
Subjectivity and GenVoca Generators

Don Batory
Department of Computer Sciences

The University of Texas, Austin, Texas 78712
batory@cs.utexas.edu

Abstract1

The tenet of subjectivity is that no single interface
can adequately describe any object; interfaces to the
same object will vary among different applications.
Thus, objects with standardized interfaces seem too
brittle a concept to meet the demands of a wide vari-
ety of applications. Yet, objects with standardized
interfaces is a central idea in domain modeling and
software generation. Standard interfaces make
objects plug-compatible and interchangeable, and it
is this feature that is exploited by generators to syn-
thesize high-performance, domain-specific software
systems. Interestingly, generated systems have cus-
tomized interfaces that can be quite different from
the interfaces of their constituent objects.

In this paper, we reconcile this apparent contradic-
tion by showing that the objects (components) in the
GenVoca model of software generation are not typi-
cal software modules; their interfaces and bodies
mutate upon instantiation to a “standard” that is
application-dependent.

1  Introduction

It is well-known in photography that there is no sin-
gle perspective from which all aspects of an object
can be viewed; depending on the perspective taken,
some aspects may be completely hidden while others
appear distorted. This simple observation has rele-
vance to software reuse. Consider an application that
models textbooks. A textbook might be an object
with attributes author_name, title, subject,
publisher, etc. These would be natural attributes if
the application needed to retrieve textbooks on the
basis of authorship, content, or title. They would not
be appropriate, however, if the application main-
tained stock and volume information for a warehouse
(where authorship and subject are irrelevant), or if
the application recorded the materials used in manu-
facturing textbooks (where subject and title are irrel-
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evant). Clearly, the data and operations that are
encapsulated by an object will vary from application
to application. This impacts software reuse: objects
written for one application may not be reused in
another because their “views” or “perspectives” are
incompatible, even though both applications deal
with the same real-world object.

The principle of subjectivity asserts that no single
interface can adequately describe any object; objects
are described by a family of related interfaces
[Har93-94, Oss92-95]. The appropriate interface for
an object is application-dependent (or subjective).
The impact of subjectivity is evident in domain-spe-
cific software system generators where the goal is to
produce customized software for particular applica-
tions. Generators implement models of software
domains called domain models. A central task in
domain modeling is to identify the fundamental
objects (or abstractions) of a domain and to define a
standardized programming interface for each. How-
ever, objects with standardized interfaces seems at
odds with the need for generators to produce custom-
ized interfaces for the software that they generate.

In this paper, we explore the relationship of subjec-
tivity to a class of generators called GenVoca genera-
tors [Bat92]. (We believe that subjectivity impacts all
generators, but in this paper we focus exclusively on
its impact on GenVoca). We show that typical com-
ponent interfaces (i.e., ones that are cast-in-concrete
and that do not change upon instantiation) are far too
rigid to be practical; GenVoca components have
interfaces that enlarge automatically upon instantia-
tion and hence are subjective (i.e., application-depen-
dent). We review techniques that have been used to
achieve subjective interfaces in four independently-
conceived generators and present a model that unifies
them.

2  GenVoca

GenVoca is a model of software generation ([Bat92,
Cog93, Hei93]). Among the tenets of GenVoca is
that by standardizing the fundamental abstractions of
a domain and their programming interfaces, it is pos-
sible to create plug-compatible, interoperable, and
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interchangeable building blocks called components
or layers.2 The set of GenVoca components that
implement the same abstraction/interface is a realm.
Realm A, below, has three components and realm B
has four.

A = { x, y, z[B] }
B = { m[A], n[A], o[B], p[A,B] }

Components are parameterized by the realms/
abstractions that they import, e.g., component z[B]
implements abstraction A (because z belongs to
realm A) in terms of the B abstraction (because z is
parameterized by B). Similarly, p[A,B] implements
abstraction B (because p belongs to realm B) in terms
of abstractions A and B (as p is parameterized by A
and B). Components that import the same abstraction
that they export are symmetric (e.g., p[A,B], o[B]).

Component composition is modeled by parameter
instantiation. A software system is a named composi-
tion of components called a type equation. Type
equations s1 and s2 below define two different sys-
tems, both of which export the B interface (because
their outermost components export B):

s1 = m[ y ];
s2 = n[ z[ p[ x, m[ x ] ] ] ];

Composing components can be interpreted as stack-
ing layers in a hierarchical system. For this reason,
we use the terms “component” and “layer” inter-
changeably.

2.1  The Myth of Standardized Interfaces

GenVoca components are composable because they
export and import standardized interfaces. As we
noted in Section 1, no single interface captures all
views of an object. What then does it mean for a
GenVoca interface to be “standardized”? How are
operations chosen to be included in an interface?
What criteria is used to exclude operations? One
could argue if GenVoca generators purport to pro-
duce high-performance software for a domain, then
no operation could be excluded because it might be
needed for performance-critical applications. Indeed,
when GenVoca interfaces are defined, there are oper-
ations that most people would agree are “core” or
“intrinsic”, but many other operations are “optional”
or “subjective”.

2.  A domain abstraction is often defined by an interrelated net-
work of objects/classes [Jon88, Bat92, Gam94, Oss92-95]. Stan-
dardizing the interface of a domain abstraction is accomplished
by standardizing the interfaces of its constituent objects/classes.

Example. P2 is a GenVoca generator for container
data structures [Bat93-94a]. The core operations
that one can perform on containers are element
retrievals, updates, insertions, and deletions.
However, there is an infinite number of optional
operations: count the number of elements in the
container, return the last element inserted, insert
an element after a given element, etc. Core opera-
tions are distinguished from optional operations
subjectively, i.e., by their perceived need for the
target applications that P2 has to support.

The notion that standardized interfaces are immuta-
ble or cast-in-concrete in GenVoca is a myth. Each
component encapsulates a domain-specific feature.
For programmers or other components to take advan-
tage of this feature, it is often necessary for a compo-
nent to export non-core, component-specific
operations. The ability of components to augment the
set of core operations that they export and import, of
course, destroys any pretense of realm interfaces
being immutable or cast-in-concrete. To emphasize
this point, it is quite common in GenVoca for the
exported interface of a generated system to change
with the addition or removal of a component.

Example. P2 has a size_of component which
maintains a count of the number of elements in a
container. This count variable cannot be read by a
core operation. Instead, size_of exports the
nonstandard read_size operation to read the
count. When size_of appears in a type equation
that defines a container’s implementation,
read_size is added to that container’s interface.
If size_of is removed from the type equation,
read_size is removed from the interface.

Example. P2 has a timestamp component. It
appends to every element in a container the time
of its insertion. The layer-specific operation
get_timestamp is added to the cursor class
interface for reading element timestamps. If
timestamp is removed from the container’s type
equation, get_timestamp disappears from the
cursor interface.

The general situation is depicted in Figure 1. Three
symmetric layers are shown: each exports and
imports the same set of core operations. However,
the bottom layer has an extra left operation and the
middle layer has an extra right operation. When these
layers are composed, all layers are automatically
extended to support both a left and right operation.
That is, the bottom and middle layers modify their
realm interface by adding their layer-specific opera-
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tions. As all layers of a realm export the same inter-
face, every layer of that realm in the type equation
must have a left and right operation. By the same rea-
soning, if the middle or lower layer is removed, its
layer-specific operation will be removed from all lay-
ers of the composition. It is in this way that GenVoca
generators customize the interfaces of components
(and their exported objects) and thus produce view-
specific software.3 Furthermore, the ability to add
new operations renders the distinction of core v.s.
layer-specific operations moot.

However, this does raise an interesting dilemma: on
the one hand, the composibility of GenVoca compo-
nents is dependent on standardized interfaces. On the
other hand, individual components may export non-
standard operations. Although this seems contradic-
tory, subjectivity offers a resolution.

The principle of subjectivity is that objects have mul-
tiple interfaces; the particular interface to be adopted
is application-specific. When GenVoca components
are composed, their interfaces are automatically
adjusted to a standard that is type equation-specific.
Thus, standard interfaces do not mean cast-in-con-
crete in GenVoca; they are indeed subjective.

A novel consequence of the above is that, unlike typ-
ical software modules, components with subjective
interfaces are freeze-dried   the set of operations
that a component exports enlarges upon instantia-
tion. (Which operations are added is type-equation
dependent). Thus, a component author never really
knows the full interface of his component; an actual
interface is only known at instantiation time.

3.  Actually, it is unnecessary for the bottom layer of Figure 1 to
have a right operation if it is never called. An “dead-code” opti-
mizer would remove such an operation.

Adding new operations to an interface is simple;
however, how does one automatically manufacture a
method for such operations on a per-component
basis? How can components with subjective inter-
faces be implemented? What programming language
features are needed to support subjectivity? What
programming paradigm cleanly unifies these ideas?
In the following section, we review actual implemen-
tations of components with subjective interfaces in
four independently-conceived GenVoca generators.
Although all four solutions are outwardly different,
they are fundamentally similar. Afterward, we distill
the essence of these solutions, and in doing so, we
answer the questions posed in this paragraph.

2.2  Four Implementations

A hallmark of GenVoca generators is that the design
and construction of realm libraries is guided by a
careful domain analysis. Components are not ad hoc
or randomly harvested modules; they are specifically
designed to be interoperable and composable with
other components. The constraints on using compo-
nents in type equations   i.e., their compatibility or
incompatibility with other components   is directly
encoded as composition rules (a.k.a. design rules) in
the generator’s domain model [Bat95]. However,
recognizing composition constraints and adding
these constraints to the domain model is the responsi-
bility of domain analysts and component implemen-
tors. There is no tool support or automatic way of
recognizing the compatibilities and incompatibilities
of components; deep domain knowledge is required.
From our experience with GenVoca generators, man-
ually recognizing constraints hasn’t been difficult
since the number of components in GenVoca librar-
ies are rather small (about a few hundred) and experi-
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enced domain analysts have no difficulty keeping
track of their meaning and distinctions.4

Generators perform tasks that are automatable (e.g.,
code generation, composition, composition valida-
tion, optimization, etc.); the tasks that are not autom-
atable (e.g., recognizing new domain abstractions,
recognizing new components of a realm, recognizing
composition constraints, understanding domain
knowledge, etc.) are the responsibilities of domain
analysts and component implementors. It is this per-
spective that one should keep in mind when review-
ing the following generator implementations.

Genesis. Genesis was the first GenVoca generator; it
demonstrated that customized database management
systems (in excess of 50,000 lines of code) could be
assembled from prefabricated components [Bat92].
Genesis relied on a rather rigid (and in hindsight)
inflexible way of accommodating subjectivity; realm
interfaces evolved as new components were written.
That is, when a new component K was added to realm
R and K exported nonstandard operation O, all com-
ponents of R were manually retrofitted to export O.
This did not mean that every component of R had to
implement O; non-stubbed implementations were
provided only for those components where it made
sense to do so.

Thus, the interfaces of Genesis components were
adjusted manually whenever a new component was
added to a realm.5 There was no subsequent adjust-
ment of interfaces if type equations did (or did not)
use a particular component. This approach worked
because of the objectives of Genesis, namely, to
demonstrate DBMS synthesis. Performance wasn’t
an issue and a large user community (that would
insist on having many optional operations) was not
envisioned.

A consequence of this approach was the need for (the
above mentioned) design rules: although the inter-
faces of all components of realm R are syntactically
identical, not all components implemented operation
O. This meant that components of R were not always
interchangeable and that not all syntactically correct
compositions of Genesis components were semanti-
cally correct. Automatic design rule checking was
needed to validate compositions [Bat95].

4.  The relatively small size of GenVoca libraries is not a conse-
quence of limited prototypes, but rather the scalability of Gen-
Voca domain models [Bat93, Big94].
5.  Components were added to realms in the order that maximally
stressed realm interfaces. We discovered that once the first few
components were added, realm interfaces quickly reached a
steady state. So backtracking and global updating was minimal.

Avoca. Avoca/x-kernel demonstrated that highly lay-
ered communications protocols could be more effi-
cient and more extensible than monolithic protocols
[Hut91, Bat92]. Avoca realm interfaces were rigid
(i.e., cast-in-concrete) sets of operations. Microproto-
cols, the name given to Avoca components, imple-
mented a fixed-set of core operations for transmitting
messages and opening and closing sessions, plus an
additional operation control. Every microprotocol
could export zero or more control functions   what
we have called layer-specific operations   that only
it understood. Calls to these functions were made
through control which took a standard pair of argu-
ments: a control function name and a pointer to the
control function’s argument list. A control opera-
tion was implemented as a switch statement; there
was one case for each of the microprotocol’s control
functions and a default case for transmitting the con-
trol operation to the next lower microprotocol:

void control( int op_id, list *arg_list )
{

switch( op_id )
{
case op1: // code for layer-specific

// operation #1
case op2: // code for layer-specific

// operation #2
...
default : // call control operation

 // of lower layer)
lower.control( op_id, arg_list );

}
}

The advantage of this approach is its generality; it
can accommodate any number of control functions
per microprotocol and it does not require component
interfaces to be modified (with the addition or
removal of a layer-specific operation).6 The draw-
backs are program clarity and performance. Coding
function calls via switch statements and marshalling
arguments are well-known to be obscure ways of
programming [Joh88]. Moreover, there can be a con-
siderable performance overhead in processing con-
trol operations. Calling a control function essentially
requires polling each component of a type equation
to test if it could process the function. Control func-
tions were not called frequently enough in Avoca for
their inefficiencies to be problematic.

Ficus. Ficus builds customized file systems from a
single realm of components [Hei93]. All Ficus layers

6.  Note that a nondefault method, i.e., something other than
transmitting the control function call to lower layers, could easily
be encoded in this scheme.
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support the same set of core operations plus any
number of layer-specific operations. The reliance of
Ficus on the Unix vnode facility encouraged a uni-
form treatment of core and layer-specific operations.
It also encouraged the interface of a file system to be
determined at configuration time, where every layer
of its type equation is polled for the set of operations
that it implements. The union of all operations from
all layers in the file system defines the interface to
that file system. All layers of the file system are then
automatically extended to support this interface.
Since it is not possible to anticipate what operations
would be provided by other (possibly yet-to-be-writ-
ten) layers, every Ficus layer provides a bypass
method for unanticipated operations. Usually, the
default method is simply to transmit calls of unantic-
ipated operations to the next lower layer(s). How-
ever, nondefault methods do arise.

An example of a nondefault method occurs in protec-
tion layers. Protection layers validate access privi-
leges of clients prior to performing file operations.
The bypass method for unanticipated operations is to
verify the user’s ability to access the given file. Vari-
ations on this theme (e.g., testing for read-only
access or write access) are possible [Hei93-95].

P2. P2 is a generator of container data structures
[Bat93-94a]. A P2 layer is a transformation between
the export interface of a component and its import
interface(s); only layer-specific operations and core
operations for which non-identity mappings are per-
formed are defined. When the P2 generator is com-
piled, the union of the export interfaces of every
layer in a realm is determined. Each layer is then
automatically extended to support this union inter-
face. Operations that are undefined by a layer are (in
effect) supplied default bodies which transmit the
operation to the next lower layer. Default methods
can be overridden on a per class basis.

A P2 component that has multiple non-default meth-
ods is monitor, which encapsulates the transforma-
tion that converts a container into a monitor; i.e., all
accesses to the container occur within a critical
region. monitor exports two classes: container
and cursor. The monitor rewrite adds a sema-
phore data member sem to the container class and
modifies the methods of all cursor and container
operations by wrapping them with wait and signal
calls.

Sketches of the monitor operation rewrites are
shown below. container_op pattern-matches with
any container operation and “…” is bound to its
arguments. The rewritten method is enclosed within

braces { }: a wait is performed, then the actual
operation itself is processed (by the layer immedi-
ately beneath monitor), followed by a signal:

container_op( … )
{ sem.wait();

lower_container.container_op( … );
sem.signal();

}

The rewrite of cursor operations is different (albeit
slightly) from that of container operations: the con-
tainer semaphore must be accessed indirectly:

cursor_op( … )
{ container->sem.wait();

lower_cursor.cursor_op( … );
container->sem.signal();

}

In general, a bypass method is specified for each
class that is exported by a component. It is not too
difficult to imagine that even finer granularities of
rewrites may be needed.7

2.3  A Model of Subjectivity

Although different, there are striking commonalities
in the subjectivity mechanisms of the Genesis,
Avoca, Ficus, and P2 generators. In this section, we
propose a model of these mechanisms as extensions
to the P++ language [Sin93, Bat94b]. P++ is a super-
set of C++ that is specifically designed to support the
GenVoca model. Among its extensions are declara-
tions for realms, components, and parameters. The
current version of P++ permits the composition of
components at compile-time; it does not yet support
run-time compositions or the concept of subjectivity
discussed in this paper. (Realm interfaces are stan-
dardized manually at design-time, much like compo-
nent interfaces were standardized in Genesis). Our
proposed extensions to P++ have been implemented
in the P2 generator, so we will be describing an
abstraction of a working system. Our choice of P++
as the medium of explanation stems from the recog-
nition that language support for a design paradigm
greatly simplifies the application and understanding
of that paradigm.

As a running example, we will use the container data
structure abstraction of P2 [Bat93-94b]. This abstrac-
tion is represented by three classes: elements, con-

7.  As an example, if an operation only reads a private data mem-
ber of a class, there should be no need to execute the read within
a critical region. Thus the wrapping of wait and signal operations
around a method could be selective.
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tainers, and cursors. Elements are the objects stored
in containers. Cursors are used to retrieve and update
objects within containers.

Realms. A realm interface defines a programming
interface for a domain abstraction. It is a specifica-
tion of the prototypes of one or more classes and
functions; realms have no variables or data members.
The DS (container data structures) realm is shown in
Figure 2a. DS consists of two classes, container
and cursor, that are parameterized by a third class
e, the class of elements that are to be stored in con-
tainers and that are to be accessed by cursors.

To support subjectivity and interface variations, we
introduce subrealms to P++, i.e., specializations/sub-
types of a realm definition. Figure 2b shows two sub-
realms of DS. DS_size extends the container
class with the read_size operation and DS_time
extends the cursor class with the get_timestamp
operation. Note that the parameter(s) of superrealms
are inherited by their subrealms (i.e., DS is parame-
terized by class e, thus e is a parameter of the DS
subrealms DS_size and DS_time). Figure 2c shows
an alternative way of defining subrealms as a union
of previously declared subrealms.

Components. A P++ component is a large-scale
refinement of its realm interface. It is defined as a set
of consistent data refinements, non-bypass operation
refinements, and bypass refinements that help imple-
ment the component’s realm interface. A specifica-
tion of the size_of component is shown in Figure
3a. size_of refines the container class by adding
the variables lower and count, and explicitly refin-
ing the read_size and constructor operations. All
other container operations are implicitly refined
by the container bypass. size_of refines the
cursor class by adding the lower variable, plus
explicit refinements of the insert and remove
operations (that increment and decrement count).
All other cursor operations are implicitly refined by
the cursor bypass. There are three points about this
example that we want to elaborate.

First, rewrites of unspecified operations are
expressed by the P++ bypass construct. bypass
pattern-matches with the name of any operation that
is not explicitly declared within the enclosing class
but is an operation that is to be exported by that class.
bypass_type is the return type of that operation
and bypass_args matches its argument list. The
body of bypass defines the method rewrite. For
example, the size_of bypasses for both cursor
and container transmit the operation verbatim to
the layer immediately beneath size_of. Figure 3b

shows the monitor component which does not use
verbatim bypasses.

Second, bypasses complicate type checking in P++
because they allow interfaces of component
instances to be of an arbitrary size. Consequently,
component instances can have widely varying realm
export and import types. To type check component
definitions, all we need to ensure is that the type sig-
natures of the realm operations that are explicitly ref-
erenced in the component body match those of the
export or import realms. For example, size_of
explicitly exports the insert, remove, and
read_size operations; their signatures are covered
by the DS_size realm. (These signatures could also
be covered by DS_size_time and many other larger
realms; DS_size is the smallest cover given the
realms of Figure 2). Further, size_of explicitly
imports the insert and remove operations; their
signatures are covered by the DS realm. Thus, the
size_of component is declared to minimally export
the realm DS_size<e> and to minimally import
DS<e>.

template <class e>
realm DS
{

class container
{ container ();

bool is_full();
... // other operations

};

class cursor
{ cursor (container *c);

container *cont();
void advance ();
void insert ( e *obj );
void remove ();
... // other operations

};
};

(a)

(b)

Figure 2.  Realm and Subrealm Declarations

(c) template <class e>
realm DS_size_time : DS_size<e>, DS_time<e>;

template <class e>
realm DS_size : DS< e >
{

class container { int read_size(); }
};

template <class e>
realm DS_time : DS< e >
{

class cursor { int get_timestamp(); }
};
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Third, an implicit assumption of the DS abstraction is
that the only way elements can be added or removed
from containers is via the cursor operations insert
and remove. Should a new layer L introduce another
operation for adding or removing elements, the
size_of component may not maintain an accurate
count of the number of elements in a container. This
means that size_of cannot be composed with L to
yield a valid type equation. Such a constraint can be
expressed using design rules [Bat95]. Alternatively,
size_of could be made compatible with L if it
defines rewrites for the element insertion and dele-
tion operations of L. As mentioned in Section 2.2, the
recognition of the incompatibility of component
compositions (or the modification of components to
make them consistent) is borne by domain analysts
and component implementors, and is not done auto-
matically by generators.

Type Equations. Components are composed in P++
in typedef declarations. Suppose array and avl
are components that implement the DS interface and
do not export layer-specific operations. Type equa-
tions C1 and C2 (below) would generate systems that
export the DS_size interface:

typedef size_of[avl] C1;
typedef size_of[array] C2;

Given these declarations, the program of Figure 4 is
type correct. An environment variable decides
whether container and cursor implementations of
type C1 or C2 should be used during program execu-
tion.

Now suppose avl and array are modified to export
layer-specific operations: avl additionally exports
the num_balances operation, while array addi-
tionally exports the num_free_slots operation. As
explained in Section 2.1, the compositions C1 and C2
will generate different systems, both of which have
slightly different interfaces than DS_size. C1 would

Figure 4.  Environment-Selectable Implementations

main()
{  DS_size::container *cont;
   DS_size::cursor    *curs;

   if (environment_variable)
   { cont = new C1::container;

curs = new C1::cursor;   }
   else
   { cont = new C2::container;

curs = new C2::cursor; }
   ...
}

template <class e, DS<e> x>
component size_of: DS_size< e >
{
class container
{ friend class cursor;
x::container lower;
int count;

container() { count = 0; };
int read_size(){ return count; };

bypass_type bypass(...)
{ return lower.bypass(...); };

};

class cursor
{ x::cursor lower;

e* insert( e *element )
{ cont()->count++;

return lower.insert(element); };

void remove()
{  cont()->count--;

lower.remove(); };

bypass_type bypass(bypass_args)
{ return lower.bypass(bypass_args); };

};
};

template < class e, DS<e> x >
component monitor: DS< e >
{

class container
{ friend class cursor;

x::container lower;
semaphore sem;

bypass_type bypass(bypass_args)
{ bypass_type tmp;

sem.wait();
tmp = lower.bypass(bypass_args);
sem.signal();
return tmp; }

};

class cursor
{ x::cursor lower;

bypass_type bypass(bypass_args)
{ bypass_type tmp;

cont()->sem.wait();
tmp = lower.bypass(bypass_args);
cont()->sem.signal();
return tmp; }

};
};

Figure 3. The size_of and monitor Component

(a) (b)
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export the DS core, num_balances, and
read_size operations, while C2 would export DS
core, read_size, and num_free_slots. Note that
the program of Figure 4 would no longer be type cor-
rect (as C1, C2, and DS_size are distinct types), and
will fail to compile.8 This, despite the fact that the
additional operations that were generated,
num_free_slots and num_balances, are never
referenced.

The problem is that C1 and C2 have manufactured
interfaces that don’t match any explicitly defined
realm. For an application to insulate itself from irrel-
evant operations of components, it must use a realm
declaration that defines the interface that all gener-
ated systems should export. This could be accom-
plished by casting type equations to yield the
subjective view that is required:

typedef (DS_size) size_of[avl] C1;
typedef (DS_size) size_of[array] C2;

That is, our application interacts with generated sub-
systems via interface DS_size. C1 and C2 are now
equations that define different systems that imple-
ment DS_size. Hence, instances of C1 and C2 are
plug-compatible and thus the program of Figure 4 is
now type correct. From the perspective of the P++
compiler, casting may actually simplify the composi-
tion of components. Once the export interface of a
generated system is known, operations that do not
belong to this interface need not be generated.

Open Problems. Our extensions take us closer to a
better understanding of programming language sup-
port for GenVoca and components with subjective
interfaces. However, several important open prob-
lems remain. P++ components are presently compos-
able only at application compile-time; ideally,
components should also be composable at run-time.
Such a capability would permit software systems to
evolve dynamically. Although there are several pos-
sibilities on how to proceed (e.g., [For94, Hei93,
Hut91]), it is not clear what run-time capabilities
should be added to P++ to support the dynamic com-
position of components with bypass methods.

Another challenging problem is how to encapsulate
design rules within P++ components. Presently,
design rule checking is accomplished with a tool
external to P++ [Bat95]. Thus, design rules for com-
ponents are specified separately from P++ compo-
nent definitions. The difficulty of integration is that

8.  Compilation will fail because types C1 and C2 do not have
identical signatures and are not explicitly related as subtypes of
DS_size.

design rules would extend the P++ type checking
system, thereby requiring P++ to be a fairly “open”
compiler. Once again, there are possibilities on how
to proceed (e.g., [Oss95]).

3  Related Work

Frameworks. An object-oriented framework is a set
of abstract classes with their own set of concrete
classes. The combinations of concrete classes that
can work together can be defined in a variety of ways
(e.g., informally or using factory design patterns
[Gam94]); there is no fixed rule about how concrete
classes can be paired. Realms and frameworks are
indeed similar [Bat92]: the n classes of a realm’s
interface correspond to the n abstract classes of a
framework. Each GenVoca/P++ component specifies
an n-tuple of concrete classes (one concrete class per
abstract class) that work together as a unit. The dif-
ferences between realms and frameworks are (a) the
subjective nature of component interfaces and (b) the
need for bypass methods to encapsulate the operation
refinements of components.

Subjectivity. Subjectivity arose from the need for
simplifying programming abstractions, e.g., defining
views that emphasize relevant aspects of objects and
that hide irrelevant details [Shi89, Hai90, Gam94].
This lead to a connection of object modeling with
view integration in databases [Elm89], namely,
objects models can be defined as a result of integrat-
ing different application (or sub-application) views
of objects [Gol81, Har92]. Ossher and Harrison took
an important step further by recognizing that applica-
tion-specific views of inheritance hierarchies can be
produced automatically by composing “building
blocks” called extensions [Oss92]. An extension
encapsulates a primitive aspect or “view” of a hierar-
chy, whose implementation requires a set of addi-
tions (e.g., new data and method members) to one or
more classes of the hierarchy. A customized “view”
of an inheritance hierarchy could therefore be
defined by composing extensions. Extensions and
their compositions are similar to the GenVoca con-
cepts of components and type equations. Moreover,
similar scalability arguments have been advanced
independently for both models and that not all com-
positions of extensions (or GenVoca components)
may be semantically correct (c.f., [Bat93] and
[Oss92]). The models are not the same, however, as
(for example) extensions have no counterparts to
realms and realm parameters.

It is worth noting that a rather different and powerful
approach to views and software reuse has been pro-
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posed by Goguen [Gog86], Novak [Nov95], and Van
Hilst [Van95]. The essential idea is to define generic
“packages” that present a customized interface to an
object (or sets of objects). A view defines a mapping
of each object to its customized “perspective”.

Module Interconnection Languages (MILs). Lim-
ited forms of subjectivity can be achieved through
MILs. Microsoft’s Common Object Model (COM)
permits objects to have a set of (upwards compatible)
interfaces to maintain backwards compatibility with
old views of objects [Mic95]. As another example,
Goguen’s model of parameterized programming
(LIL) permits simple transforms on modules, such as
combining modules by merging their operations and
types; types, operations, and exceptions can be
added, exchanged, removed, or renamed, etc.
[Gog86, Tra93]. While the basic transforms are
present to achieve subjectivity, there are no higher-
order transforms that query module interfaces, wrap
all or selected operations of a module, and propagate
operations to other modules; such capabilities can
only be specified manually on a per module basis.

Reflectivity. Bypass methods correspond to method
wrappers or before and after methods in metaobject
protocols [Kic91]. CLOS was among the first lan-
guages to have method wrappers. Wrappers in CLOS
are different than in P++ as they are defined on a per-
operation basis. A model of wrappers that is closer to
P++ is that of SOM metaclasses, where all (or
selected) operations of a class can be wrapped by
before and after methods [For95]. Wrappers are
defined in SOM by overriding the dispatch methods
of metaclasses. Thus, to define the equivalent of the
P++ monitor component would require four sepa-
rate definitions in SOM: two classes (cursor and
container) and two metaclasses (a metaclass for
wrapping cursor operations and a metaclass for
wrapping container operations). There is no
mechanism in SOM (and CLOS) to encapsulate mul-
tiple classes and metaclasses. In contrast, the P++
component construct allows multiple classes to be
encapsulated and does not require the need for meta-
classes to specify wrappers. Another important dis-
tinction is that wrappers are composed in SOM and
CLOS through class inheritance; wrappers (bypass
methods) are composed in P++ through realm param-
eter instantiation. Thus, the mechanism for wrapper
composition in both models is quite different.

4  Conclusions

Generators are important tools for software develop-
ment. Understanding their principles is crucial to

their technical development and promulgation. In
this paper, we have explored an unusual feature of
software components that are used by GenVoca gen-
erators. Each component encapsulates a primitive
feature of a domain and is specified as a large scale
program refinement, i.e., a consistent set of data and
operation refinements of multiple classes. Unlike tra-
ditional software modules whose interfaces remain
unchanged upon instantiation, GenVoca components
mutate upon instantiation   their interfaces and bod-
ies enlarge automatically to meet interface require-
ments that are imposed by a system. The mutability
of interfaces is interesting in the context of GenVoca
because the composibility of components is based on
components exporting and importing standardized
interfaces.

We have shown that standardized interfaces and
mutable interfaces are not inconsistent. The principle
of subjectivity asserts that objects do not have single
interfaces, but rather are described by a family of
related interfaces. At component instantiation time,
an interface is manufactured for each object/class of
a component that is appropriate to the system in
which it is to be used. Thus, all components in a sys-
tem that export or import these objects/classes must
use this system-specific standard. It is in this way
that the interfaces of GenVoca components are cus-
tomized.

We reviewed different techniques that have been
used to implement subjective interfaces and have
proposed a model, based on the P++ language, that
distills the essential linguistic extensions needed for
programming language support. The key features
are: realm lattices (i.e., subtyping refinements of pro-
gramming interfaces that are defined by a set of inter-
related classes), bypass methods (i.e., wrappers that
define default refinements for operations), and the
automatic propagation of operations through compo-
nents that have been composed by realm parameter
instantiation.

Our work is only a first step in understanding the
phenomena of subjective interfaces. Many exciting
and challenging open issues remain: support for run-
time compositions, integration of design rule check-
ing with P++, experimentation with the proposed
features, development of domain modeling tech-
niques that incorporate interface subjectivity, and
formalization of GenVoca concepts [Cha94, Nen95].
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