
Lift ing Transformational  Models  
of  Product  Lines:  A Case Study

Abstract. Model driven engineering (MDE) of software product lines (SPLs)
merges two increasing important paradigms that synthesize programs by
transformation. MDE creates programs by transforming models, and SPLs
elaborate programs by applying transformations called features. In this paper,
we present the design and implementation of a transformational model of a
product line of scalar vector graphics and JavaScript applications. We ex-
plain how we simplified our implementation by lifting selected features and
their compositions from our original product line (whose implementations
were complex) to features and their compositions of another product line
(whose specifications were simple). We used operators to map higher-level
features and their compositions to their lower-level counterparts. Doing so
exposed commuting relationships among feature compositions in both prod-
uct lines that helped validate our model and implementation.

Keywords. transformation reuse, code generation, model composition, high-
level transformations, features, product lines, model driven engineering.

1 Introduction
Model driven engineering (MDE) offers the potential to automate manual, error prone,
and time intensive tasks and replace them with high-level modeling and code genera-
tion. Modeling software has a number of advantages including strategically approach-
ing problems top-down, documenting software structure and behavior, and reducing the
time and cost of application development. Feature-oriented programming (FOP)
solves a complementary problem of building families of similar programs (a.k.a. soft-
ware product lines (SPLs)). Features are increments in program development and are
transformations (i.e., functions that map a simpler program to a more elaborate pro-
gram). Both paradigms naturally invite descriptive models of program construction that
are purely transformation-based (i.e., program designs are expressed as a composition
of functions) and their integration is synergistic [50][51].
Our paper makes three contributions. First, we explain how we designed and imple-
mented a product line of scalar vector graphics (SVG) and JavaScript applications. We
combine FOP and MDE in a way that allows us to use the language of elementary math-
ematics to express our product line designs in a straightforward and structured way, and
to illustrate how transformational models of SPLs can be defined and implemented.
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Second, we explain how we simplified our effort by “lifting” selected features and their
compositions from our original product line (whose implementations were complex and
tedious) to features and their compositions to another product line (whose specifications
were simple). Mathematical expressions define transformation paths that combine fea-
ture composition and model translation, exposing commuting relationships among
transformations that helped validate our model and implementation. Third, we illustrate
the generality of lifting by relating it to our experiences in building the AHEAD Tool
Suite, which is a very different product line than our SVG+JavaScript SPL. We begin
with an overview of the domain of our primary case study.

2 MapStats
MapStats is an application that displays population statistics for different US states us-
ing SVG and JavaScript [39]. Scalar vector graphics (SVG) is a World Wide Web Con-
sortium (W3C) language for describing two-dimensional graphics and graphical appli-
cations. JavaScript is a scripting language that can be embedded within SVG to generate
dynamic content.
MapStats displays an interactive map of the US, as shown in Fig. 1. Users can alter the
map selectively to display rivers, lakes, relief, and population diagrams. A map naviga-
tor allows users to zoom and pan the primary map. 
When a user moves a mouse over a state, various population statistics for the state are
shown in text and graphical charts. Demographic attributes can be based on sex, age,
and race. Statistics with charts can also be shown. We refactored MapStats into a base
application and optional features to create a product line of variants by composing the

Fig. 1.   MapStats Application With All Features



3

base with desired features. Fig. 2 shows a fragment of a customized MapStats applica-
tion that excludes statistical charts.
Feature diagrams are a standard way to express a product line [16][29]. A feature dia-
gram is an and-or tree, where terminals represent primitive features and non-terminals
are compound features. Fig. 3a shows a portion of the feature diagram for the Map-
Stats product line; Fig. 3b lists the actual names and descriptions of the features that
we created. (Not shown in Fig. 3 are the compatibility constraints among features, i.e.,
selecting one feature may require the selection or deselection of other features [6][16]).
MapStats features include: each statistic that can be displayed, each map layer, each
map control, and run-time display options. For example, the Rivers feature adds rivers
to the map of US states and the RiversControl feature adds a control that lets the user
turn the river layer on and off at run time. 
Again, Fig. 3a is a portion of the feature diagram for MapStats. We further decomposed
the terminal Charts feature of Fig. 3a into a product line of charts. Fig. 4a shows its
feature diagram and Fig. 4b lists the actual names and descriptions of the Charts fea-
tures that we created. Charts features used three data sets: age, ethnic, and Hispanic.
(The Hispanic data set was an artifact of the original application which we left intact).
We used features to specify chart types: bar, stacked-bar, and pie. The combination of
chart types and data sets specified whole charts. So if two data sets and two chart types
were specified, four charts would be created representing each combination. 
Thus, we began our design in the standard way: we created a feature diagram for our
product line. The next step was to implement features as transformations.

Fig. 2.   A Customized MapStats Application
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3 A Transformation-Based Model of Product Lines
GenVoca is a compositional paradigm and methodology for defining product lines sole-
ly by transformations: it does not promote any particular implementation technology or
tool. Instead, it stresses that adding a feature to a program (however the program is rep-
resented) is a transformation that maps the original program to an extended program.
There is a long history of creating and implementing GenVoca product lines in different
domains (e.g. [8][10]). We review its key ideas and then explain our model of MapStats.

(a)

(b)

Fig. 3.   MapStats Feature Diagram and Feature Descriptions

Feature Description
Base The base application
USStates Displays map of US States
Legend Adds chart displays and statistics
Charts Adds charts
Households Displays the number of households/state
Sex Displays the ratio of males to females
MedianAge Displays the median age
Population Displays the total population
Navigator Adds a control to let users pan and zoom the map
Coordinates Shows the xy coordinates of the mouse
Relief Adds relief to the map
PopCircles Adds population circles to indicate the popula-

tion of each state
Rivers Adds rivers to the map
Lakes Adds lakes to the map
ReliefControl Adds a control to turn relief on and off
PopCirclesControl Adds a control to turn population circles on and 

off
RiversControl Adds a control to turn rivers on and off
LakesControl Adds a control to turn lakes on and off
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3.1 GenVoca
A GenVoca model of a SPL is a set of base programs and features (transformations) that
extend or elaborate programs. An example model G={f,h,i,j} contains the following
parts: Base programs are values (0-ary functions):

f // base program with feature f
h // base program with feature h

and features are transformations (unary functions): 
i•x // adds feature i to program x
j•x // adds feature j to program x

Fig. 4.   Chart Feature Model and Feature Descriptions

Feature Description
ChartBase An empty collection of charts
Pie Creates a pie chart for each data set
Bar Creates a bar chart for each data set
StackedBar Creates a stacked-bar chart for each data set
Age Creates charts with age data for each chart type, 

grouped by age ranges
Under5 Adds under 5 age group
5-17 Adds 5-17 age group
18-21 Adds 18-21 age group
22-29 Adds 22-29 age group
30-39 Adds 30-39 age group
40-49 Adds 40-49 age group
50-64 Adds 50-64 age group
65UP Adds 65 and up age group
Ethnic Creates charts with ethnic data
Hispanic Adds Hispanic data
Asians Adds Asians data
AfricanAmerican Adds African American data
Whites Adds Whites data

(a)

(b)
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• denotes function composition. The design of a program is expression:
p1 = j•f // program p1 has features j and f
p2 = j•h // program p2 has features j and h
p3 = i•j•h // program p3 has features i, j, and h

The set of programs defined by a GenVoca model is its product line. Expression opti-
mization is program design optimization, and expression evaluation is program synthe-
sis [7][45]. Tools that validate feature compositions are discussed in [6][47]. Note that
features (transformations) are reusable: a feature can be used in the creation of many
programs in a product line.
A fundamental characteristic of features is that they “cross-cut” implementations of
base programs and other features. That is, when a feature is added to a program, new
classes can be added, new members can be added to existing classes, and existing meth-
ods can be modified. There is a host of technologies — including aspects, languages for
object-oriented collaborations [10], and rewrite rules in program transformation sys-
tems [11] — that can modularize and implement features as transformations. In Map-
Stats, features not only refine JavaScript programs by adding new classes, methods and
statements, but also new graphics elements can be added to SVG programs as well.
The relationship of a GenVoca model (i.e., 0-ary and unary functions) to a feature dia-
gram is straightforward: each terminal of a feature diagram represents either a base pro-
gram or a unary function. Non-terminal features correspond to GenVoca expressions. 

3.2 A GenVoca Model of MapStats
A GenVoca model of MapStats has a single value (Base of Fig. 3); its unary functions
are the remaining features of Fig. 3 and the features of the Charts feature diagram:

MapStats = { Base, USStates, … // features from Fig. 3
ChartBase, Pie, … } // features from Fig. 4

To simplify subsequent discussions, instead of using the actual names of MapStats
features, we use subscripted letters. M0 is the base program of MapStats, M1…Mn are
the (unary function) features of the MapStats feature diagram and C0…Cm are (unary
function) chart features:

MapStats = { M0 … Mn, // features from Fig. 3
C0 … Cm } // features from Fig. 4

An application A in the MapStats product line is an expression:
A = (C2•C1•C0)•M1•M0 (1)

That is, application A is constructed by elaborating base program M0 with a sequence of
M features followed by a sequence of C features, where subexpression (C2•C1•C0) syn-
thesizes the JavaScript that displays one or more charts. The original MapStats applica-
tion Orig, which is part of our product line, is synthesized by composing all features:

Orig = (Cm•…•C0)•Mn•…•M0
Each MapStats feature can encapsulate SVG and JavaScript refinements (cross-cuts)
of the base application (M0). 
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3.3 Implementation Overview
Our implementation of MapStats was straightforward. Our base program (M0) was a
pair of SVG and JavaScript programs. Each MapStats feature (Mi) could modify the
SVG program, the JavaScript program, or both. We used the AHEAD Tool Suite (ATS)
to implement MapStats features [9], and in particular, the XAK tool. 
XAK is both a language to refine XML documents and a tool to compose XML docu-
ments with their refinements [3]. A XAK base document is an XML file containing la-
beled variation points or join points to identify positions in a document where modifi-
cations can take place. A XAK refinement (unary function) is an XML file that begins
with a refine element. Its children define a set of modifications, where each modifi-
cation pairs an XPath expression with an XML fragment. The XPath expression identi-
fies variation points or join points in an XML document, and the XML fragment is ap-
pended as a child node of the selected parent node(s). XAK can also prepend, replace,
and delete nodes as well as perform operations on attributes, sibling nodes, and text
nodes. However, our need was limited to the appending of child nodes.
To illustrate, Fig. 5a shows an elementary base document; Fig. 5b is a XAK refinement
that appends an XML tree as another child of <mynode>. In Aspect-Oriented Program-
ming (AOP) terms, 'xr:at' specifies a pointcut as an XPath expression, which in this
case looks for nodes called 'mynode'. The 'xr:append' defines the advice action and
body. The action for this example is to append 'mychildnode' with a data attribute of
'2'. Applying the refinement to the base yields the composite document of Fig. 5c.1 

As SVG documents are XML documents, XAK provided the language and tool for
SVG document modification. However, ATS does not have a language to express Java-
Script refinements, and a tool to compose refinements with a base JavaScript program.
To circumvent this, we used XML to encode manually both JavaScript and JavaScript
refinements, and used XAK to compose them. The resulting JavaScript program was
produced by stripping XML tags.

1. Aspects can be implemented by transformations; aspect compilers transform an input program
to a “woven” program where additional code has been appropriately inserted [36].

<mynode>
<mychildnode data="1">
</mychildnode>

</mynode>

<xr:refine xmlns:xr= …

  <xr:at select="//mynode">
    <xr:append>
      <mychildnode  data="2">
      </mychildnode>
    </xr:append>
  </xr:at>
</xr:refine>

(a) base

(b) refinement

(c) composed

<mynode>
  <mychildnode data="1">
  </mychildnode>
  <mychildnode data="2">
  </mychildnode>
</mynode>

Fig. 5.   XAK base, refinement, and Composition
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4 Lifting
It quickly became evident that MapStat chart features C0…Cm were extremely tedious
to write. We applied a key principle of MDE to save us effort: we created a high-level
Domain-Specific Language (DSL) to specify charts and their features. Fig. 6 shows a
fragment of a chart spec. A chart XML element defines a chart and an item defines an
element in the chart. XML attributes can change the type of chart (pie, bar, or stacked-
bar) as well as the names, colors, and field attribute codes for chart items.

Given chart specs, it is easy to write chart features (transformations). For example, a
XAK refinement of Fig. 6 that appends the age data item for 18-21 is shown in Fig. 7.
The underlined node defines an XPath expression (pointcut) that identifies all charts
with the attribute @datatype='age-population'; such a chart would have the item
AGE_18_21 appended to it. (In AOP-speak, this advice is homogenous [14]). 

We wrote XSLT transformations to map a chart spec (or chart spec refinement) to its
corresponding MapStat chart feature implementation (i.e., a JavaScript refinement).
XSLT was chosen for transformations since our models were XML-based. The image
that is represented by the composite chart (Fig. 6 composed with Fig. 7) is shown in Fig.
8 where all three age groups are displayed. In general, we found chart DSL specifica-
tions to be 4-10 times shorter than their generated JavaScript counterparts.2

2. Our choice of using XML was due to the fact that SVG is an XML dialect, and using XSLT
was an obvious choice for a transformation language at the time. After our work on MapStats,
better model representations and transformation languages have emerged (e.g. [28]). Our results
are general and not specific to XML and XSLT.

Fig. 6.   A Chart Spec Fragment

<chart data-type=“age-population” type=“pieChart” …
<item attr=“AGE_30_39” color=“lightgreen” name= …
<item attr=“AGE_22_29” color=“lightcyan” name=…

</chart>

<xr:refine xmlns:xr="http://www.atarix.org/xmlRef …
<xr:at select="//chart[@data-type='age-population' …

<xr:append>
<item attr="AGE_18_21" color="cyan" …

</xr:append>
</xr:at>

</xr:refine>

Fig. 7.   Example Chart Feature

Fig. 8.   Pie Chart with Three Age Categories
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By lifting (raising) the level of abstraction of chart feature implementations, in effect
what we did was create another product line — a product line of charts. That is, we lifted
the chart features C0…Cm of MapStats into a separate GenVoca model called Charts:

Charts = { S0 … Sm }

where S0 was the base chart spec, and each Charts feature Si was a chart spec refine-
ment. Charts features are in 1-to-1 correspondence with their MapStats chart fea-
tures. XSLT transformations τ and τ’ defined this correspondence:

C0 = τ(S0) (2)

Ci = τ’(Si) // for all i=1…m (3)

τ and τ’ have very similar implementations: their difference is due to the type of their
argument: τ maps a Charts value to a MapStats function (i.e., JavaScript refinement);
τ’ maps a Charts function to a MapStats function.3 
Note that an operator maps an input function to an output function. τ’ is an operator
that maps a Charts refinement transformation to a MapStats refinement transforma-
tion. τ maps a Charts 0-ary function S0 to the MapStats unary function C0. Operators
τ and τ’ have a basic commuting relationship which we explain in Section 6.
Even though we now used lifted features, the way we specified a target MapStats ap-
plication changed minimally. We still used the original feature diagram of MapStats to
specify a MapStats application and to create its GenVoca expression (which starts
with the base program M0 and applies MapStats features to elaborate it). But instead of
implementing chart features C0…Cm directly in terms of JavaScript refinements, we used
chart specs and chart refinements S0…Sm. To synthesize a MapStats application A
(equation (1)), we rewrote its expression using (2) and (3):

A = (C2•C1•C0)•M1•M0 // original MapStats expr

= τ’(S2)•τ’(S1)•τ(S0)•M1•M0 // lifting of Ci features (4)

and evaluated (4) to synthesize A. We call the raising of features and their composi-
tions from one product line to another lifting. Lifting can be applied to any GenVoca
product line. Operators (like τ and τ’) are used to define maps between lifted features
and their unlifted counterparts. Constraints that govern the composition of original
MapStats features remain unchanged. 

5 Implementation
In this section, we illustrate some of the features and mappings discussed earlier to
make our discussions concrete.
A chart spec defines one or more charts. Each chart is implemented by a unique JavaS-
cript class. For example, a pie chart that displays age information and includes the range
of 18-21 is defined as a JavaScript class (below named agePie) that has a method
(buildData) that populates this particular data set:

3. τ is really a special case of τ’. For this paper, we find it useful to distinguish τ from τ’.
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function agePie() { // JavaScript class definition
…

this.buildData = function() { // buildData method
…
this.chartAttrArray.push("AGE_18_21");
this.chartNameArray.push("18-21");
this.chartColorArray.push("cyan");
… 

}
}

At run-time, a JavaScript object is created for each chart, populated with data, and then
displayed:

var agepie = new agePie(); // instantiate object
agepie.buildData(); // populate data
agepie.showData(); // display

To see how this JavaScript class was synthesized, let us look at a Charts feature ex-
pression that could generate it:

AGE_18_21•Age•Pie•ChartBase

That is, the chart spec begins with ChartBase, it is refined to a pie chart that displays
age information (Age•Pie), and then the age category 18-21 is added. Internally, our
tools generate unique names for each chart. The manufactured name given to the chart
of our example is “agePie”.
Let’s now focus on the AGE_18_21 feature. The XAK refinement that defines it was
depicted in Fig. 7, which we reproduce below:

<xr:refine xmlns:xr="http://www.atarix.org/xmlRef …
<xr:at select="//chart[@data-type='age-population' …
<xr:append>

<item attr="AGE_18_21" color="cyan" …
</xr:append>

</xr:at>
</xr:refine>

This transformation adds the age category 18-21 to all charts of a charts spec that dis-
play age information. In our example, there is only one chart, agePie. The underlined
code denotes the pointcut (XPath expression) that captures the relevant charts to modi-
fy.
Let’s see the result of transforming the AGE_18_21 Charts feature into its correspond-
ing MapStats feature (denoted AGE_18_21mapstats). The τ’ operator maps
AGE_18_21 to AGE_18_21mapstats, where a fragment of AGE_18_21mapstats is:

<xr:refine … >
<xr:at select="//function[@data-type='age-population'] 

[@parentId='ChartArea2'][@name='buildData']"…>
<xr:append>

<statement>

this.chartAttrArray.push("AGE_18_21");

this.chartNameArray.push("18-21");

this.chartColorArray.push("cyan");
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</statement>

</xr:append>

</xr:at>

</xr:refine> (5)

That is, the above XAK refinement adds the JavaScript code that is double-underlined
to the buildData method of each JavaScript class of a chart that displays age informa-
tion. Note that the underlined code denotes the pointcut (XPath expression) that cap-
tures the relevant buildData methods. So the translation of AGE_18_21 to
AGE_18_21mapstats maps a pointcut (XPath expression) whose joinpoints are in chart
specs to a pointcut whose joinpoints are in JavaScript programs. Also, the addition of a
chart element is mapped to the addition of statements in the JavaScript method build-
Data.
As mentioned earlier, operators τ and τ’ are implemented in XSLT. They look for pat-
terns in charts specifications and instantiate JavaScript code templates. For example,
when a 'chart' element is encountered in a chart spec, a corresponding JavaScript class
is added with the methods buildData and showData. When an 'item' element is
found in a chart spec, statements are added to an appropriate JavaScript method. As an
example, a fragment of the XSLT definition of τ’ is shown below:

<xsl:template match="xr:at/xr:append/c:item">
… map Charts pointcut to MapStats pointcut…

<xr:at select="{$path}">

<xr:append>

<xsl:variable name="attr" select="@attr"/>

<xsl:variable name="color" select="@color"/>

<xsl:variable name="name" select="@name"/>

<statement>

this.chartAttrArray.push("<xsl:value-of select="$attr"/>");

this.chartNameArray.push("<xsl:value-of select="$name"/>");

this.chartColorArray.push("<xsl:value-of select="$color"/>");

</statement>

</xr:append>

</xr:at>

</xsl:template> (6)

Note that the double-underlined code is a template whose parameters are provided by
the input to τ’. In our example, the AGE_18_21 input to τ’assigns the value
AGE_18_21 to attr,18-21 to name, and cyan to color. The double-underlined code
of (5) is generated by instantiating the τ’ template with these parameters. By writing
a general operator τ’ once and reusing it (to translate other Charts features that were
differentiated only by their parameters) saved us considerable effort. Notice also that
part of τ’ is to map the pointcut of a charts spec to a corresponding pointcut that cap-
tures the corresponding JavaScript methods. This mapping is done via string manipula-
tion, which we elide the details, and indicate by underlined code in (6). 
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6 Commuting Relationships
Lifting defines a commuting relationship between Charts features and MapStats fea-
tures that relate τ and τ’ and that offers us yet another way to synthesize MapStats ap-
plications. Instead of separately translating each Charts feature Si to its Ci counterpart
as we did in (4), we could synthesize a composite chart spec S (e.g., S=S2•S1•S0) by
starting with a base spec S0, adding features S1 and S2, and then transforming S into its
corresponding JavaScript implementation. That is, another way to synthesize applica-
tion A is:

A = τ(S2•S1•S0)•M1•M0 (7)

The equivalence of (4) and (7) is due to the commuting relationship:
τ(Si•S) = τ’(Si)•τ(S) (8)

where S is a Charts expression and Si is a Charts feature. (8) says composing
Charts features and translating to a MapStats representation equals translating each
Chart feature separately and composing. The value of commuting relationships is that
they define properties of valid implementations of transformational models of product
lines. The correctness of a model and its implementation is demonstrated when its com-
muting relationships are shown to hold. Commuting relationships provide a simple
means to express and compare different methods of applying transformations and
transformation of transformations (i.e., operators).

Note: a general name for (8) is a homomorphism: given two sets X and Y and a sin-
gle binary operation on them, a homomorphism is a map Φ:X→Y such that:

Φ(u⊗v) = Φ(u)⊕Φ(v) (9)

where ⊗ is the operation on X and ⊕ is the operation on Y. In MapStats, X is the
Charts model and Y is the MapStats model; ⊗ and ⊕ both are •. Homomorphisms
define how expressions in one algebra are translated to expressions in another, i.e.,
(8)defines how Charts expressions are mapped to MapStats expressions.4

Note: The justification for (8) follows intuition. Each S feature corresponds to a
Charts feature. Each S feature composition corresponds to a unique Charts fea-
ture composition.   τ relates S values to MapStats values, and τ' relates S functions
to MapStats functions. When the equalities of commuting diagrams do not hold,
we know there are bugs in our transformation or tool chains [49][50].

As we do not have formal models of Charts and MapStats, we do not have a proof of
(8) for all Charts and MapStats features. Instead, we tested the correctness of (8).
We synthesized multiple applications in two different ways (i.e., (4) and (7)) and then
visually compared and executed both programs since (4) and (7) did not produce syn-
tactically equivalent code. Graphical SVG applications with multiple transformation
outputs allowed side-by-side visual comparison of test cases. Other tests were per-
formed with randomly selected features to ensure that each properly transformed the ap-

4. We differentiate τ and τ’ because of their different operands: values vs. functions. Instead of
writing (8), we could use the more general relationship (9) where Φ denotes both τ and τ’.
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propriately selected features. Although more sophisticated and thorough testing was
possible (see [37]), manual comparisons were sufficient for our goals.
Commuting relationships not only define properties that can be used to prove or test
model and implementation correctness, but sometime they have additional benefits. We
have observed in other domains that program synthesis can be substantially more effi-
cient using one synthesis path (e.g., (4) or (7)) than another. For example, exploiting
commuting relationships led to a 2-fold speed-up in synthesizing portlets [50], and over
a factor of 10 in synthesizing test programs using Alloy [33]. Although we did observe
trade-offs in building MapStats applications, they were not significant. The utility of
commuting relationships in MapStats was restricted to testing model and transforma-
tion correctness.

7 Other Examples of Lifting
Our MapStats work clarified the role of lifting in FOP, but our earlier implementation
of the AHEAD Tool Suite (ATS) contains other examples of lifting in rougher form. In
retrospect, we see that the ATS implementation highlights issues that should be ad-
dressed if lifting is to be successful in FOP. We describe some of the issues from ATS
in this section and their associated problems. 
Lifting in FOP is analogous to the manual development of a generator (τ operator) for
a higher-level representation (HLR), just as feature composition itself is analogous to
program development by stepwise refinement [53]. When developing ATS, we explic-
itly showed the stepwise refinement analogy by bootstrapping ATS from its own feature
set, wherein each feature represented a refinement. However, FOP is more than just the
automatic composition of refinement steps encapsulated into features. Given appropri-
ate tools, we created entire software product lines from the development of a set of fea-
tures, i.e., features can be mixed and matched to yield all the variations in a software
product line.
When we consider lifting in FOP, we see a similar analogy and similar gains. Even
without the use of FOP, lifting to a HLR can be useful, as has been demonstrated by
DSLs in key niches (e.g., relational databases, logical modelling, signal processing). A
DSL compiler in these domains is analogous to a τ operator. Taking one more step, an
appropriately defined HLR can support features with a feature composition operator,
gaining the benefits of a SPL in HLR form. Taking the last step, where a τ' operator is
defined to map individual features to a lower-level form, we gain the ability to check
correctness of commuting diagrams, as described in Section 6, and the ability, again
with appropriate tools, to individually test features (e.g., in a simulated environment, or
in a test framework where other features are mocked).
Nonetheless, it should be emphasized that lifting in FOP is subject to the same cost con-
straints that arise in all of software engineering. To achieve gains, additional work is
required: the τ and τ' operators must exist or be developed, as do the composition op-
erators in both HLR and lower-level forms. A development team can justify the costs
only if the additional gains reduce the long-term maintenance costs by at least as much.
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7.1 Grammars
ATS implements a language and tools to support feature-based development of SPLs.
ATS is boot-strapped — the tools of ATS are synthesized by composing features, so
ATS is used to build itself. The main language of ATS is Jakarta (or Jak for short),
which is a superset of Java 2 (i.e., Java without generics). In effect, Jakarta is a product
line of Java dialects where new language constructs can be added to Java [5]. We ex-
pressed the set of Java dialects that can be produced by ATS as a GenVoca product line:

J = { Java, // base preprocessor

Ast, // adds code quote, unquote

Gscope, // adds hygienic macros

Sm, // adds state machines

CompJava, // adds refinements to Java classes, interfaces

CompSm, // adds refinements to state machines

…
}

The lone base program is the Java preprocessor (Java), and the remaining features add
constructs to the Java language, such as code quote and unquote (Ast) [5], a form of
hygienic macros called generation scoping (Gscope) [46], state machine declarations
(Sm), adding refinements to Java classes and interfaces (CompJava), and adding refine-
ments to state machines (CompSm) [10]. The base feature (Java) defined a complete
Java language; the remaining features extend this language. Particular dialects of Java
were created by composing features. For example, the dialect of Java that supports code
quote/unquote and generation scoping is:

Jakarta1 = Gscope•Ast•Java

We can extend this dialect to additionally support state machines, and class, interface,
and state machine refinements:

Jakarta2 = CompSm•CompJava•Sm•Jakarta1
= CompSm•CompJava•Sm•Gscope•Ast•Java (10)

An ATS build works in the following way: a language dialect, like Jakarta2 above, is
specified, and the build process generates a number of tools to manipulate, analyze and
transform programs written in that dialect. Among the tools that are produced:

• jak2java — a tool that translates a Jak program to its Java counterpart,
• reform — a tool that pretty-prints Jak programs, and
• mmatrix — a tool that harvests declarations from Jak programs.

Each feature of the J product line extends the Java language with some unique construct
and is implemented by a pair of smaller features (parser, code). For example, the
Java feature is comprised of a parser of the Java language parserjava, and codejava
is the code that implements the semantic actions for each Java language production.
Similarly, the Ast feature is defined by parserast, the extension to the Java parser that
parses code quote/unquote constructs, and codeast that implements the semantic ac-
tions of these constructs, and so on.
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In effect, each feature Fi is a composition of parser Pi and code Ci subfeatures. The
parser and code subfeatures are commutative: exactly the same program results for ei-
ther composition order as each updates or adds non-overlapping pieces of code to an
ATS tool:

Java = parserjava•codejava = codejava•parserjava
Ast = parserast•codeast = codeast•parserast
Gscope = parsergscope•codegscope = codegscope•parsergscope

In general:

Fi = Pi•Ci = Ci•Pi (11)

Moreover, when different features are composed, the order in which code and parser
subfeatures are composed is preserved (i.e., code subfeatures do not commute, parser
subfeatures do not commute, but code and parser subfeatures commute):

Fi•Fj = Pi•Ci•Pj•Cj = Pi•Pj•Ci•Cj = Ci•Cj•Pi•Pj (12)

Writing the semantic actions (code) for each feature was not difficult. But writing the
parser for a feature was hard: this is where parser tools are needed. That is, instead of
writing the code for a parser (or parser refinement), we defined a grammar (or grammar
refinement) in terms of a DSL, called Bali, that uses a BNF-like syntax to define the
tokens and productions of a language [5]. In effect, we lifted parsers and their exten-
sions to a Bali specification where defining grammars, grammar extensions, and com-
posing grammars with their extensions was easy. Just as we lifted MapStats charts fea-
tures to Chart DSL specs/models, we lifted ATS parsers to Bali grammars.
Each Bali grammar is in 1-to-1 correspondence with an ATS parser, and each Bali
grammar extension is in 1-to-1 correspondence with an ATS parser extension. Recall in
MapStats the τ transformation mapped a complete Charts spec to a MapStats function.
The τ transformation for Bali was a tool chain: bali2javacc followed by JavaCC
[27]. The bali2javacc tool transformed a Bali grammar to a JavaCC specification.
The JavaCC tool was then used to transform the JavaCC specification into a Java parser.
What we did not have was a τ’ operator, which would map an extension to a Bali gram-
mar to an extension of a Java parser. At the time that we built ATS (circa 2001), we were
unaware of existing compiler-compiler tools that could do this. We realized that with a
τ’ operator, the following homomorphism would hold:

τ(Gi•G) = τ’(Gi)•τ(G) (13)

where G denotes a complete grammar (i.e., a “value”) and Gi denotes a grammar refine-
ment (i.e., a “function”). As we did not have a τ’ transformation, we could not compose
features in the obvious way (e.g., (10)). Instead, we were forced to compose all gram-
mar subfeatures first to produce a complete grammar for the target Java dialect, use this
grammar to create a parser (using the τ transformation), and lastly compose the corre-
sponding code subfeatures to build an ATS tool. Our ability to do this required the ho-
momorphism of (13). 
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To explain the process, let T be an ATS tool, and let its GenVoca expression be
F2•F1•F0. Let Fi denote any of these features, and let Pi and Ci denote Fi’s parser and
code subfeatures. Further, let Bi denote the Bali specification of Pi where:

P0 = τ(B0)
Pi = τ’(Bi) // for i>0 (14)

It follows that:

T = F2•F1•F0 // given

= P2•C2•P1•C1•P0•C0 // (11) substitution
= C2•C1•C0•P2•P1•P0 // (12) commutativity
= C2•C1•C0• τ’(B2)•τ’(B1)•τ(B0) // (14) lifting
= C2•C1•C0• τ(B2•B1•B0) // (13) homomorphism

We used the last expression to implement the makefile of our ATS tool build process.
Note that the reason why our makefile worked was because of the validity of (13), al-
though only now do we have and understand a detailed explanation for its correctness.

7.1.1 Creating a τ' Operator for Grammars
Although we did not create a τ’ operator for grammar extensions in ATS, we uncovered
some guidelines for feature-oriented lifting.
First, we saw that the use of JavaCC, an LL(k) parser-generator, placed limitations on
grammar extensions. It is easy to define a base grammar and a grammar extension that
are individually LL(k), yet fail to be LL(k) when composed. A similar problem exists
had we used an LR(k) parser-generator instead. 

Example. Consider the elementary base grammar with start symbol “stmt”:

stmt := "if" stmt "then" stmt
| "other"

It has three terminals (“if”, “then”, and “other”), and the grammar is LL(1).
Now consider the grammar extension (just one more production):
stmt := "if" stmt "then" stmt "else" stmt

This adds one more terminal, “else”. More importantly, the combined grammar
(base+extension) is no longer LL(1) because two different productions begin with
the same terminal, “if”. Further, the combined grammar is now ambiguous be-
cause it introduces the dangling-else problem. Specifically, consider input sen-
tence:
   if other then if other then other else other

There are two valid parse trees for this input. One where the “else” is bound to the
first “if”, and the second where the “else” is bound to the second “if”. Finally,
as the combined grammar is ambiguous, it is neither LL(k) nor LR(k), because
those are defined to have unique parse trees for every valid language sentence.

In general, this type of problem can occur in feature compositions. As a guideline for
implementors of paired composition and τ operators, the τ operator should have a do-
main space that is a superset of the range space of the composition operator. That is, it
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is not sufficient to transform and compose individual features τ’(A) and τ(B), but τ
must also be able to transform compositions of features, i.e., τ(A•B). It is possible for
software developers to work around this issue by refactoring the grammars of A and B
so that their composition is transformable by τ (as we did in ATS), but, since this re-
quires additional manual effort, there are practical limits to this approach. (As an aside,
we note that MapStats required similar restructuring as well).
In particular, the most popular parser-generators today are LL(k) or LR(k). If we imple-
mented our guideline, our practical choices would have been among the parser-genera-
tor algorithms for ambiguous grammars, such as Generalized LR (GLR) [48] or Earley's
algorithm [21]. Considering these two options highlights another guideline, which we'll
call the “progress” guideline: Any τ' operator should make significant progress when
translating from a HLR to a lower-level form. To make this clear, we contrast the use
of GLR to Earley's algorithm.
The GLR algorithm, like LR, uses static state transition tables built from a given gram-
mar. The distinction between GLR and LR occurs for shift-reduce or reduce-reduce
conflicts: GLR effectively follows all possible choices, while LR either fails or uses an
external directive to make a fixed choice. What is important to note here is that the en-
tire grammar must be available in order for the state tables to be generated. As a corol-
lary, any τ' operator acting on a grammar extension alone cannot be guaranteed to gen-
erate any significant part of the state tables.
By contrast, Earley's algorithm is dynamic. It uses a combination of an input program
with an internal representation of grammar productions to build parse states dynamical-
ly. It is only necessary for a τ' operator to build the internal representation of a grammar
extension's productions, which is significant progress in terms of Earley's algorithm.
One could argue that a τ' operator for GLR could use the same production-level inter-
nal representation to simply encode each grammar extension, then leave it to a post-
processing step to build the state transition tables. That would lead to a correct set of
composition, τ, and τ' operators, but the τ' operators would not be computing a signif-
icant proportion of the state tables.

7.2 Bytecodes
Another example of lifting features in ATS deals with Java bytecodes. As mentioned
earlier, most ATS tools are preprocessors. A typical ATS software development cycle
is to (a) create the source code for features, (b) compose features (to produce composite
source), and then (c) compile the composite source. This form of development is ade-
quate for a research-based prototype, but is unacceptable for commercial development.
One problem stands out: protection of intellectual property. Companies protect their in-
tellectual property by distributing bytecodes, not source code. As the popularity of fea-
ture-based development increases, there will be an increasing demand for bytecode dis-
tribution, not source code distribution, of features.
Source code is a “lifted” representation of bytecode; source code is much easier to un-
derstand and write. The tools that we have today for mapping source code to bytecode
are compilers (e.g., javac). These are our τ operators (i.e., they map a source code “val-
ue” to a bytecode “value”). What is missing is a τ’ operator that maps transformations
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on source code (e.g., code modifications that a feature makes) to corresponding trans-
formations on bytecodes.
In 2003, we prototyped a τ’ operator that mapped the Jak source refinements of a fea-
ture to its corresponding representation as a bytecode refinement. We used a variation
of a technique that was pioneered in Hyper/J for compiling hyperslices (i.e., Hyper/J
modules) [40]. Basically an AHEAD feature is a hyperslice. To compile a hyperslice,
stubs are created for all classes and members that are not introduced by that hyperslice.
This makes them declaratively complete. Once stubs are available, the Java classes of
a hyperslice can be compiled into bytecode. Hyper/J then uses bytecode composition
tools to compose independently compiled hyperslices. We followed a similar approach.
We know of no tool support for automatic stub creation in Hyper/J; stubs must be cre-
ated manually [35]. An advantage of AHEAD and product lines in general is that the
source or binaries for all features are available. By analyzing the feature code base, we
can automatically generate stubs for all classes that could appear in a synthesized prod-
uct [9]. For every class, we created a stub that contains the union of the signatures of all
fields, methods, and declarations that could appear in that class. The same for interfaces.
Remember a Java class C in feature F encapsulates a fragment of a class C that could ap-
pear in a synthesized program P. When we compile feature F, we bind all references in
class C of F to the fields, methods, and classes of our generated stubs. Only at feature
composition time do we rebind each field, method, etc. reference in C of F to a definition
of a field, method, or class that is supplied by the features that comprise P.
With our implementation of τ, we were able to demonstrate the following homomor-
phism:

τ(Ci•C) = τ’(Ci)•τ(C) (15)

where C denotes a complete Java program (i.e., a “value”) and Ci denotes a refinement
of a Java program (i.e., a “function”). τ(C) denotes the bytecode of program C, and
τ’(Ci) denotes the bytecode refinement of source code refinement Ci. Thus, we could
produce the bytecodes of a program by either composing source code features and com-
piling, or by compiling source code features into bytecodes and composing bytecodes.
We demonstrated to ourselves the correctness of (15) by synthesizing ATS tools both
ways, and having both sets of tools pass the regression tests of ATS. 
These experiments demonstrated that bytecode representation of features, and the abil-
ity to compose bytecode features, was indeed feasible. In doing so, we realized the lim-
itations of our τ’ tool. javac optimizes bytecodes, such as constant folding, constant
propagation, and constant inlining. The problem here is that if two different features de-
clare different values for the same constant, our approach to separate feature compila-
tion would not work. We were fortunate that this situation didn’t arise in the features of
ATS. A general technology for τ’ would postpone optimizations like constant folding
and constant propagation until bytecode composition time, when all information about
a target program and its features are known. Similarly, the way that we were able to
compile features separately was not particularly elegant. What we needed was strong
separate compilation [1][20][34], where class definitions can be compiled separately
and where it is only in later stages of composition or loading that externally visible types
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and values are resolved and optimized. Strong separate compilation has been previously
proposed for Java for other reasons, and FOP only strengthens the arguments for its use.
In general, strong separate compilation is an example of another guideline for FOP and
feature-oriented lifting: the τ, τ’, and composition operators should delay the binding
of linking symbols (those used to specify compositions) until the final generation step.
What our experiment showed is that we could partially demonstrate the correctness of
(15): there were features that we could not correctly and separately compile to byte-
codes (e.g., features that assigned different values to constants). Once again, we learned
that common software development tools define the value-to-value mappings of lift-
ings, but do not provide the function-to-function mappings of operators that liftings re-
quire. In this case, a robust τ’ operator will be essential for feature-based program de-
velopment to transition to industry, as bytecode distribution of features, rather than
source code distribution of features, will be demanded.

7.3 Other Examples
We have another result where operators (i.e., mappings of transformations to transfor-
mations) were used, and this result also could be cast as an example of lifting. The ap-
plication is to create a MDE product line of portlets [50]. Rather than writing low-level
Jak and JSP source code, we lifted the problem into a DSL for defining state charts, state
chart features, and their compositions. A state chart feature extends a base state chart
and can be translated into a corresponding extension of low-level Jak and JSP source
code. This exposes a homomorphism which allows state charts and their refinements to
be composed, and then translated to Jak and JSP code, or equivalently, state charts and
their refinements are separately translated to Jak and JSP code, and the resulting source
is composed. We explain in [50] how τ’ operators were created, and how we used ho-
momorphisms to both optimize the synthesis of Jak and JSP code, and validate our im-
plementations.

8 Related Work
FOP and MDE paradigms have their historic roots in Lisp, which promoted the concept
that programs are values (or “programs as data”) and transformations are functions that
map values to values. Hemel shows that model-to-model transformations are the same
as model-to-code transformations where the target model has a meta-model of the code
representation [26]. Other literature uses the concept of applying changes to models
through transformations, which is fundamental to features [15][25][26][41][42][52]. 
Combining MDE and product line transformations is not new [2][4][17] [44][49][50].
Trujillo et al. used XAK and AHEAD to build web portlets from state chart models
[50][51]. Our work builds upon theirs and provides further evidence that transforma-
tion-based models of product lines (that represent both features and model translations
as transformations) expresses a general approach to software development. Also, our
use of lifting illustrates how basic concepts in elementary mathematics (e.g., operators
and homomorphisms) lie at the core of program-development-by-transformations. The
use of elementary mathematics as a language to express our design allows us to make
this connection directly.



20
Trujillo et al. also apply model transformations that aid in the building of FOMDD (Fea-
ture-Oriented Model Driven Development) applications, which include multiple trans-
formation steps and different paths to generate an application [49].
Avila-García used transformations to apply features to models [4]. Their work focused
on transformations of transformations that composed features for families of UML di-
agrams. Our work instead focuses on transforming high-level models into executable
applications.
Gonzalez-Baixauli have proposed using MDE to help product line engineers determine
application variation points, and to assess the feasibility of automating software product
line development with MDE [23]. Deelstra used MDE as a means of identifying varia-
tions points within a product line [19]. Both papers infer that a feature could use Plat-
form Independent Model (PIM) to Platform Specific Model (PSM) transformations to
implement different platforms and implementation technologies. 
Czarnecki and Helsen combined features and MDE in a different way by surveying dif-
ferent types of transformation methods and analyzing the various features of these
methods [18]. Other prior work defined a taxonomy of different types of transforma-
tions and classified them as endogenous and exogenous [38]. Feature composition is an
endogenous transformation, which uses the same source and target model representa-
tions. The τ and τ’ transformations are exogenous, which use different source and tar-
get model (XML schema) representations. 
Czarnecki and Antkiewicz connect features and behavioral models using model tem-
plates [17]. Model elements are tagged with predicates that reference features; the ele-
ments appear in a model instance when selected features satisfy the predicate. This is
an alternative approach to artifact development in product lines; our approach stresses
the modularization of features and their connection to transformations.
Kurtev uses XML transformations to develop XML applications [32]. The design of
web applications includes functionality, content, navigation and presentation compo-
nents. Gronmo worked with cross-cutting aspects that are applied to sequence diagrams
[25]. Advice is much like method-extensions in features with the difference that advice
can have more than one joinpoint.
Adding exogenous transformations, which convert models from one metamodel to an-
other, adds more complexity to the transformation process. Rath studied live updating
of transformation outputs as the input is incrementally changed [41]. The application of
features is much like changes to the input model in their work. Features of a source
model must be transformed to features of the target models. 
Many results in MDE have laid a foundation for model transformations [12][13][30].
Even though this case study covers a specific domain and does not use UML model rep-
resentations, model representations serve the same purpose of abstracting representa-
tions at different levels of detail. The Charts model representation is a type of PIM and
the SVG and JavaScript model representations are types of PSMs. In the ATS case, the
Bali grammar formed a PIM and the Java parser formed a PSM. 
What differentiates our work is our use of elementary mathematics as a language to ex-
press our generative/MDE designs. Our use of lifting illustrates how basic concepts in
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elementary mathematics (e.g., operators and homomorphisms) lie at the core of pro-
gram-development-by-transformations. 

9 Conclusions
We presented a product line of SVG+JavaScript applications that was defined and im-
plemented solely in terms of transformations. Features of a product line were imple-
mented as transformations, and programs were specified as compositions of transfor-
mations. When we discovered that certain features were tedious to implement, we ap-
plied a basic principle of MDE to “lift” low-level implementations to DSL
specifications and wrote transformations (operators) to map DSL specs (and their re-
finements) back to their SVG+JavaScript counterparts, ultimately saving effort.
What makes lifting interesting is its product line setting: we lifted selected features and
their compositions from our original product line (MapStats) to features and compo-
sitions of another product line (Charts). We defined how features (transformations) in
one product line could be transformed into features (transformations) of another via op-
erators (τ and τ’). Doing so exposed commuting relationships between compositions of
functions (i.e., tool chains and features). Such commuting relationships define proper-
ties of transformational models of program development; proving or testing that these
properties hold helps demonstrate model correctness. Further, we noted that lifting is a
general technique for MDE product lines. Our additional case studies involving ATS
demonstrated this.
A primary reason why we were able to recognize commuting relationships and explain
how features of one product line were related to another is that we used the language of
elementary mathematics to express transformation-based designs of programs. Doing
so enabled us to express our ideas in a straightforward and structured way and at the
same time compactly illustrate how transformational models of software product lines
can be defined, implemented, and explained. 
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