Emp num: 3
 Name: Andrews, Kay Emp num: 5

Dept: Accounting Manager: Quayle, Dan
Dept: Receiving Manager: Cisneros, Henry
Dept: Development Manager: Bentsen, Lloyd
Dept: Shipping Manager: Clinton, Bill
Dept: Marketing Manager: Hill, Harold
Dept: Research Manager: Babbit, Bruce

Dept name: Accounting

150

 Name: Quayle, Dan Emp num: 9
 Name: Brown, Ron Emp num: 17
 Name: Andrews, Joe Emp num: 16
Dept name: Receiving
 Name: Librarian, Maria Emp num: 13
 Name: Cisneros, Henry Emp num: 6
 Name: Anderson, Tim Emp num: 2
Dept name: Development
 Name: Bentsen, Lloyd Emp num: 3
 Name: Andrews, Kay Emp num: 5
Dept name: Shipping
 Name: Reagan, Nancy Emp num: 20
 Name: Young, Fred Emp num: 4
 Name: Reagan, Ron Emp num: 14
 Name: Clinton, Bill Emp num: 12
Dept name: Marketing
 Name: Hill, Harold Emp num: 1
 Name: Gore, Al Emp num: 7
 Name: Bush, George Emp num: 8
Dept name: Research
 Name: Babbit, Bruce Emp num: 11
 Name: Bird, Larry Emp num: 15

151

Appendix B

LEAPS test cases

This appendix lists the OPS5 source code for the LEAPS test cases evaluated in this research,

as well as a sample RL driver from the puz.ops test case:

B.1 LEAPS test cases

• The following is the source code for the basic_cycle.ops test case:

(literalize foo
 bar)

(p basic-cycle-timing-test
 (foo ^bar {<x> < 100000})
-->
 (modify 1 ^bar (compute <x> + 1))
)

• The following is the source code for the no_join1.ops test case:

(literalize foo
 bar)

(p no-join-test
 (foo ^bar {<x> < 500})
-->
 (write “bar has value” <x>)
 (modify 1 ^bar (compute <x> + 1))
)

• The following is the source code for the no_join2.ops test case:

(literalize foo
 bar)

(p extra-test

152

 (foo ^bar { < 5 > 2})
-->
 (write “bar has value between 2 and 5”)
)

(p no-join-test
 (foo ^bar {<x> < 10})
-->
 (write “bar has value” <x>)
 (modify 1 ^bar (compute <x> + 1))
)

• The following is the source code for the big_join.ops test case:

(literalize foo
 bar)

(literalize counter
 result)

(literalize rel1
 val)

(literalize rel2
 val)

(literalize marker foo)

(p generate-data
 (foo ^bar { <x> < 1000 })
-->
 (make rel1 ^val <x>)
 (make rel2 ^val <x>)
(modify 1 ^bar (compute <x> + 1))
)

(p do-join
 (rel1 ^val <x>)
 (rel2 ^val <x>)
-->
 (make marker ^foo 0)
)

(p count-result
 (marker ^foo 0)
 (counter ^result <x>)
-->
 (modify 2 ^result (compute <x> + 1))
 (remove 1)
)

153

(p pr-result
 (counter ^result <y>)
-->
 (write <y> “tuples in the join”)
)

• The following is the source code for the puz.ops test case:

(literalize pile
 id)

(literalize piece
 pid
 color)

(literalize edge
 pid
 eid
 shape
 matched
 location)

(p put-pieces-in-pile
 (pile ^id <c>)
 (piece ^pid <pid> ^color <c>)
(edge ^pid <pid> ^location start)
-->
 (modify 3 ^location <c>)
)

(p match-colors
 (pile ^id {<c> <> start})
{<e1>(edge ^eid <id1> ^location <c> ^shape <s> ^matched false)}
{<e2>(edge ^eid { <id2> <> <id1>} ^location <c> ^shape <s>

^matched false)}
-->
(write “match edges” <id1> <id2>)
 (modify <e1> ^matched true)
 (modify <e2> ^matched true)
)

; once we have moved all the pieces out of the start pile and
; can’t match anymore within the color pile
; move the edges to the brute-force pile
; count on the resolution strategy to work breadth first
(p colors-done
 (pile ^id {<c> <> start})
 (edge ^eid <id> ^location <c> ^shape <s> ^matched false)
-->
 (modify 2 ^location brute-force)
)

154

; match whatever edges remain
(p do-brute-force
(edge ^eid <id1> ^location brute-force ^shape <s> ^matched false)
(edge ^eid {<id2> <> <id1>} ^location brute-force ^shape <s>

^matched false)
-->
 (write “match edges” <id1> <id2>)
 (modify 1 ^matched true)
 (modify 2 ^matched true)
)

• The following is the source code for the triples.ops test case:

(literalize foo
 bar int)

(literalize rel1
 val int)

(literalize rel2
 val int)

(p generate-data
 (foo ^bar {<x> < 35})
-->
 (make rel1 ^val <x>)
 (make rel2 ^val <x>)
 (modify 1 ^bar (compute <x> + 1))
)

(p print-sequences
 (rel1 ^val <r>)
 (rel2 ^val {<s> > <r>})
 (rel1 ^val {<t> > <r> > <s>})
-->
 (write <r> <s> <t> “ is a strictly increasing sequence”)
)

• The following is the source code for the big_num.ops test case:

(literalize count val)

(literalize a b)

(p r1
 (count ^val {<x> < 10000})
-->
 (make a ^b <x>)
 (modify 1 ^val (compute <x> + 1))
)

155

(p r2
 (a ^b <x>)
 -(a ^b > <x>)
-->
 (write <x> “is the biggest number”)
)

• The following is the source code for the jig25.ops test case:

(literalize ppiece num edge match color side piled)

(p heap ;make pile of each color
 (*pile)
 (ppiece ^num <x> ^color <y> ^piled no)
 -(ppiece ^num <x> ^piled yes)
-->
 (call pile <x> <y>)
 (modify 2 ^piled yes)
)

(p heaped ;done pileing
 (*pile)
-->
 (remove 1)
 (make *cornr))

(p corner
 (*cornr)
 (ppiece ^num <x> ^edge * ^match no ^side <y>)
 (ppiece ^num <x> ^edge * ^match no ^side <> <y>)
-->
 (remove 1)
 (call corn <x>)
 (modify 2 ^match yes)
 (modify 3 ^match yes)
 (make *cb)
)

(p cb ; attach border pieces to corner
 (*cb)
 (ppiece ^num <x> ^edge * ^match yes ^side <a>)
 (ppiece ^num <x> ^edge * ^match yes ^side <> <a>)
 (ppiece ^num <x> ^edge {<y> <> *} ^match no)
 (ppiece ^num {<z> <> <x>} ^edge <y> ^match no)
 (ppiece ^num <z> ^edge * ^match no)
-->
 (call assemble <z> <x> <y>)
 (modify 4 ^match yes)
 (modify 5 ^match yes)
 (modify 6 ^match yes)

156

)

(p endcb ;done with corner
 (*cb)
 (ppiece ^num <x> ^edge * ^match yes)
 (ppiece ^num <x> ^edge * ^match yes)
 -(ppiece ^num <x> ^edge <> * ^match no)
-->
 (remove 1)
 (make *flg)
)

(p bordercorner ;assembles the border
 (*flg) ;working on border
 (ppiece ^num <x> ^edge * ^match yes)
 (ppiece ^num <x> ^edge {<z> <> *} ^match no)
 (ppiece ^num {<y> <> <x>} ^edge * ^match no ^side <a>)
 ^num <y> ^edge * ^match no ^side <> <a>)
 (ppiece ^num <y> ^edge <z> ^match no)
-->
 (call assemble <y> <x> <z>)
 (modify 3 ^match yes)
 (modify 4 ^match yes)
 (modify 6 ^match yes)
)

(p border ;assembles the border
 (*flg) ;working on border
 (ppiece ^num <x> ^edge * ^match yes)
 (ppiece ^num <x> ^edge {<z> <> *} ^match no)
 (ppiece ^num {<y> <> <x>} ^edge * ^match no ^side <a>)
 -(ppiece ^num <y> ^edge * match no ^side <> <a>)
 (ppiece ^num <y> ^edge <z> ^match no)
-->
 (call assemble <y> <x> <z>)
 (modify 3 ^match yes)
 (modify 4 ^match yes)
 (modify 5 ^match yes)
)

(p restofborder ;assembles the border
 (*flg) ;working on border
 (ppiece ^num <x> ^edge * ^match yes)
 (ppiece ^num <x> ^edge {<z> <> *} ^match no)
(ppiece ^num {<y> <> <x>} ^edge * ^match yes)
 (ppiece ^num <y> ^edge <z> ^match no)
-->
 (call assemble <y> <x> <z>)
 (modify 3 ^match yes)
 (modify 5 ^match yes)
)

157

(p setcolor ;assemble by color
 (*flg) ;find flag
 -(ppiece ^edge << a i p w x y v o h f d b >> ^match no)
-->
 (remove 1)
 (make colorflg)
)

(p colors ;assembles by color
 (colorflg) ;find flag
 (ppiece ^num <x> ^color <z> ^match yes)
 (ppiece ^num {<y> <> <x>} ^color <z>)
 (ppiece ^num <x> ^edge {<w> <> *} ^match no)
 (ppiece ^num <y> ^edge <w> ^match no)
-->
 (call assemble <y> <x> <w>)
 (modify 4 ^match yes)
 (modify 5 ^match yes)
)

(p setins ;remove color flag
 (colorflg) ;find flag
 (ppiece ^num <x> ^edge <> * ^match no ^color <y>)
 -(ppiece ^num <> <x> ^edge <> * ^match no ^color <y>)
-->
 (remove 1)
 (make insflag)
)

(p insides ;assemble by exhaustive trial
 (insflag) ;find flag
 (ppiece ^num <y> ^match yes)
 (ppiece ^num <y> ^edge {<x> <> *} ^match no)
 (ppiece ^num {<z> <> <y>} ^edge <x> ^match no)
 -(ppiece ^num <z> ^match yes)
-->
 (call assemble <z> <y> <x>)
 (modify 3 ^match yes)
 (modify 4 ^match yes)
)

• The following is the source code for the waltz.ops test case:

(literalize stage value)
(literalize line p1 p2)
(literalize edge p1 p2 joined label plotted)
(literalize junction p1 p2 p3 base_point type)

(p begin
(stage ^value start)

158

-->
(write clr)
(make line ^p1 0122 ^p2 0107)
(make line ^p1 0107 ^p2 2207)
(make line ^p1 2207 ^p2 3204)
(make line ^p1 3204 ^p2 6404)
(make line ^p1 2216 ^p2 2207)
(make line ^p1 3213 ^p2 3204)
(make line ^p1 2216 ^p2 3213)
(make line ^p1 0107 ^p2 2601)
(make line ^p1 2601 ^p2 7401)
(make line ^p1 6404 ^p2 7401)
(make line ^p1 3213 ^p2 6413)
(make line ^p1 6413 ^p2 6404)
(make line ^p1 7416 ^p2 7401)
(make line ^p1 5216 ^p2 6413)
(make line ^p1 2216 ^p2 5216)
(make line ^p1 0122 ^p2 5222)
(make line ^p1 5222 ^p2 7416)
(make line ^p1 5222 ^p2 5216)
(modify 1 ^value duplicate)
)

(p reverse_edges
(stage ^value duplicate)
(line ^p1 <p1> ^p2 <p2>)
-->
(write draw <p1> <p2> (crlf))
(make edge ^p1 <p1> ^p2 <p2> ^joined false)
 (make edge ^p1 <p2> ^p2 <p1> ^joined false)
(write adding edge: <p1> <p2> and: <p2> <p1> (crlf))
(remove 2)
)

(p done_reversing
(stage ^value duplicate)
-(line)
-->
(modify 1 ^value detect_junctions)
)

(p make-3_junction
(stage ^value detect_junctions)
(edge ^p1 <base_point> ^p2 <p1> ^joined false)
(edge ^p1 <base_point> ^p2 {<p2> <> <p1>} ^joined false)
(edge ^p1 <base_point> ^p2 {<p3> <> <p1> <> <p2>} ^joined false)
-->
(make junction
 ^type (make_3_junction <base_point> <p1> <p2> <p3>)

 ^base_point <base_point>)

159

(write making a junction: <type> points: <base_point> <p1> <p2>
<p3> (crlf))

(modify 2 ^joined true)
(modify 3 ^joined true)
(modify 4 ^joined true)
)

(p make_L
(stage ^value detect_junctions)
(edge ^p1 <base_point> ^p2 <p2> ^joined false)
(edge ^p1 <base_point> ^p2 {<p3> <> <p2>} ^joined false)
-(edge ^p1 <base_point> ^p2 {<> <p2> <> <p3>})
-->
(make junction

^type L
^base_point <base_point>
^p1 <p2>
^p2 <p3>)

(write making a junction: L points: <base_point> <p1> <p2>
(crlf))

(modify 2 ^joined true)
(modify 3 ^joined true)
)

(p done_detecting
(stage ^value detect_junctions)
-(edge ^joined false)
-->
(modify 1 ^value find_initial_boundary)
)

(p initial_boundary_junction_L
(stage ^value find_initial_boundary)
 (junction ^type L ^base_point <base_point> ^p1 <p1> ^p2 <p2>)
(edge ^p1 <base_point> ^p2 <p1>)
(edge ^p1 <base_point> ^p2 <p2>)
 -(junction ^base_point > <base_point>)
-->
(write initial_boundary_junction_L <base_point> <p1> <p2> (crlf))
 (modify 3 ^label B)
(modify 4 ^label B)
(modify 1 ^value find_second_boundary)
)

(p initial_boundary_junction_arrow
(stage ^value find_initial_boundary)
(junction ^type arrow ^base_point <bp> ^p1 <p1> ^p2 <p2> ^p3 <p3>)
(edge ^p1 <bp> ^p2 <p1>)
(edge ^p1 <bp> ^p2 <p2>)
(edge ^p1 <bp> ^p2 <p3>)
-(junction ^base_point > <bp>)

160

-->
(modify 3 ^label B)
(modify 4 ^label +)
(modify 5 ^label B)
(modify 1 ^value find_second_boundary)
)

(p second_boundary_junction_L
(stage ^value find_second_boundary)
 (junction ^type L ^base_point <base_point> ^p1 <p1> ^p2 <p2>)
(edge ^p1 <base_point> ^p2 <p1>)
(edge ^p1 <base_point> ^p2 <p2>)
 -(junction ^base_point < <base_point>)
-->
 (modify 3 ^label B)
(modify 4 ^label B)
(modify 1 ^value labeling)
)

(p second_boundary_junction_arrow
(stage ^value find_second_boundary)
(junction ^type arrow ^base_point <bp> ^p1 <p1> ^p2 <p2> ^p3 <p3>)
(edge ^p1 <bp> ^p2 <p1>)
 (edge ^p1 <bp> ^p2 <p2>)
 (edge ^p1 <bp> ^p2 <p3>)
 -(junction ^base_point < <bp>)
-->
 (write second_boundary_junction_arrow <bp> <p1> <p2> <p3> (crlf))
 (modify 3 ^label B)
 (modify 4 ^label +)
 (modify 5 ^label B)
 (modify 1 ^value labeling)
)

(p match_edge
(stage ^value labeling)
(edge ^p1 <p1> ^p2 <p2> ^label {<label> << + - B >>})
(edge ^p1 <p2> ^p2 <p1> ^label nil)
-->
(modify 2 ^plotted t)
(modify 3 ^label <label> ^plotted t)
(write plot <label> <p1> <p2> (crlf))
)

(p label_L
(stage ^value labeling)
(junction ^type L ^base_point <p1>)
(edge ^p1 <p1> ^p2 <p2> ^label << + - >>)
(edge ^p1 <p1> ^p2 <> <p2> ^label nil)
-->
(modify 4 ^label B)

161

)

(p label_tee_A
(stage ^value labeling)
(junction ^type tee ^base_point <bp> ^p1 <p1> ^p2 <p2> ^p3 <p3>)
(edge ^p1 <bp> ^p2 <p1> ^label nil)
(edge ^p1 <bp> ^p2 <p3>)
-->
(modify 3 ^label B)
(modify 4 ^label B)
)

(p label_tee_B
(stage ^value labeling)
(junction ^type tee ^base_point <bp> ^p1 <p1> ^p2 <p2> ^p3 <p3>)
(edge ^p1 <bp> ^p2 <p1>)
(edge ^p1 <bp> ^p2 <p3> ^label nil)
-->
(modify 3 ^label B)
(modify 4 ^label B)
)

(p label_fork-1
(stage ^value labeling)
(junction ^type fork ^base_point <bp>)
(edge ^p1 <bp> ^p2 <p1> ^label +)
(edge ^p1 <bp> ^p2 {<p2> <> <p1>} ^label nil)
(edge ^p1 <bp> ^p2 {<> <p2> <> <p1>})
-->
(modify 4 ^label +)
(modify 5 ^label +)
)

(p label_fork-2
(stage ^value labeling)
(junction ^type fork ^base_point <bp>)
(edge ^p1 <bp> ^p2 <p1> ^label B)
(edge ^p1 <bp> ^p2 {<p2> <> <p1>} ^label -)
(edge ^p1 <bp> ^p2 {<> <p2> <> <p1>} ^label nil)
-->
(modify 5 ^label B)
)

(p label_fork-3
(stage ^value labeling)
(junction ^type fork ^base_point <bp>)
(edge ^p1 <bp> ^p2 <p1> ^label B)
(edge ^p1 <bp> ^p2 {<p2> <> <p1>} ^label B)
(edge ^p1 <bp> ^p2 {<> <p2> <> <p1>} ^label nil)
-->
(modify 5 ^label -)

162

)

(p label_fork-4
(stage ^value labeling)
(junction ^type fork ^base_point <bp>)
(edge ^p1 <bp> ^p2 <p1> ^label -)
(edge ^p1 <bp> ^p2 {<p2> <> <p1>} ^label -)
(edge ^p1 <bp> ^p2 {<> <p2> <> <p1>} ^label nil)
-->
(modify 5 ^label -)
)

(p label_arrow-1A
(stage ^value labeling)
(junction ^type arrow ^base_point <bp> ^p1 <p1> ^p2 <p2> ^p3 <p3>)
(edge ^p1 <bp> ^p2 <p1> ^label {<label> << B - >>})
(edge ^p1 <bp> ^p2 <p2> ^label nil)
(edge ^p1 <bp> ^p2 <p3>)
-->
(modify 4 ^label +)
(modify 5 ^label <label>)
)

(p label_arrow-1B
(stage ^value labeling)
(junction ^type arrow ^base_point <bp> ^p1 <p1> ^p2 <p2> ^p3 <p3>)
(edge ^p1 <bp> ^p2 <p1> ^label {<label> << B - >>})
(edge ^p1 <bp> ^p2 <p2>)
(edge ^p1 <bp> ^p2 <p3> ^label nil)
-->
(modify 4 ^label +)
(modify 5 ^label <label>)
)

(p label_arrow-2A
(stage ^value labeling)
(junction ^type arrow ^base_point <bp> ^p1 <p1> ^p2 <p2> ^p3 <p3>)
(edge ^p1 <bp> ^p2 <p3> ^label {<label> << B - >>})
(edge ^p1 <bp> ^p2 <p2> ^label nil)
(edge ^p1 <bp> ^p2 <p1>)
-->
(modify 4 ^label +)
(modify 5 ^label <label>)
)

(p label_arrow-2B
(stage ^value labeling)
(junction ^type arrow ^base_point <bp> ^p1 <p1> ^p2 <p2> ^p3 <p3>)
(edge ^p1 <bp> ^p2 <p3> ^label {<label> << B - >>})
(edge ^p1 <bp> ^p2 <p2>)
(edge ^p1 <bp> ^p2 <p1> ^label nil)

163

-->
(modify 4 ^label +)
(modify 5 ^label <label>)
)

(p label_arrow-3A
(stage ^value labeling)
(junction ^type arrow ^base_point <bp> ^p1 <p1> ^p2 <p2> ^p3 <p3>)
(edge ^p1 <bp> ^p2 <p1> ^label +)
(edge ^p1 <bp> ^p2 <p2> ^label nil)
(edge ^p1 <bp> ^p2 <p3>)
-->
(modify 4 ^label -)
(modify 5 ^label +)
)

(p label_arrow-3B
(stage ^value labeling)
(junction ^type arrow ^base_point <bp> ^p1 <p1> ^p2 <p2> ^p3 <p3>)
(edge ^p1 <bp> ^p2 <p1> ^label +)
(edge ^p1 <bp> ^p2 <p2>)
(edge ^p1 <bp> ^p2 <p3> ^label nil)
-->
(modify 4 ^label -)
(modify 5 ^label +)
)

(p label_arrow-4A
(stage ^value labeling)
(junction ^type arrow ^base_point <bp> ^p1 <p1> ^p2 <p2> ^p3 <p3>)
(edge ^p1 <bp> ^p2 <p3> ^label +)
(edge ^p1 <bp> ^p2 <p2> ^label nil)
(edge ^p1 <bp> ^p2 <p1>)
-->
(modify 4 ^label -)
(modify 5 ^label +)
)

(p label_arrow-4B
(stage ^value labeling)
(junction ^type arrow ^base_point <bp> ^p1 <p1> ^p2 <p2> ^p3 <p3>)
(edge ^p1 <bp> ^p2 <p3> ^label +)
(edge ^p1 <bp> ^p2 <p2>)
(edge ^p1 <bp> ^p2 <p1> ^label nil)
-->
(modify 4 ^label -)
(modify 5 ^label +)
)

(p label_arrow-5A
(stage ^value labeling)

164

(junction ^type arrow ^base_point <bp> ^p1 <p1> ^p2 <p2> ^p3 <p3>)
(edge ^p1 <bp> ^p2 <p2> ^label -)
(edge ^p1 <bp> ^p2 <p1>)
(edge ^p1 <bp> ^p2 <p3> ^label nil)
-->
(modify 4 ^label +)
(modify 5 ^label +)
)

(p label_arrow-5B
(stage ^value labeling)
(junction ^type arrow ^base_point <bp> ^p1 <p1> ^p2 <p2> ^p3 <p3>)
(edge ^p1 <bp> ^p2 <p2> ^label -)
(edge ^p1 <bp> ^p2 <p1> ^label nil)
(edge ^p1 <bp> ^p2 <p3>)
-->
(modify 4 ^label +)
(modify 5 ^label +)
)

(p done_labeling
(stage ^value labeling)
-->
(modify 1 ^value plot_remaining_edges)
)

(p plot_remaining
(stage ^value plot_remaining_edges)
(edge ^plotted nil ^label {<label> <> nil} ^p1 <p1> ^p2 <p2>)
-->
(write plot <label> <p1> <p2> (crlf))
(modify 2 ^plotted t)
)

(p plot_boundaries
(stage ^value plot_remaining_edges)
(edge ^plotted nil ^label nil ^p1 <p1> ^p2 <p2>)
-->
(write plot B <p1> <p2> (crlf))
(modify 2 ^plotted t)
)

(p done_plotting
(stage ^value plot_remaining_edges)
-(edge ^plotted nil)
-->
(modify 1 ^value done)
)

(p done
(stage ^value done)

165

-->
 (write see trace.waltz for description of execution- hit CR to end
(crlf))
(halt)
)

B.2 RL driver for puz.ops test case

/**/
/*** Files to include. ***/
/**/

#include <stdio.h> /* Standard input and output library. */
#include <string.h> /* The parser needs string functions. */

/**/
/*** Constants and variables for the run-time evaluator. ***/
/**/

#define NEG_TIME -1 /* Timestamp before system starts. */
#define TRUE 1 /* Logical true. */
#define FALSE 0 /* Logical false. */

#define L_PAREN ‘(‘ /* Some useful characters. */
#define R_PAREN ‘)’
#define SPACE ‘ ‘
#define NULL_CHAR ‘\0’

#define RUN “run” /* Useful tokens we may parese. */
#define MAKE “make”
#define EXIT “exit”

#define LINE_LEN 255 /* Input line length maximum. */
#define TOKEN_LEN 20 /* Length of longest input token. */

/**/
/*** Constants and variables for the production system. ***/
/**/

#define NUM_RULES 4 /* How many rules in this system. */
#define TUPLE_SIZE 3 /* Size of the biggest join. */

#define START 2
#define A 3
#define B 4
#define C 5
#define D 6

166

#define E 7
#define F 8
#define G 9
#define H 10
#define I 11
#define J 12
#define K 13
#define L 14
#define BLUE 15
#define GREEN 16
#define WHITE 17
#define ORANGE 18
#define BRUTE_FORCE 19

/* Element definitions for system. */
struct pile
{
 int id;
};
struct piece
{
 int pid;
 int color;
};
struct edge
{
 int pid;
 int eid;
 int shape;
 int matched;
 int location;
};

/* Schema and cursor definitions */
SCHEMA pile_struct on element pile = predind[dlist[timest[

persist[puz.per, 20000], GLOBAL]], id != START];
pile_struct cont0;
CURSOR c0 ON cont0 WHERE id != START;

SCHEMA piece_struct on element piece = dlist[timest[
persist[puz.per, 20000], GLOBAL]];

piece_struct cont1;
CURSOR c1 ON cont1;

SCHEMA edge_struct on element edge = predind[dlist[timest[
persist[puz.per, 20000], GLOBAL]], location == START];

edge_struct cont2;
CURSOR c2 ON cont2 WHERE location == START;
CURSOR c3 ON cont2;

167

 /* Links and link cursors needed. */
LINK lnk1 ON MANY cont0 TO MANY cont1 USING NESTEDLOOP

where cont0.id == cont1.color;
LCURSOR lc1 ON lnk1 USING c0, c1;
LINK lnk2 ON MANY cont1 TO MANY cont2 USING NESTEDLOOP

where cont1.pid == cont2.pid;
LCURSOR lc2 ON lnk2 USING c1, c2;
LINK lnk3 ON MANY cont0 TO MANY cont2 USING NESTEDLOOP

where cont0.id == cont2.location;
LCURSOR lc3 ON lnk3 USING c0, c2;
LCURSOR lc4 ON lnk3 USING c0, c3;

/**/
/*** Global variables. ***/
/**/

int rule_to_fire; /* Which is the next rule to fire? */
int dom_container; /* Which container does the dom */

 /* object come from? */
int last_rule_fired; /* What was the number of the last */

/* rule fired? */
int from_stack; /* Is the dom object from the stack */

/* or the wait list? */

char inp_line[LINE_LEN]; /* Input line for parser. */
char token[TOKEN_LEN]; /* Input token for parser. */
char *t_ptr, *t_ptr2; /* Parsing character pointers. */
int done; /* Are we done with the program? */

/* Structure for the wait stack. */
 /* The positions of the saved curs*/
/* The time stamp of most dom obj */
 /* The cont of the most dom obj. */

struct wss
{
 CURS_POS pos_arr[TUPLE_SIZE];
 int time_stamp;
 int cont;
};

 /* Wait stack is just a linked list */
 /* Only one wait stack declared. */
 /* Cursor to wait stack declared. */

SCHEMA ws_struct on element wss = dlist[malloc[]];
ws_struct ws;
CURSOR wsc ON ws;

 /* Structure for the wait stack. */
 /* The position of the object. */
 /* The container it comes from. */

168

 /* Its timestamp. */
struct wls
{
 CURS_POS cursor_position;
 int cont;
 int time_stamp;
};

 /* Wait list is just a linked list */
 /* Only one wait list declared. */
 /* Cursor to wait list declared. */

SCHEMA wl_struct on element wls = dlist[malloc[]];
wl_struct wl;
CURSOR wlc ON wl;

/**/
/*** Push/pop entries on the wait list or stack. ***/
/**/

void push_wl(int cont, CURS_POS curs, int time_stamp)
{
 struct wls t_wl; /* New wait list object. */

/* Fill the fields. */
 /* Insert the wait list object. */

 t_wl.cont = cont;
 t_wl.cursor_position = curs;
 t_wl.time_stamp = time_stamp;
 INS(wl, t_wl, wlc);
}

void pop_wl(void)
{

/* Go to first object. */
 /* If there is one... */
 /* Delete it. */
 /* Set up to next object. */

 RESET_CURSOR(wlc, CONT_START);
 if (LAST_CURS_OP(wlc) != EOR)
 {

DEL(wlc);
 }
}

void push_ws(CURS_POS cp1, CURS_POS cp2, CURS_POS cp3,
int time_stamp, int cont)

{
 struct wss t_ws; /* New wait stack object. */

 /* Fill the fields. */
 /* Insert the wait stack object. */

169

 t_ws.pos_arr[0] = cp1;
 t_ws.pos_arr[1] = cp2;
 t_ws.pos_arr[2] = cp3;
 t_ws.time_stamp = time_stamp;
 t_ws.cont = cont;
 INS(ws, t_ws, wsc);
}

void pop_ws(void)
{

/* Go to first object. */
 /* If there is one... */
 /* Delete it. */
 /* Set up to next object. */

 RESET_CURSOR(wsc, CONT_START);
 if (LAST_CURS_OP(wsc) != EOR)
 {

DEL(wsc);
 }
}

/**/
/*** Determine container of most dominant object. ***/
/**/

int get_next_dom_object()
{
 int list_time, stack_time; /* Timestamp for wait list and wait */

 /* stack objects. */

 /* Assume no list or stack object. */
 /* Go to most recent list and stack */
 /* objects. */

 list_time = stack_time = NEG_TIME;
 RESET_CURSOR(wlc, CONT_START);
 RESET_CURSOR(wsc, CONT_START);

 /* Set timestamp of list and stack */
 /* objects (if they exist). */

 if (LAST_CURS_OP(wlc) != EOR)
list_time = wlc.time_stamp;

 if (LAST_CURS_OP(wsc) != EOR)
stack_time = wsc.time_stamp;

/* If stack object is most recent. */
 if (stack_time > list_time)
 {

/* Set the cursor positions. */
/* Set the stack flag. */
 /* Return the dom object container. */

switch(wsc.cont)

170

{
case 0: c0.CURS_POS = wsc.pos_arr[0];

c1.CURS_POS = wsc.pos_arr[1];
 c2.CURS_POS = wsc.pos_arr[2];
break;

case 1: c0.CURS_POS = wsc.pos_arr[0];
c2.CURS_POS = wsc.pos_arr[1];
 c3.CURS_POS = wsc.pos_arr[2];
break;

case 2: c0.CURS_POS = wsc.pos_arr[0];
c2.CURS_POS = wsc.pos_arr[1];
break;

case 3: c2.CURS_POS = wsc.pos_arr[0];
 c3.CURS_POS = wsc.pos_arr[1];
break;

}
from_stack = TRUE;
return(wsc.cont);

 }

 /* If list object is most dominant. */
 if (list_time > NEG_TIME)
 {

 /* Clear the stack flag. */
 /* Set the cursor for the proper */
 /* container for the dom object. */
 /* Return the dom object container. */

from_stack = FALSE;
switch(wlc.cont)
{
case 0: c0.CURS_POS = wlc.cursor_position;

break;
case 1: c1.CURS_POS = wlc.cursor_position;

break;
 case 2: c2.CURS_POS = wlc.cursor_position;

break;
}
return(wlc.cont);

 }

 /* No more dom objects - we’re done. */
 return(NEG_TIME);
}

/**/
/*** Get next item from a join. ***/
/**/

int join_from_cont0_rule0(int first_time)
{
 if (!first_time)

171

goto cont0_continue;

 FOREACHC(lc1)
 {

FOREACHC(lc2)
{
if ((c2.location == START) &&

(TIMESTAMP(c0) > TIMESTAMP(c1)))
{

goto found_a_cont0;
}

cont0_continue: ;
}

}
 return(FALSE);

found_a_cont0:
 push_ws(c0.CURS_POS, c1.CURS_POS, c2.CURS_POS, TIMESTAMP(c0), 0);
 return(TRUE);
}

int join_from_cont0_rule1(int first_time)
{
 if (c0.id == START)

 return(FALSE);

 if (!first_time)
goto cont1_continue;

 FOREACHC(lc3)
 {
 FOREACHC(lc4)
{
if ((c2.eid != c3.eid) && (c2.shape == c3.shape) &&

(c2.matched == FALSE) && (c3.matched == FALSE) &&
(TIMESTAMP(c0) > TIMESTAMP(c2)))

{
goto found_a_cont1;

}
cont1_continue: ;
}
}
 return(FALSE);

found_a_cont1:
push_ws(c0.CURS_POS, c2.CURS_POS, c3.CURS_POS, TIMESTAMP(c0), 1);
 return(TRUE);
}

int join_from_cont0_rule2(int first_time)
{

172

 if (c0.id == START)
 return(FALSE);

 if (!first_time)
goto cont2_continue;

 FOREACHC(lc3)
 {

if ((c2.matched == FALSE) &&
 (TIMESTAMP(c0) > TIMESTAMP(c2)))

{
 goto found_a_cont2;

}
cont2_continue: ;
 }
 return(FALSE);

found_a_cont2:
 push_ws(c0.CURS_POS, c2.CURS_POS, c2.CURS_POS, TIMESTAMP(c0), 2);
 return(TRUE);
}

int join_from_cont1(int first_time)
{
 if (!first_time)

goto cont3_continue;

 FOREACHP(lc1)
 {

FOREACHC(lc2)
{
 if ((c2.location == START) &&

 (TIMESTAMP(c1) > TIMESTAMP(c0)))
 {

 goto found_a_cont3;
}

cont3_continue: ;
}

 }
 return(FALSE);

found_a_cont3:
 push_ws(c0.CURS_POS, c1.CURS_POS, c2.CURS_POS, TIMESTAMP(c1), 0);
 return(TRUE);
}

int join_from_cont2_rule0(int first_time)
{
 if (c2.location != START)

return(FALSE);

173

 if (!first_time)
 goto cont4_continue;

 FOREACHP(lc2)
 {
 FOREACHP(lc1)
 {
 if (TIMESTAMP(c2) > TIMESTAMP(c1))
{
 goto found_a_cont4;

 }
cont4_continue: ;
 }

 }
 return(FALSE);

found_a_cont4:
 push_ws(c0.CURS_POS, c1.CURS_POS, c2.CURS_POS, TIMESTAMP(c2), 0);
 return(TRUE);
}

int join_from_cont2_rule1(int first_time)
{
 if (c2.matched != FALSE)

 return(FALSE);

 if (!first_time)
 goto cont5_continue;

 FOREACHP(lc3)
 {
 if (c0.id != START)
 {
 FOREACHC(lc4)
 {
 if ((c2.eid != c3.eid) && (c2.shape == c3.shape) &&

 (c3.matched == FALSE) &&
(TIMESTAMP(c2) > TIMESTAMP(c0)))

 {
goto found_a_cont5;

 }
cont5_continue: ;

 }
}

 }
 return(FALSE);

found_a_cont5:
 push_ws(c0.CURS_POS, c2.CURS_POS, c3.CURS_POS, TIMESTAMP(c2), 1);
 return(TRUE);
}

174

int join_from_cont2_rule2(int first_time)
{
 if (c2.matched != FALSE)

return(FALSE);

 if (!first_time)
goto cont6_continue;

 FOREACHP(lc3)
 {

if ((TIMESTAMP(c2) > TIMESTAMP(c0)) &&
 (c0.id != START))

 {
goto found_a_cont6;

 }
cont6_continue: ;
 }
 return(FALSE);

found_a_cont6:
 push_ws(c0.CURS_POS, c2.CURS_POS, c2.CURS_POS, TIMESTAMP(c2), 2);
 return(TRUE);
}

int join_from_cont2_rule3(int first_time)
{
 if ((c2.location != BRUTE_FORCE) ||

 (c2.matched != FALSE))
 return(FALSE);

 if (!first_time)
 goto cont7_continue;

 FOREACH(c3)
 {
 if ((TIMESTAMP(c2) > TIMESTAMP(c3)) &&

 (c2.eid != c3.eid) && (c2.shape == c3.shape) &&
 (c3.location == BRUTE_FORCE) && (c3.matched == FALSE))

 {
 goto found_a_cont7;

 }
cont7_continue: ;
 }
 return(FALSE);

found_a_cont7:
 push_ws(c2.CURS_POS, c3.CURS_POS, c3.CURS_POS, TIMESTAMP(c2), 3);
 return(TRUE);
}

175

/**/
/*** Fire the rules. ***/
/**/

void fire_rule0()
{
 c2.location = c1.color;
 push_wl(2, c2.CURS_POS, TIMESTAMP(c2));
 last_rule_fired = 0;
}

void fire_rule1()
{
 printf(“ match edges %d %d”, c2.eid, c3.eid);
 c2.matched = TRUE;
 push_wl(2, c2.CURS_POS, TIMESTAMP(c2));
 c3.matched = TRUE;
 push_wl(2, c3.CURS_POS, TIMESTAMP(c3));
 last_rule_fired = 1;
}

void fire_rule2()
{
 c2.location = BRUTE_FORCE;
 push_wl(2, c2.CURS_POS, TIMESTAMP(c2));
 last_rule_fired = 2;
}

void fire_rule3()
{
 printf(“ match edges %d %d”, c2.eid, c3.eid);
 c2.matched = TRUE;
 push_wl(2, c2.CURS_POS, TIMESTAMP(c2));
 c3.matched = TRUE;
 push_wl(2, c3.CURS_POS, TIMESTAMP(c3));
 last_rule_fired = 3;
}

/**/
/*** Find which rule to fire. ***/
/**/

void check_cont0(void)
{
 int cont;

 if (from_stack)
 {

cont = wsc.cont;
 pop_ws();
 rule_to_fire = NEG_TIME;

176

switch (cont)
{
case 0: if (join_from_cont0_rule0(!from_stack))

rule_to_fire = 0;
 break;

 case 2: if (join_from_cont0_rule2(!from_stack))
 rule_to_fire = 2;

 break;
}

 }
 else
 {

pop_wl();
if (join_from_cont0_rule0(!from_stack))
 rule_to_fire = 0;

 else if (join_from_cont0_rule1(!from_stack))
rule_to_fire = 1;

 else if (join_from_cont0_rule2(!from_stack))
rule_to_fire = 2;

else rule_to_fire = NEG_TIME;
 }
}

void check_cont1(void)
{
 if (from_stack)

pop_ws();
 else pop_wl();

 if (join_from_cont1(!from_stack))
rule_to_fire = 1;

 else rule_to_fire = NEG_TIME;
}

void check_cont2(void)
{
 int cont;

 if (from_stack)
 {

 cont = wsc.cont;
pop_ws();
 rule_to_fire = NEG_TIME;
 switch (cont)
 {
case 0: if (join_from_cont2_rule0(!from_stack))

rule_to_fire = 0;
break;

case 1: if (join_from_cont2_rule1(!from_stack))
rule_to_fire = 1;

break;

177

 case 2: if (join_from_cont2_rule2(!from_stack))
 rule_to_fire = 2;

 break;
 case 3: if (join_from_cont2_rule3(!from_stack))

 rule_to_fire = 3;
 break;

 }
 }
 else
 {

pop_wl();
 if (join_from_cont2_rule0(!from_stack))

rule_to_fire = 0;
else if (join_from_cont2_rule1(!from_stack))

rule_to_fire = 1;
 else if (join_from_cont2_rule2(!from_stack))

rule_to_fire = 2;
else if (join_from_cont2_rule3(!from_stack))

rule_to_fire = 3;
else rule_to_fire = NEG_TIME;

 }
}

/**/
/*** Execute the production system. ***/
/**/

void execute_production_system()
{

/* Get next dominant object. */
 /* While there are more objects to */
 /* process... */

 dom_container = get_next_dom_object();
 while (dom_container >= 0)
 {

 /* Find out which rule to fire based */
 /* on the container of the dom obj. */

switch (dom_container)
{
case 0: check_cont0();

 break;
 case 1: check_cont1();

break;
 case 2:
case 3: check_cont2();

 break;
}

 /* Fire the proper rule. */
switch(rule_to_fire)
{

178

case 0: fire_rule0();
break;

case 1: fire_rule1();
 break;

 case 2: fire_rule2();
 break;

case 3: fire_rule3();
break;

}

/* Get next dominant object. */
 dom_container = get_next_dom_object();
 }
}

/**/
/*** Set up the initial data set. ***/
/**/

void init_data(void)
{

/* No last rule fired. */
 /* We’re not yet done with the pgm. */

 last_rule_fired = NEG_TIME;
 done = FALSE;

 printf(“OPS5c - LEAPS-based OPS5 Compiler\n”);
 printf(“Release 5.4 (under developement)\n”);
 printf(“(C) 1988,1989 D.P.Miranker, B.J.Lofaso,”);
 printf(“ A.Chandra Univ. of Texas at Austin\n”);
}

/**/
/*** Insert a data tuple item. ***/
/**/

int get_token(char t[])
{
 int t_len;

 t_len = strlen(t) - 1;
 if (t[t_len] == R_PAREN)

t[t_len] = NULL_CHAR;

 if (strcmp(t, “false”) == 0)
return FALSE;

 if (strcmp(t, “true”) == 0)
return TRUE;

 if (strcmp(t, “start”) == 0)
return START;

 if (strcmp(t, “blue”) == 0)

179

return BLUE;
 if (strcmp(t, “green”) == 0)

 return GREEN;
 if (strcmp(t, “white”) == 0)

return WHITE;
 if (strcmp(t, “orange”) == 0)

return ORANGE;
}

void insert_data_tuple(void)
{
 struct pile t_pile;
 struct piece t_piece;
 struct edge t_edge;

 char cont_name[TOKEN_LEN]; /* Container name. */
 char field_name[TOKEN_LEN]; /* Field name. */
 int i1, i2;
 char ch1;
 char s1[TOKEN_LEN], s2[TOKEN_LEN],
 s3[TOKEN_LEN], s4[TOKEN_LEN],
 s5[TOKEN_LEN], s6[TOKEN_LEN],
 s7[TOKEN_LEN];

/* Scan the container name. */
 sscanf(t_ptr2, “%s”, cont_name);

/* For each container type, scan the */
/* line, add the data values. */
/* Insert into container. */
 /* Push onto the wait list. */
/* Return from this insertion. */

 if (strcmp(cont_name, “pile”) == 0)
 {

sscanf(t_ptr2, “%s %s %s”, cont_name, s1, s2);
t_pile.id = get_token(s2);
INS(cont0, t_pile, c0);
push_wl(0, c0.CURS_POS, TIMESTAMP(c0));
return;

 }
 if (strcmp(cont_name, “piece”) == 0)
 {

sscanf(t_ptr2, “%s %s %d %s %s”, cont_name, s1, &i1, s2, s3);
t_piece.pid = i1;
t_piece.color = get_token(s3);
INS(cont1, t_piece, c1);
push_wl(1, c1.CURS_POS, TIMESTAMP(c1));
return;

 }
 if (strcmp(cont_name, “edge”) == 0)

180

 {
sscanf(t_ptr2, “%s %s %d %s %d %s %c %s %s %s %s”,
cont_name, s1, &i1, s2, &i2, s3, &ch1, s4, s5, s6, s7);
 t_edge.pid = i1;
t_edge.eid = i2;
t_edge.shape = ch1 - ‘A’ + A;
t_edge.matched = get_token(s5);
t_edge.location = get_token(s7);
INS(cont2, t_edge, c2);
 push_wl(2, c2.CURS_POS, TIMESTAMP(c2));
return;

 }
}

/**/
/*** Main routine for the program. ***/
/**/

void main(void)
{

/* Set initial data. */
/* While there’s more input... */

 init_data();
 while (!done)
 {

/* Print the prompt. */
/* Get a line of data. */
 /* Find the open paren (fake LISP). */
/* If there is an open paren... */

 printf(“\nTop Level> “);
gets(inp_line);
t_ptr = strchr(inp_line, L_PAREN);
 if (t_ptr != NULL)
{

 /* Skip to the next char. */
/* Find the end of the token. */
/* Clear out token. */
/* Copy the token. */

t_ptr2 = ++t_ptr;
while (((char) *t_ptr2 != SPACE) &&

((char) *t_ptr2 != R_PAREN))
{
t_ptr2++;

}
memset(token, 0, TOKEN_LEN);
strncpy(token, t_ptr, (t_ptr2 - t_ptr));

/* ‘exit’ means leave the program. */
/* ‘run’ means execute the system. */
/* ‘make’ means load a data item. */

if (strcmp(token, EXIT) == 0)

181

{
printf(“Exiting system.\n”);
done = TRUE;

}
else if (strcmp(token, RUN) == 0)

{
execute_production_system();
fprintf(stderr, “No instances in conflict set.\n”);

}
else if (strcmp(token, MAKE) == 0)

insert_data_tuple();
}

 }
}

182

Appendix C

Quicksort sample code

This appendix lists both the BSD and Predator quicksort code:

BSD Quicksort

void qsort(base, n, size, compar)
char*base;
int n;
int size;
int (*compar)();
{
 register char c, *i, *j, *lo, *hi;
 char *min, *max;
if (n <= 1)

return;
qsz = size;
qcmp = compar;
thresh = qsz * THRESH;
mthresh = qsz * MTHRESH;
max = base + n * qsz;
if (n >= THRESH) {

 qst(base, max);
hi = base + thresh;

} else {
hi = max;

}
for (j = lo = base; (lo += qsz) < hi;)
if (qcmp(j, lo) > 0)

j = lo;
if (j != base) {

for (i = base, hi = base + qsz; i < hi;) {
c = *j;
j++ = *i;
*i++ = c;

}
 }

183

for (min = base; (hi = min += qsz) < max;) {
while (qcmp(hi -= qsz, min) > 0)
if ((hi += qsz) != min) {

for (lo = min + qsz; --lo >= min;) {
c = *lo;
for (i = j = lo; (j -= qsz) >= hi; i = j)
*i = *j;

*i = c;
}

 }
 }
}

static qst(base, max)
char *base, *max;
{
register char c, *i, *j, *jj;
register int ii;
char *mid, *tmp;
int lo, hi;

lo = max - base;/
do{
mid = i = base + qsz * ((lo / qsz) >> 1);
if (lo >= mthresh) {

j = (qcmp((jj = base), i) > 0 ? jj : i);
if (qcmp(j, (tmp = max - qsz)) > 0) {

j = (j == jj ? i : jj);
if (qcmp(j, tmp) < 0)
j = tmp;

}
if (j != i) {

ii = qsz;
do{
c = *i;
*i++ = *j;
*j++ = c;

} while (--ii);
}
for (i = base, j = max - qsz; ;) {
while (i < mid && qcmp(i, mid) <= 0)
i += qsz;

while (j > mid) {
if (qcmp(mid, j) <= 0) {

j -= qsz;
continue;

}
tmp = i + qsz;/
if (i == mid) {

mid = jj = j;
} else {

184

jj = j;
j -= qsz;

}
goto swap;

}
if (i == mid) {

break;
} else {

jj = mid;
tmp = mid = i;/
j -= qsz;

}

swap:
ii = qsz;
do{
c = *i;
*i++ = *jj;
*jj++ = c;

} while (--ii);
i = tmp;

}
i = (j = mid) + qsz;
if ((lo = j - base) <= (hi = max - i)) {

if (lo >= thresh)
qst(base, j);
base = i;
lo = hi;

} else {
if (hi >= thresh)

qst(i, max);
max = j;

}
} while (lo >= thresh);

}

Predator quicksort

void quick(start_pos, end_pos, comp, size)
register CURS_POS start_pos;
register CURS_POS end_pos;
COMP comp;
int size
{
 register CURS_POS save;
 register int left_size, right_size;
 short select_size;
 short loop;

185

 short t_short;
 short ts2, ts3;

 if (start_pos == end_pos) /* If zero size, return. */
 return;

 asc.CURS_POS = start_pos; /* Set start position. */

 if (size <= 5) /* Base case - bubble sort. */
 {
 pivot.CURS_POS = start_pos;
 ADV(pivot);
 save = pivot.CURS_POS;

/* Outer loop. */
 for (select_size = size - 1; select_size > 0;
 select_size--)
 {

/* Inner loop. */
/* If out of order, save it. */
/* Continue if not done. */

 for (loop = 0; loop < select_size; loop++)
 {
 t_short = ((*comp)(asc.CURS_POS,
 pivot.CURS_POS));

 if (t_short < 0)
{
 asc.CURS_POS = pivot.CURS_POS;

 }
 if (loop < select_size - 1)
{

ADV(pivot);
 }
 }

/* If need to swap, do it. */
/* Set up for next iteration. */

 if (asc.CURS_POS != pivot.CURS_POS)
 SWAP(asc, pivot);
 asc.CURS_POS = start_pos;
 pivot.CURS_POS = save;
 }
 return; /* End base case. */
 }

/* Pick a pivot of 2nd item. */
 pivot.CURS_POS = start_pos;
 ADV(pivot);

/* Loop through for pivot */

186

for (loop = 0; loop < (size - 1); loop++)
 {

/* Compare first two... */
/* If not the same... */
/* Move if conveniently near end. */

 t_short = ((*comp)(asc.CURS_POS,
 pivot.CURS_POS));

if (t_short != 0)
{

 if (loop == (size - 2))
 {
 if (t_short > 0)
 {
 pivot.CURS_POS = asc.CURS_POS;

}
 break;

}
/* Look at last item. */
/* Compare three items. */
/* Take median for pivot. */

dsc.CURS_POS = end_pos;
ts2 = ((*comp)(pivot.CURS_POS,

 dsc.CURS_POS));
ts3 = ((*comp)(asc.CURS_POS,

 dsc.CURS_POS));
if (ts3 < 0)
{

 if (ts2 > 0)
{
 pivot.CURS_POS = dsc.CURS_POS;

 }
 else if (t_short > 0)

{
pivot.CURS_POS = asc.CURS_POS;

}
}
else
{

if (ts2 < 0)
{
 pivot.CURS_POS = dsc.CURS_POS;

 }
 else if (t_short < 0)

{
 pivot.CURS_POS =
 asc.CURS_POS;

}
 }
 break;

187

}
 asc.CURS_POS = pivot.CURS_POS;
 ADV(pivot);
}

/* Return if no work needed. */
 if (loop == (size - 1))
 return;

/* Main loop. Set the sizes. */
/* Set starting cursors. */
/* While there’s more to search. */
/* Scan right until find one */
/* bigger than pivot. */
/* Scan left until find one */
/* smaller than pivot. */
/* If past center, swap two items*/

left_size = right_size = 1;
 asc.CURS_POS = start_pos;
 dsc.CURS_POS = end_pos;
 while ((left_size + right_size) <= size)
{
while (((*comp)(asc.CURS_POS,

pivot.CURS_POS)) < 0)
 {
 left_size++;
 ADV(asc);
 }
 while (((*comp)(dsc.CURS_POS,
 pivot.CURS_POS)) >= 0)
 {
 right_size++;
 REV(dsc);
 }

if ((left_size + right_size) <= size)
 {
 if (asc.CURS_POS == pivot.CURS_POS)
 pivot.CURS_POS = dsc.CURS_POS;
 SWAP(asc, dsc);
 }
 }

/* Save position for second quick */
/* Swap pivot to middle. */
/* If partition should be sorted, */
/* do it. */
/* Same for other partition. */

save = dsc.CURS_POS;
 SWAP(asc, pivot);
 if (right_size > 3)
 {

188

 ADV(asc);
 quick(asc.CURS_POS, end_pos, comp,
 right_size - 2);
 }
 if (left_size > 1)
 quick(start_pos, save, comp, left_size - 1);
}

189

Appendix D

Benchmark source code

This appendix lists the benchmarking program (array version) for the Predator spelling

checker benchmark:

#include <stdio.h>

#define EXIT_ERROR 1
#define EXIT_NORMAL 0
#define MAX_WORD_SIZE 32

struct word_elem
{
 char wrd[32];
};

SCHEMA dict_struct ON ELEMENT word_elem = array[25000];
dict_struct the_dict;
CURSOR c ON the_dict;

SCHEMA doc_struct ON ELEMENT word_elem = array[10000];
doc_struct document;
CURSOR c2 ON document;

void read_in_dict ()
{
FILE *dict_file;
 int word_count = 0;
 struct word_elem t_word;
 char *tc;
 int i;

 printf (“Initializing”);
 dict_file = fopen (“words”, “r”);
 if (dict_file == NULL)
 {

printf (“\nCould not open dictionary.\n”);
exit(EXIT_ERROR);

190

}

while (1)
 {
tc = t_word.wrd;
i = 0;
do

*tc = getc (dict_file);
while (!feof (dict_file) && i++ < MAX_WORD_SIZE && *tc != ‘\n’ &&

tc++);
*tc = ‘\0’;
if (i == 0)

break;

INS (the_dict, t_word, c);

if ((++word_count % 100) == 1)
{

printf (“.”);
fflush (stdout);

}
}
 fclose (dict_file);
 printf (“\nThe dictionary contains %d words.\n”, word_count);
}

void process_input_file ()
{
 struct word_elem t_word;
 char *t_ptr;
 char t_char;

 while (!feof (stdin))
 {
t_ptr = t_word.wrd;
*t_ptr = ‘\0’;

while (!feof (stdin))
{
t_char = fgetc (stdin);
if (isalpha (t_char))

break;
}

if (feof(stdin))
return;

while (!feof (stdin))
{
if (isalpha (t_char))

*t_ptr++ = t_char;

191

else
{

*t_ptr = ‘\0’;
break;

}
t_char = fgetc (stdin);
}

for (t_ptr = t_word.wrd; *t_ptr; t_ptr++)
if (isupper (*t_ptr))

*t_ptr = tolower (*t_ptr);

RESET_CURSOR (c2, CONT_START);
FIND (c2, strcmp (wrd, t_word.wrd) == 0);
if (LAST_CURS_OP (c2) == EOR)
{

INS (document, t_word, c2);
}
}
}

void print_output_data ()
{
 FOREACH (c2)
 {
RESET_CURSOR (c, CONT_START);
 FIND (c, strcmp (c.wrd, c2.wrd) == 0);
if (LAST_CURS_OP (c) == EOR)

printf (“ %s”, c2.wrd);
}
 printf (“\n”);
}

void main (void)
{
 read_in_dict ();
 process_input_file ();
 print_output_data ();
 exit (EXIT_NORMAL);
}

192

Appendix E

Supermarket macros

This appendix lists the macros necessary to implement the operations for the supermarket

example described in Section 1.2. Note that the following code examples could be placed

directly inline in the source program)1:

• A customer whose name is cust_name leaves the middle of a line to do more shopping:

MACRO leave_line(container, cust_name)
{
 RESET(container.cursor, CONST_START);
 FIND(container.cursor, (STRING) l_name == cust_name);
 DELETE(container.cursor);
};

• All customers in line B with 10 or fewer items moves to line A:

MACRO express_line(lineA, lineB)
{
 FOREACH(lineB.cursor)
 {
 if (num_items <= 10)
 {
 GETREC(lineB.cursor, temp_customer);
 INSERT(lineA, temp_customer, t_cursor);
 DELETE(lineB.cursor);
 }
 }

• A new customer moves in line in front of customer cust_name:

1. The need for composite functions has been recognized previously [Boo87, McN86a,
McN86b]. My macros are a slightly modified version of the same concept.

193

MACRO add_customer(container, cust_name, new_customer)
{
 FIND(container.cursor, (STRING) l_name == “Smith”);
 INSERT(container, new_customer,container.cursor, BEFORE_CURSOR);
};

• Every third customer in a line puts a candy bar in their basket:

MACRO add_third(container, item)
{
 count = 0;
 FOREACH(container.cursor)
 {
 if (count % 3 == 0)
 {
 candy_bought = TRUE;
 num_items++;
 }
 }
};

194

Appendix F

Functional templates

This appendix contains the functional templates used by Predator for the basic set of primi-

tive functions of the DS realm. Sections which are underlined are those which are added by

the layers The comments in the templates below list sample layers that might implement the

snippet function, or sample actions those layers might perform in the snippet function.

F.1 Snippet functions

The following table details the snippet functions implemented in the Predator compiler:

Table F.1: Snippet functions

Snippet Function Description

special_processing Allows for actions to occur before or after the primitive
function such as element locking and before actions

set_to_first_item Set the cursor to the first element in the container
(based on the cursor’s scanning layer)

past_end_of_container? Is the cursor past the last element of the container?

disqualification_predicate Boolean condition(s) which would disqualify this ele-
ment from being used (such as delflag)

advance_cursor Move the cursor to the next element in the container

set_status_flag Set the status flag for the cursor based on the results of
the last advance_cursor operation

additional_fields Set additional fields (such as segmentation and links)

set_cursor/allocate Allocate memory for the element, and set the cursor to
point to the new element

copy_record Copy the record into the allocated storage

init_special_flds Intialize special fields for the insertion (such as seg-
mentation)

195

F.2 Delete

special_processing(); /* Before actions, concurrency... */
set_del_fields(); /* Set delflag field, unlink from */

/* lists, free memory. */
special_processing(); /* After actions, concurrency... */

F.3 Reset

special_processing(); /* Before actions, concurrency... */
set_to_first_item(); /* Scanning layer implements this. */
while (!(past_end_of_container?()) &&

!(cursor’s predicate) &&
(disqualification_predicate()))

{
advance_cursor(); /* Scanning layer. */

}
set_status_flag(); /* Did we find an item? */
additional_fields(); /* Such as additional segment cursors */
special_processing(); /* After actions, concurrency... */

F.4 Advance/Reverse

special_processing(); /* Before actions, concurrency... */
advance_cursor(); /* Scanning layer. */
while (!(past_end_of_container?()) &&

!(cursor’s predicate) &&
(disqualification_predicate()))

{
advance_cursor(); /* Scanning layer. */

}
set_status_flag(); /* Did we find an item? */
additional_fields(); /* Such as additional segment cursors */
special_processing(); /* After actions, concurrency... */

attach_elem Attach the element to the data structure (such as linked
lists, binary trees, and indexes

move_elem_within_cont Move the updated element to its new location in the
data structure(s) defined by the layers

set_del_fields Set the fields for deletion

Table F.1: Snippet functions

Snippet Function Description

196

F.5 Foreach

special_processing(); /* Before actions, concurrency... */
set_to_first_item(); /* Scanning layer implements this. */
while !(past_end_of_container?())
{
if ((cursor’s predicate) &&

!(disqualification_predicate()))
{

/* Code fragment for FOREACH goes here */
}
advance_cursor(); /* Scanning layer. */

}
special_processing(); /* After actions, concurrency... */

F.6 Find

special_processing(); /* Before actions, concurrency... */
while !(past_end_of_container?())
{
if ((cursor’s predicate) && (find predicate) &&

!(disqualification_predicate()))
{

break;
}
advance_cursor(); /* Scanning layer. */

}
set_status_flag(); /* Did we find an item? */
additional_fields(); /* Such as additional segment cursors */
special_processing(); /* After actions, concurrency... */

F.7 Insert

special_processing(); /* Before actions, concurrency... */
set_cursor/allocate(); /* Allocate memory, move to next array*/

/* element, get avail item... */
copy_record(); /* Terminal layer. */
init_special_flds(); /* Delflag, segment, size... */
attach_elem(); /* Index, predicate index, links... */
special_processing(); /* After actions, concurrency... */

197

F.8 Update

special_processing(); /* Before actions, concurrency... */
update field; /* Done by compiler. */
move_elem_within_cont(); /* Only for index, ordered, link layers/
special_processing(); /* After actions, concurrency... */

F.9 Others

There are other primitive functions (such as swap, getrec) whose templates are nothing more

than a single call to a snippet function, surrounded by two <special processing> func-

tions.

Vita

Martin J. Sirkin was born in Boston, Massachusetts, and graduated from Sharon High

School in 1979. He received his Bachelor of Science degree from the California Institute of

Technology, in Pasadena, in 1984 and Master of Science from the University of Washington, in

Seattle, in 1988. He completed his doctoral studies at the University of Washington in 1994.

Marty has worked for IBM in Austin, Texas since 1989. He is currently a staff program-

mer in the Personal Systems Products division. His work in databases, graphical user inter-

faces, and distributed computing, has resulted in nineteen technical disclosures and four

patents filed on behalf of IBM.

The following is a list of Marty’s previous publications:

1. M. Sirkin, Configuring Remote Data Services (pt 1), IBM Personal Systems Developer,

4: 115-123, Fall 1990.

2. M. Sirkin, Installing and Configuring the DOS Database Requester, IBM Personal

Systems Technical Solutions, 2: 47-50, 1991.

3. M. Sirkin, Configuring Remote Data Services (pt 2), IBM Personal Systems Developer,

1: 94-102, Winter 1991.

4. D. Batory, V. Singhal, and M. Sirkin, Implementing a domain model for data struc-

tures, International Journal of Software Engineering and Knowledge Engineering,

2(3): 375-402, September 1992.

5. M. Sirkin, D. Batory, and V. Singhal, Software components in a data structure pre-

compiler, In Proceedings of the 15th International Conference on Software Engineer-

ing, Baltimore MD, 437-446, May 1993.

6. J. Thomas, D. Batory, V. Singhal, and M. Sirkin, A Scalable Approach to Software

Libraries, In Proceedings of the 6th Annual Workshop on Software Reuse, Owego, NY,

November 1993.

7. D. Batory, V. Singhal, J. Thomas, and M. Sirkin, Scalable Software Libraries, In Pro-

ceedings of the ACM SigSoft ‘93 Conference, Los Angeles, CA, December 1993.

