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Architectural Styles as Adaptors1

Abstract

The essence of architectural styles is component communication. In this paper, we try to relate
architectural styles to adaptors in the GenVoca model of software construction. GenVoca compo-
nents are refinements that can have a wide range of implementations, from binaries to rule-sets of
program transformation systems. We suggest that abstracting adaptors to refinements allows for
program transformation implementations of adaptors that can express complex architectural styles
that could not be expressed by other means. Examples from avionics are given.

1  Introduction

McIlroy and Parnas observed almost thirty years ago that software products are rarely created in isolation;
over time a family of related products eventually emerges [McI68, Par76]. Software design and develop-
ment techniques then were aimed at one-of-a-kind products. While our design methodologies have
improved significantly both in quality and sophistication, one-of-a-kind products are still the norm. How-
ever, it is becoming increasingly apparent that product families are indeed very common and methodolo-
gies are needed to accommodate their economical design and construction.

A product-line architecture (PLA) is a blue print for building a family of related applications. A number of
different approaches for designing PLAs have been under development for some time, each proffering
many success stories ([Wei90, Coh95, Har93, Bat92]). Of these approaches, the GenVoca approach is dis-
tinguished by components that export and import standardized interfaces [Bat92, Sma98]. Applications of
a product-line are assembled purely through component composition. Components themselves can encap-
sulate domain-specific “intelligence” that can, for example, automate domain-specific optimizations that
are critical to application performance.

A fundamental issue in composing applications from components has to do with the way components com-
municate their needs and results. This is what we consider the essence of architectural styles: the separa-
tion of a component’s computations from the means by which it communicates. As no single architectural
style suffices for all applications, there needs to be a way in which styles can evolve (or be replaced) within
or across application instances. Note that our notion of a “style” is not as broad as that in the treatment of
architectures by Perry and Wolf [Per92], but follows a view taken by other researchers (e.g., [Sha97,
DeL96]).

In this paper, we explore the relationship of architectural styles and GenVoca. We argue that styles can be
viewed as corresponding to adaptors [Gam94]. Adaptors, however, are instances of a more general concept
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University of Texas Applied Research Labs, and the U.S. Department of Defense Advanced Research Projects
Agency under contract F30602-96-2-0226.
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called consistent refinements, which has many possible implementations (including traditional OO ones).
By implementing adaptors as program transformations, for example, complex architectural styles can be
expressed in a component-form that simply could not be expressed by other means. Examples from avion-
ics are given to support this claim.

We begin with a brief review of the GenVoca model and its relationship to architectural styles.

2  A Model of Product-Line Architectures

The basic premise of GenVoca is that plug-compatible and interchangeable software “building blocks” are
created by standardizing both the fundamental abstractions of a mature software domain and their imple-
mentations. The number of abstractions in a domain is typically small, whereas a huge number of potential
implementations exist for every abstraction. GenVoca advocates a layered decomposition of implementa-
tions, where each layer or component encapsulates a primitive feature shared by many applications. The
advantage is scalability [Bat93b, Big94]: libraries have few components, while the number of possible
combinations of components (i.e., distinct applications in the domain that can be defined) is exponential.
[Cog93, Bat93b, Hei93, Hut91] are examples of GenVoca organizations for different domains.

Components and Realms. A hierarchical application is defined by a series of progressively more abstract
virtual machines [Dij68]. (A virtual machine is a set of classes, their objects, and methods that work coop-
eratively to implement some functionality. Clients of a virtual machine do not know how this functionality
is implemented). A component or layer is an implementation of a virtual machine. The set of all compo-
nents that implement the same virtual machine forms a realm; effectively, a realm is a library of inter-
changeable components. In Figure 1a, realms S and T have three components, whereas realm W has four.

Parameters and Refinements. A component has a (realm) parameter for every realm interface that it
imports. All components of realm T, for example, have a single parameter of realm S.2 This means that
every component of T exports the virtual machine of T (because it belongs to realm T) and imports the vir-
tual machine interface of S (because it has a parameter of realm S). Each T component encapsulates a con-
sistent refinement between the virtual machines T and S. Such refinements can be simple or they can
involve domain-specific optimizations and the automated selection of algorithms.

Applications and Type Equations. An application is a named composition of components called a type
equation. Consider the following two equations:

A1 = d[ b ];
A2 = f[ a ];

Application A1 composes component d with b; A2 composes f with a. Both applications are equations of
type T (because the outermost components of both are of type T). This means that A1 and A2 implement
the same virtual machine and are interchangeable implementations of T (with respect to functionality, not

2.  Components may have other parameters in addition to realm parameters. In this paper, we focus only on realm
parameters.

S := a  |  b |  c ;

T := d S | e S | f S ;

W := n W | m W | p  | q T S ;

S = { a, b, c }

T = { d[S], e[S], f[S] }

W = { n[W], m[W], p, q[T,S] }

Figure 1: Realms, Components, and Grammars

(a) (b)
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performance). Note that composing components is equivalent to stacking layers. For this reason, we use
the terms component and layer interchangeably.

Grammars, Product-Lines, and Scalability. Realms and their components define a grammar whose sen-
tences are applications. Figure 1a enumerated realms S, T, and W; the corresponding grammar is shown in
Figure 1b. Just as the set of all sentences defines a language, the set of all component compositions defines
a product-line. Adding a new component to a realm is equivalent to adding a new rule to a grammar; the
family of products that can be created enlarges automatically. Because large families of products can be
built using few components, GenVoca is a scalable model of software construction.

Symmetry. Just as recursion is fundamental to grammars, recursion in the form of symmetric components
is fundamental to GenVoca. More specifically, a component is symmetric if it exports the same interface
that it imports (i.e., a symmetric component of realm W has at least one parameter of type W). Symmetric
components have the unusual property that they can be composed in arbitrary ways. In realm W of Figure 1,
components n and m are symmetric whereas p and q are not. This means that compositions n[m[p]],
m[n[p]], n[n[p]], and m[m[p]] are possible, the latter two showing that a component can be composed
with itself. Symmetric components allow applications to have an open-ended set of features (because an
arbitrary number of symmetric components can appear in a type equation).

Design Rules, Domain Models, and Generators. In principle, any component of realm S can instantiate the
parameter of any component of realm T. Although the resulting equations would be type correct, the equa-
tion may not be semantically correct. That is, there are often domain-specific constraints that instantiating
components must satisfy in addition to implementing a particular virtual machine. These additional con-
straints are called design rules. Design rule checking (DRC) is the process of applying design rules to vali-
date type equations [Bat97]. A GenVoca domain model or product-line architecture (PLA) consists of
realms of components and design rules that govern component composition. A generator is an implemen-
tation of a domain model; it is a tool that translates a type equation into an executable application.

Implementations. A GenVoca model is an abstract description of a product-line architecture. A model
expresses the primitive building blocks of a PLA as composable refinements (components). The model
itself does not specify when refinements are composed or how they are to be implemented. Refinements
may be composed statically at application-compile time or dynamically at application run-time. Refine-
ments themselves may be implemented compositionally (e.g., COM binaries, Java packages, C++ tem-
plates), as metaprograms (i.e., programs that generate other programs), or as rule-sets of program
transformation systems (PTSs). Compositional implementations offer no possibilities of static optimiza-
tions; metaprogramming implementations automate a wide range of common and simple domain-specific
optimizations at application synthesis time; PTSs offer unlimited optimization possibilities. Choosing
between dynamic and static compositions, and alternative implementation strategies is largely determined
by the performance and behavior that is desired for synthesized applications.

Separating PLA design from implementation provides a significant conceptual economy: GenVoca offers a
single way in which to conceptualize building-block PLAs and many ways in which to realize this model
(each with known trade-offs).

3  Architectural Styles as Adaptors

3.1  Motivation

An architectural style refers to the means by which components communicate their needs and results, as
well as a set of constraints that govern the overall constellation of an application’s components. For exam-
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ple, components can communicate through pipes in the pipe-and-filter style; constellations are largely lim-
ited to linear chains of components. Our focus on architectural styles lies exclusively with component
communication.

The obvious first question is, why use different architectural styles? There are many reasons, some of
which are outlined below:

• Compatibility reasons. Most often, a style is fixed by convention or because the need to distinguish
between computation and communication had not become apparent at component implementation
time. Thus, components need to adopt a special style to communicate with existing pieces of software.
The scale of both components and interfaces may vary widely. Many standard protocols (interprocess
communication, windowing application conventions, COM for ActiveX controls) can be viewed as
alternative styles for connectors to some unit of functionality.

• Performance/portability reasons. Even simple decisions at the implementation level can constitute sty-
listic dependencies: a piece of code could be inlined or made into a procedure. A set of parameters may
be passed through global variables or procedure arguments. A service can be implemented as a static
or dynamic library, or even a stand-alone server. Such decisions fundamentally affect the performance
and portability of a component. Distributed applications offer a good example. Deciding whether a
piece of functionality is local or accessed over a network can be viewed as a simple stylistic choice,
albeit one that fundamentally affects performance. Ideally the same component could adopt different
styles and be used in vastly different applications. For instance, the same piece of functionality may be
in the core of both an embedded system (with a primitive OS, small memory, and slow processor) and
a high-end server system. The component should not have to be rewritten but should automatically
adapt (through a style adaptor) to the capabilities of either runtime environment.

3.2  GenVoca and Adaptors

GenVoca components are designed a priori to communicate with their clients in one style. For example,
application A1 of Section 2 has component d communicating with component b via the T interface. What
exactly the mechanisms and protocols are (e.g., local procedure calls, marshalled arguments, global-vari-
ables, etc.) is governed by the definition of T. But suppose we would like component d to communicate
with b via another style — remote procedure calls — which we would encode as some interface G. Further-
more, we would like components d and b to remain unchanged, so that d’s calls to interface T are trans-
lated (refined) into calls to interface G; similarly, invocations of G methods are translated (refined) into
invocations of T methods for b to process, and vice versa.

This can be accomplished using adaptors [Gam94]. For our example, we need to add two components and
one realm to Figure 1. Component t2g[G] would translate (refine, adapt) T method invocations to G
method invocations; t2g[G] would be a new member of realm T. Component g2t[T] would do the oppo-
site: it would translate (refine, adapt) calls to G into calls to T; g2t[T] would be the (lone) component of a
newly-created realm G. Figure 2 graphically illustrates the modification of A1 to A1’, where d indirectly
communicates (via interface G) with b.

Note the following. First, the essence of replacing one architectural style with another should not alter the
semantics of the target application. We have indeed not altered the computations of A1 in any way by
rewriting it as A1’; the only thing that has changed is the means by which components d and b communi-
cate. The architectural style equation G-Style[x] = t2g[g2t[x]] is the identity mapping, and algebra-
ically A1 = A1’. In general, we postulate that architectural styles are algebraic identity elements. Given the
type equation of an application, it is possible to rewrite the equation in many different ways using ‘style’
identities. Each equation would describe a different implementation of that application — i.e., the same
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fundamental computations are performed in the same order, the only difference is the means by which
components communicate.

Second, one of the goals of component-based design is to avoid component replication in library develop-
ment. Replication occurs, for example, when the computations of a component are fused with its commu-
nication style. Different encodings of a computation exist when multiple styles need to be supported.
Unfortunately, this approach doesn’t scale. If there are n computations and s styles, then potentially n*s
different components may be needed. Adding a new style may introduce n components; adding a new com-
putation might introduce s components.

Our model suggests a way to avoid such replication. Components and adaptors are designed to be orthogo-
nal to each other; this gives them a mix-and-match quality that avoids the fusing of component computa-
tions with communication styles. In Figure 3, we can view application A’ as a composition of components
d’ and b’, where d’ communicates with b’ via interface G (i.e., the computations of d and b are commu-
nicating via a “G” style). Algebraically, d’[x] = d[t2g[x]] and b’ = g2t[b].

This view of architectural styles as adaptors is not new. Nevertheless, standard compositional implementa-
tions of adaptors (e.g., as objects, procedures, or templates) have not always been up to the task. The use of
adaptors makes interface translations look conceptually trivial but the implementations of such translations
may be very sophisticated. Compositional implementations are not enough to equate architectural styles
with adaptors. There are many architectural styles that either could not be expressed or would be very inef-
ficient. (Consider the example given earlier, of a single component being used in both a high-end server
and an embedded system.) This is not surprising: the use of a compositional mechanism (e.g., procedures
or objects) is itself a stylistic dependency!

In contrast, our approach focuses on conceptualizing building-blocks of product-line architectures as
refinements. The advantage of refinements is that they are not limited to compositional implementations.
In fact, many of the useful expressions of styles as adaptors employ metaprogramming tools (software gen-
erators). Generators have control over components that exceeds the limits of languages. For instance, code
fragments can be fused together (e.g., [Sma97]) or specialization hooks can be eliminated from the gener-
ated code if they are not used. Even very simple “generators” (like the Microsoft MFC and ATL wizards
for adapting software to the style of Windows applications, ActiveX controls, etc.) are much more power-
ful than a simple collection of compositional components. It is this flexibility of generators that allows us
to equate architectural styles with (“intelligent”) adaptors.

4  An Example from Avionics

ADAGE was a project to realize a GenVoca-based product-line architecture for avionics (in particular, nav-
igation) software [Cog93, Bat95]. While the details of the model are not germane to this paper, the central

d

b

d

t2g

g2t

b

A1

A1’
d

t2g

g2t

b

A1’ (a) d’ imports an
G-style T interface

(b) b’ exports an
G-style T interface

Figure 2: Changing Architectural Styles Figure 3: Stylized Component Interfaces

d’

b’
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idea is that navigation components communicate by exchanging state vectors — i.e., run-time objects that
encode information about the position of an aircraft at a particular point in time. Different components per-
form common computations on state vectors (e.g., filtering, integration, etc.).

For the purposes of our paper, we will study a very simple type equation, E = Main[A[B[C]]], that is a
linear chain of components. The Main component encapsulates the application that is periodically exe-
cuted; the remaining components perform computations on state vectors. Computations proceed bottom-
up; that is, component C outputs a vector that is processed by B; B’s vector is processed by A; Main dis-
plays the contents of A’s vector. The specific computations will be abstracted into a set of uninterpreted
algorithms that will allow us to explore the impact of using different architectural styles. Each component
exports a read-vector method that a higher-level component can call. Although there are many other meth-
ods, the central idea of architectural styles can be conveyed with the rewriting/packaging of this one
method; other methods can be treated in a similar manner. Note that our examples are essentially idealized
with many complicating details omitted.

We will denote the read-vector computation of component C to be algorithm c(); that is, whenever the
read-vector computation of C is called (no matter how the read-vector method is expressed), algorithm c()
is invoked. Similarly, the read-vector computation of component B is algorithm b(x:TYPE_C), where
TYPE_C is the type of vector output by component C. The read-vector computation of A is algorithm
a(x:TYPE_B), where TYPE_B is the type of vector output by component B.

4.1  Example Styles

There are many ways of encoding the computations of E as one or more Ada tasks. Many reflect minor dif-
ferences in programming styles. In this section, we present three very different implementations of E —
executive, layered, and task — each with its own unique architectural style. Every implementation executes
exactly the same domain-specific computations in the same order; the only difference is how the compo-
nents of E communicate with each other (and hence are encoded). Later, we will explain how each of these
implementations could be “derived” or “generated” using GenVoca architectural-style adaptors.

Executive Implementation. The most common way in which the computations of E are realized in avionics
software is as an executive (also commonly known as time-line executive). The state vector that is output
by each component is stored in a global variable; read-vector methods are encoded as procedures that read
and write global state vectors. The Main task executes read-vector methods in an order that reflects a bot-
tom-up evaluation of E. An Ada representation of an executive encoding of E is depicted in Figure 4.

Layered Implementation. A typical layered implementation of Main would permit Main to call only the
methods of component A; A’s methods, in turn, would call methods of component B, and B’s methods
would call those of C. State vectors are returned as method results; there are no global variables. An Ada
representation of a layered encoding of E is depicted in Figure 5.

Task Implementation. A third and very different implementation of E would be to realize each component
as an Ada task; state vectors would be exchanged between tasks. Figure 6 depicts a task encoding of E.

Note that all three of the above examples are semantically equivalent (i.e., they each perform exactly the
same computations in the same order), and are syntactic transformations of each other. The only code that
is shared among all three are the algorithms c(), b(x:TYPE_C), and a(x:TYPE_B); the differences are
simply in the packaging of these algorithms in a particular architectural style.
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There are several trade-offs involved in choosing one of the above styles. Not all of them are apparent in
our simplistic presentation of these styles as Ada code fragments. Nevertheless, we will try to outline here
the trade-offs between the “executive” and “task” implementations.

Time-line executive is the easiest runtime implementation to write. The programmer needs to set a timer
interrupt for the basic system cycle. When the timer goes off, a predefined set of procedures that imple-
ment the application functions get called. The main advantage of this style is its predictability. The applica-
tion functions will run in a fixed pattern. Adding the maximum time for each function yields the maximum
time for the cycle. The simplicity of the dispatcher (no scheduler is needed) results in a low overhead, quite
predictable OS when no real-time alternative exists. The down side to the executive style is that it is too
simplistic. The data used by the system is fundamentally produced at different rates. Computations need to
run at a variety of rates. Data consumers need information with another set of rates and latencies. If some

-- global state vectors

vec_a : TYPE_A;
vec_b : TYPE_B;
vec_c : TYPE_C;

-- read-vector for component C

procedure READ_C is
begin
 vec_c = c();

end;

-- read-vector for component B

procedure READ_B is
begin
 invec : TYPE_A;
invec = vec_c;
vec_b = b( invec );

end;

-- read-vector for component A

procedure READ_A is
begin
 invec : TYPE_B;
invec = vec_b;
vec_a = a(invec);

end;

-- main task

task body MAIN is
begin

x : integer;
loop

-- bottom-up evaluation of E
READ_C;
READ_B;
READ_A;
-- compute time x till next cycle;
delay x;

end loop
end;

Figure 4. The “Executive” Style

-- component read functions

function READ_C return TYPE_C is
begin

return c();
end;

function READ_B return TYPE_B is
begin

invec : TYPE_B;

invec = READ_C;
return b(invec);

end;

function READ_A return TYPE_A is
begin
 invec : TYPE_B;

invec = READ_B;
return a(invec);

end;

-- main task

task body MAIN is
begin

x : integer;
vec_a : TYPE_A;
loop

vec_a = READ_A;
-- compute time x till next cycle;
delay x;

end loop
end;

Figure 5. The “Layered” Style
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unit needs to operate at a rate different than the basic cycle, the system will become more complex. Adding
and deleting functions or changing the timing requirements forces one to modify code throughout the sys-
tem. In all, the code is partitioned more to satisfy timing than based on objects or functional cohesion. A
second problem arises from the linear nature of the executive’s calling sequence. Data is not passed from
one part of the cycle to the next. Rather the majority of state information is stored in global data. Without
formal data-flow analysis, it is easy to use data in global variables that have not yet been updated for the
current cycle.

Tasking architectures have been designed to overcome the brittle, error-prone nature of the time-line exec-
utive. Modern schedulers permit analysis to prove that all processing deadlines will be met. Thus data can
be produced at the required rates. Tasks can be added and the effects of their load on the system can be cal-
culated. The disadvantage of the task style is that it is difficult to implement and generally has a higher
overhead.

In the next section, we explain how computations and “style” adaptors can be packaged as GenVoca com-
ponents.

4.2  Packaging Adaptors as Components

As mentioned earlier, both components and adaptors that represent architectural styles can be unified by
the concept of consistent refinements. An implementation of refinements that can synthesize the examples

-- components as tasks

task TASK_C is
entry READ_C( vec_c : out TYPE_C );
...

end;
task body TASK_C is
begin

loop
 accept READ_C( vec_c : out TYPE_C ) do

vec_c = c();
end;
...

end loop
end

task TASK_B is
entry READ_B( vec_b : out TYPE_B );
...

end;
task body TASK_B
use TASK_C is
begin

loop
accept READ_B( vec_b : out TYPE_B ) do

invec : TYPE_C;

-- read vector from TASK_C
TASK_C.READ_C(invec)
vec_b = b(invec);

end;
...

end loop
end;

task TASK_A is
entry READ_A( vec_a : out TYPE_A );
...

end;
task body TASK_A
begin

loop
accept READ_A( vec_a : out TYPE_A ) do

invec : TYPE_B;

-- read vector from TASK_B
TASK_B.READ_B(invec);
vec_a = a(invec);

end;
...

end loop
end

-- main task

task body MAIN
use TASK_A is
begin

x : integer;
invec : TYPE_A;
loop

-- read vector from TASK_A
TASK_A.READ_A(invec);
-- compute time x till next cycle;

 delay x;
end loop

end;

Figure 6. A Transducer/Task Style
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of Section 4.1 are metaprograms and rule-sets of program transformation systems (PTS). A metaprogram
is a program that generates another program by composing code fragments; a rule-set of a PTS is a set of
tree rewrite rules that, when applied, progressively transform one program into another. For both metapro-
grams and PTS, programs are manipulated as data. We will explain our implementation using a metapro-
gramming approach. Later in Section 4.3.2, we motivate the generalization to rule-sets of PTSs.

Our model assumes that components communicate in a predetermined “standard” style. Any other style
would be obtained through the use of adaptors. For this to be possible, each avionics component will be
represented as a metaprogramming protocol — each component can query the capabilities and properties
of adjacent components to determine what code should be generated. In particular, this allows each compo-
nent to determine (a) the global variables that are to be used, (b) the protocol on how a component’s current
state vector is to be obtained, (c) when component methods are to be executed, and (d) what interface
“wrapper” should surround the source code of domain-specific computations. Each of these capabilities
will be expressed as methods that return code fragments.

4.2.1  An Executive Component

Let’s look at how component A might be represented as a metaprogram. Let’s assume that the “standard”
style in our model is executive (any style will do). So our implementation of component A will encapsulate
both A’s fundamental computations as well as its executive encoding. The following explains a set of meth-
ods that A (as well as B and C) would implement:

• global-variable method: This method outputs the declaration of any global variable of a component.
Component A would output “A_vec : TYPE_A”. That is, it would output a standard name for its global
variable (A_vec) and its declaration. In addition, the global-variable method of the component beneath
A would be invoked, thereby generating a chain of global variable declarations originating from multi-
ple components. Consider equation E. When the global-variable method for A is called, the following
declarations would be generated:

vec_a : TYPE_A;
vec_b : TYPE_B;
vec_c : TYPE_C;

• get-current-vector method: This method outputs a statement that assigns local variable invec to the
current vector of the given component. For component A, the statement “invec = vec_a;” is pro-
duced, meaning that the current vector of A is in global variable vec_a.

• interface-generation method: This method generates a component’s read-vector method in executive
style. Component A produces a parameterless procedure where the body of the procedure invokes algo-
rithm a(x:TYPE_B):

procedure READ_A is
begin

invec : TYPE_B;
--- set invec to appropriate value

vec_a = a(invec);
end

Note that the above procedure is incomplete, because invec has yet to be initialized. The assignment
statement that initializes invec is produced by invoking the get-current-vector method of the
component that lies immediately beneath A. Again consider equation E. The read procedure that is gen-
erated by calling interface-generation for component A is:



10

procedure READ_A is
begin

invec : TYPE_B;
invec = vec_b;
vec_a = a(invec);

end

• compute-vector method: The computation of a new state vector in executive style is distinct from
returning its result. To compute A’s new vector, we must first compute the state vector of the layer
immediately below A (by calling its compute-vector method). We then generate the call “READ_A;”.
For equation E, the calls that would be produced by invoking the compute-vector method of A is:

READ_C;
READ_B;
READ_A;

This sequence of calls is included in the task-loop of Main of Figure 4.

Note when the type equation E is created, one is actually composing metaprogramming implementations
for each of E’s components. When the generator executes E, it produces/generates the executive source
code of Figure 4. In the next section, we will show how a layer-style adaptor can be written.

4.3  A Layer-Style Adaptor

A metaprogramming adaptor intercepts method calls for code generation and replaces them with different
calls. Here are the refinements for a layer-style adaptor called layer:3

• global-variable method: To make component A appear to be in a layered architectural style, A will have
no global variables. When the global-variable method of the layer adaptor is called, a dispatch to the
global-variable method of the component immediately below A is called (thereby skipping the call of
A’s global-variable method). So, the variable declarations generated for the equation E’ =
layer[A[B[C]]] would be:

vec_b : TYPE_B;
vec_c : TYPE_C;

That is, components B and C are still in executive style (and thus have global variables), but A is not.

• get-current-vector method: To obtain the current vector in layered style, A would output the assignment
statement “invec = READ_A;”, where READ_A is a function that returns A’s current state vector.

• compute-vector method: The computation of a new state vector in layered style occurs whenever its
READ_A function is called. Thus, the compute-vector method of a layer adaptor generates no code and
has a null body. An example of this method will be given shortly.

• interface-generation method: A’s read-vector method in layered style involves the generation of a
parameterless function that returns A’s state vector:

3.  Note that x = layer[x] is an architectural style identity.
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function READ_A return TYPE_A is
begin

invec : TYPE_B;
--- invoke compute-vector
--- set invec to appropriate value

return a(invec);
end

The above function is incomplete, because the computation of the state vector from the component
beneath A must be performed and local variable invec must be initialized. The code for the latter is
produced by calling the compute-vector method, and the code for the latter is produced by calling the
get-current-vector method of the component beneath A. As an example, the code generated for the
equation E’ = Main[layer[A[B[C]]] would be:

function READ_A return TYPE_A is
begin

invec : TYPE_B;
READ_C; --- compute-vector before referencing
READ_B;
invec = vec_b; --- variable invec equals vec_b
return a(invec);

end

4.3.1  A Task-Style Adaptor

A task-style adaptor (called task) would have the following methods:

• global-variable method: There are no global variables in task architectural styles. The global-variable
method of a task adaptor simply returns the result of the global-variable method of the component
beneath A.

• get-current-vector method: To obtain the current vector in task-style, A would output the assignment
statement “TASK_A.READ_A(invec);”, which assigns variable invec a value via a task call.

• compute-vector method: As with the layer-style adaptor, the computation of a new state vector in task-
style occurs whenever its task read-vector method is called. Thus, the compute-vector method of a
layer adaptor has a null body. An example will be given shortly.

• interface-generation method: A’s read-vector method in task style generates an Ada task:4

task TASK_A is
entry READ_A( vec_a : out TYPE_A );
...

end;
task body TASK_A
begin

loop
accept READ_A( vec_a : out TYPE_A ) do

invec : TYPE_B;

4.  Readers may note that the Ada uses clause specifies tasks that can be called from within a task. The list of such
tasks could be produced by an additional method — uses-tasks method — that all components would need to imple-
ment.
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--- invoke compute-vector
--- set invec to appropriate value

vec_a = a(invec);
end;
...

end loop
end

As an example, the code generated for the equation E’ = Main[task[A[B[C]]]] would be:

task TASK_A is
entry READ_A( vec_a : out TYPE_A );
...

end;
task body TA
begin

loop
accept READ_A( vec_a : out TYPE_A ) do

invec : TYPE_B;
READ_C;
READ_B;
invec = vec_b;
vec_a = a(invec);

end;
...

end loop
end

4.3.2  Recap

Given the above model of components and adaptors, the type equations for Figures 4-6, which are equiva-
lent to equation E, are:

Figure4 = Main[A[B[C]]];
Figure5 = Main[layer[A[layer[B[layer[C]]]]]];
Figure6 = Main[task[A[task[B[task[C]]]]]];

It is not difficult to imagine that metaprogramming adaptors for other architectural styles — such as table
dispatching, file filters, and Weaves [Gor92] — can be created by following the above approach. It is also
not difficult to see that different architectural styles can be intermixed within the same type equation. Thus,
a version of E that implements A as a task, B in layered style, and C in executive style would be E* =
Main[task[A[layered[B[C]]]]]. The source that would be generated from this equation is shown in
the Appendix.

Readers may have noticed that more compact code could be generated in our examples. For example, the
invec variable could easily be removed from many of our generated procedures. While this is a trivial
optimization, it is symptomatic of inefficiencies that can arise in metaprogramming implementations of
components and adaptors. Optimizations requiring code movement and variable elimination are extremely
difficult to express in metaprograms. If such optimizations are crucial for producing efficient code, then
rather than implementing components and adaptors as metaprograms, a better way would be to implement
them as rule-sets of program transformation systems (where such optimizations are possible and can be
expressed easily). Again, this is possible in a GenVoca model because the basic model remains unchanged;
it is only the implementation the generator (and the domain model components) that are affected.
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5  Conclusions

Product-line architectures are becoming progressively more important. Isolated designs of individual soft-
ware products are being replaced with designs for product-lines that amortize the cost of both building and
designing families of related products. A critical aspect of product-line designs involves architectural
styles. Different applications of a product family may require the use of different styles as the basis of
component communication. Simple and comprehensible models of product lines demand the interchange-
ability of architectural styles.

In this paper, we have explored the relationship of architectural styles and GenVoca models. Our approach
outlined some first steps towards viewing architectural styles as adaptors [Gam94]. Since GenVoca repre-
sents applications as equations (i.e., compositions of components), adaptors have a particularly appealing
representation as algebraic identity elements. That is, the ability to replace one architectural style with
another is elegantly expressed by rewriting an equation using an algebraic identity element. Moreover, the
central concept of GenVoca — namely building blocks of product line architectures are refinements — was
unaffected. Both components and adaptors are examples of refinements.

We presented “abstracted” examples of avionics architectures that were coded in different architectural
styles. We explained how metaprogramming implementations of components and adaptors could achieve
the effect of synthesizing these examples through component composition. This demonstrated the impor-
tant effect that adaptors and components could be designed to be orthogonal to each other, thereby admit-
ting a mix-and-match capability that is both desirable and characteristic of GenVoca designs.

Most approaches to architectural styles do not adopt the wholistic view that we have taken, namely that
one designs components and adaptors to work together to achieve a mix-and-match capability. Typically
approaches begin with pre-existing components; the task is to develop tools that will alter the architectural
styles by means of component unwrapping and/or rewrapping. While this approach will achieve success,
we believe that an approach that integrates component and adaptor designs will yield stronger results and
less fragile tools in developing product line architectures of the future.
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7  Appendix - Source for Main[ task[ A [ layered[ B[ C ] ] ] ] ]
-- global state vectors

vec_c : TYPE_C;

procedure READ_C is
begin
 vec_c = c();

end;

function READ_B return TYPE_B is
begin

invec : TYPE_B;
READ_C;
invec = vec_c;
return b(invec);

end;

task TASK_A is
entry READ_A( vec_a : out TYPE_A );
...

end;
task body TASK_A
begin

loop
accept READ_A( vec_a : out TYPE_A ) do

invec : TYPE_B;
invec = READ_B();
vec_a = a(invec);

end;
...

end loop
end

-- main task

task body MAIN
use TASK_A is
begin

x : integer;
invec : TYPE_A;
loop

TASK_A.READ_A(invec);
-- compute time x till next cycle;

 delay x;
end loop

end;


