|Software Engineering Properties of Languages and Aspect Technologies (SPLAT), 2008 |

On-Demand Materialization of Aspects for Application
Development

Chang Hwan Peter Kim
The University of Texas at
Austin, USA
Austin, TX 78712
chpkim@cs.utexas.edu

ABSTRACT

Framework-based application development requires appli-
cations to be implemented according to rules, recipes and
conventions that are documented or assumed by the frame-
work’s Application Programming Interface (API), thereby
giving rise to systematic usage patterns. While such usage
patterns can be captured cleanly using conventional aspects,
their variations, which arise in exceptional conditions, typi-
cally cannot be. In this position paper, we propose material-
izable aspects as a solution to this problem. A materializable
aspect behaves as a normal aspect for default joinpoints, but
for exceptional joinpoints, it turns into a program transfor-
mation and analysis mechanism, with the IDE transforming
the advice in-place and allowing the application developer to
modify the materialized advice within the semantics of the
aspect. We demonstrate the need for materializable aspects
through a preliminary study of open-source SWT-based ap-
plications and describe our initial implementation of mate-
rializable aspects in Eclipse.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Programmer productiv-
ity—AOP, materalizable aspects, application development,
frameworks

Keywords

AOP, materializable aspects, application development, frame-
works

1. INTRODUCTION

Object-oriented framework-based application development
requires implementing framework-provided concepts by sub-
classing, implementing interfaces, calling framework services,
and so on [2]. These steps involve rules, recipes, and conven-
tions, which we call usage patterns. These usage patterns are
difficult to express using the programming language of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SPLAT 2008, March 31, 2008, Brussels, Belgium.

Copyright 2008 ACM 978-1-60558-144-6/08/0003 ...$5.00.

Krzysztof Czarnecki
University of Waterloo,
Canada
Waterloo, ON N2L3G1
czarnecki@acm.org

© W N O AW N

Don Batory
The University of Texas at
Austin, USA
Austin, TX 78712
batory@cs.utexas.edu

public aspect LookAndFeel {
pointcut change(Window window) :
call(void UIManager.setLookAndFeel(..)) &&
within(Window+) && this(window);

after(Window window) returning: change(window) {
SwingUtilities.updateComponentTreeUI(window) ;
}
}

Figure 1: LookAndFeel aspect

framework, such as Java, alone, as they are often crosscut-
ting and require application developers to understand addi-
tional objects, classes, interfaces and intricate relationships
between them. Previous studies [11, 7] have used aspects
to capture crosscutting usage patterns more cleanly. We
show an example involving a popular object-oriented GUI
framework, Swing.

A notable feature of the Swing framework is its support
for configuration of look and feel (L&F) of its applications.
An application may change its L&F after startup by calling
UIManager.setLookAndFeel(..). However, for the change
to take effect, the application must call SwingUtilities.up-
dateComponentTreeUI (Component) afterwards, providing the
top-most Component whose subcomponents should reflect
the change [10]. By convention, in many applications, when-
ever a Window changes its L&F, the L&F of that Window is
updated immediately afterwards. We could capture this us-
age pattern using the LookAndFeel aspect in Figure 1.

However, there are exceptions to this pattern. For exam-
ple, consider the class MessengerApplication in Figure 2,
which is an instant messenger application that changes its
L&F in lines 5 and 13. Since MessengerApplication is an
indirect subclass of Window, both calls to setLookAndFeel
in the class will be advised by the LookAndFeel aspect. Al-
though the application developer wants the advice to apply
immediately after line 13, he or she does not want the advice
to apply immediately after line 5, but wants it to apply im-
mediately after the application-specific code, i.e. lines 6 to 7
involving restart (). Where the advice should be woven for
this exceptional case, but is not, is explicitly shown in line
8. The rationale for the exceptional case is as follows. Some
graphical components that are running already have to be
reloaded for them to reflect the new L&F setting. Because
it is difficult to identify and reload components individually,
the entire application has to be restarted for these compo-
nents to reflect the change. For convenience, the user may
choose to restart at a later time and reflect the L&F change

Don
Text Box
Software Engineering Properties of Languages and Aspect Technologies (SPLAT), 2008

public class MessengerApplication extends JFrame
{
public void applySettings(Settings settings)
{
UIManager.setLookAndFeel (settings.getLF());
if (settings.isRestartDesired())
restart();
/* SwingUtilities.updateComponentTreeUI(this); */
}

public void test()

{
UIManager.setLookAndFeel (lookAndFeel) ;
// test some other settings

}

Figure 2: MessengerApplication

public abstract aspect LookAndFeel
{

pointcut change(Window window):
call(void UIManager.setLookAndFeel(..)) &&
within(Window+) && this(window);

public void updateWindow(Window window)
{
SwingUtilities.updateComponentTreeUI (window) ;
}
}

Figure 3: Abstract LookAndFeel aspect

only in the components that do not require reloading.

The LookAndFeel aspect in Figure 1 cannot accomodate
both the default and the exceptional cases. There are sev-
eral ways of capturing both cases. An intuitive possibility
is to make the LookAndFeel aspect in Figure 1 abstract and
define a separate subaspect for each case. The abstract as-
pect, shown in Figure 3, defines the pointcut change and the
advice statement updateWindow that are common to all the
subaspects.

With the abstract aspect in place, we define the aspect
for default cases by extending the LookAndFeel abstract as-
pect as DefaultLookAndFeel aspect and excluding the ex-
ceptional joinpoint in Figure 2, line 5, from the pointcut as
shown in Figure 4. Then we define another aspect just for
the exceptional joinpoint, as shown in Figure 5. In Figure 5,
line 6, we pick out the exceptional method call using with-
incode and then in line 8, pick out settings object by se-
lecting the method MessengerApplication.applySettings
through cflow and accessing its arguments. 1 Luckily, we
are able to pick out settings object because it is avail-
able as a method parameter; had it been a local variable in
MessengerApplication.applySettings, it would have been
much more cumbersome to write. Also, to be able to call
MessengerApplication.restart() (Figure 5, line 15), we
have to make the aspect privileged since the method is
private.

Multiple aspects are required using conventional AOP:
one for default cases, one for each exceptional case, and one
for an abstract aspect to capture the commonality in the de-

1We use cflow only for the purpose of picking out settings
object, not for picking out other L&F changes in the con-
trol flow of applySettings. This is necessary in AspectJ as
withincode doesn’t combine with args.

public aspect DefaultLookAndFeel extends LookAndFeel
{
pointcut defaultChange (Window window) :
change (window) && !withincode(void
MessengerApplication.applySettings(Settings));

after (Window window) returning: defaultChange(window)
{
updateWindow (window) ;
}
}

Figure 4: DefaultLookAndFeel aspect

privileged aspect MessengerLookAndFeel extends LookAndFeel
{
pointcut messengerChange(Window window, Settings settings):
change (window) &&
withincode (void MessengerApplication.
applySettings(Settings)) &&
cflow(call(void MessengerApplication.
applySettings(Settings)) && args(settings));

after(Window window, Settings settings) returning:
messengerChange (window, settings) {
MessengerApplication application =

(MessengerApplication)window;
if (settings.isRestartDesired())
application.restart();

updateWindow(application);

}

}

Figure 5: MessengerLookAndFeel aspect

fault and the exceptional aspects. Each exceptional aspect
can be considered to be degenerate, as it does not quantify
over multiple joinpoints and is practically glued to the base,
which makes it awkward to specify and brittle with respect
to evolution of the base code.

Based on this example, we make two hypotheses: a prob-
lem hypothesis and a solution hypothesis. Our problem hy-
pothesis is that there will be usage patterns with a signif-
icant number of exceptions as well as defaults in existing
framework-based applications. Although we cannot weave
an advice homogeneously for exceptional cases, we believe
that we can still provide useful automated software engi-
neering support for them, including code assist, traceability,
and program analysis. From this reasoning, our solution
hypothesis follows: such support for exceptions and homo-
geneous weaving for defaults can be provided using the same
aspect that is interpreted in an unconventional way. In the
following sections, we develop the concept of materializable
aspects to support these hypotheses.

2. MATERIALIZABLE ASPECTS

A materializable aspect behaves like a conventional aspect
by default, but in exceptional cases, it switches to a program
transformation and analysis mechanism that is enabled by
an Integrated Development Environment (IDE). Figure 6
shows a materializable aspect in action for the running ex-
ample introduced in the previous section.

The LookAndFeel framework aspect in Figure 1 stays as is;
we don’t need to convert it into Figures 3, 4, and 5 as we had
to in the previous section. In Figure 6(a), the LookAndFeel
aspect advises lines 6 and 13, as indicated by arrow-shaped
joinpoint-markers. Since line 6 is an exceptional joinpoint
for which the advice must be woven not necessarily immedi-

1 public class MessengerApplication extends JFrame
2 1
3 public woid applySettings (Settings settings)
4 {
5 [f¥Bruaterialize (LookindFe=1)]
Lo UIManager.setLookAndFesl (sectings.getLF ())
7 if (settings.isRestartbesiced())
g Ccestart () ;
=] i
10
11 public void test()
1z {
b1 UIManager.setLookAndFesl (looklindFeesl) ;
14 /¢ test some other settings
15 H
16 .
17 %}

(a) 1. Developer marks exceptional joinpoint.

1 public class Messengerlpplication extends JFrame
z 4
3 public void applySettings (Jectings sectings)
4 {
5 f/imaterialize ({LookindFeel)
[UIManager.setLookdndFeel (settings.getlF ()]
7 if (settings.isBestartDesired(])
=] reatart () ;
2 |SwingUtilit ies.updateComponent TreelUT(this) ;I

10 H

11

1z public void test()

13 {

hpia UIManager.setLookdndFesl (lockindFeesl) ;

15 /¢ test some other settings

1a }

17

15 1

(c) 3. Developer moves in-place advice further (d) 4.
complains.

down.

1 public class MessengerApplication extends JFrame
Z 4

3 public void applySettings (Settings settings)

4 {

5 /fBwaterialize (LookindFeel)

D [UIManager.setlookAndFesl (sectings.getLF () ;
7 ISwingUt,ilit,iES. updatefomponent TreeUL (this) ;|
=] if (settings. isRescarchesired())
=] restart():

10 H
11
1z public void test()
13 {
b4 UIManager.setlookAndFesd (lookindFesl) ;
15 /¢ test some other settings
16 H
17
18
(b) 2. IDE transforms advice in-place.
1 public class MessengerApplicacion extends JFreme
z2
3 public void applySettings (Settings settings)
4 {
13 /fBmaterialize (LookAndFeel)
[UIManager.setLookAndFesl (sectings.getLF ()) ;
7 if(settings.isRestartbesiced()])
g restartci):
=] |someCtherstatement () i
10 +
11 & Materializations
1z public v
13 { @ For the joinpaint in line 6,
L 14 TIManal LookandFeel advice is unreachable,
15 /¢ tes
18 3
IR
15 3

Developer removes in-place advice. IDE

Figure 6: LookAndFeel materializable aspect in action

ately after, but after the if-statement, the application devel-
oper places an annotation above the joinpoint and refreshes
the editor. Then, as shown in Figure 6(b), the IDE processes
the annotation and transforms the advice in-place in line 7.
Note that the joinpoint-marker is no longer on line 6, but
is still on line 14. Then, as shown in Figure 6(c), the appli-
cation developer moves the in-place advice further down to
line 9, where it should be. For each exceptional joinpoint,
the IDE checks to see if the after relationship between the
joinpoint and the in-place advice specified by the aspect is
satisfied. after obviously has a wide meaning. For now, we
mean that the advice must be reachable from a joinpoint by
the end of the control flow of the method in which the join-
point shadow appears. So if the LookAndFeel advice were
replaced by some other statement (and the advice is not ex-
ecuted in its control flow) as shown in Figure 6(d), the IDE
would complain that the advice is not reachable from the
joinpoint.

It is important to note that using materializable aspects,
we can capture both the default and the exceptional cases
uniformly using the original framework aspect (Figure 1)
and not three degenerate application-specific aspects (Fig-
ures 3, 4, and 5).

We discuss several key ideas behind materializable aspects
that we have implemented in a prototype tool.

2.1 On-demand customization

Both the default and exceptional cases are handled using a
single aspect. Advice is woven immediately after for default

cases by the compiler and for exceptional cases, they are ma-
terialized by the IDE and allowed to be customized within
the semantics of the aspect (e.g. sometime after) on-demand
by the application developer. Unlike typical generative ap-
proaches, code produced must be customization-friendly, i.e.
understandable and maintainable. Materializable aspects
integrate conventional aspects and program transformation
and analysis in a practical way.

2.2 Specification

An aspect is a specification of a temporal relationship be-
tween the joinpoints and the advice. For each material-
ization, the specification imposes two kinds of constraints:
reachability and joinpoint context identity by reference or
equality by value. For example, for after advice, not only
must the advice be reachable from the joinpoint, but also,
objects or values at the materialized advice must be identical
or equal to those picked out at the joinpoint. Although join-
point context identity or equality is not much of a problem
in Figure 6(c) since this in line 9 is most likely to repre-
sent the caller in line 6, in other cases, for example, when
an object is picked out using target or args, the reference
at the materialized advice must represent the same object.
Program analyses will become especially difficult if the ma-
terialized joinpoint and advice are allowed to be in different
methods. This semantic specification idea can be general-
ized to other kinds of aspects, including those with before
and around advices.

2.3 Separation between framework and appli-
cation

Materializable aspects challenge the traditional notion of
framework code and application code having to be physi-
cally separated. With conventional framework aspects, the
framework code (advice) is separated physically from the
application code (base). However, situations arise when
the framework code becomes inseparable from the applica-
tion code. For example, in Figure 2, the update in apply-
Settings is a special kind that requires a restart for a full
update and no restart for a partial update. Although the
framework code (the update statement in line 8) may make
sense alone, the application code (the restart statements in
lines 6 and 7) does not make sense without the framework
code. In essence, what we have is a joinpoint-specific ad-
vice that, although can be separated physically from the
joinpoint, the effort required to do so doesn’t seem to be
offset by the benefit gained, as shown in Section 1. How-
ever, using materializable aspects, although the framework
code and application code are physically together, we can
still identify the boundary between them and reason about
them separately.

3. STUDY OF ASPECTIZABLE USAGE PAT-
TERNS

We conducted a study supporting the problem hypothesis,
namely, that usage patterns typically have both defaults and
exceptions and that technologies like materializable aspects
are needed. In the future, we plan to conduct a follow-up
study covering more frameworks and applications that sup-
ports the solution hypothesis, namely, that materializable
aspects provide a practical solution to the problem.

SWT (and JFace) framework was selected because it is
a widely used framework and many applications using it
are readily available as open source. 18 open-source appli-
cations written against SWT framework were downloaded
from SourceForge [13] and studied. We identified three us-
age patterns that could be expressed by framework aspects
by looking for related method calls and objects using an
aspect-mining tool [8] and by consulting SWT API doc-
umentation [5]. The results are summarized in Table 1.
The first column lists the 18 applications and their num-
bers of downloads as of January 15, 2008. The rest of the
columns lists the usage patterns, with each entry having the
form {defaults, exceptions} %exceptions. The last row
of the table shows the number of applications demonstrating
the usage pattern, the total number of defaults and excep-
tions, the total percentage of exceptions and the percentage
of exceptions per application. We briefly explain each usage
pattern (column).

ShellEventLoop. By default, in 70% of the time across
11 applications, after a Shell (window) is opened , the GUI
application must process the events in the application queue
repeatedly until the application is terminated. The remain-
ing 30% represent exceptions, including a situation where
code (e.g. to open a secondary window) is inserted in be-
tween the joinpoint and the advice and a situation where
exception handling logic is inserted inside the loop.

ShellSize. By default, in 51% of the time across 13 ap-
plications, before a Shell is opened, its size is set to the pre-
ferred size determined by its layout manager using pack().
The remaining 49% represent exceptions, including situa-

Table 1: Results of aspectizing SWT usage patterns

Shell ShellSize Context
EventLoop Menu

BlogCaster 3, 1} {0, 5}
(692) 25% 100%
Deinonychus {1, 6} 15, 27
(4,036) 85.7% 29%
EssentialBudget {1, 0} {0, 1}
(7,692) 0% 100%

Facelt {3, 0} {0, 3} {2, 0}
(957) 0% 100% 0%
FileBunker {2, 0}
(7,960) 0%

FnR 10, 47 T4, 27
(17,782) 100% 33.3%
GFace
(10,209)
Hopy {0, 2}
(1,507) 100%
JavaHexEditor {1, 37 12, 27
(9,131) 75% 50%
PaperClips
(8,116)
CalypsoRCP {3, 0} {0, 37
(6,239) 0% 100%
PinkPotato
(n/a)
RSSOWL 10, 57 10, 57
(743,203) 100% 100%
SolVE {0, 3} {0, 3}
(9,450) 100% 100%
SWTCalendar {3, 01 {3, 01
(13,951) 0% 0%
TuxGuitar 129, 67 130, 67
(308,907) 17.1% 16.7%
VirgoF TP {18, 21 {5, 9}
(20,246) 10% 64.3%
18 apps 11 apps 13 apps 1 apps
{62, 26} {46, 44} {8, 4}
30% except. 48.9% except. 33.3% except.
37.5% except./app 70% except./app 33.3% except./app

tions where size is set using other methods such as set-
Size(..) and setMaximized(true).

ContextMenu. By default, in 67% of the time across 4
applications, after a menu manager creates a context menu
from a widget, the context menu is set on the widget. The re-
maining 33% represent exceptions, including situations where
the created context menu is cached for some time before be-
ing set on a widget.

Our study shows that there is a good mix of both defaults
and exceptions to usage patterns that can be expressed us-
ing AspectJ aspects. Although the study revealed only three
usage patterns, we believe that if we expanded the notion of
aspects beyond those of AspectJ, for example, to those that
are less homogeneous and more expressive (see Section 5),
then more default cases could arise and in turn, more excep-
tional cases. In the future, we plan to actually express the
usage patterns using materializable aspects and determine
the increase in programmer productivity over expressing the
usage patterns conventionally.

4. PROTOTYPE IMPLEMENTATION AND

REMAINING TECHNICAL CHALLENGES

As we mentioned earlier, a prototype implementing ma-
terializable aspects was developed for the Eclipse platform
using AspectJ Development Toolkit (AJDT). Only aspects
with call pointcuts and after relationships are currently
supported. When the application developer annotates a
joinpoint (Figure 6(a), line 5) and refreshes the editor, the
IDE, underneath the cover, transforms the framework aspect
(Figure 1) into an aspect that excludes the joinpoint (Fig-
ure 4) and the advice is transformed in-place (Figure 6(b),
line 7). Unfortunately, as AspectJ cannot exclude particu-
lar AST nodes, if identical method calls exist in the same
method, annotating one method call will exclude all the
method calls. After the developer customizes the in-place

advice (Figure 6(c), line 9) and refreshes the editor, intra-
procedural reachability analysis checks that the materialized
advice is always, sometimes, or never reachable from the
joinpoint (Figure 6(d)). Context passing from joinpoint to
advice is not implemented, which means that advices must
be static and that dynamic constructs like cflow are not
supported.

The exercise of developing this simple prototype was valu-
able not only for demonstrating core ideas behind the pro-
posal, but also for understanding its technical challenges and
tradeoffs.

4.1 Expressiveness

A more expressive aspect language is needed to pick out
precise elements like AST nodes and to express a rich tem-
poral relationship between the joinpoints and the advice.
Although such a language will make further (e.g. inter-
procedural) program analysis and transformation more diffi-
cult to implement, it seems that approximations can be used
to reduce implementation effort and still allow many usage
patterns to be covered.

Arguably, if we push the expressiveness of the aspect lan-
guage enough, we could arrive at an aspect language that
could capture both defaults and exceptions concisely. How-
ever, materializable aspects offer an elegant and practical
crossover between a language-oriented and a tool-oriented
solution that can be implemented and used adequately at a
fraction of the cost required to implement and learn such an
expressive aspect language. Balancing language expressive-
ness and program transformation and analysis capability is
the key to making materializable aspects useful.

4.2 Tool usability

Materializable aspects are tool-centric and there are sev-
eral interesting issues to be addressed. For example, the
IDE may offer different modes of operation for materializ-
able aspects. In interactive mode (e.g. code assist), speed
of program analysis and transformation may be important,
while in batch mode (e.g. compilation), accuracy and pre-
cision may be more important. Also, if materializations oc-
cur across multiple joinpoints, the IDE may provide a view
through which the application developer can systematically
review them and make customizations, rather than having
to manually search for all the materializations.

4.3 Framework and application co-evolution

Materializable aspects are part of the framework and the
base that they advise and customizations made to materi-
alizations are part of the application. Both materializable
aspects and their materializations can change, potentially
causing inconsistency. For framework-based application de-
velopment, it is more likely that materializations, not ma-
terializable aspects, will change because an application de-
veloper typically does not change framework code such as
SWT library code (unless he needs to do so locally). But
framework and application co-evolution is possible and al-
though it is not the focus of this paper, we give some ideas
on how it can be addressed. If the application developer
changes or removes a joinpoint so that an aspect no longer
applies to it, the materialized advice should be removed or
the application developer must be informed that it is no
longer necessary. If a pointcut is changed, we remove ma-
terializations that no longer apply or inform the application

developer. If an advice is changed, we replace the material-
ized advice occurrences with the new advice or inform the
application developer.

S. RELATED WORK

Frameworks. Kulesza et al. [7] propose that applica-
tions define aspects to advise ezxtension joinpoints, unlike
our approach, which proposes that frameworks define as-
pects to advise application code. For white-box framework-
based application development, which largely involves im-
plementing hook methods, their work is more suitable than
our work. However, for black-box framework-based appli-
cation development, which mainly involves creating objects,
wiring them, and calling methods according to behavioural
framework rules or conventions, our approach is more suit-
able than their approach.

With framework specialization aspects [11], an abstract
aspect defines a general framework rule, such as a design
pattern, with extension points called hot-spots and concrete
aspects must fill these hot-spots for each instantiation of
the rule. Like the previous related work, framework spe-
cialization aspects advise framework, not application, code,
making them more suitable for white-box rather than black-
box framework-based application development. Also, with
framework specialization aspects, when customization is re-
quired beyond the pre-planned extension points, one will
run into the same problem presented in Section 1, where
materialization is more natural than aspect extension.

Generative approaches. Smith treats an aspect as an
equivalence relation [12] for which maintenance code is gen-
erated when the relation is disturbed. Although material-
izable aspects are also constraints that generate code, code
is generated and customized on-demand, which brings our
work closer to multi-level customization [3], which is the idea
that intermediate abstractions, like materializable aspects,
be introduced to facilitate application development.

A Framework-Specific Modeling Language (FSML) [2] is
a systematic approach to modeling framework concepts. Al-
though both FSMLs and materializable aspects are tech-
nologies enabling framework-based application development,
FSMLs focus on enabling model-driven development, while
materializable aspects focus on integrating conventional AOP
and program transformation and analysis. Future work will
involve seeing how materializable aspects and FSMLs can
be integrated.

Expressive aspect languages. An important future
work item is to understand how more expressive aspect lan-
guages, such as those capable of specifying history of events [6
4, 1] and data flow [9] and generating aspects [14], can be
used as a basis for materializable aspects in a way that will
balance language and program transformation and analysis
benefits as discussed in Section 4.1.

6. CONCLUSION

Using conventional aspects alone, it is difficult to capture
both defaults and exceptions of usage patterns. Materializ-
able aspects, which behave as conventional aspects for de-
fault joinpoints and as program transformation and analysis
mechanisms for exceptional joinpoints, were presented as a
solution, along with a prototype implementation of some of
its ideas. The problem hypothesis was supported through
a preliminary study of 18 open-source SWT-based applica-

)

tions, which identified three usage patterns having a bal-
anced mix of both defaults and exceptions. In the future,
the solution hypothesis will be tested by widening the scope
of aspects to make them more applicable, by studying other
frameworks, and by determining the benefits that material-
izable aspects provide.

7.
1]

[10]

[11]

[12]

[13

[14]

REFERENCES

C. Allan, P. Avgustinov, A. S. Christensen, L. J.
Hendren, S. Kuzins, O. Lhoték, O. de Moor,

D. Sereni, G. Sittampalam, and J. Tibble. Adding
trace matching with free variables to aspectj. In
OOPSLA, pages 345-364, 2005.

M. Antkiewicz and K. Czarnecki. Framework-specific
modeling languages with round-trip engineering. In
MoDELS, pages 692-706, 2006.

K. Czarnecki, M. Antkiewicz, and C. H. P. Kim.
Multi-level customization in application engineering.
Commun. ACM, 49(12):60-65, 2006.

R. Douence, P. Fradet, and M. Siidholt. Trace-based
aspects. In M. Aksit, S. Clarke, T. Elrad, and R. E.
Filman, editors, Aspect-Oriented Software
Development, pages 201-218. Addison-Wesley, 2004.
Eclipse. SWT documentation. Document available at
http://http://www.eclipse.org/swt/docs.php.

R. Filman and K. Havelund. Realizing aspects by
transforming for events, 2002.

U. Kulesza, V. Alves, A. F. Garcia, C. J. P.

de Lucena, and P. Borba. Improving extensibility of
object-oriented frameworks with aspect-oriented
programming. In ICSR, pages 231-245, 2006.

M. Marin, L. Moonen, and A. van Deursen. Fint: Tool
support for aspect mining. In WCRE, pages 299-300,
2006.

H. Masuhara and K. Kawauchi. Dataflow pointcut in
aspect-oriented programming. In APLAS 03: Asian
Symposium on Programming Languages and Systems,
Beijing, 2003. Springer Verlag.

S. Microsystems. How to set the look and feel. in the
java tutorials. Document available at
http://java.sun.com/docs/books/tutorial/
uiswing/lookandfeel/plaf.html.

A. L. Santos, A. Lopes, and K. Koskimies. Framework
specialization aspects. In AOSD ’07: Proceedings of
the 6th international conference on Aspect-oriented
software development, pages 14-24, New York, NY,
USA, 2007. ACM Press.

D. R. Smith. A generative approach to aspect-oriented
programming. In GPCE, pages 39-54, 2004.
SourceForge. Open-source application repository.
www . sourceforge.net.

D. Zook, S. S. Huang, and Y. Smaragdakis.
Generating AspectJ programs with meta-AspectJ. In
Generative Programming and Component Engineering
(GPCE), pages 1-18. Springer-Verlag, October 2004.

