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Abstract

We present a domain-independent model of hierarchical software system design
and construction that is based on interchangeable software components and large-
scale reuse. The model unifies the conceptualizations of two independent projects,
Genesis and Avoca, that are successful examples of software
component/building-block technologies and domain modeling. Building-block
technologies exploit large-scale reuse, rely on open architecture software, and
elevate the granularity of programming to the subsystem level. Domain modeling
formalizes the similarities and differences among systems of a domain. We
believe our model is a blue-print for achieving software component technologies
in many domains.
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1. Introduction

Mature engineering disciplines rely heavily on well-understood technologies that have
been standardized. By purchasing off-the-shelf components, engineers can create custom-
ized systems economically by building only the parts that are application-specific. Unneces-
sary reinvention of technology is thereby avoided.

Contemporary software systems have been simple enough for massive technology rein-
vention to be economically feasible. However, as software system complexity increases,
technology reinvention becomes unaffordable. There are many domains today that are tech-
nologically stable and ripe for standardization. Certainly there will be more in the future.
Many domains will concern hierarchical systems, where a progression of increasingly more
sophisticated software technologies are layered upon each other.

A classical, but largely unrealized, goal of software engineering is software component
(building-block) technologies. Such technologies are envisioned to exploit large-scale reuse,
leverage off of open-architecture designs, and elevate the granularity of programming to the
sub-system level [SEI90]. It is believed that software component technologies can be
achieved throughdomain analysis, an effort to formalize the similarities and differences
among systems of a mature and well-understood domain [Pri91].

Our interest in component technologies and domain analysis has arisen from our
involvement in two independent projects: Genesis and Avoca. Genesis is the first building-
blocks technology for database management systems [Bat85-91a]. Using a graphical layout
editor, a customized DBMS can be specified by composing prefabricated software com-
ponents. A university-quality (e.g., University Ingres) DBMS - over 70,000 lines of C - can
be produced and running within twenty minutes. Avoca is a system for constructing efficient
and modular network software suites using a combination of pre-existing and newly created
communication protocols [OMa89-90c]. Protocol suites are expressed as a graph of prefabri-
cated protocol components. The graph is loaded into a communications kernel (thexkernel
[Hut91]) and executed. Genesis and Avoca are successful examples of both software com-
ponent technologies and domain modeling.

When we compared Genesis and Avoca, we were amazed at the similarities in their
conceptual design, organization, and implementation. We concluded that the similarities
were not accidental, but were intrinsic to building-block technologies.

This paper reports our efforts to unify the conceptualizations of Genesis and Avoca.
We present a domain-independent model of hierarchical software system design and con-
struction that is based on interchangeable software components and large-scale reuse. A key
feature of this model, and our most novel contribution, is recognition of the fundamental role
of symmetric components in large scale reuse; these components have the unusual property
that they can be composed in virtually arbitrary ways. We demonstrate the practicality of
our model by using it to describe accurately the systems that we have built.

Our model is actually a meta-model of large scale system construction, which we
believe can be used to define models of open architectures for many different domains. We
do not present a methodology for modeling a domain in terms of the meta-model; that is far
beyond the scope of this paper and is the subject of ongoing work [Bat91b].

Our work affirms and extends basic insights of many pioneers in software engineering:
the software families and abstract interface concepts of Parnas [Par79], parameterized types
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of Goguen [Gog84], hierarchical system designs of Habermann [Hab76], object-orientation
of Goldberg [Gol84], and the frameworks concept of Deutsch [Deu89].

We begin by explaining the superstructure of large scale systems and its relationship to
the design of open-architecture software.
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2. The Structure of Large Scale Software Systems

The structure of large scale software systems can be modeled by an elementary notation
that reflects the obvious fact that systems are designed as assemblies of components and that
components fit together in very specific ways. The model postulates that components are
instances of types and components themselves may be parameterized. The ways in which
components fit together to form systems is captured elegantly through the use of typed
parameters and typed expressions. We start with a presentation of the model framework and
its notation. We then demonstrate the model’s generality by reviewing the domain models of
Genesis and Avoca, and give some insights into the problems of contemporary software sys-
tems.

2.1 The Model Framework and Notation

Basics. A type is a set of values. Anabstract data type (ADT) is a type plus operations
on the values of the type. Aclass is an ADT that belongs to an inheritance lattice [Car85].
A component is a closely-knit cluster of classes that act as a unit [Teo86].

Normally, the values of a type are simple (e.g., numbers, strings, etc). When values
become complex entities, different names (other than ‘type’) are generally used. For exam-
ple, a set of types is called ameta-type. A set of ADTs is called atype class [Wad89] and a
set of classes is atheory [Gog84, Gra91]. We will call a set of components arealm. Note
that meta-types, type classes, theories, and realms are themselves types.

Our model deals with components and realms.

Components. The fundamental unit of large scale software construction is the com-
ponent. Every component has an interface and an implementation. Following the lead of
Parnas [Par79, Bri81], the interface of a component isanything that is visible externally to
the component. Everything else belongs to its implementation.

Every component is a member of arealm T, where all members of T realize exactly the
same interface but in different ways. This means that members of a realm are plug-
compatible and interchangeable. The interface of a realm follows directly from an object-
oriented design: it is the set of one or more classes (their objects, operations, and interrela-
tionships) that are exported by each of its members. The interface of a component, however,
has additional information, such as the component’s name, performance characteristics,
source and object files, etc. Thus, when we say two components share the same interface or
are plug-compatible, we are referring to the realm-specific portion of their interface that they
have in common. (What constitutes a component interface will be defined precisely in Sec-
tion 4; for now, an informal notion will suffice. In Section 5.1, we consider ways com-
ponents can be members of multiple realms; for now we assume a component is a member of
precisely one realm).

Libraries and Parameterized Components. As a practical matter, most members
(components) of a realm are never implemented; few ever get beyond the paper-design stage.
Those that are define alibrary. We use the notation:

T = { a1, a2, a3 }
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to mean that realm T has a1, a2, and a3 as library members. Realms and libraries are
inherentlyextensible, as it is always possible to add another component as a member.

Components reference other components via parameters. Let the notation "t : T" mean
that component t is of type T (or t belongs to realm T) and "t : { T }" means t is a set of one
or more members of T. Consider component c[ x : R1, y : { R2 } ]. c has two parameters x
and y, where x must be component of type R1 and y must be a set of components of type R2.

Component Semantics. Every component implements anabstract-to-concrete map-
ping, which is a transformation of objects and operations visible at its interface or abstract
level to objects and operations at its concrete level. As mentioned above, the abstract inter-
face of a component is defined by its realm. The concrete interface of a component is
defined by the union of the interfaces of the realms of its parameters. For example, com-
ponent c[ x:R1, y:{R2} ] : T exports T as its abstract interface and imports R1∪ R2 as its
concrete interface. Thus, c[ ] translates objects and operations of T to objects and operations
of R1 ∪ R2, and vice versa.A critical concept here is that components do not know how
their concrete objects and operations are implemented.

A component can be thought of as a layer, where a software system is a stacking of dif-
ferent layers (i.e., a composition of components). It is normally the case that components
can only be composed (stacked) in a predefined order. Figure 2.1a shows a stacking of
layers, where layer1 is on top and layer3 is on the bottom. Layer1 translates its interface
objects and operations into the interface objects and operations of layer2; layer2 in turn
translates its interface objects and operations into interface objects and operations of layer3.
Note that if the realms of these layers (TOP, MIDDLE, and BOTTOM) are different, then
only one composition of these layers is possible (Fig. 2.1b). In Figure 2.1b, the libraries for
TOP, MIDDLE, and BOTTOM have a single member.

calls

calls

(b)(a)

layer3

layer2

layer1

LStack = layer1[ layer2[ layer3 ] ] ]

BOTTOM = { layer3 }

MIDDLE = { layer2[ y : BOTTOM ] }

TOP = { layer1[ x : MIDDLE ] }

Figure 2.1. Nonpermutable Stacking of Layers

Symmetric Components. A distinctive and fundamental concept of our model is the
possibility of symmetric components; i.e., components that can be composed (stacked) in
arbitrary orders. More specifically, a component of realm T is symmetric iff it has at least
one parameter of type T. Components d[ z : R ] and e[ z : R ] of realm R are symmetric as
both have a parameter z of type R. Thus, compositions d[e[z:R]] and e[d[z:R]] are possible.

Unix file filters are prototypical examples of symmetric components. Piping the output
of one filter into another is component composition: because filters have the same interface,
they can be composed in different orders. Usually, the order in which components are com-
posed makes a substantial difference in performance and semantics.
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UFILTERS = { dtbl[ x:UFILTER], deqn[ x:UFILTER ], ... }

Note that Unix pipe expressions like ‘dtbl | deqn | ditroff’ correspond to
ditroff[ deqn[ dtbl[ ] ] ] in our notation.

Composition, Systems, and Domains. Composition is the rules and operations of
component parameter instantiation; i.e., the guidelines by which components can be glued
together. Asoftware system is a type expression (i.e., a composition of components). The
system LStack of Figure 2.1b, for example, is defined by the expression
layer1[ layer2[ layer3 ] ]. The set of all software systems that present the interface of realm
T is called thedomain of T, denoted Domain(T).

The concepts of domain and realm, although similar, are actually quite different. A
realm is a set of components and a domain is a set of expressions. Only when a realm con-
sists solely of parameterless components will it be indistinguishable from a domain. It is this
special case that allows us to treat existing systems (e.g., commercial DBMSs) as ‘primi-
tives’ in defining higher-level systems (e.g., command and control) from components.

A software tool that implements rules of composition is a componentlayout editor; it
provides a language in which component expressions can be written. The set of all systems
of Domain(T) that can be specified by a layout editor from compositions of library com-
ponents is called thefamily of T, denoted Family(T). Family(T) is always a subset of
Domain(T). Figure 2.2 summarizes these concepts.

composition

realm-n

realm-2

realm-1

...

library

editor
layout

• system
family

domain

Figure 2.2 Realms, Libraries, Composition, Layout Editor, Family of Systems, and Domain

Grammars and Domain Models. There is a close correspondence between our con-
cepts and grammars. The left-hand side of the table below shows two compound
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productions, one for S and the other for R; the right-hand side shows the corresponding
realms S and R:

S → a | b | c S = { a, b, c }

R → g S | h S | i R R = { g[ x:S ], h[ x:S ], i[ y:R ] }

Note the following similarities. A component corresponds to a production. Parameterized
components are productions whose right-hand sides reference nonterminals; parameterless
components are productions that only reference terminals. Symmetric components
correspond to recursive productions.

The left-hand side of a production is the interface of a component and the right-hand
side is its implementation. A realm is the set of all productions with the same head. A
software system is a sentence and a domain is a language. Semantic error checking is the
rules of composition.

A model of a domain (ordomain model) is the set of realms and the rules of composi-
tion that define the software systems of that domain. It is also a grammar for expressing the
systems of a domain as compositions of primitive components.

Just as recursive productions play a fundamental role in compactly expressing a
language, so too do symmetric components play a fundamental role in concisely expressing
fundamental units of large scale reuse of a domain. We will consider examples of symmetric
components shortly.

Hierarchical Systems. Complex software systems are modeled as a sequence of
named type expressions with no forward or recursive references. Ahierarchical software
system has an acyclic call graph where nodes are components and edges denote call rela-
tions. The hierarchical system H shown below has components B and C both calling subsys-
tem X; X is modeled as a common subexpression that is defined separately.

X = D[E]

H = A[ B[X], C[X] ]

X

E

D

CB

A

Component parameter instantiation has call-by-value semantics. System H has two
instances of subsystem X; a single copy of the code exists for X but execution instances
interacting with components B and C are distinct.2.0

2.0 In database and network software, there may be variables or data structures within a com-
ponent that may be shared by different component execution instances. A list of buffers is an ex-
ample. In Avoca, semaphores are required for shared variable access; the same holds for a con-
current version of Genesis. Thus, different execution instances appear externally to be indepen-
dent, internally within a component they may have a controlled interference.
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It is worth noting that our model does admit the possibility of systems with unbounded
recursion, such as Y = m[Y] which has a recursive definition. We know of no practical
example of such systems; only finite replication of components (like m[m[p]]) seem to occur.

Component Reuse. Recognizing and achieving software reuse are fundamental prob-
lems in software engineering. An important form of reuse iscomponent reuse, which occurs
in our model when two or more expressions reference the same component. Thus, if a[b[c]]
and d[b[q]] are expressions (software systems), component b is reused. Common subexpres-
sions correspond to subsystem reuse, such as subsystem X above. We will encounter two
different types of reuse later: algorithm reuse and class reuse.

Examples. The domain models of Genesis and Avoca are presented in the next sec-
tions to illustrate the above concepts. Parenthetically, we note that in order to understand
any domain model, one really needs to be familiar with the domain itself. The domain
models presented below are not intended to be tutorial; citations are given so that interested
readers can find additional details.

Throughout this paper, sections whose numbers are tagged with a dagger (†) marker can
be skipped by readers who are not interested in concept illustrations.
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2.2† Genesis: A Domain Model for Database Management Systems

The Genesis 2.0 (G2) prototype implements a portion of a domain model for database
management systems. G2 enables centralized, single-client DBMSs to be synthesized from
component libraries. The complete domain model, described in [Bat87-89b] covers multi-
client, parallel, and distributed DBMS implementations.

The model itself is nontrivial; G2 alone supports twelve distinct libraries. It is beyond
the scope of this paper to cover them all or to explain the elaborate relationships (e.g.,
parameter instantiations) that can be admitted among components. In this section, we will
highlight the terrain of the model and indicate where additional complexities lie.

2.2.1† File Structures

Realms. File structures map internal relations to blocks on secondary storage. They
are type expressions of components from three realms: AMETHOD, NODE, and BLOCK.
Some of the current G2 library members are listed below:

AMETHOD { heap[ d:NODE ], unord[ d:NODE ], bplus[ d,i:NODE ],
isam[ d,i:NODE ], hash[ d:NODE ], grid[ d:NODE ], ... }

NODE { ord_prim_only[ p:BLOCK ], unord_prim_only[ p:BLOCK ],
ord_prim_shar[ p,o:BLOCK ], unord_prim_shar[ p,o:BLOCK ], ... }

BLOCK { fix_anch, var_anch, fix_unanch, var_unanch }

AMETHOD is the realm of access methods. Among library members are nonkeyed
access methods (heap, unord), single-keyed methods (hash, bplus, isam), and multi-keyed
methods (grid). Every AMETHOD component maps an internal relation to one or two sets
of logical blocks called nodes. One set of nodes contains only data records, the other set (if
present) contains ‘index’ records. For example, bplus trees and isam files store data records
in their leaf-level nodes, and store ‘index’ records in nonleaf nodes. Hence, the components
isam[ d,i:NODE ] and bplus[ d,i:NODE ] have two parameters: (d) to specify the implemen-
tation of data/leaf nodes, and (i) to specify the implementation of ‘index’ nodes. Some
access methods, such as heap[ d:NODE ] and hash[ d:NODE ], have no index nodes and
have only the single parameter (d).2.1

NODE is the realm of node implementations. A node or logical block is a sequence of
records. A node component maps a logical block to one or more physical blocks, where the
first block is theprimary block and the remaining (if any) areoverflow blocks. How primary
and overflow blocks are implemented is specified by parameters (p) and (o) of NODE

2.1 Readers may wonder how nonkeyed, single-keyed, and multikeyed file structures can have
the same interface. Recognizing that nonkeyed and single-keyed structures are degenerate cases
of multikeyed structures, it follows that a general-purpose interface for multikeyed structures
works for single-keyed and nonkeyed structures as well. See [Bat88b, Bat89a, Roy91, Bat91c] for
further details on the implementation of Genesis.
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components. A node can optionally maintain records in key order, optionally share overflow
blocks with other nodes, and optionally have primary blocks and/or overflow blocks. Each
combination of options yields a distinct component. ord_prim_unshar[ p,o:BLOCK ], for
example, maintains records in primary key order, uses a primary block, and does not share its
overflow blocks with other nodes.

BLOCK is the realm of record blocking methods, i.e., how records are packaged into
physical blocks. Records can be optionally fixed length or variable length, and can be
anchored (i.e, have physical addresses that do not change with time) or unanchored. Four
components cover all options. The component fix_anch assigns anchored addresses to
fixed-length records. BLOCK components do not require external services, and hence are
unparameterized.

Type Expressions. A file structure is an expression of type AMETHOD. An indexed
sequential file (isf) that uses ordered primary unshared implementations of data nodes, and
ordered primary block only implementations of index nodes, where all records are fixed-
length and unanchored, corresponds to the expression:

isf = isam[ ord_prim_unshar[ fix_unanch, fix_unanch], ord_prim_only[ fix_unanch ] ]

and an unordered file (uf) that uses unordered primary (block) only implementations of data
nodes, where records are variable length and anchored, corresponds to the expression:

uf = unord[ unord_prim_only[ var_anch ] ]

Clearly, a large family of different file structures can be assembled from AMETHOD,
NODE, and BLOCK components. See [Bat89a, Roy91] for further details.

2.2.2† Storage Systems

Realms. Storage systems map conceptual relations to internal relations. They are type
expressions of symmetric components from the realm FMAP. Some of the current G2
library members are listed below:

FMAP { index[ d,i:FMAP ], rl_encode[ d:FMAP ], zl_encode[ d:FMAP ],
frag[ s:FMAP ], ss_bus[ s:{FMAP} ], internal[ d:AMETHOD ], ... }

FMAP is the realm of file mapping components. Each transforms a conceptual file to
one or more internal files. What is an ‘internal’ file to one component, may be a ‘conceptual’
file to another, and hence most FMAP components are symmetric.

Consider the fragmentation of a long record into short records that are interlinked
together. Operations on long records (e.g., insertion, deletion, retrieval) have an obvious
translation to operations on short records. In G2, the component frag[ s:FMAP ] encapsu-
lates this mapping. It is parameterized because the method (s) by which short records are
stored is unknown. Because this parameter (s) and frag[ ] are of type FMAP, frag[ ] is
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symmetric.

Now consider the mapping of uncompressed records to compressed records. Once
again, operations on uncompressed records have an obvious translation to operations on
compressed records. In G2, the components rl_encode[ d:FMAP ] and zl_encode[ d:FMAP ]
encapsulate this mapping for the run-length and ziv-lempel encoding algorithms, respec-
tively. Both are parameterized by the method of storing encoded records. As both com-
ponents and their parameters are of type FMAP, both are symmetric.

The composition frag[ rl_encode[ d:FMAP ] ] corresponds to the implementation where
records are fragmented before being run-length encoded. In contrast, the composition
rl_encode[ frag[ d:FMAP ] ] corresponds to the implementation of encoding before fragmen-
tation. As mentioned earlier, the order in which symmetric components are composed makes
a difference both in performance and in results.

Consider two more components: index[ ] and internal[ ]. Index[ d,i:FMAP ] maps a
conceptual file to an inverted file, which consists of a data file and one or more secondary
index files. Parameter (d) specifies the implementation of the data file, and parameter (i)
specifies the implementation of the index files.

Internal[ d:AMETHOD ] encapsulates the transformation of operations on conceptual
files to low-level operations on file structures. This typically involves examining a retrieval
predicate to determine how a file structure is to be searched (i.e., scanned, range retrievals,
point searches, etc.).

Type Expressions. A storage system is an expression of type FMAP. A storage sys-
tem (ss1) that maps conceptual relations to inverted files, where data files are stored in unor-
dered files (defined earlier by expression uf) and index files stored in isam files (defined ear-
lier by expression isf) corresponds to the expression:

ss1 = index[ internal[ uf ], internal[ isf ] ]

Storage system ss2 is an enhancement of ss1 in that it handles long records. Long records
are first indexed before being run-length compressed and then fragmented:

ss2 = index[ rl_encode[ frag[ internal[ uf ] ] ], internal[ isf ] ]

With symmetric FMAP components, a very large family of storage systems can be defined
[Bat85].

2.2.3† Relational Database Systems

Realms. A database is a collection of interconnected conceptual relations. A link is an
interconnection between the records of two different relations. (Normally, interconnections
are specified by join predicates relating records of one relation to zero or more records of
another. However, relationships can be defined by manually ‘connecting’ one record with
another. In CODASYL terminology, a link is called a set [Kor91]).

A relational system maps a database with a nonprocedural data language interface to a
set of conceptual relations (with no links) whose interface is procedural. Relational systems
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are compositions of components from the realms DLANG, LINK, and RSTREAM, with
references to storage systems. Among the current G2 library members of these realms are:

DLANG { sql[ l:LINK, o:{OPER} ], quel[ l:LINK, o:{OPER} ], ... }

LINK { pointer_array[ f:FMAP ], ring_list[ f:FMAP ],
merge_join[ f:FMAP ], nested_loop[ f:FMAP ] }

RSTREAM { cross_prod[ s,s:RSTREAM ], sort[ s:RSTREAM ], ... }

DLANG is the realm of data models and their nonprocedural data languages. Each
DLANG component translates nonprocedural queries into optimized expressions that refer-
ence operations on relations and links.2.2 Furthermore, each component is parameterized by
(l), the method by which links between conceptual relations are implemented and (o) the set
of zero or more record stream components that may be needed to process queries.

LINK is the realm of link implementations. Each component encapsulates a mapping
of a database of conceptual relations and links to a database of conceptual relations without
links. Every LINK component is parameterized by (f), the method by which conceptual rela-
tions are implemented.

LINK components are either ‘hard’ or ‘soft’. ‘Soft’ components implement traditional
relational join algorithms, like merge_join[ f:FMAP ] and nested_loop[ f:FMAP ]. ‘Hard’
components implement links by physically connecting records together via pointers, such as
pointer_array[ f:FMAP ] and ring_list[ f:FMAP ].

RSTREAM is the realm of (usually symmetric) components that transform one or more
concrete input record streams into an abstract output record stream. These components are
used by DLANG components to process queries. Example components include cross pro-
duct and sort.

Type Expressions. A relational system is an expression of type DLANG. A relational
system (rs1) that presents the QUEL data model and data language, implements links by
pointer arrays, and stores conceptual relations in the ss1 storage system (defined above), and
references the cross product and sort components, corresponds to the expression:

rs1 = quel[ pointer_array[ ss1 ], { cross_prod[ ], sort[ ] } ]

Note that the parameters of cross_prod[ ] and sort[ ] components are not instantiated. The
reason is that these components are grafted onto operator trees that are generated at run-time
by query optimizers. In other words, DBMSs compose certain components dynamically in
order to process retrieval requests. With the exception of the RSTREAM realm, all realms
that we have considered so far have components that are statically composed at design time.
That RSTREAM components are composed dynamically at run time appears to be an
unusual feature of DBMSs. See [Bat89b] for details on the reuse aspects of query

2.2 The DLANG interface is character input and output. quel[ ] and sql[ ] differ in the strings of
characters that they recognize, even though their procedural interfaces are indistinguishable.
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optimization algorithms.

2.2.4† Other Topics

Software Busses. It is common for DBMSs to offer alternative file and/or link imple-
mentations without exposing their difference at the DBMS interface. By giving appropriate
database schema directives, specific file and link implementations can be declared [Bat88b].
Genesis provides alternative implementations via multiplexing component called asoftware
bus. (Software busses can be thought of as the software-lego counterpart to discriminate
records). As an example, ss_bus[ s:{FMAP} ] is a symmetric member of the FMAP realm.
It permits relations of a database to have any FMAP implementation listed in the (s) parame-
ter of ss_bus. (Each relation of the database is tagged with an identifier which specifies how
the relation should be implemented). Thus, a variation on relation system rs1 which allows
relations to be stored via either storage system ss1 or ss2 is:

rs1 = quel[ pointer_array[ ss_bus[ ss1, ss2 ] ], { cross_prod[ ], sort[ ] } ]

When a relations in a schema are declared, special statements are used to specify its imple-
mentation to be either ss1 or ss2. (The default is the first storage system listed on a bus).

Omitted Parameters. Components that handle transaction management, recovery
management, buffer management, primitive data types (e.g., integer, float, etc.), and other
generic services (e.g., predicate evaluation) are additional parameters to the above com-
ponents. We chose not to include them just to keep the model overview simple. Further
details on these topics are given in [Bat91c].

Layout Editors and Tuning. Because type expressions quickly become difficult to
read, Genesis has a layout editor, called DaTE, which enables components of different
realms to be composed graphically. DaTE guarantees that design rules are not violated,
which amounts to avoiding illegal compositions of components. Design rule checking is
briefly considered in Section 5 and in detail in [Bat91a]. Using DaTE, a specification of a
university-quality relational DBMS takes less than a half-hour. The software that is gen-
erated isuntuned because tuning constants - that are part of every component - are assigned
default values. By performing benchmarks, it is possible to tune the generated software by
selectively altering tuning constants and recompiling.
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2.3† Avoca: A Domain Model for Network Software Systems

Avoca is a network architecture and domain model that supports the development of
encapsulated, reusable, and efficient communications protocols. Protocol suite specifications
are manually written as, unlike Genesis, Avoca does not have a component layout editor.

The runtime environment for Avoca is provided by thexkernel: an operating system
kernel designed to run network protocols [OMa89-90b, Hut91]. One of the goals of thexker-
nel was to support encapsulated protocols efficiently. As it turned out, most existing proto-
cols are so unencapsulated in design and implementation, that they could not take advantage
of many of thexkernel’s features. Avoca grew out of an attempt to design protocols that
could.

The domain model for Avoca has centered on the identification of realms of protocols
for remote procedure calls, remote invocation methods, and network file systems. Work now
underway at the University of Arizona should extend the model to cover fault tolerant proto-
cols.

Avoca systems, orprotocol suites, are constructed out of three types of components:
Avoca protocols, virtual protocols, and existing protocols. Avoca protocols are symmetric
components that can be composed in virtually arbitrary orders. Virtual protocols, a subset of
Avoca protocols, dynamically multiplex over several lower-level components, and are simi-
lar to Genesis software busses. Existing protocols are generally unencapsulated and can only
be composed with virtual protocols and the protocols they were originally designed to com-
municate with. Avoca presently has three realms: ASYNC, SYNC, and STREAM. Each is
discussed in turn.

2.3.1† Asynchronous Protocols

Realm. Protocols that send and receive messages asynchronously are members of the
ASYNC realm. Senders send messages without waiting for a reply and all messages are
delivered to their destinations using upcalls [Cla85]. If a destination replies to a message,
the sender is responsible for matching requests and replies using local state or message
header information. ASYNC protocols are generally the lowest level protocols supported in
any network software system. Some of the current ASYNC library members are listed
below, where DRIVERS, EXISTING, ASYNC_AVOCA, and VIRTUAL_ASYNC are
library partitions:

DRIVERS = { amd_eth, intel_eth }

EXISTING = { ip[ x : ASYNC ], udp[ x : ASYNC ] }

ASYNC_AVOCA = { blast[ x : ASYNC ], async_select[ x : ASYNC , ... }

VIRTUAL_ASYNC = { vaddr[ local, remote : ASYNC ], vsize[ small, big : ASYNC ] }

ASYNC = DRIVERS ∪ EXISTING ∪ ASYNC_AVOCA ∪ VIRTUAL_ASYNC

The ASYNC realm has a subrealm of network device drivers (DRIVERS). The Avoca
library currently supports drivers for the AMD and Intel ethernet chips.
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Another subrealm of ASYNC, called EXISTING, contains commonly used protocols
such as ip[ ] and udp[ ]. ip[ ] is the Internet Protocol and is responsible for routing packets
over the Internet and fragmenting large messages in to smaller ones [Tan88]. udp[ ] is a sim-
ple demultiplexing protocol which delivers messages to the correct UDP port (a 16 bit
integer address).

The ASYNC_AVOCA subrealm contains symmetric Avoca protocols that are not vir-
tual. blast[ ] breaks a large message into 16 fragments, sends the fragments, and reassembles
the original message once all fragments have arrived [OMa90c]. async_select[ ] is a simple
demultiplexing protocol that is essentially a symmetric version of udp[ ].2.3

Virtual asynchronous protocols are found in the VIRTUAL_ASYNC subrealm.
vaddr[ ] directs incoming packets to the first of its two ASYNC arguments and determines if
the destination address can be reached using that component. The idea behind vaddr[ ] is a
simple optimization: if the destination of a packet is on the local ethernet (the first parame-
ter), then there is no reason incur the overhead of transmitting it via a remote transport proto-
col (the second parameter).2.4 vsize[ ] directs packets to the first of its two ASYNC parame-
ters if the length of the packet is less than a predeclared size. Larger packets are directed to
the component specified by the second parameter.

In general, virtual protocols are multiplexing components that offer the possibility of
choosing between several distinct implementations on the fly and are like programming
language ‘if’ statements, where the actual path chosen for a packet is based on either static or
dynamically available information. As virtual protocols are headerless, they do not affect the
messages that they multiplex and hence can be composed without impacting their compati-
bility with EXISTING protocols. (Virtual protocols are denoted here by names beginning
with the letter ‘v’).

Type Expressions. An asynchronous protocol suite is an expression of type ASYNC.
The primary purpose of Avoca was to show that encapsulated protocols can be implemented
as efficiently as monolithic protocols. Hence the emphasis of Avoca is on performance.
Consider the following examples.

The protocol suite neo_udp was the first to make use of virtual protocols. Common
practice before Avoca was to use ip[ ] even if packets were being sent to machines in the
next room. The neo_udp system (defined below) eliminated this overhead by using vaddr[ ]
to bypass ip[ ] for messages to hosts on the local network (provided that these hosts also sup-
port the neo_udp optimization) and by placing these packets on the ethernet (amd_eth)
directly:

neo_udp = udp[ vaddr[ amd_eth, ip[ amd_eth ] ] ]

Note that because vaddr[ ] does not modify the messages that it maps, neo_udp can exchange
messages with systems (e.g., udp[ip[amd_eth]]) that do not take this short-cut.

2.3 udp[ ] explicitly uses ip addresses, and thus must sit atop ip[ ]. async_select[ ] removes this
dependency.

2.4 The address resolution protocol is used to make the determination of locality.
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As a second example, the protocol suite trans (defined below) achieves a greater level
of optimization by fragmenting large packets into smaller packets. This is accomplished by
using vsize[ ] to recognize long packets, and using blast[ ] for fragmentation. This optimiza-
tion significantly improves the performance of most communications systems.

trans = vaddr[ vsize[ amd_eth, blast[ amd_eth ] ], ip[ amd_eth ] ] ]

2.3.2† Synchronous Protocols

Realm. Protocols that return a reply message for each message sent are members of the
SYNC realm. A sender sends a message and is blocked until a reply is received. Some of the
current SYNC library members are listed below:

EXISTING_RPC = { local_rpc, sun_rpc, sprite_rpc }

SYNC_AVOCA = { sync_select[ x : SYNC ], sun_select[ x : SYNC ],
ureqrep[ x : ASYNC ], reqrep[ x : ASYNC ], ... }

VIRTUAL_SYNC = { vrpc[ local, fast_remote, slow_remote : SYNC ], ... }

SYNC = TERMINAL ∪ EXISTING_RPC ∪ SYNC_AVOCA ∪ VIRTUAL_SYNC

The most common synchronous protocols is the subrealm of remote procedure call pro-
tocols (EXISTING_RPC). It has been experimentally determined that most ‘remote’ pro-
cedure calls are in fact calls to different address spaces on the same machine [Ber89].
local_rpc is an efficient protocol that relies on the local operating system to process remote
procedure calls. sun_rpc is thexkernel implementation of Sun RPC and is fully compatible
with existing implementations. sprite_rpc is thexkernel implementation of Sprite RPC and
is again compatible with the original version.

SYNC_AVOCA is the realm of synchronous Avoca protocols. ureqrep[ ] and reqrep[ ]
are protocols that perform SYNC to ASYNC conversions, and implement the request reply
portion of Sun RPC and Sprite RPC respectively. ureqrep[ ] provides an unreliable request
reply service while reqrep[ ] is reliable. To be a reliable, a request reply protocol must
deliver only one message to the destination for each request.

sync_select[ ] is the synchronous version of async_select[ ], and is used to address
remote procedures [OMa89]. sun_select[ ] is the sun demultiplexing protocol that takes
three 32-bit addresses as its input, and as we’ll see later, can be defined in terms of
sync_select[ ]. Other SYNC_AVOCA protocols were created to perform the other functions
normally bundled into RPC protocols. Discussions of these are beyond the scope of this
paper.

Among the virtual synchronous protocols of subrealm VIRTUAL_SYNC, vrpc[ ]
operates much like vaddr[ ] except that it support three possible cases. If the target of the
RPC is local to this machine, the protocol for parameter (local) is used. If the target is on a
remote machine that supports a fast rpc that this machine understands, the protocol for
parameter (fast_remote) is used. In all other cases, the protocol for parameter (slow_remote)
is used.
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Type expressions. Addressing in most network software systems (i.e, the assigning of
an address to networking entities and the demultiplexing of incoming messages to the
appropriate entity) is bundled within RPC protocols. By elevating addressing to a distinct
protocol, Avoca increases the flexibility of building and modifying network software.

The protocols in the SYNC realm resulted from a decomposition of Sprite RPC and are
usually configured to give Sprite RPC semantics. Sprite RPC is known to be much superior
to Sun RPC and one would like to use Sprite RPC wherever possible. The easiest way to do
this is to create a protocol sun_select[ ] which implements Sun RPC addressing. This allows
one to create a protocol suite with Sprite RPC semantics and the Sun RPC interface. A vir-
tual protocol vrpc[ ] can then be used which has local RPC semantics in the local case, Sprite
RPC semantics whenever the destination host supports vrpc[ ], and uses Sun RPC to com-
municate with those machines that do not support vrpc[ ].

The following composition is a simplified version of such a system, where trans denotes
the ASYNC system specified previously:

neo_sunrpc = vrpc[ local_rpc, sun_select[ reqrep[ trans ] ], sun_rpc ]

Note that vrpc[ ] is responsible for hiding any semantic difference between the two subsys-
tems. The only noticeable effects are a faster and more reliable version of Sun RPC.

Now consider another example. Through repeated composition, sync_select[ ] can be
used to construct more complex addressing schemes. Recall that sync_select[ ] supports a
single 32 bit address while sun_select[ ] supports three 32 bit address fields. On can use
sync_select[ ] to create sun_select[ ] in the following fashion:

sun_select[ x : SYNC ] = sync_select[ sync_select[ sync_select[ x : SYNC ] ] ]

The simplicity and flexibility with which addressing schemes are handled in Avoca is in
stark contrast with traditional methods. In particular, the Internet community is faced with
the task of modifying the internals of TCP because the 16 bit port number they use for
addresses is insufficient for many modern applications [Tan88]. In Avoca this would be a 30
minute modification.

2.3.3† Network File Systems

Realm. The STREAM protocol realm presents a Unix file interface, which offers file
read and write operations. STREAM components offer different implementations of net-
work file systems. Currently, the only STREAM protocol that Avoca supports is sun_nfs[ ],
Sun’s network file system.

STREAM = { sun_nfs[ x : SYNC ] }

sun_nfs[ ] is not really a communications protocol in the traditional sense, but more of a
Genesis-like component. It provides a UNIX file-filter interface. We suspect that the most
direct ways to merge Genesis and Avoca could be through this component/realm. One way
would be to revise sun_nfs[ ] to admit components within database realms, thereby enabling
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different file storage schemes to be supported internally at a site. Additionally, one could
revise Genesis IO-realm components, thereby enabling data to be distributed transparently
across multiple hosts. We are investigating both possibilities.

Finally, we note that Avoca-produced systems do not need post-production tuning,
unlike Genesis-produced DBMSs. From our experience, protocols have been simple enough
that additional tuning has not been required.

2.4 Contemporary Software Systems

Large software systems are always implemented in terms of components; they are sim-
ply too big to be designed and developed in any other way. It is not difficult to model exist-
ing systems as a cast-in-stone composition of hand-crafted components.

The main problem with today’s software are the ad hoc methods of system design and
decomposition. Component reuse (which we consider synonymous with large scale reuse) is
a casualty of ad hoc methods. Each of the problems below is a consequence of this casualty.

No Families of Systems. When contemporary software systems are examined in the
context of realms, it is rare to find a realm that has a library with more than one component.
One-of-a-kind systems are prime examples; their components have unique interfaces and
unique implementations.2.5 With the possible exception of system versions (where outdated
components are replaced with updated ones), families of different systems do not exist. In
contrast, families of multiple systems are natural by-products of component reuse.

No Component Interchangeability. Interchangeability of components from different
systems is impossible in contemporary software. Consider the query optimizer of database
systems. DBMS1[ x : OPTIMIZER1, ... ] and DBMS2[ x : OPTIMIZER2, ... ] are two dif-
ferent DBMSs, each of which has an optimizer (x) as one of its parameters. The optimizer
used by DBMS1 has a different type than that for DBMS2, i.e., the optimizers of each sys-
tem havedifferent interfaces and are not plug compatible. Both DBMSs would need to use
optimizers of thesame type for interchangeability to be possible. Commercial DBMSs, like
most software, have never been designed with interchangeability of components in mind.

No Symmetric Components. The ‘true’ building blocks for some realms are sym-
metric components. As we have shown, a small number of symmetric components can be
composed in a vast number of ways. Not recognizing such components is a lost opportunity
for achieving reuse on a large scale. Furthermore, by building only their compositions, one
reduces the likelihood that a particular composition will ever be reused.

2.5 The problem here may have a cultural aspect. It is more important today to promote a system
on the basis of its uniqueness, rather than stressing its the similarity with other systems. Conse-
quently, opportunities for potential reuse are often dismissed or go unrecognized.
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2.5 Recap

We have shown that an elementary anddomain independent notation captures a funda-
mental aspect of software system design: namely, systems are assemblies of components and
that components fit together in very specific ways. Our model postulates that components
are instances of types and components themselves may be parameterized. Software systems
are modeled elegantly as type expressions.

The type expression notation and component-realm metamodel provides a scaffolding
or superstructure on which other aspects of software design can be organized. This occasion-
ally requires concepts to be force-fitted into this framework, sometimes causing a nontrivial
shift in thinking patterns in order to do so. As an example, our model suggests that the
design of complex software systems is guided primarily by few decisions: (1) what com-
ponents to use and (2) what is the order in which components are to be composed. The
actual implementation of the components, although important, is a lower-level detail.

It is worth noting that over fifteen years ago Haberman observed that software system
designs are hierarchical, but system implementations need not be [Hab76]. Our notation and
metamodel extends this insight by making the conceptual layering that exists in systems
explicit. Although explicit component boundaries are maintained in Genesis- and Avoca-
produced systems, this is not mandatory (e.g., components could be macro-expanded
together). We amplify this perspective in the next and subsequent sections by examining
features of component implementations.

3. General Features of Component Implementations

When we compared components of Genesis and Avoca, we were astonished at the simi-
larity of their organization. On closer inspection, the commonalities that we observed would
need to be present inany concurrent layered system. In this section, we examine general
features of component implementations. A general mechanism by which concurrently exe-
cuting components communicate is presented in Section 3.1. In Section 3.2, we examine
how individual components can be customized, how algorithms within components fit
together, and how algorithms can be reused.

3.1 A Model of Component Exteriors

Component Operations. Every component C presents operations {T1 .. Tn, B1 .. Bm }
as its interface. Calls within C to operations external to C (whose services are provided by
other components) are {d1 .. dn′, u1 .. um′ }. The Ti operations aretop operations, meaning
that components ‘above’ C (i.e., components whose parameters are instantiated by C) can
call Ti for lower-level services. TheBi arebottom operations, meaning components ‘below’
C (i.e., the components that instantiate C’s parameters) can callBi for higher-level services.
C itself may call external operationsdi andui. Thedi aredown calls requesting services from
lower-level components and theui areupcalls, requests for services from higher-level com-
ponents [Cla85].

Upcalls arise in systems that receive asynchronous inputs through lower level com-
ponents and that usher the processing of these inputs up through the system. Upcalls are
common in networks and operating systems, and are initiated via hardware interrupts.
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As a general rule, however, most layered systems process inputs strictly in a top-down
manner so that bottom operations are not present. For these systems, m=m’=0. Bottom
operations are also absent in unparameterized components, which must be the terminal com-
ponents of a system.

Component Communication. Components communicate directly by calling each
other’s top and bottom operations. For nonconcurrent or nonreentrant executions, com-
ponent communication is straightforward.

In the case of concurrent and reentrant executions, which is standard for networks and
DBMSs, a more interesting form of communication is used. In order for several distinct exe-
cutions of a component to exist simultaneously, a component must be reentrant and the state
variables of each execution must be kept in a separatecontrol block.

Control blocks not only provide storage for component-specific state information, they
often provide the means (e.g., storage) by which data and results of computations are
transmitted from one component to another. Control blocks are the primary data conduits or
pipelines through which components communicate. We illustrate these ideas with examples
from Genesis and Avoca shortly.

Component communications follow a standard sequence of three steps. (1) Component
A initiates communication with component B by creating a control blockSB for B. This is
done by calling the ‘allocate-control-block’ operation of B. (2) A then transmits its requests
or data via calls to B, usingSB as a parameter of every call. B either writes data inSB for A’s
consumption, or vice versa, depending on the operation. (3) A terminates communication by
deallocatingSB, which is accomplished by calling the ‘deallocate-control-block’ operation of
B.3.1

3.1 A process can create and reference any number of control blocks. It may be the case that a
control block corresponds to the state variables of a ‘local process’ that exists only within a single
component [Bax91]. How processes generally fit into our model is a problem that we are now in-
vestigating.
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3.1.1† An Example from Genesis

Genesis components communicate through control blocks calledcursors. Let F be a
FMAP component and C be a file (FMAP) cursor. The interface to an FMAP component
includes both component operations and cursor operations, some of which are listed below:

Object Operation Semantics___________________________________________________________________

FMAP Component C = make_file_cursor( F ) component F allocates a file cursor C

first_pass( F, R ) F partially maps abstract relation definition

R to its concrete counterpart

second_pass( F, R ) F completes the mapping of R by filling in

identifiers of foreign relations

FMAP Cursor init_ret( C, Q, L) initialize cursor C for the retrieval of

records that satisfy predicate Q and

returning fields specified in list L

adv( C ) advance cursor C to next qualified record

acc( C, A ) position cursor C over record with address A

upd( C ) update record referenced by cursor C

del( C ) delete record referenced by cursor C

term_ret( C ) terminate cursor C for retrieval

drop_file_cursor( C ) deallocate file cursor C

A component wishing to communicate with FMAP component F: (1) allocates a file cursor C
by calling make_file_cursor(F), (2) initializes C for retrieval via init_ret(C,Q,L), (3) retrieves
records one at a time by calling adv(C), (4) terminates the retrieval via term_ret(C), and
finally (5) deallocates C using drop_file_cursor(C). Allocation and initialization are separate
operations as a cursor can be initialized any number of times once it is allocated.

FMAP components sit atop of AMETHOD (access method) components and communi-
cate via file cursors. AMETHOD components, in turn, sit atop NODE (logical block) com-
ponents, and communicate via node cursors. NODE components, in turn, sit atop BLOCK
components and communicate via block cursors, and so on (see Fig. 3.1a).

As a general rule, when the top-most component of a system creates a control block to a
lower-level component, the lower-level component will in turn create a control block to
components beneath it, and those components beneath them, and so on, causing - literally - a
top-to-bottom wave of control block creations. The overhead for multiple control block
creations can be reduced when the composition order of components is fixed (i.e., there is a
nonpermutable stacking of layers, as in Figure 3.1). In such cases it is possible to define a
‘composite’ control block that is the union of all the control blocks that would have been
allocated in a top-to-bottom creation wave. Thus, in a single and efficient operation, all
needed control blocks can be allocated (or deallocated) simultaneously.

This optimization is used in Genesis. Every ‘cursor’ has a file (sub)cursor, a node
(sub)cursor, and a block (sub)cursor inside it. When a ‘cursor’ is allocated/deallocated, all of
its lower-level cursors are simultaneously allocated/deallocated (Fig. 3.1b). A similar
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Figure 3.1 Control Block Allocation in Genesis

optimization is used for components that are symmetric [Bat91c].
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3.1.2† An Example from Avoca

Avoca components communicate through control blocks calledsession objects. Com-
ponents are calledprotocol objects. The interface to an ASYNC component, for example,
presents a small set of operations on protocol and session objects, some of which are listed
below.3.2 Note that P1 and P2 denote protocol objects, S is a control block, M is a message,
and A is a host address:

Object Operation Semantics__________________________________________________________________

ASYNC Component S = open( P1, P2, A ) creates an initialized P2 session S that allows

P1 to send messages to host address(s) A

openenable( P1, P2, A ) notifies P2 that P1 is willing to accept

messages addressed to A

demux( P1, S, M ) session S performs upcall to P1 to deliver

message M to P1

ASYNC Session push( S, M ) send message M using connection S

pop( S, M ) protocol P2 performs upcall on session S to

deliver message M to S

close( S ) protocol P1 closes connection and destroys

its reference to session S

Suppose protocol P1 wants to establish a connection with some other host via protocol P2.
P1 first performs an open(P1,P2,A) on P2 with the address A of the host to create a session S.
To send a message M to the host, P1 invokes the push(S,M) operation. When the remote
host sends a reply to P1, the message M’ will first arrive at protocol P2 via the upcall
demux(P2,S’,M’), where S’ is a session object that is delivering the incoming message to P2.
As there is almost always more than one session object per protocol object, messages are
demultiplexed by protocol objects to the correct session object based on the information in
the message’s header. Thus, P2 determines that S is the appropriate session object for M’,
and makes the upcall pop(S,M’) to pass the message to S. S, in turn, passes the message to
the protocol object P1 via demux(P1,S,M’), and so on.

Protocol P1 closes the connection by performing a close(S) operation. (As it is possible
for multiple higher-level session objects to share a common lower-level session object, ses-
sion objects are reference counted and are not always destroyed by a close( ) operation).

As a general rule, when the top-most protocol of a system creates a session to a lower-
level protocol, the lower-level protocol will in turn create sessions to protocols beneath it,
and those components beneath them, and so on, causing - literally - a top-to-bottom wave of
session creations, identical to cursor creations in Genesis. In Avoca, the overhead for

3.2 It is worth noting that the interface to SYNC components is almost identical to ASYNC. The
only difference is that push(S,M,M’) returns message M’ as its result.
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multiple session creations is not a critical concern. Most protocols create a session and use
that session to send many messages, so the overhead for session creation is rarely an issue.

Figure 3.2 shows the protocol composition tcp[ ip[ ethernet ] ], along with created ses-
sion objects. Some user (or other protocol) performed an open operation on the TCP com-
ponent and received a TCP session with which it will communicate with the party whose
address was passed to TCP as a parameter to open. TCP in turn would have opened the IP
component with the IP portion of the TCP address passed to it. The IP component would
return a new or existing session which the TCP session uses to communicate with the remote
machine. If the IP session was not reused, the IP component would have to invoke the open
operation of the ethernet component and an ethernet session would be returned.

ethernet

ip

session

session

Protocol

Protocol

Protocol

Ethernet

IP

TCP

session
tcp

Figure 3.2 Control Block Allocation in Avoca

3.2 A Model of Component Interiors

Every operation of a component’s interface is implemented by one, or perhaps several,
algorithms. Cataloging these algorithms exposes the potentially complex internal structure
of components. Algorithm catalogs explain how variations of components arise in practice,
how individual components may be customized to suit a particular task, and how ‘as is’ algo-
rithm reuse can be realized.

Algorithm cataloging is not appropriate for all realms. Sometimes algorithms are rarely
published for security or proprietary reasons. Such is the case for command-and-control sys-
tems. Other times, algorithms within components are so intertwined that researchers and
practitioners make no attempt to separate them. Such is the case with network protocols
[Tan88].

The database domain is replete with realms in which algorithm cataloging, retrieval
algorithms in particular, is possible. In this section, we explain algorithm catalogs and algo-
rithm reuse, and later illustrate their utility in the database domain.



- 25 -

Algorithm Catalogs. There can be any number of algorithms that implement an opera-
tion of a component. LetOC be a top or bottom operation of component C, and let S be a
control block. The j≥1 algorithms that implementOC can be cataloged as rewrite rules of the
form:

OC( S,arg1, ... ,argk ) => algorithm1( S,arg1, ... ,argk, d1( ) .. dn′( ), u1( ) .. um′( ) );

algorithm2( S,arg1, ... ,argk, d1( ) .. dn′( ), u1( ) .. um′( ) );
...
algorithmj( S,arg1, ... ,argk, d1( ) .. dn′( ), u1( ) .. um′( ) );

where ‘=>’ is read ‘is realized by’. Every algorithm takes the arguments ( S,arg1 .. argk ) of
its operationOC and makes any number of down callsd1

. . . dn′ and upcallsu1
. . . um′ to pro-

cess its input. (Note that control block S is present as a parameter ifOC is a control block
operation). When components are composed, operation calls are replaced with their algo-
rithms in the obvious way [Gog84].3.3−4

Rewrite rules can be adorned with additional information. Preconditions are an exam-
ple. Algorithms without preconditions arerobust, as they will always work no matter what
their input might be. However, robust algorithms tend to be inefficient. Faster algorithms
often exist, but work only for restricted inputs. These algorithms arenonrobust.

In general, robust algorithms are interchangeable, while nonrobust algorithms are not.
A typical software design strategy is to use a nonrobust algorithm whenever possible
(because of its performance advantages), and to use robust algorithms as a default. This
means that nonrobust algorithms typically exist only in the presence of robust algorithms.
We’ll consider an example from Genesis shortly.

Component Customization and Algorithm Reuse. There are many possible imple-
mentations of a component. Stated another way, a component can be customized for a par-
ticular task through an appropriate selection from catalogs of one or more algorithms for
each of the component’s operations. Normally, only one (robust) algorithm is selected per
operation. However, it is possible for multiple algorithms to be chosen.Algorithm reuse
occurs when the same algorithm is used in two different components. We’ll see an example
of algorithm reuse in the next section.

To illustrate the issues of multiple selections, query optimization in databases involves
the evaluation of alternative algorithms for processing a retrieval operation. The algorithm

3.3 The elimination of explicit layering via inline expansion, which replaces an operation with its
algorithmic body, was proposed in [Hab76, Bat88]. Inline expansion is possible in systems that
have no bottom operations, because unbounded recursion may arise (e.g., a bottom call B calls a
top call T, which in turn may call B again). Although recursion is definitely bounded at execution
time, the amount of recursion cannot be determined at compile time. Thus, the simple idea of el-
iminating explicit layering via inline substitution does not always work.

3.4 Most operations of a component share the same state data. By designing all operations to
work off of a standard representation of state information, the compatibility of different imple-
mentations of operations is ensured.
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whose preconditions are satisfied and that is the cheapest (as estimated by cost functions) for
a given situation is the one chosen for execution.

At first glance, one might want to include all algorithms on the presumption that the
‘best’ algorithm will surely be used in processing a retrieval. Generally this is a bad idea as
the overhead for query optimization increases with the addition of more algorithms. From
our experience, selecting few (perhaps two or three) algorithms per operation is sufficient.

3.2.1† An Example From Genesis

Recall that DLANG is the realm of nonprocedural data languages. Every DLANG
component offers a nonprocedural retrieval statement. (For example, SQL uses the
SELECT-FROM-WHERE statement; QUEL and GEM [Zan83] use RETRIEVE-WHERE).
These statements are translated into optimized expressions, calledaccess plans, that are
compositions of retrieval and join operations over base relations. In this section, we catalog
implementations of DLANG retrieval statements. Expanded discussions on this subject are
given in [Bat87-89b], and a tutorial on query optimization is presented in [Jar84].

Let R be a relational query. (As readers will soon see, the particular language used to
express R doesn’t matter). The most abstract description of query processing in a relational
DBMS is captured by the following rewrite which maps R to its result:

R => Eval( Q_opt( R ) )

Q_opt( ) is thequery optimization operation that transforms R into an executable expression
E. Eval(E) executes E.

Different relational DBMSs realize Q_opt( ) in different ways. Q_opt( ) can be decom-
posed into a composition of three suboperations:

Q_opt( R ) => Joining_phase( Reducing_phase( Q_graph( R ) ) ) (*)

Q_graph:R→G maps a relational query R to a query graph G [Ber81a],
Reducing_phase:G→G maps a query graph without semijoin operations to one that does
(which is the classical means of optimizing distributed queries [Bat89b, Jar84]), and
Joining_phase( ):G→E maps query graphs to executable expressions. In the following para-
graphs, we catalog algorithms for each of these suboperations.

Q_graph has many implementations, one for every data language:

Q_graph( R ) => Sql_graph( R ) ; SQL language [Cha76]

Quel_graph( R ) ; QUEL language [Sto76]

Gem_graph( R ) ; GEM language [Zan83]

...

The actual choice of Q_graph algorithm is component-specific (e.g., Sql_graph(R) is used for
components that present an SQL interface, Quel_graph(R) is used for components that
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present a QUEL interface, and so on).

Reducing_phase and Joining_phase algorithms are data language independent. A partial
catalog of algorithms for each operation is shown below:3.5

Reducing_phase( G ) => G ; identity - no optimization

Sdd1( G ) ; SDD1 algorithm [Ber81b]

Bc( G ) ; Bernstein & Chiu algorithm [Ber81a]

Yol( G ) ; Yu et al. algorithm [Yu84]

...

Joining_phase( G ) => Sys_R( G ) ; System R algorithm [Sel79]

U_ingres( G ) ; University Ingres algorithm [Won76]

Exodus( G, RS ) ; Exodus rule optimizer [Gra87] - RS is the rule set

...

From the above catalogs, it is easy to see how different implementations of components
can arise. A set of potential implementations is defined by equation(*) to be the cross pro-
duct of the catalogs of algorithms that implement the Q_graph, Reducing_phase, and
Joining_phase operations. Just from the few that are listed, 3*4*3 = 36 distinct implementa-
tions of Q_opt can be written.

Before we consider specific combinations, we again remind readers why composition is
possible. We have imposed interface standards (which includes standard data representa-
tions) on the class of relational query optimization algorithms in order to make them plug-
compatible and interchangeable. This requires algorithms to be rewritten to this standard;
one cannot simply copy algorithms from an existing system with ad hoc interfaces and non-
standard data representations and expect them to work.

Specific instances of (*) correspond to query processing algorithms of commercial
DBMSs. The data model/data language component of DB2 [Sel79, Kor91] uses the follow-
ing implementation of Q_opt( ):

Q_opt(R) => Sys_r( Sql_graph( R ) )

That is, DB2 uses 1) Sql_graph to map SELECT-FROM-WHERE queries to query graphs,
2) the identity function G for its reducing phase algorithm, and 3) the Sys_r algorithm to map
query graphs to executable expressions.

Many other combinations are possible. A DBMS with a SQL front-end that uses the
University INGRES joining phase algorithm and the SDD1 reducing phase algorithm is:

3.5 Parameters that are not shown in these and other catalogs of this section is the list of cost
functions (provided by lower-level components) that direct the optimization of G by estimating
the cost of performing join, semijoin, and retrieval operations on base relations. We chose not to
include them here simply because it clutters our discussion unnecessarily.
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Q_opt(R) => U_ingres( Sdd1( Sql_graph( R ) ) )

Another possibility is a DBMS with an SQL front-end that uses the rule-based EXODUS
joining phase algorithm with the SDD1 reducing phase algorithm:

Q_opt(R) => Exodus( Sdd1( Sql_graph( R ) ), RS )

Two final points. First, recall that algorithm reuse occurs when the same algorithm is
used in two different expressions. The above three Q_opt examples show the reuse of the
Sql_graph algorithm. Second, it is worth noting that almost all reducing phase algorithms
are nonrobust; typically reducing phase algorithms can only process tree graphs [Jar84]. As
mentioned earlier, nonrobust algorithms can be paired with robust algorithms to form new
robust algorithms. A new reducing phase algorithm New_reduce(G) is a composition of the
Bernstein and Chiu algorithm (which works only on tree graphs) and the identity algorithm
(which works on any graph):

New_reduce( G ) => G ; otherwise

Bc( G ) ; if G is a tree

As the above example shows, the set of Q_opt implementations is actually much larger than
the cross product of the Q_graph, Reducing_phase, and Joining_phase catalogs. In analyz-
ing existing DBMSs, one finds many implementations of Q_opt, which are cleanly modeled
by algorithm catalogs. This is how we have explained variations in component implementa-
tions.

3.3 Recap

Components are not monolithic, but are suites of algorithms that translate data and
operations a component’s abstract interface to data and operations of its concrete interface.
When component executions are not concurrent or reentrant, components communicate by
directly calling each others operations. In the case of concurrent executions, the primary
parameter of an operation is a control block, which is a run-time object that contains the state
variables of an execution within a component. Distinct control blocks are used maintain the
state variables of different executions of the same component.

There are many ways to implement operations of a component. We have presented a
simple and informal model for cataloging the algorithms of an operation. Catalogs explain
how rich variations in component implementations arise through algorithm compositions,
and how ‘as is’ algorithm reuse is achieved.

In the next section, we explain how these ideas can be integrated with recognized con-
cepts of object-oriented design.
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4. Integration with Object-Oriented Design Concepts

Object-oriented design concepts are necessary but not sufficient to realize large-scale
reuse (i.e., component reuse). Nor are they sufficient to explain the design technology and
framework that we have outlined in the previous sections.

In this section, we use the ER model to review the basic ideas of object-oriented
software design. (We do not depend on a specific variant of the ER model, but only its core
concepts). We then explain how our work transcends these ideas by presenting specific
extensions that are needed to explain the design concepts of Genesis and Avoca. We also
show how frameworks, an important OO design concept, play a role in our model. We rein-
force our discussions with specific examples taken from the Genesis and Avoca prototypes.

4.1 Layered Software Designs and Transformations

Object-Oriented Designs. A primary result of an object-oriented design is anobject
model or schema that defines the classes of objects of an application and their interrelation-
ships [Boo91, Rum91, Teo90]. Associated with each class is the set of operations that can be
performed on its objects, plus the set of object attributes.

Object models are depicted byclass diagrams, where classes are nodes and edges are
relationships. We draw class diagrams as ER diagrams, although any comparable notation
will do. Figure 4.1 depicts three different object models - TA, TB, TC - as ER diagrams.
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Figure 4.1 Class Diagrams in ER Notation

Layered or Hierarchical Designs. A layered or hierarchical software system is
designed level by level. At each level, there is an object model that defines the classes,
objects, and operations that the next higher level may reference. (In systems with upcalls,
the next lower level may reference these operations as well). The object model at the top-
most level of a system is theexternal model, and the object model at the inner-most level is
the internal model.
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Every level provides a virtual machine in which objects and operations of the next
higher level (or next lower level) are defined.4.0−2 For simplicity, we assume communication
is always between adjacent levels.4.3 Figure 4.2 shows (a portion of) a hierarchical design
where object model TA resides on a level immediately above that of object model TB.

GF

lower levels

higher levels

transformation TAB
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Figure 4.2 Two levels of a Hierarchical System Design

4.0 It is worth noting that the ideas of hierarchical/layered system design were well-understood
over two decades ago [Dij68, Par72, Hab76]. Astonishingly, the idea of stratified designs and lay-
ered systems is virtually absent in contemporary object-oriented literature.

4.1 A primary contribution of object-orientation to the design of hierarchical systems is that an
object model precisely defines both theoperations andobjects of a level (virtual machine). Ear-
lier attempts did not fully recognize the role of objects that were visible at each level, thus making
design encapsulations difficult (if not impossible) to achieve.

4.2 Our model places no restrictions on the use of static, externally preceptible variables. The
software design problem to be solved will dictate whether or not such variables are needed and
can be used.

4.3 Although limiting communication between adjacent levels seems restrictive, in fact it is not.
If object O on level i needs to directly address an object K on level i-j, it is easy enough to have
object models for levels i-1 through i-j+1 to include an object K’ which simply transmits calls to
its counterpart on the level below, eventually terminating in calls on object K on level i-j. As not-
ed in [Hab76], defining transmit calls as macros and expanding inline through a sequence of layers
could possibly result in a single instruction. It is the systemdesign that is hierarchical, not its im-
plementation. Macro-expanding calls through levels is, in fact, an important implementation and
modeling technique used in Genesis.
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Transformations. A transformation is a mapping between adjacent levels of a system;
it is the correspondence of anabstract or higher-level object model with aconcrete or
lower-level object model. A transformation definesall objects andall operations (i.e., every-
thing) of an abstract model in terms of objects and their operations of a concrete model. Fig-
ure 4.2 depicts transformation TAB which maps abstract model TA to concrete model TB.

As mentioned above, hierarchical systems can be defined as a progression of increas-
ingly more concrete object models, starting from the external model and ending with the
internal model. Equivalently, a hierarchical system can be defined by (1) the external object
model and (2) the ‘progression’ of transformations that convert the external model into the
internal model. The advantage of using transformations becomes apparent when one recog-
nizes that transformations are implemented bycomponents (or layers). The ‘upper’ interface
of a component is the transformation’s abstract object model, and the ‘lower’ interface is the
transformation’s concrete object model. A ‘progression’ of transformations is a composition
of components (a stacking of layers).

Realms and Parameterized Components. All components that implement the same
object model constitute a realm. Suppose c is a component of the realm whose object model
is TA. Suppose further that c transforms TA into concrete model TB, as in Figure 4.2. Then
c has a parameter b:TB (i.e., c[ b:TB ]) to specify how model TB is implemented.

More generally, the concrete object model to which a component c maps may actually
be the union of several disjoint concrete models, each of which has its own realm of imple-
menting components. Every concrete model T requires c to have a parameter of type T. Fig-
ure 4.3 shows a component e[ x:TB, y:TC ] of type TA that has two parameters, one of type
TB and another of type TC. (Equivalently, component e[x,y] maps its abstract object model
of type TA to concrete object models of types TB and TC).
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Figure 4.3 Parameterized Component e[ x:TB, y:TC ] : TA

Note that Figure 4.3 only shows classes and relationships that belong to component inter-
faces. There can be additional classes and relationships hidden within component implemen-
tations that connect abstract classes to concrete classes (e.g., a relationship that connects
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abstract class C to concrete class H). Such details often exist, but are not shown in Figure
4.3.

Control Blocks. Recall from Section 3.1 that components communicate directly with
each other or, when there are concurrent executions, indirectly through control blocks. In a
concurrent setting, a component class andat least one control block class must appear in
every object model that defines a component interface. In Figures 4.1-3, we have diagram-
matically distinguished component classes, control block classes, and other classes as:

other
classclass

component
class
control block

Thus, in object model TA, class B is the component class and class C is a control block class. Other
classes of an object model, in this case A and D, define additional information that is to be exchanged
between components. As a general rule, operations on components (either direct or indirect) involve
a translation of a web of abstract objects into a web of concrete objects. We’ll illustrate examples
from Genesis and Avoca shortly.

Frameworks. In object-oriented design, a class can have multiple implementations.
This is accomplished by defining anabstract class, which only specifies the class interface,
with multiple concrete subclasses, each providing a different implementation of the abstract
class. A set of abstract classes with their concrete classes defines aframework, which is an
important organizational concept in the design of families of software systems [Deu89,
Joh88].

Object models that define realm interfaces are implemented by frameworks. In the most
general case, every class of an object model is an abstract class. Each component is imple-
mented by a special concrete class for each abstract class in the model. The number of con-
crete classes per abstract class equals the number of components in a library. Thus, if there
are A abstract classes in a realm R’s object model, and there are N components in R’s
library, then each of the A abstract classes will have N distinct concrete subclasses, one for
each component of realm R.

More typically, not all classes of an object model are abstract. Some classes have a sin-
gle implementation that is shared (reused) across many different components. (This is an
example of ‘as is’class reuse). Frameworks in Genesis and Avoca fit this more common
situation.
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4.2† An Example From Genesis: The FMAP Interface

Recall from Section 2.2.2 that FMAP is the realm of file mapping components. Each
transforms an ‘abstract’ file into one or more ‘concrete’ files. Consequently, FMAP com-
ponents are symmetric.

Object Model. Figure 4.4 shows the object model interface of FMAP components.

R0
Fmap
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R8 R7

R6 R5R4
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Query

IL_Entry

Into_List

Cursor

Figure 4.4. The FMAP Object Model Interface

Instances of theFmap class correspond to FMAP components. Among Fmap operations
are component initialization, schema mapping, and the creation and linking of cursors (via
link R0). Cursors are the control blocks of FMAP components.

When a database schema is compiled, there is an object in theRelation class for every
relation. Further, each relation type is defined by a set of attributes (i.e., data fields), where
each attribute is an object of theAttribute class. The link between relation objects and their
attribute objects isR4.

Every cursor is an object of theCursor class and is bound to single relation (R1). Every
cursor is also bound to a retrieval predicate, called aQuery object (R2), and an attribute pro-
jection list, called anInto_List object (R3). A query specifies the set of tuples of the desig-
nated relation that the cursor may reference, and the into-list specifies the attribute values of
these tuples that are to be retrieved and/or modified.

A Query object is a tree ofClause objects, where a clause is a boolean connective or a
terminal of the form ‘(attribute rel-op value)’. A tree of clauses is specified by linksR5 and
R6. Since a tuple may be variable-length, a special object is needed at run-time to reference
the offset of an attribute in a particular tuple. Such objects are calledtraces. Every terminal
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clause references a Trace object (R7). A Trace object, in turn, references its corresponding
attribute definition (R8) and abuffer in which a value of that attribute can be placed (R12).

An into-list object is simply a list of into-list entries (IL-entrys), each of which identifies
an attribute that is to be retrieved and/or modified. A list of IL_entries is achieved by links
R9 andR10. Traces are used by into-list entries to reference attributes (R11). (Note that the
object model suggests that traces (and their buffers) can be shared by IL_entry and Clause
objects. In fact, this is commonly done).

Transformation. The object model of Figure 4.4 serves both as the abstract and con-
crete interface of symmetric FMAP components. Consider the rl_encode[ d:FMAP ] com-
ponent which maps abstract relations (files) to compressed concrete relations. Let C be a
cursor, Q be a query, and IL be an into-list. (Remember that Q is connected to a web of
Clause, Trace, and Buffer objects that define a selection predicate, and IL is connected to a
web of IL_Entry, Trace, and Buffer objects that define an into list).

When rl_encode receives the operation init_cursor(C,Q,IL), it initializes C to range
over all tuples that satisfy predicate Q and that IL is the list of attributes for qualified records
whose values are to be retrieved and/or modified. The initialization is accomplished by map-
ping C, Q, and IL to their concrete counterparts C’, Q’, and IL’. The translation is simple:
C’ is bound to the corresponding compressed relation, Q’ is null, and IL’ references the
compressed byte string that contains the compressed image of the tuple. Both Q’ and IL’ are
webs of objects.

Once initialization has taken place, abstract tuples can be retrieved via the operation
adv(C). A retrieval of an abstract tuple translates into the retrieval of compressed concrete
tuple via adv(C’), a decoding, application of predicate Q to the decoded tuple, and if Q is
satisfied, the unencoded attributes of IL are returned.

Framework Notes. All classes in Figure 4.4 with the exception of Buffer, Trace,
Query, and Into_list, are abstract. Thus, these mentioned classes have a single implementa-
tion that is shared (reused) by all FMAP components.
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4.3† An Example from Avoca: The ASYNC Interface

Recall from Section 2.3 that ASYNC is the realm of asynchronous protocols that
transform abstract messages into one or more concrete messages. Generally, ASYNC com-
ponents are symmetric.

Object Model. Figure 4.5 shows the object model interface to ASYNC components.

S5S4
S3

S2

S1

BufferHeader_Stack

Message

SessionProtocol

Figure 4.5 The ASYNC Object Model Interface

Protocol objects are instances of theProtocol class. Protocol objects createSession
objects, which are the control blocks of ASYNC protocols, and interconnect them via link
S1. This connection is needed to process the bottom operation/upcall demux( ), which routes
incoming messages to the appropriate session. (Routing is accomplished by looking at the
message header and extracting a protocol-specified key that identifies the recipient session).
A Session object may be linked to one or more packets (viaS2), which are instances of the
Message class.

A Message object consists of headers and data (S3 andS4). Most traditional protocol
implementations support a notion of header encapsulation in which the header of a lower-
level protocol is considered to be indistinguishable from message data. A key point of
Avoca is that for both efficiency and software engineering reasons, segregating header and
data information in any given message is a good idea. The addition and removal of message
headers obeys a stack discipline and therefore message headers can be stored efficiently in a
Header_Stack object using traditional stack operations. Message trailers, information added
to the tail of a message, are rare and can be safely ignored.

The most common manipulation of message data is to fragment large messages into
smaller messages and to reassemble the fragments into a single message. Therefore message
data is stored in one or moreBuffer objects that are linked together as a directed-acyclic
graph (S5). The operations required to support typical message data manipulations are
essentially identical to those of standard string manipulation. Note that the object model sug-
gests that different message objects could share the same buffers and header stacks. Such
sharing is actually critical to the efficiency of protocol code, as each copy made of a long
message can easily halve the performance of a protocol suite.
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The Message class, in effect, is a message abstraction that supports both stack-based
header manipulation and string-based data manipulation. These abstractions sometimes
interfere with one another. For example, when a large message is fragmented, the first frag-
ment uses the original header while subsequent fragments must have an empty header stack
created for them. Also in traditional protocols such as IP, data is sometimes found in the
header, and headers are sometimes found in the buffer DAG. Therefore, it is important that
one be able to move information between header stack and buffer representations efficiently.

Transformation. The object model of Figure 4.5 is both the abstract and concrete
interface of symmetric ASYNC components. Consider the blast[ x:ASYNC ] component
which fragments large messages. Let S be a session object, and let M be a Message object,
which is connected to a Header_Stack object and a web of Buffer objects.

When the blast protocol receives the operation push(S,M), which means send message
M to the destination of S, concrete message objects are created that represent fragments of
M. For efficiency, buffers of M are shared with their message fragments. As stated above,
new header stacks are created for each fragment message except for the first. A blast header
is added to each message and a copy of the resulting message is saved for possible
retransmission. Each concrete message is sent via session S’ that is the concrete counterpart
of S.

The peer blast component receives each concrete message via a demux( ) upcall and
examines its header to determine the correct session for reassembly, and then invokes that
session’s pop( ) operation. The selected session assembles the transmitted concrete messages
by stripping the blast header from each message fragment and concatenating fragments
together. Once the entire message has been formed, the session passes the message to the
next protocol layer (a pointer to which is stored in every sessions local state) by invoking
that protocol’s demux( ) operation. These steps are repeated for each layer in the protocol
hierarchy.

Framework Notes. Only the Protocol and Session classes in Figure 4.5 are abstract.
The Message, Map, Buffer, and Header_Stack classes have single implementations that are
used by all ASYNC components.

4.4 Recap

Hierarchical or layered systems are designed level-by-level. Each level is designed
independently of adjacent levels, and is defined by an object model whose classes, objects,
and operations comprise that level’s virtual machine.

Components are mappings (transformations) between adjacent levels. Components that
implement the same object model belong to the same realm. Because their interfaces are the
same, components within a realm are plug-compatible and interchangeable.

Contemporary object-oriented design techniques are basically two-dimensional; they
concentrate on developing a single object model which can be drawn on a flat (two-
dimensional) surface that explains an application. Our work recognizes and extends concepts
of early software engineering pioneers [Dij68, Par72, Hab76] that software design techniques
must be extended by another dimension in order to account for layering in hierarchical sys-
tems. Where our work departs from known results are the concepts of realms, type-
expressions, and the role of interface standardization.
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5. Other Issues and Related Work

The scope of this paper precludes us from addressing many of the issues that are of con-
cern to software engineers. In this section, we briefly discuss a variety of topics that were
not considered previously, but are important for understanding our results.

5.1 Model Limitations

Ad Hoc Layering. We believe our model is generally applicable to a broad class of
hierarchical software systems. However, there may be many systems with ad hoc layering
that are not expressible. In such systems, "components" result from mixtures of functional
and object-oriented decompositions and do not conform to the definition of a component in
our model. We are not interested in capturing ad hoc layering, nor do we believe our model
can be used to do so. Our research concentrates on a subset of layered systems for which
layer/component composability is possible. We have outlined properties of these systems,
and without these properties, we fail to see how layer composability will work. Much of our
work in domain modeling, incidentally, has been to redraw layer boundaries in ad hoc sys-
tem designs so that our resulting layers/components are in fact composable. Thus we feel
that our model can capture system functionality, but not ad hoc layering.

Inheritance. Our model imposes the constraint that all components of a realm must
have exactly the same interface and that a component belongs to precisely one realm. This
may be too restrictive and that an inheritance lattice which relates OOVM interfaces (and
their realms) may be needed. For example, suppose the OOVM of realm R1 is a specializa-
tion of the OOVM for realm R0. (That is, R1 presents additional functions, possibly even
additional classes, as part of its OOVM interface). Then certainly, a component of R1 could
be used where ever a component of R0 is used. Such an addition, we believe, would allow
us to express the class of hierarchical systems described by Habermann, Flon, and Cooprider
[Hab76].

Multiple Standards. Consensus is needed for interface standards. As both of our pro-
jects relied on a small group of designers, consensus wasn’t difficult. In general, however,
we would expect independent design teams would arrive at different "standards". Consensus
and component interoperability would then become problematic.

Even if there is general agreement on the operations that need to be supported, there can
be a choice among internal data representations to use. It is certainly possible for different
representations to impact performance, and choosing among alternative representations
should be one of the design decisions in specifying a target system.

Other Features. Our model does not explicitly show how processes fit into a
building-block framework. Nor does our model explain how exceptions are handled, how
distributed systems impact reusable software designs, or how parallelism can be exploited.
Avoca does not compose components dynamically, but Genesis does (during query process-
ing). Our model is geared to the static composition of components, and this may be unneces-
sarily restrictive. Furthermore, all components in Genesis and Avoca are hand-crafted. It is
clear from our experience that there is an enormous similarity among components within a
realm. This raises the possibility that software generators could be created to simplify or



- 38 -

automate the development of large numbers of components. Thus, the distinction we have
made between realms and their libraries may have limited applicability. All of these topics
are subject for further research.

5.2 Related Research

Modular DBMS Software. The first layered architecture to gain popularity in data-
bases was the three-level ANSI/SPARC model [Tsi78]. Mappings between levels (the exter-
nal, conceptual, and internal) were layers, whose implementation it was claimed could be
altered independently. To our knowledge, no DBMS ever implemented the ANSI/SPARC
architecture; it was a paper design that gave few clues about how to build actual database
systems. Furthermore, ANSI/SPARC layers were effectively monolithic, leaving little
opportunity for exploring and achieving component reuse.

More recently, research on extensible database systems has lead to more modular
DBMS architectures. However, only Genesis and Starburst [Loh88] were based on formal
models of DBMS software. The Starburst model deals with rule-based query optimization,
which essentially is a model of what we have called algorithm reuse. The optimizer "glues"
algorithms together to form access plans. However, there is no notion of components, layers,
or classes in the model itself. How algorithms are defined, how they are related (if at all) to
components, is unclear. Starburst supports ‘attachments’ that are similar to, but less power-
ful than Genesis components [Lin89]. Attachments are not part of the optimizer model.

Modular Network Software. Outside of the networking community, the ISO 7 layer
model [Zim80] is often cited as an example of the application of modular design to produc-
tion systems. Inside the networking community, the ISO model is the root cause of the rejec-
tion of layering as an efficient way of implementing network software by a variety of net-
work architectures (VMPT[Che87], Sprite [Ous88]). ISO architecture sacrificed efficiency
for modularity at a time when the introduction of high speed networks required an increase
in efficiency. While the networking continued to use layered models to describe network
software, layered implementations were actually considered harmful [Ten89]. In [OMa90a],
it was shown that it is possible to increase performance without sacrificing modularity.
Some of the methods used by Avoca to organize heavily layered protocol suites were also
used in the higher layers of the ISO architecture. However Avoca’s approach is much more
integrated with the protocol design and also more efficient.

The only modular networking architecture that is actually in use is Unix System V
streams. Streams are an extension of the Unix file filter model into the kernel designed to
support serial line drivers. It has been extended to support some the implementation of com-
munications protocols. However, how one does this is not at all obvious. In addition the
central purpose of Avoca was to design protocols that compose. No attempt has ever been
made to design composable stream-oriented protocols.

Module Interconnection Languages. MILs were proposed as a means by which pre-
viously existing modules, written in potentially different languages and running on different
machines, could be part of a reuse repository. Our model can be recognized as a very simple
MIL. However, there are three important differences.
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First, a problem with existing MIL’s is that they are not sufficient to guarantee module
composability, and in some cases don’t even seem to encourage the creation of composable
modules. Avoca is most closely related to the MIL IDL [Sno89] and the multi-language pro-
gramming environments MLP [Hay88] and Polylith [Pur85]. (In fact, Polylith notation was
used initially for Avoca). However the critical feature of Avoca is the methodology used to
design composable protocols [OMa90b]. The notation used to describe such protocols is not
nearly as important as properties such as symmetric components.

Second, by making it simple to define arbitrarily complex interfaces, the probability of
any module being composable is reduced. It is not uncommon in networking for the imple-
mentor to unnecessarily expose all internal details of a protocol in the interface thus ensuring
non-composability. Third, current MILs are slow for a variety of reasons but primarily
because they have sophisticated type systems, which are necessary for packing and unpack-
ing complex data types.

5.3 Performance and Other Myths of Layered Software

Performance. In many domains, users are willing to trade a certain amount of perfor-
mance for the benefits of a software engineering environment. In the networking domain
and others, this is emphatically not the case. Network protocol design and implementation is
performance-driven to the extreme. The design of Avoca reflects this fact. Avoca, far from
being a top down exercise in software design, is the side-effect of a performance experiment.

It was a widely-held belief in the network community that encapsulated and layered
protocol design inflicts a prohibitive performance penalty [Ten89]. The Avoca domain
model was a side effect of an experiment designed to show that this belief was untrue or
overstated. It involved the decomposition of the monolithic Sprite RPC protocol into thirty
or so micro-protocols; a model was required simply to manage the large number of proto-
cols. The majority of the work on Avoca was focused on making highly layered protocol
suites efficient. While much of this work is protocol-specific (and in any case, there is too
much of it to be presented here - see papers on thexkernel), some of it is applicable to the
general problem of fast layered systems.

The first lesson is that the temptation to make each layer a process has to be avoided at
all costs. When organized in this fashion, traversing each additional layer costs at least one
context switch. Context switches even for ‘lightweight’ processes are enormously expensive
when one considers the effect on a memory cache [Mog91]. Most interprocess communica-
tion primitives have additional built-in overheads that only make matters worse. Thexkernel
uses a process-per-message as it enters the kernel. This process shepherds the message
through a graph of protocol objects until it leaves the kernel. In general, only one context
switch is required for each message regardless of the number of layers.

The second lesson is the cost of copying data and the power of shared abstractions.
Memory-to-memory copies of large data blocks (500 bytes) are expensive. Any layered pro-
tocol design that requires data to be copied from layer to layer would be prohibitively slow.
The xkernel message abstraction (i.e., class/ADT) manages message data buffers in a lazy
fashion by avoiding copies whenever possible and sometimes by eliminating copying alto-
gether. All Avoca protocols use a common message class/ADT to manipulate messages.
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Finally, while shared classes/ADTs are often looked upon as time-savers that avoid
duplicate work, we found that sharing classes is good not because it reduces the total amount
of work, but because when a class is constantly being reused, any performance or correctness
problems will be found and fixed. Consequently, such fixes improve the reliability and per-
formance of all components that use the class, thereby greatly increasing the potential perfor-
mance gain over component specific improvements.

The approach to developing Avoca was to produce the fastest possible protocol suites,
and against all preconceived notions (including the designers), the decomposed version of
Sprite RPC turned out to be faster than the original and monolithic version in both latency
and bandwidth (see [OMa89, OMa90a] for actual performance figures). This is not to say
that protocol encapsulation improves performance in most cases, but that the per-protocol
overhead was low enough that it did not dominate the performance outcome.Avoca demon-
strates that careful attention to performance can lead to component-based systems whose
performance is equal or even superior to monolithic ad-hoc systems.

Decomposition. A classical fallacy that has been ingrained in the computer science
culture is the belief that hierarchical decomposition of software is impossible if
performance-competitive algorithms are used. First, decomposition of software into "con-
ceptual" or "virtual" layers isalways possible. Decomposition is acorrectness issue, not a
performance issue. The means by which one decomposes an inefficient software system is
identical to those used for decomposing an efficient system; hierarchical decomposition has
nothing to do with performance.

Second, it happens all the time that components will have various degrees of composa-
bility. Some components have little or no constraints on their use. Other components can
only work in the presence (orcannot work in the presence) of a specific class of components.
All of these possibilities arise in practice. This is the reason why design rule checking is
present in the Genesis layout editor - these rules preclude incorrect combinations of com-
ponents from being specified. We will say more about design rule checking shortly. But
again, the fact that dependencies between components exist does not preclude a "hierarchi-
cal" system decomposition.

5.4 Other Issues

Encapsulation. Our work distinguishes two types of encapsulation: ADT and design.
We are all familiar withADT encapsulation; programming languages (ADA, C++) enforce
ADT encapsulation through the hiding of local variables and local functions [Lis77]. The
idea is to permit changes to an ADT’s implementation without triggering changes to other
ADTs. Design encapsulation, on the other hand, is the form of encapsulation that is required
for software component technologies. It is the hiding of design details within components
and, as we will see below, is the result of a deliberate design. Unlike ADT encapsulation,
there are aspects of design encapsulation that arenot enforceable by compilers. Consider the
following examples.

Two commonly identified ADTs (modules) in a DBMS are the storage system (which
stores and retrieves tuples of relations) and the query optimizer (which identifies the fastest
search strategy to be used by the storage system in processing a query) [Kor91]. Both the
storage system and query optimizer can be implemented by distinct ADTs, where each
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other’s local variables and local functions are hidden from view. Although ADT encapsula-
tion is preserved, design encapsulation is not. In general, the query optimizer needs to know
exactly what structures are maintained by the storage system in order to estimate retrieval
costs. Adding or deleting a storage structure must always be accompanied by a correspond-
ing change to the query optimizer because design information is shared by both. Thus,
design encapsulation transcends the encapsulation of individual ADTs/classes, and normally
deals with sets of closely related ADTs. We cannot imagine how design encapsulation in
this example could be enforced by compilers.

As a second example, the data definition language (DDL) of a DBMS is used to declare
schemas and hints to the DBMS on how to store and retrieve data efficiently. For example, if
an indexing component is present in a DBMS, there will be a special statement in the DDL
allowing schema designers to declare that specific fields are to be indexed. If the indexing
component is absent, the indexing statement is not present in the DDL.

A standard way to implement DDLs is via Lex and Yacc [Mas90]. An individual DDL
statement is represented by one or more Lex tokens and one or more Yacc rules. The pres-
ence or absence of a component will trigger the inclusion or exclusion of tokens and rules.
The inclusion/exclusion process must be done at precompile time, a task that has nothing to
do with to ADT encapsulation. Thus, design encapsulation cannot always be realized solely
by ADT encapsulation.

We believe that Parnas was the first to recognize the concept of design encapsulation
[Par72], and Guttag was among the first to recognize the concept of ADT encapsulation
[Gut77]. However, the distinction between design and ADT encapsulation was not evident
to us before we began the Genesis and Avoca projects.

Domain Modeling. Creating a domain model is definitely not an ad hoc process. It
involves a careful study of existing systems within a domain to discern the fundamental
layering present in all such systems and a disentanglement of abstruse designs of ad hoc sys-
tems into a standard language (i.e., type expressions). Using existing systems as a guide to
standardize the decomposition of systems and designing generic interfaces for
components/realms is the essence of domain modeling.

There is no standard notation or metamodel for expressing a domain model. For the
few domain models that exist, each is expressed in terms of its own special-purpose con-
cepts, which not only complicates any modeling effort (i.e., identification of an appropriate
notation is nontrivial), but it also makes model comprehension difficult (because ad hoc nota-
tions and metamodels are rarely similar).

Our type-expression notation and our component-realm metamodel are domain
independent. We have shown that a common set of ideas apply to network software and
database software, even though both domains are vastly different. We conjecture that our
notation and metamodel are applicable to a large class of domains (i.e., those with hierarchi-
cal systems), and they present a concrete language for domain analysts to express the results
of their domain models.

Design Rule Checking. Not all combinations of components are meaningful.
Indiscriminate but syntactically correct type expressions may correspond to systems that can-
not possibly work. An integral part of software component technologies are layout editors
that enforcedesign rules that preclude illegal combinations of components. The basic idea is
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simple enough: every component c may insist that lower-level components (which instantiate
c’s parameters) satisfy constraintsin addition to that of type membership. That is, if c[ x:R ]
has parameter x of type R, it may be that not all components of R can legally instantiate x;
only those with certain properties are permitted. Design rules express these constraints and
confirm common intuition: as one composes components, constraints on legal instantiations
are ‘inherited’ in a top-down manner, thus further restricting the set of components that can
be used at any given position in a system.

We explain in [Bat91a] how design rules are defined and enforced in the Genesis com-
ponent layout editor (DaTE). DaTE presents a graphical interface by which system designs
can compose components quickly, while ensuring that incorrect compositions are impossible
to specify. As is evident from Section 2, type expressions for typical systems are difficult to
read. Graphically visualizing expressions significantly simplifies understanding and interpre-
tation of type expressions, and reinforces the ‘lego’ paradigm that underlies software com-
ponents.

Since our type-expression formalism is generic, it is possible that domain-independent
layout editors can be built. Such editors be will table driven, where tables encode domain-
specific knowledge. As more domains are reduced to a type-expression formalism, we
expect to better understand the features that these editors will need to provide.

Component Interconnection. Component interconnections can be realized in a variety
of efficient ways. Both Avoca and Genesis use dispatch tables that encode the static topol-
ogy of stacked components. Thus, connections between components are determined at run-
time. This implementation strategy easily supports systems where a component is referenced
several times (e.g., m[a,a]). Only one copy of the component’s source code will be present,
but multiple execution instances will exist. Control blocks are used to differentiate multiple
execution instances.

Whenever there is a choice of different downward paths to follow, as occurs in Avoca
virtual protocols and Genesis software busses, static dispatch tables are not sufficient and
additional connectivity information must be stored. Such information is recorded in
component-internal tables and pointers in control blocks. Avoca goes further by using addi-
tional dynamically-defined tables (called Maps) to support upward paths arising from
upcalls.

When possible, Genesis also fuses components together at compile-time by a very sim-
ple technique. In the composition x[y], component x calls y. This means that each downcall
di of x is a call to the top operationTi of y. Creating a set of C precompiler statements, one
for each downcall of x, of the form:

#define di Ti

will literally rename eachdi in x with Ti, thereby making x call y directly. Figure 5.1 illus-
trates component fusion.
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Figure 5.1 Component Fusion via Call Renaming

6. Conclusions

The success of mature engineering disciplines lies in the standardization of well-
understood technologies. By purchasing off-the-shelf components, engineers can create cus-
tomized systems economically by building only the parts that are application-specific.
Unnecessary reinvention of technology is avoided.

Software engineering (and computer science itself) is a relatively young and immature
discipline. Contemporary software systems have been simple enough that massive technol-
ogy reinvention was economically feasible. This will not be true of the future. There are
many domains today that are technologically mature and ripe for standardization, and there
will certainly be many more a decade from now. Many of these domains will center on
hierarchical systems, where a progression of increasingly more sophisticated software tech-
nologies are layered upon each other.

We have presented avalidated model of hierarchical system design and implementation
that explains how families of such systems can be assembled quickly and economically using
prefabricated components (i.e., software ICs, software legos). Our model is aimed
specifically at mature software technologies, where standardization makes sense. Standardi-
zation is the key to large scale reuse.

We have shown that complex domains can be expressed by an elementary metamodel
of realms of interchangeable and plug-compatible components. Software systems of enor-
mous complexity are elegantly represented as type expressions. We have demonstrated that
symmetric components are the key to large-scale reuse in important domains (e.g., unix file
filters, database FMAP components, communication protocols). These components have the
unusual property that they can be composed in virtually arbitrary orders.

We have noted common features that all software component technologies should exhi-
bit, and have identified three distinct granularities of ‘as-is’ reuse: component, class, and
algorithm. We explained how our concepts reinforce and extend the pioneering ideas of Par-
nas, Habermann, et al. in the design of hierarchical systems, and how these ideas transcend
current object-oriented design techniques. Specifically, we used the ER model and notation
as a leverage to present additional concepts that are needed to elevate the fundamental unit
of large scale software construction from individual classes to parametric components of
highly interrelated classes.
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We explained that highly layered systems can be as efficient as their monolithic coun-
terparts and that software components require design encapsulation - a form of encapsulation
that is different than conventional ADT encapsulation. Because our type-expression notation
and component-realm metamodel are domain independent, we also feel that our work can
serve as the basis for a common language in which other domain models can be expressed.

We conjecture that our model is a blue-print for a practical software components tech-
nology. The first major test of this conjecture will be the DARPA-funded upgrade of the
Mach operating system that will replace Mach’s current communication kernel with that of
Avoca/xkernel. This upgrade, which is planned to be the standard release for a future ver-
sion of Mach OS, is now underway at the University of Arizona.
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