Introductory P2 System Manual

Edition 0.1, August 1994

Don Batory
Bart J. Geraci
Jeff Thomas

Copyright © 1994, The University of Texas at Austin.

Edition 0.1
For P2 Version 0.1
August 1994

For information, questions, and to report inaccuracies, please contact: dsb@cs.utexas.edu

Preface 1

Preface

This manual documents the use of the P2 system. It also outlines how programmerrs can
customize the system for sophisticated applications. First-time users are encouraged to read this

manual. Advanced users are encouraged to read ‘Advanced P2 System Manual’.

In addition to the usual index of concepts, this manual provides separate indices of all functions

and variables.

This manual is available in both a printed format and on on-line format. The on-line format

can be browsed by the using the GNU info program or the GNU emacs info command.

Introductory P2 System Manual

Chapter 1: Agreement 3

1 Agreement

Copyright (C) 1994, The University of Texas at Austin, UTA. All rights reserved.

By using this software, you, the user, indicate you have read, understood, and will comply with

the following;:

1. Nonexclusive permission to use, copy and/or modify this software for internal, noncommercial,
research purposes is granted. Any distribution, including commercial sale, of this software, copies,
associated documentation and/or modifications is strictly prohibited without the prior written
consent of UTA. Appropriate copyright notice shall be placed on software copies, and a full copy
of this license in associated documentation. No right is granted to use in advertising, publicity
or otherwise any trademark of UTA. Any software and/or associated documentation identified as
"confidential" will be protected from unauthorized use/disclosure with the same degree of care user

regularly employs to safeguard its own such information.

2. This software is provided "as is", and UTA makes no representations or warranties, express
or implied, including those of merchantability or fitness for a particular purpose, or that use of the
software, modifications, or associated documentation will not infringe on any patents, copyrights,
trademarks or other rights. UTA shall not be held liable for any liability nor for any direct, indirect
or consequential damages with respect to any claim by user or any third party on account of or

arising from this Agreement.

Introductory P2 System Manual

Chapter 2: Distribution 5

2 Distribution

The P2 program and manuals can be retrieved via anonymous ftp. See Chapter 3 [Installation],

page 7.

To be put on a P2 mailing list, please end an e-mail message with the subject "Add to P2 list"

followed by your e-mail address. Send request to dsb@cs.utexas.edu

CONTACT INFORMATION:

Don Batory

University of Texas at Austin
Department of Computer Science
Taylor Hall 2.124

Austin TX 78712.

dsb@cs.utexas.edu

Introductory P2 System Manual

Chapter 3: Installation 7

3 Installation

The p2 distribution consists of two compressed tar files available via anonymous ftp. One tar
file contains the p2 system code, the other contains the p2 system manuals.

As a rule, we have tried to make p2 as portable as possible. Omne exception to this rule are
that p2 requires GNU make. Standard UNIX make will not work. Besides GNU make, the code
distribution requires an ANSI C compiler, lex and yacc (or their GNU equivalents). The manuals
distribution includes PostScript and dvi versions of the manual, and thus requires only a PostScript

or dvi viewer.

To install the code distribution, you should get the file via ftp, uncompress it, un-tar it, cd into
it, run configure, and make.

Here is a step-by-step example of how to get the code distribution and make it on your system.
This example assumes your login is dsb@cs.utexas.edu, and you wish to install p2 in the directory
/u/dsb/foo/p2.

h ftp ftp.cs.utexas.edu

Name (ftp.cs.utexas.edu:dsb): anonymous
Password: dsb@cs.utexas.edu

ftp> binary

ftp> cd pub/predator

ftp> get p2-0.1.tar.Z

ftp> bye

% uncompress p2-0.1.tar.Z

h tar xf p2-0.1.tar

% cd p2-0.1

h ./configure --prefix=/u/dsb/foo/p2
h make

% make install

To install the manuals distribution, you should get the file via ftp, uncompress it, and un-tar it.

Here is a step-by-step of how to get the manuals distribution. This example assumes your login
is dsb@cs.utexas.edu.

h ftp ftp.cs.utexas.edu

Name (ftp.cs.utexas.edu:dsb): anonymous
Password: dsb@cs.utexas.edu

ftp> binary

ftp> cd pub/predator

ftp> get p2-manuals-0.1.tar.Z

ftp> bye

% uncompress p2-manuals-0.1.tar.Z

% tar xf p2-manuals-0.1.tar

Introductory P2 System Manual

Chapter 4: Introduction 9

4 Introduction

P2 is a state-of-the-art generator for data structures. It is an extension of ANSI C that allows
programmers to interact with complex data structures using high-level and easy-to-use abstrac-
tions. With minimal specifications from programmers, P2 replaces program references to these
abstractions with C code that implements them. The number of potential implementations of the

basic P2 abstractions is already large and is open-ended.

The goals of this manual are (1) to show how powerful programs can be written in terms of P2

abstractions and (2) to show how implementations of P2 abstractions are specified.

4.1 The Conceptual Basis for P2

P2 is among a new breed of generators that rely on software components to synthesize software.
P2 is based on the GenVoca model of software system construction. In essence, the premise of
GenVoca is that fundamental programming abstractions underly all mature software domains.
By standardizing abstractions and their implementations, one can realize a software components
technology for a domain.

Although the number of fundamental programming abstractions in a domain is rather small,
there is a huge number of possible implementations. The GenVoca approach also advocates a lay-
ered decomposition of implementations, where each layer (or component) encapsulates a primitive
software building block. The number of primitive building blocks in a domain is generally small
(i.e., on order of 100); however the number of ways in which building blocks can be combined is

exceedingly large.

The model of data structures that is implemented by P2 relies on a small number of simple but
powerful programming abstractions that have been standardized. Moreover, the P2 library consists
of over thirty components that encapsulate many of the common data structure building blocks.

In this manual, we will explain in detail the standardized programming abstractions of P2 and
the current set of building blocks in the P2 library.

4.2 The Organization of the P2 Generator

P2 consists of a series of three interconnected preprocessors:

10 Introductory P2 System Manual

p2 - a shell script that converts a .p2 program into a format understandable by ddl.

ddl - a preprocessor that repackages implementation specifications for P2 abstractions into a

format understandable by pb.

pb - a preprocessor that translates P2 constructs into C code

As a .p2 file is being "compiled", different intermediate formats of the file (e.g., .ddl, .pb) are
produced. Errors are detected and reported at all stages of translation, where different classes of

errors are detected during each translation phase.

There is a fourth preprocessor that is not part of the .p2 to .c translation pipeline. This is xp, a
special language/preprocessor that is used to write P2 components. We will not discuss xp further
in this manual; readers interested in writing P2 components are urged to read section “xp Manual”
in Advanced P2 System Manual.

The figure below illustrates the P2 system organization:

|
pb | | € I
|
|------ >| [--->

To compile the program ‘mumble.p2’, simply type:
P2 mumble.p2

P2 understands several command-line options, which are explained in Section 8.3 [P2 options],
page 58. A sample program is listed and dissected in Appendix A [Example P2 program], page 67.

4.3 How to Use this Manual
We assume that the reader is familiar with C, UNIX, and GNU make.
This manual has several chapters. The ones which are worth reading depends on your goals:

For P2 novices:

Chapter 4: Introduction 11

e Introduction - This chapter.
e P2 Language - The syntax for a ‘mumble.p2’ file. See Chapter 5 [P2 Language], page 13.

e Operations - The list of functions in the P2 system to provide the container/cursor operations.
See Chapter 6 [P2 Operations], page 37.
o P2 Layers - The different layers that can be used to describe the method elements are organized

in containers. See Chapter 7 [P2 Layers|, page 41.

e Invoking P2 - How to run P2 and the arguments for the P2 system. See Chapter 8 [Invoking
P2], page 53.

People who intend to write layers should first read this manual and then the Advanced P2
System Manual (see section “xp Manual” in The Advanced P2 System Manual) which contains

information about how to write a layer in xp.
For people who are installing the P2 system, please read the section

Installation - This chapter provides a brief, but useful, introduction to installing P2. See
Chapter 3 [Installation], page 7.

People who are responsible for maintenance of the P2 hierarchy should be familiar with GNU
autoconf and make.

12

Introductory P2 System Manual

Chapter 5: P2 Language 13

5 P2 Language

P2 is a superset of ANSI C. Thus a P2 source file has the format of a C file with support for
the container/cursor abstractions. These will be discussed in detail below. In addition, C++ style

comments (where everything to the right of a ‘//’ is ignored) are supported.

5.1 The Container/Cursor Overview

The paradigm used in P2 is the container/cursor model. A container is a collection of objects
called elements. FElements are referenced by a structure called a cursor. With respect to the

container, a Cursor Carmn:

e move backwards and forwards through the container
o start at the beginning or the end of the container

e add, delete, swap, and update elements

A qualified cursor only points to elements that share some characteristic. Qualified cursors have
two properties: a predicate, which restricts the cursor to point only to elements that satisfy the
predicate, and an orderby clause, which specifies the order in which the cursor retrieves elements

from the container.

The power of qualified cursors is the ability of the P2 system to optimize operations based
on their qualifications. If a cursor is restricted to all even numbers, then the procedure that is
generated by P2 for searching that container will have this test embedded. The disadvantage is
that to a certain extent, we cannot have dynamically (run-time) cursor predicates that are common

in interactive environments.

P2 programs are written in terms of operations on cursors and containers and without regard
to how they are implemented. This, in principle, enables different implementations of cursors and

containers to be "plugged in" without requiring program modifications.

Ultimately, however, a specification of how cursors and containers are to be implemented must
be provided to the P2 compiler, as the compiler replaces cursor and container declarations and
operations with their corresponding C implementation. An implementation specification comes in

two parts: a type expression and its annotations.

14 Introductory P2 System Manual

A type expression is a composition of P2 building blocks; it specifies a stacking of layers that de-
fines the general characteristics of the data structure that P2 is to generate. Additional information,
such as key fields, array sizes, etc., are called annotations. The combination of type expressions
and annotations is the sole means for specifying data structure implementations. Among the char-
acteristics that can be defined by type expressions and annotations are:

e Whether elements are ordered or not, and if so, under what field is the element ordered.

o If the container uses transient or persistent storage.

Details of searching and deletion strategies.

Whether or not the container should contain a maximal number of elements

As mentioned earlier, the power of P2 programs stem from the separation of cursor and container
abstractions and their implementations; by altering a P2 program’s type expression(s), containers

and cursors can be assigned radically different implementations. This significantly simplifies tuning.

5.2 Operation Usage

For example, suppose we have a container called primes with the elements 2 3 57 11 13 17 23
29. We declare a cursor ¢ that ranges over all elements of the container. After we initialize the

cursor, we can perform a reset which positions the cursor on the first object:

c
2357 11 13 17 23 29

We can iterate through the list by successive advance and/or reverse operations. Three advances

positions the cursor at 7.

c
2357 11 13 17 23 29

A reverse and cursor is pointing at 5.

c
235711 13 17 23 29

Two more reverses and cursor is pointing at 2.

Chapter 5: P2 Language 15

To test whether a cursor has gone past the end of the container, the operations end_adv and
end_rev are provided. end_adv returns true if an advance operation positions the cursor past the end
of the container; end_rev does the same for the reverse operation. If another reverse is attempted,
then end_rev returns true.

Normally, programmers do not call the advance and end_adv operations directly, but use the P2
foreach(c) loop construct. foreach(c) uses cursor ¢ to iterate over elements of a container. If ¢ is
qualified, then only those elements that satisfy c¢’s predicate are examined. P2 expands foreach(c)
into calls to advance(c) and end_adv(c). The rofeach(c) loop construct does the same, except it

traverses elements of the container in the opposite order, using reverse(c) and end_rev(c) operations.

7’ will either point

Using the primes container, a cursor q qualified over all numbers ending in
to 7 or 17. Therefore if q is initialized and then a reset_start operation is performed on it, q will

point to 7. A single advance would point q next to 17.

Cursors are also used to delete objects. In the previous example, if the delete operation is
invoked, then 17 would be removed from the container, but the cursor would still point to the
location occupied by the 17. If an advance is performed, the cursor would be positioned on the
next qualified element, which in this case would be NULL, since there are no elements ending in ‘7’
past 17.

q
235711 13 23 29

An insert operation performed with the number 47 would insert the element somewhere in the
container. It is up to the particular type expression of the container as how to elements should be
added (whether it places it at the head of the list, the tail of the list, or keyed by some field).

q
2357 11 47 13 17 23 29

More details will be given in subsequent sections.

16 Introductory P2 System Manual

5.3 Container Declarations

A container is a collection of elements of element_type that is implemented by some type ex-

pression. The type expression may need additional information, which is the annotation list. The

syntax is:
container_declaration : ‘container’ ‘<’ element_type ‘>’
‘stored_as’ type_expression_name
‘with’ ‘{’ annotation_list ‘}’
identifier_declarator_list ¢;’
annotation_list : { annotation ¢;’ }*

For example, let us declare two types that we will use in our examples. A type for storing prime

numbers called prime_num_type and a type for storing employee data, emp_type.

typedef struct {
int num;
} prime_num_type

typedef struct EMPLOYEE {
char name[20]; // last name
int age;

} emp_type;

Next, we will define a container storing a linked list of prime numbers:

container < prime_num_type > stored_as linked_list
with { } prime_container, #*pointer_to_prime_container;

// alternate way of defining the above
typedef container < prime_num_type > stored_as linked_list

with { } PRIME_CONTAINER_TYPE;

PRIME_CONTAINER_TYPE prime_container, *pointer_to_prime_container;
Now for the employees example:

container < struct EMPLOYEE > stored_as linked_list
with { } emp_cont, emp_cont_arr[4]; // array of containers

Note that 1inked_list is the name of a type expression (whose definition we will give later on)

and that it has no annotations.

Chapter 5: P2 Language 17

5.4 Cursor Declarations

A cursor is a structure that points to elements in a container. A cursor can only point in one
container, but a container may have more than one cursor. The syntax for a cursor declaration is:

cursor_declaration: ‘cursor’ ‘<’ container_name ‘>’
[predicate_specifier]
[ordering_specifier]
identifier_declarator_list °;°
predicate_specifier: ‘where’ predicate
ordering_specifier: ‘orderby’ orderby_clause

Cursors have two optional properties: a predicate and an orderby clause.

A cursor predicate specifies a subset of the elements in the container to which the cursor my
be bound. A predicate is specified as a double-quote enclosed C boolean expression with the
extensions that (1) the dollar sign refers to the cursor object and (2) string constants are enclosed
within single quotes. Any expression for the predicate can be specified, but P2 is able to make
certain optimizations only on a subset of predicates known as structured terms. This subset of
predicates is defined by the following grammar:

predicate: term
| predicate ¢ && ’ term // Blanks are important

term: field relop value // Structured term

| value // Unstructured term
field: ‘$.’> field_name // $ is the cursor alias
relop: f==2 | =2 | ‘=2 | ‘¢ | >0 |

¢)

! // Boolean expressions
value: non-blank_character_sequence |
string-literal

A predicate is a series of terms joined by ‘€&’. A term is either a relational expression, which is
called a structured term, or not, which is called an unstructured term. Unstructured terms must
be written in parentheses and without spaces.

An example of a structured term is ‘"$.name == ’Batory, Don’ "’ where an example of an
unstructured term would be ‘"($.age>40]||$.age<30)"’. Anytime a disjunction (‘||’) appears,
the expression is unstructured. So whenever a disjunction is used, the term it appears in must be
written without blanks and in parenthesis. Also note that predicates can contain function calls
such as "(fn($.name,currname))",in which case they are unstructured as well. String literals are

enclosed within single quotes (e.g., 'Batory’). A string literal cannot have embedded quotes, single
or double.

18 Introductory P2 System Manual

Here are more examples of structured P2 predicates on an employee record type with a name
string field and an integer age field:

"$.age > 15" // age field greater than 15
"$.age == 15" // age field equals 15
"$.name >= ’B’ && $.name < ’C’ && $.age > 40"
// name field begins with letter 'B’
// and age field greater than 40
"$.age > x" // age field greater than value of variable x
"$.age > x && $.age < y" // age field falls within range (x,y)

Note that spaces are important in the above predicates.

Here are more examples of unstructured P2 predicates:

"($.age>15)" // enclosed within () and without blanks
"(is_old($.age))" // function call where age field passed

// as parameter
"($.name>=’B’&&$.name<’C’&&$.age>40)"

// same as third structured example above
"(($.name>=’B’&&$.name<’C’) | | $.age>40)"

// name field begins with B’ or age > 40

Here are examples of illegal P2 predicates:

"$.age> 15" // missing blank before >
"($.age>15" // missing right parenthesis

An orderby clause specifies the field and sort direction for retrieved elements. The syntax for
the orderby clause is:

orderby_clause: ‘ascending’ field_name
| ‘descending’ field_name
| field_name

The reserved word ascending (descending) specifies to sort in increasing (decreasing) order.
The field field_name is the ordering key. Depending on the type of the key, the sorting method
is numeric or lexicographic. Sorting on multiple keys are not currently supported. The third case
defaults to ascending by the field_name key.

Chapter 5: P2 Language 19

For our first example, the following cursor declaration declares a cursor variable over the prime
number container. The cursor is qualified to only match numbers ending in ’1’ and to return the

elements in increasing order.

cursor < prime_container >
where "($.num/10) == 1" // Unstructured Predicate
orderby ascending num // Orderby clause
prime_cursor; // cursor variable

The next example is a cursor for the employees container, which will range over all employee
elements whose name begins with an ‘M’. In addition, these elements are retrieved in reverse order

(larger numbers appear first) by their ages.

cursor < emp_cont >
where "$.name >= ’M’ && $.name < ’N’"
orderby descending age

5.5 Type Expressions

5.5.1 Type Expression Declarations

A type expression is a composition of layers which represents an implementation for the con-
tainer. Type expressions are defined using a typex declaration which is a sequence of zero or more
type assignments. The typex declaration assigns a symbolic name to type expressions. These names
may be subsequently referenced to specify the container implementation. Type expression names

are ordinary C identifiers which do not end with a digit.

typex_declaration : ‘typex’ ‘{’ typex_assignment* ‘}’

typex_assignment : typex_name ‘=’ typex_definition ‘;’

For example, the following typex declaration declares two type expressions, named s and t:

typex {
s = conceptual[slist[delflaglarray[transient]]]];
t = conceptuallodlisti[odlist2[malloc[transient]]]];

}

Interpreting type expressions requires some background on what they actually mean. A term
of a type expression is a P2 layer (or component). Every P2 component encapsulates a consistent

20 Introductory P2 System Manual

data type and operation mapping for cursors, containers, and their elements. A type expression is
a composition of layers that defines a sequence of mappings that transforms a P2 program into a C
program. Thus, to understand what a type expression means requires understanding the mapping

that is performed by each layer of the type expression.

With this as a background, let’s analyze these expressions to see what they mean. The full

meanings of the individual layers are given in detail in See Chapter 7 [P2 Layers|, page 41. For ‘s’

o The conceptual layer is actually a built-in composition of many P2 layers that accomplish

sorting, loop rewrites etc. It is typically the first layer of every type expression.

o The slist layer links together elements of a container onto a singly linked list in order of

insertion.

e The delflag layer the delflag layer rewrites an element delete operation into an element update

that marks an element deleted; the storage space for an element is not reclaimed.

o The array layer provides storage for the elements in a preallocated array. The implementation

of array ignores deletions, so the delflag layer is needed above the array layer.

e The transient layer stores the element in main memory. This is different than the persistent

layer which stores the element to disk.

In summary, ‘s’ is a layer which stores its elements in an array (which are also linked in a list)

in main memory. Let us analyze ‘t’ similarly:

e The conceptual layer is actually a built-in composition of many P2 layers that accomplish
sorting, loop rewrites etc. It is typically the first layer of every type expressions.

o The odlistl layer links together elements of a container via an ordered doubly-linked list.

The ordering for this layer depends on the annotation.
o The odlist?2 layer is exactly like odlist1, though the ordering key may be different.
e The malloc layer provides storage from the heap for each new element allocation.

e The transient layer stores the element in main memory.

So ‘t’ allocates space for the elements on demand and links the elements together using two

keys.

5.5.2 Type Expression Annotations

Besides the layer parameters, a layer may have additional parameters called annotations. The
only layer of type expression s that has an annotation is array. The ‘array’ needs the size of the

Chapter 5: P2 Language 21

array to allocate. If we wish to set that value to 200, then we could declare a container that can

store up to 200 primes as:

typex {
s = conceptual[slist[delflaglarray[transient]]]];
}

container < prime_num_type > stored_as s with {
array size is 200;
} prime_container;

In expression t, only the odlist layer has an annotation. This layer stores elements onto an
ordered, doubly-linked list. The key or sort field is the annotation of odlist. Note that odlist
appears twice in t, and each instance can have its own distinct key. To ensure that the proper
annotation is associated with the proper instance of odlist, layer names are followed by a unique
digit. Therefore a layer can appear at most 10 times in a type expression (there is a way around

this limit in Section 5.5.3 [Automatic Repetition], page 21). Using the employee example, we can
declare:

typex {
t = conceptuallodlistl[odlist2[malloc[transient]]]];
}

container < emp_type > stored_as t with {
odlistl key is name;
odlist2 key is age;

} emp_conti;

cursor < emp_contl > orderby age emp_cursi;
cursor < emp_contl > orderby name emp_curs2;

5.5.3 Automatic Repetition

One more feature in type expressions is automatic repetition. If a layer takes a single annotation,
and two annotations are given, then the layer is automatically repeated. If no annotations are given,
then the layer is automatically deleted.

For instance, let us define type expression ‘u’:

typex {
u = conceptual[bintreelodlist[malloc[transient]]]];

}

22 Introductory P2 System Manual

The actual type expression will change with respect to these container declarations:

container < emp_type > stored_as u with {
bintree key is name;
odlist key is age;

} emp_conti;

container < emp_type > stored_as u with {
bintree key is name;
bintree key is age;

} emp_cont2;

container < emp_type > stored_as u with {
odlist key is name;
odlist key is age;

} emp_cont3;

In ‘emp_contl’, the annotations will preserve the type expression ‘u’ as before. However,
‘emp_cont?2’ will cause the ‘bintree’layer to be duplicated and the ‘odlist’ layer to disappear since
there are two ‘bintree’ annotations and no ‘odlist’ annotations. Therefore the type expression is
changed to the equivalent of: ‘conceptual [bintree[bintree[malloc[transient]]]]’. The last
container declaration has no ‘bintree’ annotations but two ‘odlist’ annotations, therefore the

type expression is equivalent to: ‘conceptual [bintree[bintree[malloc[transient]]]]’.

Automatic repetition can be combined with the method of distinguishing layer instances by
their last digit, so declarations like the one below are legal:

typex {
u = conceptual[bintreel[odlist[bintree2[malloc[transient]]]]];
}
container < emp_type > stored_as u with {
bintreel key is name;
bintreel key is age;
bintree2 key is name;
} emp_conti;

The above example means that for container ‘emp_cont1’, the first ‘bintree’ layer is duplicated,
the ‘odlist’ layer is deleted, and the second ‘bintree’ layer appears only once.

Chapter 5: P2 Language 23

5.6 Generic Containers/Cursors

A generic container is a proxy for a concrete (i.e. non-generic) container. The motivation for
generic containers is to enable the defintion of procedures that operate over several containers that

share the same element type.

The syntax for the declaration is:

generic_container_declaration: ‘generic_container’
‘<’ element_type_specifier ‘>’

Suppose we wish to write a print_size function which returns the number of elements in the
container. Additionally, we have several different containers of emp_types; each with a different
type expression. This means that the C struct type for each container would be different, thus

causing one print_size() function to be written for each container type. This is awkward.

Generic containers were introduced to eliminate this problem. One print_size() function can
be written, which takes any container of prime_num_type elements as an argument. Here is how

such a container would be written:

container < emp_type > stored_as linked_list with {
} emp_cont

typedef generic_container < emp_type > GK;

void print_size(GK cont, char *name)

{

printf("Size of container %s = %d",

name, getsize(cont));

}
main()
{

print_size((GK) &emp_cont,"Employee #1 Container");
}

will declare a type GK that can be used in the procedure print_size. This procedure will work
for all containers based on the emp_type. The getsize procedure is one of P2’s special container

operations.

24 Introductory P2 System Manual

A generic cursor is a proxy for a concrete cursor in the same way as a generic container is a

proxy for a concrete container. The syntax is similar as well:

generic_cursor_declaration: ‘generic_cursor’
‘<’ element_type_specifier ‘>’
identifier_declarator_list ¢;’

Notice that generic cursors have neither a predicate nor an orderby clause. Also note that

generic cursors are based on the element type and not on the container name like ordinary cursors.

Suppose we have two cursors for our prime container: one points to elements ending in ‘1’ while
the other one points to elements ending in ‘7’. Generic cursors allow us to write one procedure that

will print out the full list of elements that are qualified by these cursors.

cursor < prime_container > where "($.num)10==1)" prime_one;
cursor < prime_container > where "($.num),10==7)" prime_seven;

typedef generic_cursor < prime_num_type > GC;

void print_primes(GC gc)
{
foreach(gc)

printf ("}d\n",gc.num); // print prime number

}

main()

{

print_primes ((GC) &prime_one);
print_primes ((GC) &prime_seven);

The print_primes procedure will work for all cursors whose containers are of type prime_num_

type, regardless of the concrete cursor’s ordering or qualification.

5.7 Element Declaration

The element declaration will return the the transformed element type of the container or cursor

name k_or_c_name. This is useful when we need to know the size of the element after it has been

transformed by P2.

Chapter 5: P2 Language 25

‘element’ ‘<’ k_or_c_name ‘>’

For instance, if we want to find out the overhead for storing the prime number elements in the

container prime_container, we can measure this using;:

element < prime_cursor > e_prime;

int orig = sizeof (prime_num_type) ;

int new = sizeof(e_prime);

printf("Size of prime_num_type: hd\n" ,orig);
printf("Size of element in prime container: %d\n",new);
printf("Overhead for storing primes: hd\n" ,new-orig) ;

In addition, if we want to assign values directly from the cursor objects, we can use ‘element’

to do this:

{

element < emp_cursl > *ci;

cl = emp_cursl.obj;

printf("}s %Ad\n",cl->name, cl->age);
}

Here, c1 is declared as a pointer to the object type of emp_cursil. Once the assignment has

been made in the second line, c1 can reference the fields of emp_type.

5.8 Comprehensive Example

Let us see how everything fits so far with an example involving the previous sections. The

program is called ‘prime.p2’.

// PART I
#define LIMIT 10
typedef struct {

int num;
} prime_num_type;

26

Introductory P2 System Manual

typex {
ta = conceptual[sizeof[dlist[malloc[transient]]]];
tb = conceptual[sizeof[odlist[array[transient]]]];
}
// PART II

container < prime_num_type > stored_as ta with {
} prime_cont1l;

container < prime_num_type > stored_as tb with {
odlist key is num;
array size is LIMIT;

} prime_cont2;

typedef generic_container < prime_num_type > GK;

// PART III

cursor < prime_contl > orderby ascending num cii;
cursor < prime_contl > where "($.num)410) == 1" orderby ascending num c12;

cursor < prime_cont2 > orderby descending num c21;
cursor < prime_cont2 > where "($.num)410) == 1" orderby descending num c22;

typedef generic_cursor < prime_num_type > GC;
// PART IV

element < prime_contl > prime_contl_type;
element < prime_cont2 > prime_cont2_type;

// PART V
int maxnum; // maximum number.
// PART VI

void print(GC gc, char #*name)

{
printf ("\nContainer %s:\n",name);
foreach(gc) {
printf("%3d ",gc.num);
}
printf ("\n");
}

void getsize_k(GK gk, char *title)

Chapter 5: P2 Language

{ printf("size of Js container = Jd\n",title,getsize(gk)); }

void init_primes(GC gc)

{
int 1,j;
int div;
prime_num_type node;
for(i=3;i<maxnum;i+=2) {
div = 0;
for(j=2;j<(i/2) && 'div;j++)
if (i%j == 0)
div=1;
if ('div) {
node.num = i;
insert(gc, node);
}
}
node.num = 2;
insert(gc, node);
}
// PART VII
main(void)
{

open(prime_contl);
open(prime_cont2);

init_curs(cil);
init_curs(c12);
init_curs(c21);
init_curs(c22);

printf ("Enter maximum number: ");
scanf ("%d",&maxnum) ;

init_primes((GC)&c11);
// insert all primes ending in 1 into the 2nd container.

foreach(c12) {
prime_num_type p;

27

28 Introductory P2 System Manual

if (overflow(prime_cont2)) {
printf ("reached container 2 capacity\n");
break;

}

p.num = cl2.num;
insert(c21,p);
b

printf("size of container #1 structure is: }d\n",
sizeof (prime_contl_type));
printf("size of container #2 structure is: }d\n",
sizeof (prime_cont2_type));
printf("size of elements are: %d\n",sizeof(prime_num_type));

print ((GC)&cll, "#1");
getsize_k((GK)&prime_contl, "all primes");

print ((GC)&c22, "#2 - 1s only");
getsize_k((GK)&prime_cont2, "primes ending in 1");

The first part of the program defines the prime element structure, which is just a single integer.
Next comes the two type definitions. Both of these type expressions includes the layer sizeof
because it is this layer that will define the getsize operation that will be used in getsize_k.

The second part defines two containers. The first one will be used to hold all the prime numbers
while the second one will be used to hold all prime numbers ending in ‘1’. However, the second
container is constrained to only hold 10 primes due to the ‘array size is LIMIT’ statement. A
generic container is defined and will be used in the getsize_k procedure

The third part defines several cursors. The first two cursors belong to the first container and
the second two belong to the second container. Notice that the second container has the values
sorted in decreasing order. Also in these container definitions, the expression ‘$.num % 10’ has to
be written without spaces and within parentheses because it is an unstructured term (what made

it unstructured was the arithmetic operation ‘4’). Finally a generic cursor is declared.

The fourth part defines two element types. The ‘prime_contl_type’ will be of type whatever
the element of ‘prime_cont1’ is.

The fifth part declares a global int called ‘maxnum’. This is the maximum value of the number
to search for primes.

Chapter 5: P2 Language 29

The sixth part declares three generic-based procedures. The procedure print will take any
cursor belonging to a container and print out the list of primes that are accessible by the cursor.
For instance, the cursor ‘c12’ will print out only those primes that end in ‘1’, even though it belongs

to the container which stores all primes.

The getsike_k takes a container for an argument and prints out the size of the container.

The init_primes takes a container and inserts all primes up to but not including the maximum
number. At the end, it inserts the number ‘2’ into the container. Insertions are done via a record
of the original type. This record, called node, is allocated one and the values are overwritten per
iteration of the loop. Insertions work by copying the record fields and allocating new memory to
store these fields.

The seventh part is the main program. The first eight lines initializes the containers and cursors

and prompts for the maximum value to halt the search for primes.

To call the init_primes procedure to insert elements into the first container, the address of
any cursor belonging to the first container is passed and it is cast to the generic procedure type.
While the syntax may look clumsy, it works.

Once all the primes are inserted into the first container, we wish to insert all primes ending in
‘1’ into the second container. The cursor c12 points to the only numbers we want and is a member
of the first container. Therefore this is the cursor to use in the ‘foreach’ statement.

Within the ‘foreach’ body, we make a test to see if there are already 10 elements in the second
container with the operation ‘overflow’. If the value is true, then the capacity of the container has
been reached meaning it is unable to accept more elements. Therefore, this condition will break
the loop, just like any other C ‘for’ loop. But as long as it is possible, the number from c12 is

copied to a record and that record is inserted into the second container.

The program next prints the size of some types and then the program prints both the content

and the size of the two containers.

The execution of the program resulted in these output:

hprime

Enter maximum number: 100

size of container #1 structure is: 16
size of container #2 structure is: 16

30 Introductory P2 System Manual

size of elements are: 4

Container #1:
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
53 59 61 67 71 73 79 83 89 97

size of all primes container = 25

Container #2 - 1s only:

71 61 41 31 11

size of primes ending in 1 container = 5
h

% prime
Enter maximum number: 250
reached container 2 capacity

size of container #1 structure is: 16
size of container #2 structure is: 16
size of elements are: 4

Container #1:

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
53 59 61 67 71 73 79 83 89 97 101 103 107 109 113
127 131 137 139 149 151 157 163 167 173 179 181 191 193 197
199 211 223 227 229 233 239 241
size of all primes container = 53

Container #2 - 1s only:
191 181 151 131 101 71 61 41 31 11
size of primes ending in 1 container = 10

Notice how in the second run, the second container reached its capacity. Also notice that the
second container orders the numbers backward.

5.9 Type Expression Constraints

For a P2 system equipped with 40 layers, the number of type expressions consisting of ex-
actly 5 layers are approximately (1*¥37°3*2), representing ‘ conceptual [3 layers [(transient |
persistent)]]’, which is over 100,000 expressions. There is one test suite case in P2 where a type
expression is composed of 60 layers, so there are a tremendous number of combinations for type

expressions.

However, not all type expressions make sense; only a very small subset does. Type expressions

are constrained by three factors

Chapter 5: P2 Language 31

o Interface connections
e Semantic constraints

e Layer Ordering

5.9.1 Interface Constraints

For a type expression to have the correct interface connection, the interfaces imported by a layer
must match the interfaces exported by its arguments. For example, the above type expression t =

conceptual [odlist[array[transient]]]] is syntactically correct, because:

the parameter of ‘conceptual’ is the same type as the interface exported by ‘odlist’,

o the parameter of ‘odlist’ is the same type as the interface exported by ‘array’,

the parameter of ‘array’ is the same type as the interface exported by ‘transient’,

and the ‘transient’ layer has no parameters.

P2 performs simple compositional transformations at compile time. Static composition trades
the disadvantage that implementations cannot be altered (a la schema evolution) at run time,
for the advantage that composition has zero runtime cost. P2 generates code on a per special
operation (see Chapter 6 [P2 Operations], page 37) basis. Specifically, P2 composes code fragments
contributed by each layer in the type expression in order down from the top of the type expression

to the bottom, and then back up from the bottom to the top.

5.9.2 Semantic Constraints

Once a type expression has the proper interface connections, the next check is for proper semantic
constraints. For example, one cannot perform a retrieval operation on a cursor that is bound to a
container with type expression conceptual [malloc[persistent]], since none of the components
in this type expression implement retrieval operations. The purpose of P2’s built-in design rule
checker is to evaluate additional rules (beyond interface matching) to assure that the type equations
are semantically meaningful. In addition, the built-in checker will explain in some detail what is

wrong with an incorrect type expression.

For further details on the design rule checking algorithm, see section “Layer Composition
Checks” in Advanced P2 System Manual.

32 Introductory P2 System Manual

5.9.3 Ordering Constraints

Finally, a type expression that satisfies the semantic constraints may work, but the ordering of
the layers in the expression may be crucial. The placement of a layer in a type expression can have
a tremendous effect on the algorithms (and consequently, the running times). Consider the two

type expressions below:

typex {
t
s

conceptual [delflaglodlist[array[transient]]]];
conceptual [odlist[delflaglarray[transient]]]];

One of the routines that is affected is the delete operation. This operation in ‘delflag’ marks
the element and does not execute the operation in the next layer in the type expression. So in

expression ‘t’, the delete operation for ‘odlist’ is not called whereas in ‘s’ it is.

So how important is this? Well, it depends on the cost for testing every element in every
operation to determine if it has been deleted versus the cost for doing the deletion on an element.

5.10 Composite Cursors

Complex data structures consist of multiple containers whose elements are interconnected by
pointers. A relationship among containers CI, C2, ..., Cn is a set of n-tuples <el, e2, , en> where
element ei is a member of container Ci. Let us assume that for three containers A, B, and C, the
relationship among containers over specific elements are:

{(a3,b1,c1), (a3,b1,c3), (al,b2,c4), (a2,b3,c2), (a2,b3,c4)}

A composite cursor enumerates the n-tuples of a relationship. More specifically, a composite
cursor ‘k’ is an n-tuple of cursors, one cursor per container of a relationship. A particular n-tuple
<el, e2, ..., en> of a relationship is encoded by having the ith cursor of ‘k’ positioned on element
ei. By advancing ‘k’, successive n-tuples of a relationship are retrieved.

A composite cursor is declared with a list of cursor-container pairs which are the name of the
cursor internal to this one and the name of the container to range over. A given clause specifies
which of the internal cursors is already bound, a predicate restricts the elements satisfying the tuple,
and a valid clause tests the next tuple before advances. A composite cursor has the syntactical
form:

Chapter 5: P2 Language 33

composite-cursor-declaration : ‘compcurs’

‘<’ cursor-container-pair-list ‘>’

[‘given’ ‘<’ cursor-list ‘>’]

[‘where’ predicate]

[‘valid’ valid-string]
cursor-container-pair-list : cc-pair

| cursor-container-pair-list ‘,’ cc-pair
cc-pair : internal_cursor_name container_name

There are two new operations which are special to composite cursors. initk(c_curs) is the opera-
tion which initializes composite cursors and foreachk(c_curs) is the looping construct for composite

Cursors.

The type expression of the containers used in composite cursors require a link layer to implement
the joins between containers. If a link layer is not declared, the nested loop link layer (‘nloops’) will
be automatically provided by P2. This example declares a composite cursor goldbach to determine
prime numbers that differ by 2.

prime_list = top2ds[inbetween[qualify[delflagl[array[transient]]]]1];

container < prime_num_type > stored_as prime_list with {
array size is 200;
} prime_container;

compcurs < a prime_container, b prime_container >
where "($a.num+2==§b.num)"
goldbach;

The composite cursor ‘goldbach’is derived from two internal cursors, ‘a’ and ‘b’, both belonging
to the same container, ‘prime_container’. The where clause is an unstructured predicate because
it uses the ‘+’ operation. Therefore, it is expressed without spaces and in parentheses.

The main program can be written as:

main()

{

... // Initialize the container with primes

initk(goldbach);
foreachk(goldbach) {

printf("(4d, %#d) ",goldbach.a.num, goldbach.b.num);
+

34 Introductory P2 System Manual

After ‘prime_container’ has been filled with primes (generated by a procedure not shown), the
composite cursor ‘goldbach’ is initialized and the looping construct begins. The output will look
like this:

(3, 5) (5, 7) (11, 13) (17, 19)

The next example uses the given clause. Assuming that the first element of the composite
cursor is already bound to a prime, find all the primes such that they are within 10 of the first
number. This is used in conjunction with a cursor £ind_num positioned on an element in the prime

container.

cursor < prime_container > where "$.num == input_value" find_num;

compcurs < a prime_container, b prime_container >
given < a >
where "($a.num+10>=$b.num) && ($a.num-10<=$b.num)"
range;

main()

{

init_curs(find_num);
initk(range);

printf("Enter a prime number:");
scanf ("%d",&input_value) ;

// position the find_num cursor on <input_value> in the container
reset_start(find_num) ;

// position the internal cursor a to point to find_num.
range.a = find_num;

printf("/d: ",range.a.num);
foreachk(range) {
printf("/d ", range.b.num);

}

Because the internal cursor ‘a’ is used in the given clause, the program must set ‘a’ to some
specific value before the ‘foreachk’ operation. This is because the ‘foreachk’ operation under-
stands that cursors in the given clause are already bound to some value and it will try make some
optimizations based on that information. If the user entered the number ‘17’, then the output

would be:

Chapter 5: P2 Language 35

17: 7 11 13 17 19 23

Now before we demonstrate an example using the valid clause, we need to discuss its operation
in detail.

On every iteration of a ‘foreachk’, a new n-tuple of elements will be produced. If no element
is updated or deleted, things remain simple. However, if an element of an n-tuple is updated, then
the next n-tuple that is to be retrieved may be different from the n-tuple that would have been
retrieved had there been no update.

Suppose there is a container of employees and a container of departments. The composite cursor
below defines ordered pairs (i.e., 2-tuples) of department and employee objects that are related (by
sharing the same ‘deptno’ value):

compcurs < d department_container, e employee_container >
where "$d.deptno == $e.deptno" cc;

foreachk(cc)
{ printf("(4s, %s)\n", cc.d.name, cc.e.name); }

What the above ‘foreachk’ does is to loop over each (department, employee) pair that satisfy
the join predicate "$d.deptno == $e.deptno". Suppose this sequences of ordered pairs is:

(d1,e1), (di,e2), (d1,e3), (d2,e4), (d2, eb), (d3, e6)
Now suppose the following ‘foreachk()’ is executed:

foreachk(cc) { delete(cc.d); }

Note that the department object ‘d1’ is first to be deleted; this impacts the sequence of ordered
pairs in the following way:

(d1,el), (d2,e4), (d3,e6)

Note that the tuples ‘(d1,e2), (d1,e3), (d2,e5)’ are not produced. The reason is that that
once d1 is deleted, all subsequent tuples in which it appeared should be deleted as well.

The main problem is that modifications to elements of an n-tuple identified by a composite
cursor will alter the sequence of n-tuples produced. A valid query is a predicate which is used to

36 Introductory P2 System Manual

determine the validity of elements of an n-tuple. This predicate is generally *not* the selection
predicate; rather, it is a predicate that merely tests to see if an element has been modified. If
the valid predicate is false, then a new n-tuple will need to be generated on a composite cursor

advancement that *does not* include the element whose valid test has failed.

Generally, valid predicates are usually limited to testing for deletions (e.g., lis_deleted($e)) or to
updates of join fields (e.g., join_field _valid(&$d,&$e)). Our composite cursor should now look like
this:

compcurs < d department_container, e employee_container >
where "$d.deptno == $e.deptno"
valid "!is_deleted($d)" cc;

Chapter 6: P2 Operations 37

6 P2 Operations

This is the list of operations understood by P2. An operation is cursor-based if the first argument
is a cursor. An operation is container-based if the first argument is a container.

6.1 Container Operations

open (container) Function
close (container) Function

The open procedure performs two tasks:

o Creates the record for the container if this has not already been done. (Persistent
containers would create such a record on open time).

e Initializes the container if it has not already been done.

The close procedure is the counterpart to open. It destroys the container. Most of
the current layers do not do anything for close, but persistent does.

overflow (container) Function
This operation returns a conditional expression representing the test for a completely
filled container. This operation is required only in layers, such as array, which allocate
a fixed number of elements.

getsize (container) Function
This operation returns the size of the container. This operation may not be provided
by all layers.

6.2 Cursor Operations

6.2.1 Element Retrieval Operations

A retrieval operation is one that either moves the cursor over the elements in a container or
determines if there are no more elements in the container.

38 Introductory P2 System Manual

reset_start (cursor) Function
reset_end (cursor) Function
The reset_start (reset_end) operation positions the cursor on the first (last) object
in the container. If there are no elements, the operation will point to a value defined
in the component (usually ‘NULL’).

adv (cursor) Function
rev (cursor) Function
The adv (rev) operation moves the cursor to the next (previous) object . If there is
no next (previous) record, cursor.obj is set to some layer-defined value so that the
end_adv (end_rev) function can recognize that no more advances (reverses) can be

made.
end_adv (cursor) Function
end_rev (cursor) Function

The end_adv (end_rev) operation generates a boolean expression which determines

whether or not the cursor has been advanced (reversed) past the end of the container.

foreach (cursor) { code } Function

rofeach (cursor) { code } Function
These two operations are looping constructs. These operation will move the cursor to
the first (last) element in the container, execute the body of code, and iterate over
the collection forwards (backwards) until the cursor reaches the end (beginning) of the

container.

If a cursor is qualified to range over a subset of the elements, then these operations only apply
to the qualified elements. For instance, if the cursor is restricted to point to all primes ending in
‘1’, then reset_start will move the cursor to the first element ending in ‘1’, adv will move the

cursor to the next element ending in ‘1’, and so on.

6.2.2 Element Update Operations

delete (cursor) Function
This operation removes the element on which the cursor is positioned. Ideally, there
should be two delete operations: both delete a record, but one positions the cursor for

subsequent advancing, and the other for subsequent reversing. Currently, the semantics

Chapter 6: P2 Operations 39

of delete is the former. However, calling delete within a rofeach will do the latter,

which is correct.

insert (cursor, record) Function
This operation adds a new element into the cursor’s container. If the container main-

tains an ordering, the operation will place it in the proper position.

upd (cursor, field, expr) Function

cursor.field = expr Function
This is the update function, which is equivalent to the expression cursor.field =
expr. Some ordered layers will generate an error if the operation is performed over the

nl

ordering field. This is a result of the famous "Halloween problem"'. See ‘bintree.xp’

layers for an example.

6.2.3 Composite Cursor Operations

initk (compcurs) Function
This operation initializes composite cursors.

foreachk (compcurs) { code } Function
This looping construct is similar to the foreach operation except the argument is a

composite cursor and iterates over each composite tuple.

6.2.4 Miscellaneous Cursor Operations

getrec (cursor, record) Function
This operation copies the data from the cursor into the record variable.

! The Halloween Problem arises when the list of elements that are being updated must be kept in
order. Suppose we have a collection ‘10 20 30" and we wish to add ‘30’ to each element, while
still maintaining the order. After changing ‘10’ to ‘40’, the list looks like this: ‘20 30 40°. Now
‘30’ is no longer the last element in the collection, and in fact, this process will not terminate as
the three elements will be continuously updated. P2 will catach the error at runtime (actually,

it should be caught at compile-time).

40 Introductory P2 System Manual

swap (cursor0, cursorl) Function
This operation swaps the elements referenced by the two cursor arguments. Only layers
that do not maintain an ordering can implement this operation. All layers maintaining
an order report an error at code generation time.

init_curs (cursor) Function
This operation initializes the cursor fields. This operation should be called before any
other operation is performed on the cursor.

gettime (cursor) Function
This operation returns the timestamp of the element pointed at by the cursor. This
operation may not be provided by all layers.

is_deleted (cursor) Function
This operations returns true if the current element the cursor is pointing to has been
marked as deleted. This operation may not be provided by all layers.

Chapter 7: P2 Layers 41

7 P2 Layers

7.1 Layer Format

The P2 layers are vertically parameterized. Each component imports zero or more standardized
interfaces and exports a standardized interface. A standardized interface is one of these five types

called a realm:

‘ds’ data structures realm - usually things like linked lists, arrays, binary trees.

the conceptual layer - the topmost layers. Usually this is the layer that defines foreach

and rofeach in terms of other operations.

‘mem’ memory allocation - the layers responsible for memory allocation.
‘Ink’ link layers - layers to do link processing.
‘toplnk’ conceptual layer for links - the topmost layer in the link sub-realm.

This is the order that they appear in the file ‘op-tab.h’. This is important if we wish to add

another operation or another realm.

Below is the list of layer options to describe certain characteristics of the layer. Through the

layer options, the syntactic complexity of the xp file is reduced.

no annotation Layer option
annotation Layer option
optional annotation Layer option
multiple annotation Layer option
optional multiple annotations Layer option

These mutually exclusive options describe the number of annotations a layer expects.
They consecutively represent: zero, one, zero or one, one or more, zero Or more.
If none of these options are present, then "no annotation" is assumed.

stable Layer option

unstable Layer option
These mutually exclusive options describe the relationship between the delete operation
and the current cursor. A stable option will not move the cursor after performing a

42 Introductory P2 System Manual

delete operation. An unstable option will move the cursor to the first element after
the deleted one.
If neither option is present, then "stable" is assumed.

retrieval_always Layer option
retrieval_never Layer option
retrieval_sometimes Layer option

These three mutually exclusive options describe the status of the retrieval operations
(adv, rev, reset_start, etc.) in the layer. A retrieval_always option means the
retrieval operations are always executed, even if the layer is not chosen as the retrieval
layer. A retrieval_never option means that retrieval options are not present in
this layer. A retrieval_sometimes option means that the retrieval operations are
performed only if the layer is chosen as the retrieval layer.

If none of these options are present, then "retrieval_never" is assumed.

curs_state Layer option
cont_state Layer option
These options describes if the layer needs to maintain cursor state and/or container

state information.

d2u Layer option
This option means that the layer implements the delete operation by using updates. For
instance, the ‘delflag’ layer "deletes" an element by updating the element’s "deleted-
field" from 0 to 1.

indirect_only Layer option
This option is presently used to indicate whether a layer provides persistent storage
or not. The name comes from the fact that persistent containers cannot be declared

directly, but only indirectly.

To recap, a layer without any options expects no annotations, does not move the cursor on
deletions, has no retrieval operations, does not maintain cursor or container state information, does

not map deletions onto updates, and can declare containers directly.

Finally, to interpret the layer definition:

ds array [mem] stable annotation retrieval_sometimes

Chapter 7: P2 Layers 43

the format is:

o The realm of the layer. (‘ds’)
e The name of the layer. (‘array’)

e The parameters of the layer surrounded by ‘> [? *]?’. There may be more than one parameter.
Each parameter is the the name of a realm, which can be instantiated with a layer from that

realm. (‘[mem]’)

o The remaining elements are the layer options that were discussed in the previous subsection.

(‘stable’ ‘annotation’ ‘retrieval_sometimes’)

7.2 P2 Layer Specifications

These are the layers implemented in P2 so far. New layers are likely to be developed, so this

list may change.

ds array [mem] stable annotation retrieval_sometimes layer
Annotation: array size is size

Array allocates a linear array of size elements. Space occupied by deleted elements is
not reused. An error is raised if there is an attempt to add more than size elements to
the container.

ds avail [ds] stable no annotation d2u retrieval_never layer
Avail keeps a list of all elements that have been deleted so that the space can be reused
for subsequent insertions.

ds avl [ds] unstable annotation curs_state retrieval_sometimes layer
Annotation: avl key is field.

This layer implements AVL trees ordered on the field field. AVL trees are height-

balanced binary trees, meaning the maximum height for the tree with N nodes is

log2(N).

44 Introductory P2 System Manual

ds bintree [ds] unstable annotation curs_state retrieval_sometimes layer

Annotation: bintree key is field

Binary tree ordered on key field.

top ccbus [top] stable no annotation retrieval_always layer
This layer is only used internally by P2 to link containers of different implementa-
tions. This layer will first re-route the type expression based on the information in the
container (which has references to all the lower-level type expressions).

ds delflag [ds] stable retrieval_always no annotation d2u layer
Delflag marks deleted elements instead of actually deleting them. Most often used on
top of array.

top conceptual [ds] layer
This layer does not really exist. It is a layer name that is understood by P2 to expand

into a series of layers. The current definition of conceptual is:

conceptual [X] ==
top2ds[init_generic[generic[generic_funcall[orderby[
inbetween[qualify[X]],
top2ds[inbetween[dlist[malloc[transient]]]]
11111

ds deque_dlist [ds | stable no annotation retrieval_sometimes layer
deque_deque_dlist is an ugly hack of ‘dlist’; it assumes a global integer variable
"ugly_hack", which has the values zero and nonzero. A zero value means that records
are inserted at the head of the dlist. A nonzero value means that records are inserted
at the tail of the dlist. Note: "ugly _hack" is reset to zero upon every insertion.

ds dlist [ds] stable no annotation retrieval_sometimes layer
Doubly-linked list.

men fasttransient [] stable no annotations layer
Like ‘transient’, but it calls fastmalloc(), (which is built into the P2 runtime sys-
tem) for faster memory allocations.

Chapter 7: P2 Layers 45

ds generic [ds] stable no annotation retrieval_always layer
This layer will reroute operations from being inline to calling a procedure through the
operation vector of a container (or a cursor) if the container is declared as a generic
container. If the container is not a generic container, then this layer will not affect
the operations. The layer ‘init_generic’ has to come after ‘generic’ in the type

expression.

ds generic_funcall [ds] stable curs_state no annotation layer
retrieval_always
If the operations are marked as "function expansion", then the calls to the opera-
tions are made through the operation vector of the container (cursor). This layer is
remarkably similar to the generic layer. This layer usually comes after generic.

ds hash [ds | unstable curs_state annotation retrieval_sometimes layer

Annotation: hash key is fieldname with size size

Performs hashing. The number of buckets is size and the field to hash on is fieldname.

ds hashcmp [ds | stable multiple annotations layer
Annotation: hashcmp field field.

String equality comparisons are slow operations. This layer will speed that up by
storing the hash value of a string field alongside the string field. Equality tests between
strings are transformed into an equality test between two hash values—only if the

values are equal will the string comparison be performed.

ds hlist [ds] stable curs_state annotation retrieval_sometimes layer
Annotation: hlist timestamp is timestamp field key is field with size hashsize.

This layer implements a time-stamp ordered hash-list. Timestamps are assigned in-
creasing values and stored in the field timestamp_field. Inserted elements are placed at
the head of the list. Updates are modelled as insertions followed by deletions. The size

of the hash table is hashsize. The hashing field is field.

Note: this layer was used in the implementation of LEAPS. It is not clear if it has any

other usage.

46 Introductory P2 System Manual

ds hpredindx [ds] stable annotation retrieval_sometimes curs_state layer
Annotation: hpredindx timestamp is timestamp field key is field with size hash’
size predicate pred with empty proc with nonempty proc

This is a timestamp ordered container of qualified elements that are hashed into an
array of buckets. The timestamp field is timestamp_field. The key to hash the elements
on is field and the size of the hash array is hash_size. The predicate pred is used to
only allow all elements satisfying a particular predicate to be in this container. The
procedure empty_proc is called when the last element is deleted from the container
whereas the procedure nonempty_proc is called when the first element is added to the
container. Either one or both procedures can be the string "null" which means no
function is called.

Note: this layer was used in the implementation of LEAPS. It is not clear if it has any
other usage.

ds inbetween [ds] stable curs_state no annotation retrieval_always layer
This layer is used to point the cursor to the next object after a deletion for unstable
layers. This layer must be used if there are unstable layers in the type expression and
this layer must be above all the unstable layers.

ds init_generic [ds | stable no annotation retrieval_never layer
This layer initializes the operation vector (of the list of procedures) associated with a

container or a cursor. This layer comes after the generic layer.

1nk linkterm [top] stable no annotation retrieval_never layer
The bottommost link layer. The transition from the link realm to the top realm.

ds llist [ds | stable curs_state annotation retrieval_sometimes layer

Annotation: 1list timestamp is timestamp field.

This layer implements a time-stamp ordered hash-list. Timestamps are assigned in-
creasing values and stored in the field timestamp_field. Inserted elements are placed at

the head of the list. Updates are modelled as insertions followed by deletions.

Note: this layer was used in the implementation of LEAPS. It is not clear if it has any
other usage.

Chapter 7: P2 Layers

ds lpredindx [ds | stable annotation retrieval_sometimes curs_state layer
Annotation: lpredindx timestamp is timestamp field predicate pred with empty’

proc with nonempty proc

This is a timestamp ordered list of predicate qualified elements. The timestamp field
is timestamp_field. The predicate pred is used to only allow all elements satisfying a
particular predicate to be in this container. The procedure empty_proc is called when
the last element is deleted from the container whereas the procedure nonempty_proc is
called when the first element is added to the container. Either one or both procedures

can be the string "null" which means no function is called.

Note: this layer was used in the implementation of LEAPS. It is not clear if it has any

other usage.

ds malloc [mem] stable no annotations layer

Allocates space dynamically.

ds mlist [ds, top | unstable curs_state cont_state multiple annotation layer
retrieval_sometimes
Annotation: mlist on fieldname.

This is the multi-list indexing layer. This layer accepts any number of fields and the
container is indexed over all these fields. The first parameter is the type expression of
how the elements are stored and the second parameter is the type expression of how

the index objects are stored.

Note that this layer accepts multiple annotations. That is, several indices can be
performed over the same container and handled by only one invocation of the mlist

layer.

ds multimalloc [mem] stable optional annotation retrieval_never layer
Annotation: multimalloc size is size.
If no annotation is specified, the default value of size is 100.

This layer works like malloc, but it allocates size objects at once and keeps track of

the next available location via caching.

48 Introductory P2 System Manual

ds named_funcall [ds] stable curs_state no annotation layer
retrieval_always
A type expression without named_funcall inlines the code at the point of invocation.
With this layer, a procedure is generated (based on the name of the container) and the
invocation has been replaced by a procedure call. These are done if the operations are
tagged as "function expansion".
Unlike the generic_funcall layer, there is no operation vector associated with the

container (cursor).

1nk nloops [1nk | stable retrieval_never optional multiple layer
annotations
Annotation: nloop link linkname on pcard p’'k'name to ccard ¢’k name where link’
pred.
Note that the annotation is optional, in which case the default would be used.

This layer implements link traversals as a series of nested loops. The name of the link
is linkname. The predicate for the link, called link_pred, determines how the parent
elements and child elements are connected. The names of the parent and child con-
tainers are p_k_name and c_k_name, respectively. The cardinality relationship between

the parent and the child is pcard:ccard.

ds odlist [ds] unstable annotation retrieval_sometimes layer

Doubly-linked list ordered by field field.

Annotation: odlist key is field.

ds orderby [ds, top] stable curs_state no annotation layer
retrieval_always
This layer is needed if cursors with orderby clauses are defined. This layer is used when
a cursor is ordered by a field which no other layer uses for ordering. The first parameter
is the continuation of the type expression of the base type. The second parameter is
the type expression of the container of pointers which maintain the ordering specified

in the cursor declaration.

ds qualify [ds] stable curs_state no annotation retrieval_always layer
This layer modifies retrieval operations to advance to the next qualified object. The

qualification is determined by the cursor predicate.

Chapter 7: P2 Layers 49

ds part [top, top | stable curs_state cont_state annotation layer
retrieval_always
Annotation: part at field fieldname.

This layer partitions the element into two structures. All fields in the original element
data type which appear before (and including) fieldname are added to the second data

structure and all other types are listed in the first data structure.

mem persistent [] stable indirect_only layer
Annotation: persistent file is filename with size size.

This is a layer where the memory is mapped to disk. This layer is highly machine-
dependent. For instance, it does not work on the ULTRIX, but it does work on the
SunOS. The file to do the mapping is called filename and the maximum character size

of the file is size.

ds predindx [ds] annotation curs_state retrieval_sometimes layer

Annotation: predindx predicate pred.

This layer maintains a list of all elements satisfying predicate pred in change order

(inserted and updated elements are placed at the head of the list).

ds gsort [mem] stable annotation retrieval_sometimes layer

Annotation: gsort key is field with size size.

This layer maintains the elements in a fixed size array (at most size elements) ordered
by the field field. Actually, the array is in sorted order only after a call to reset_start
or reset_end. An error is raised if there is an attempt to add more than size elements

to the container.

ds sizeof [ds] stable no annotation layer
This layer adds the adhoc operation sizeof which returns the number of elements in

the container.

ds slist [ds] unstable no annotation retrieval_sometimes layer

This is the unordered singly-linked list layer.

50 Introductory P2 System Manual

ds slow_hash [ds | unstable annotation retrieval_sometimes layer

Annotation: slow_hash key is field with size size.

This layer implements a hash function over size buckets on the field field. This is a
slow version because the current bucket is recomputed for each operation (instead of

‘hash’ which attempts to cache the value of the current bucket.

ds timestamp [ds] stable annotation layer
Annotation: timestamp on counter

This layer adds a field counter to the element type which the main program has to
initialize. This field is incremented for each insert and update. This layer also adds
the adhoc operation gettime which returns the value of the timestamp of the element

of the current cursor.

ds tlist [ds] stable annotation retrieval_sometimes layer
Annotation: tlist key is field.

This layer maintains a list of elements in timestamp ordering using the field field.

top top2ds [ds] stable no annotation retrieval_never layer
This is the interface between the top realm and the data structure realm. The defini-

tions of foreach and rofeach are specified here.

top top2ds_qualify [ds] stable no annotation retrieval_always layer
The union between ‘top2ds’ and ‘qualify’ layers.

toplnk top2link [1nk | stable no annotation retrieval_never layer
The layer which sits above all link layers. It gathers information such as which layer

will process the link.

ds tpredindx [ds] stable annotation retrieval_sometimes curs_state layer
Annotation: tpredindx predicate pred with empty proc with nonempty proc

This is a timestamp ordered list of predicate qualified elements. The predicate pred is
used to only allow all elements satisfying a particular predicate to be in this list. The
procedure empty_proc is called when the last element is deleted from the list whereas

Chapter 7: P2 Layers 51

the procedure nonempty_proc is called when the first element is added to the list.

Either one or both procedures can be the string "null" which means no function is

called.

Note: this layer was used in the implementation of LEAPS. It is not clear if it has any
other usage.

mem transient [] stable no annotations layer

This layer stores elements in memory.

ds vtimestamp [ds | stable annotation layer

Annotation: vtimestamp field is field counter is countername.

This layer updates the timestamp field field, which is already defined in the base type,
with the value countername, which is already defined in the main program.

52

Introductory P2 System Manual

Chapter 8: Invoking P2 53

8 Invoking P2

8.1 Writing P2 programs

Writing a P2 program is like writing a C program, but there are differences. We will look at
‘sample.p2’ bit by bit to analyze what’s going on and why are things done that way. The program
reads in employee data into a container and displays them if the meet some propery. The full

program is in Appendix A [Example P2 program]|, page 67.

8.1.1 p2.sample - Declaring Types

The first part of the file is where the types are declared. Here we declare an employee structure, E,
which contains an employee number, age, temperature, department name, and finally, the employee

name.

#include <stdio.h>
// Element.

typedef struct {
int empno;
int age;
float temp;
char *dept_name;
char name[20];

} E;

8.1.2 p2.sample - Containers

This portion of the code declares the containers and the types they are based on. Container k
orders the elements by age and allocates space for only 10 elements: attempts to insert an 11th
element will result in a overflow warning. The other container, pk, allocates 1000 bytes in the file

‘“/foo’ for persistent storage. This container orders elements both by age and by name.

54 Introductory P2 System Manual

// Type expressions.

typex {
p = conceptuallodlisti[odlist2[malloc[persistent]]]];
t = conceptuallodlist[delflaglarray[transient]]]];

}

// Containers.

container <E> stored_as t with {
odlist key is age;
array size is 10;

+ k;

container <E> stored_as p with {

odlistl key is age;

odlist2 key is name;

persistent file is ""/foo" with size 1000;
} pk;

8.1.3 p2.sample - Cursor Declarations

This example shows that cursor ¢ and pointer to cursor pc are declared over the container k.
Both cursors will select only elements where the temperature field is greater or equal to 98.6. Both

cursors will also retrieve elements in alphabetical order over the element’s name field.

// Cursors.

cursor <k>

where "$.temp >= 98.6" // Predicate.

orderby ascending name // Orderby clause.
c, // c is a cursor variable.
*pcC; // pc is a pointer to cursor

In the second cursor example below, the cursor structure is used as part of a typedef. The
third example below shows that cursors can match exactly those elements with the department
name "Computer Sciences". The last cursor portion is the declaration of generic cursor, and its
use in typedefs. Generic cursors have neither an ordering nor a predicate. See Section 5.6 [Generic

Containers/Cursors], page 23.

Chapter 8: Invoking P2 55

typedef cursor <k>
where "$.temp >= 98.6"
orderby ascending name
C;
C v;

cursor <k>
where "$.dept_name == ‘Computer Sciences’"
orderby descending empno

cs;

// Generic cursors.

generic_cursor <E> gc;
typedef generic_cursor <E> GC;
GC gv;,

8.1.4 p2.sample - Functions and Data

The macro F iterates over a cursor X, which will point to successive elements in the container

The next function £ uses specific cursors, whereas the last function gf uses generic cursors.

// Function body.

#define F(X) \

{\
foreach(X) { \
printf("%d, %d, %.1f, \"%s\", \"Zs\"\n", \
X.empno, X.age, X.temp, X.dept_name, X.name); \
A
+

// Function with a non-generic formal parameter.

int £(C x)
{

F(x)
}

// Function with a generic formal parameter.

int gf(GC gx)
{

F(gx)
}

56 Introductory P2 System Manual

The employee data used in the program.

// Employee data.

E rawdatal] = {

{ 10000, 60, 99.5, "English", "Akers, Mark" },
{ 10070, 22, 99.4, "Physics", "Andrews, Kay" 1},
{ 10020, 18, 99.0, "History", "Aaron, Bob" },
{ 10040, 42, 98.5, "Computer Sciences", "Singhal, Vivek" },
{ 10010, 40, 98.7, "Computer Sciences", "Batory, Don" },
{ 10040, 53, 96.3, "Accounting", '"Akerson, Mary" },
{ 10060, 65, 98.8, "Nutrition", "Zacks, William" },
{ 10050, 23, 96.1, "Computer Sciences", "Thomas, Jeff'" },
{ 10080, 31, 98.7, "Culinary Arts", "Geraci, Bart" },
{

-1 3}

8.1.5 p2.sample - Main Program

First, the container k is opened, two cursors are initialized, and the elements in the data are
inserted into the container. And any cursor, qualified or not, can be used for the insert operation.

// Main.

main()

{
int i;
E *e;

open(k);
init_curs(c);
init_curs(cs);

for (i=0, e=rawdata; e-dempno != -1; i++, e++) {
insert(c, *e);

}

These are the examples of legal and illegal assignments. Recall that £(c) will print all those
elements that cursor ¢ can point to, namely, elements where the temp >= 98.6. In addition, the

elements will be printed in alphabetical order, based on name.

Chapter 8: Invoking P2 57

// You may pass c as a actual to formal c
// and assign c to temporary cursor variable v:

printf("£(¢):\n");
£f(c); // Legal.
v =c; // Legal.

// You may not pass cs as an actual to formal c,
// nor assign cs to temporary cursor variable v:

#if O
printf("\n");
printf("f(cs):\n");

f(cs); // Not legal.

v = cs; // Not legal.
#endif

These are more example of legal assignments. The code gf((GC) &c); demonstrates that a
generic cursor can take on any cursor and therefore procedures such as gf() can be written to

apply to any cursor.

// You may pass c and cs as actuals to generic formal gx,
// and assign c and cs to generic temporary cursor variable gv:

printf("\n");
printf("gf(¢):\n");

gf((GC) &c); // Legal.

printf("\n");
printf("gf(cs):\n");

gf((GC) &cs); // Legal.

gv = (GC) &c; // Legal.
gv = (GC) &cs; // Legal.
close(k);
exit(0);

58 Introductory P2 System Manual

8.2 Executing P2

Just type P2 filename.p2 like in the example below.

ahhnold), P2 sample.p2

liner ... done
ddl ... done

pb ... done

cat ... done
deliner ... done
compile ... done
link ... domne
clean-up ... done

ahhnold), sample

f(c):

10020, 18, 99.0, "History", "Aaron, Bob"

10000, 60, 99.5, "English'", "Akers, Mark"

10070, 22, 99.4, "Physics", "Andrews, Kay"

10010, 40, 98.7, "Computer Sciences'", "Batory, Don"
10060, 65, 98.8, "Nutrition", "Zacks, William"
10080, 31, 98.7, "Culinary Arts", "Geraci, Bart" },
gfC c):

10020, 18, 99.0, "History", "Aaron, Bob"

10000, 60, 99.5, "English'", "Akers, Mark"

10070, 22, 99.4, "Physics", "Andrews, Kay"

10010, 40, 98.7, "Computer Sciences'", "Batory, Don"
10060, 65, 98.8, "Nutrition", "Zacks, William"
10080, 31, 98.7, "Culinary Arts", "Geraci, Bart"

gf(cs):

10050, 23, 96.1, "Computer Sciences'", "Thomas, Jeff"
10040, 42, 98.5, "Computer Sciences'", "Singhal, Vivek"
10010, 40, 98.7, "Computer Sciences'", "Batory, Don"

8.3 P2 options

These are the options that can be set for running P2. The environment variable P2_FLAGS is
read for option values before the command line is read (i.e. later values of flags overwrite earlier
values).

‘P2’ [P2_options] filename‘.p2’

Chapter 8: Invoking P2

‘--help’ P2 Option

Print the list of options and exit.

‘--[no-Jkeep’ P2 Option
Do [not] keep intermediate files. Not keeping the intermediate files will save disk storage
space.

‘—-[no-Jdrc’ P2 Option

Do [not] perform design rule checking.

‘—-[no-J]verbose’ P2 Option
Do [not] print stages of processing. If ‘--no-verbose’ is selected, then the only thing

the system will display is:

ahhnold’, P2 mumble
ahhnoldj,

‘~-[no-J]lines’ P2 Option
Do [not] keep original line numbers. If ‘--1ines’is chosen, then errors caught by the C
compiler will refer to the original ‘mumble.p2’line numbers. If ‘--no-lines’is chosen,

the errors caught by the C compiler will refer to the ‘mumble.c’ generated code.

‘—-[no-]indent’ P2 Option
Do [not] indent the ‘mumble.c’ generated code.

‘~-1libdir = directory’ P2 Option
Specify explicitly the location of the directory containing ‘1ibp2.a’, ‘dd1’, and ‘pb’.

‘--datadir = directory’ P2 Option
Location of .h files: ‘persist.h’ and ‘p2.h’.

‘--cflags = list’ P2 Option
Set the C compiler flags to Iist.

‘--cppflags = list’ P2 Option
Set the C preprocessor flags to list.

60 Introductory P2 System Manual

‘--1flags = list’ P2 Option
Set the linker flags to list.

The default flags are: ‘--keep’, ‘--verbose’, ‘--1lines’, ‘--indent’, ‘--drc’.

Chapter 9: P2 Bibliography 61

9 P2 Bibliography

These are a few of the papers which describe the P2 system.

D. Batory, Vivek Singhal, Marty Sirkin, and Jeflf Thomas, "Scalable Software Libraries", Pro-
ceedings of ACM SIGSOFT ’93: Symposium on the Foundations of Software Engineering, Los
Angeles, California, 7-10 December, 1993.

Don Batory, Vivek Singhal, Jeff Thomas, Sankar Dasari, Bart Geraci, and Marty Sirkin.
"Achieving Reuse with Software System Generators", IEEE Software, September 1994.

M. Sirkin, D. Batory, and V. singhal, "Software Components in a Data Structure Precompiler",

Proc. 15th Internnational Conference on Software Engineering, May 1993.

M. Sirkin, A Software System Generator for Data Structures, Ph.D. dissertation, Department
of Computer Science, University of Washington, Seattle, Washington, 1994.

D. Batory and S. O’Malley. "The Design and Implementation of Hierarchical Software Systens
with Reusable Componets, ACM Transactions on Software Engineering and Methodology,
October 1992.

D. Batory, J. Thomas. and M. Sirkin, Reengineering a Complex Application Using a Scalable
Data Strcutre Compiler, Department of Computer Science, University of Texas at Austin, May
1994.

62

Introductory P2 System Manual

Concept Index

Concept Index

A

Agreement 3
annotation. it 13
automatic repetition, 21

B

big picture of P2. 9

C

COMPONEN . .ottt ettt 9
COMPOSIEE CUTSOT\t inns 32
concrete Cursor ..., 23
container declaration. 16
container, defined, 13
container-based 37
container-based operations. 37
container/cursor paradigm 13
cursor declaration. il 17
cursor orderby clause........................... 13, 18
cursor predicate i i 13
CUTSOT, CONCTE ettt 23
cursor, defined 13
CUTSOT, GEMETIC .« vttt et e et e e e eaas 23
cursor-based 37
cursor-based operations.00, 37
CUTSOTS, COMPOSILE\ 32

element declaration 24

EXECULION . 4\ ettt et 53

F

format. 13

functions 37

63
G
generic Container.ouuurtiieeennne... 23
QENETIC CUTSOT .+« v v vttte ettt e e e e e e e 23
GenVocCa. ..o 9
H
halloween problem................................. 39
I
installation 7
interface connection. L 31
invocation of P2 53
L
LAy er . 9
layer options. 41
layers. ... 41
O
OPETAtIONS . . oo vttt e 37
OPBIOIIS . e e e e e e e e e 58
OTAETING . . vttt e 13
P
o D 10
P2 bibliography. 61
P2 execution........ 53
P2 language 13
P2layers ... 41
P2 references 61
P2, agreement 3
P2, installation 7
P2, writing 53
P 10
predicate 13
PIIIIES .+« . e 14

64

realm 41
TUNIIIE ¢« o ettt ettt e e e et e e ettt e e aas 53
semantic constraints 31
structured predicate 17
BTN, . 19

Introductory P2 System Manual

LYPE EXPIESSIONS . . .\ttt i 19
typex declaration 19
:itructured predicate............................. 17
Xtical parameterization., 41
flf ... 10

Functions and Variables Index

Functions and Variables Index

C——[no=1drc’ ... 59
‘——[no-Jindent’, 59
C——[no-]Keep’ ... 59
‘——[no-]lines’t 59
‘——[no-Jverbose’t 59
‘—-cflags = list” 59
‘—-cppflags = list’ 59
‘==datadir = directory’iiiiiiiiiia.. 59
e LD 58
‘=-1flags = list’ 60
‘==1libdir = directory’c.iiiiiiiiii... 59

AV . 38
annotation.............l 41
Eo = 43
avall... ... 43
avl . 43

(ST 3 = 44
ClOS e .t 37
conceptual......... ... 44
cont_state....... 42
curs_state 42
cursor.field=expr............. 39

A2U .o 42
deleteo 38
delflagcoovvviiiiiiiiii i 44
dequedlist........ ... 44
AList. o 44

65
end adv. 38
ENA T OV . .ttt 38
fasttransient.......... 44
foreach 38
foreachk 39
BENETIC L\ttt 44
genericfuncall.................... 45
getrec 39
getsize 37
gettime ... 40
hash. 45
hashcmp ... 45
40 T P 45
hpredindx........... i 45
InbetWeeno 46
indirectoonly......... i 42
ANt CUTS ..o 40
init_generic............, 46
IndtR. . 39
INSeTt .ot 39
isdeleted 40
Tinkterm 46
B = P 46
InK . 41
Ipredindxoiiiiiiii i 46
MALIOC .ottt e 47

66

LT 41
mlist.. ... 47
multimalloc..... ... 47
multiple annotation....................... 41
named funcall.................. 47
NLOOPS oottt 48
no annotation............. o il 41
odlisto 48
OPEIL. . . ettt ettt e 37
optional annotation..................... 41
optional multiple annotations................... 41
OrdeIDY ..ot 48
OVETrTLloW .. 37
P2 FLAGS ... 58
PaT L . 48
persistent.......... 49
predindx 49
gSOT . o 49
qualify ... 48
resetend 38
resetstart........ 38

Introductory P2 System Manual

retrievalalwayscooiiiiiiiiiiii.. 42
retrievalmever.........l 42
retrieval sometimes............... 42
B o 38
rofeach........ i 38

sizeof L 49
slist. ..o 49
slowhash.......... 49
stable 41
=30 =Y 40

timestamp.......... ... L 50
tlist. . 50
BOD e 41
top2ds ... 50
top2dsqualify..........ol 50
top2link 50
toplnk 41
tpredindx....... 50
transient......... ... oo ool 51

Appendix A: Example P2 program

Appendix A Example P2 program

Below is the complete P2 program, ‘sample.p2’.

#include <stdio.h>
// Element.

typedef struct {
int empno;
int age;
float temp;
char *dept_name;
char name[20];

} E;

// Type expressions.

typex {
p = conceptuallodlisti[odlist2[malloc[persistent]]]];
t = conceptuallodlist[delflaglarray[transient]]]];

}

// Containers.

container <E> stored_as t with {
odlist key is age;
array size is 10;

+ k;

container <E> stored_as p with {

odlistl key is age;

odlist2 key is name;

persistent file is "“/foo" with size 1000;
} pk;

// Cursors.

cursor <k>

where "$.temp >= 98.6" // Predicate.

orderby ascending name // Orderby clause.
c, // c is a cursor variable.
*pcC; // pc is a pointer to cursor

typedef cursor <k>
where "$.temp >= 98.6"
orderby ascending name

68

Introductory P2 System Manual

C;
C v;

cursor <k>
where "$.dept_name == ‘Computer Sciences’"
orderby descending empno

cs;

// Generic cursors.

generic_cursor <E> gc;
typedef generic_cursor <E> GC;
GC gv;

// Function body.

#define F(X) \

{\
foreach(X) { \
printf("%d, %d, h.1f, \"U%s\", \"Zs\"\n", \
X.empno, X.age, X.temp, X.dept_name, X.name); \
A
+

// Function with a non-generic formal parameter.

int £(C x)
{

F(x)
}

// Function with a generic formal parameter.

int gf(GC gx)
{

F(gx)
}

// Employee data.

Appendix A: Example P2 program

E rawdatal] = {

{ 10000, 60, 99.5, "English", "Akers, Mark" },
{ 10070, 22, 99.4, "Physics", "Andrews, Kay" 1},
{ 10020, 18, 99.0, "History", "Aaron, Bob" },
{ 10040, 42, 98.5, "Computer Sciences", "Singhal, Vivek" },
{ 10010, 40, 98.7, "Computer Sciences", "Batory, Don" },
{ 10040, 53, 96.3, "Accounting", '"Akerson, Mary" },
{ 10060, 65, 98.8, "Nutrition", "Zacks, William" },
{ 10050, 23, 96.1, "Computer Sciences", "Thomas, Jeff'" },
{ 10080, 31, 98.7, "Culinary Arts", "Geraci, Bart" },
{-113%
}s
// Main.
main()
{
int i;
E *e;
open(k);
init_curs(c);
init_curs(cs);
for (i=0, e=rawdata; e-dempno != -1; i++, e++) {
insert(c, *e);
T

// You may pass c as a actual to formal c
// and assign c to temporary cursor variable v:

printf("£(¢):\n");
£f(c); // Legal.
v =c; // Legal.

// You may not pass cs as an actual to formal c,
// nor assign cs to temporary cursor variable v:

#if O
printf("\n");
printf("f(cs):\n");

f(cs); // Not legal.
v = cs; // Not legal.
#endif

// You may pass c and cs as actuals to generic formal gx,
// and assign c and cs to generic temporary cursor variable gv:

69

70

printf("\n");
printf("gf(c):\n");

gf((GC) &c); // Legal.

printf("\n");
printf("gf(cs):\n");

gf((GC) &cs); // Legal.

gv = (GC) &c; // Legal.
gv = (GC) &cs; // Legal.
close(k);

exit(0);

Introductory P2 System Manual

Table of Contents

Preface.... 1
1 Agreement 3
2 Distribution 5
3 Imstallation.................... 7
4 Introduction............... 9
4.1 The Conceptual Basis for P2...... 9

4.2 The Organization of the P2 Generator 9

4.3 How to Use this Manual 10

5 P2 Language, 13
5.1 The Container/Cursor Overview.cooviiie. ... 13

5.2 Operation Usageovrrrr e 14

5.3 Container Declarations 16

5.4 Cursor Declarations o i 17

5.5 Type EXpressionsoeueemin i 19

5.5.1 Type Expression Declarations 19

5.5.2 Type Expression Annotations.......................... 20

5.5.3 Automatic Repetition., 21

5.6 Generic Containers/Cursors.............coovueiiineninenna . 23

5.7 Element Declaration........... i 24

5.8 Comprehensive Example...... 25

5.9 Type Expression Constraints................... 30

5.9.1 Interface Constraints................... ... 31

5.9.2 Semantic Constraints 31

5.9.3 Ordering Constraintso .. 32

5.10 Composite CUTSOTS ... oottt e e e 32

6 P2Operations............................c ... 37
6.1 Container Operations. ... 37

6.2 Cursor Operationsoouiiiiiiin .. 37

6.2.1 FElement Retrieval Operations.......................... 37

6.2.2 Flement Update Operations 38

ii Introductory P2 System Manual

6.2.3 Composite Cursor Operations 39

6.2.4 Miscellaneous Cursor Operations. 39

7 P2Layers 41
7.1 Layer Format 41

7.2 P2 Layer Specifications o i 43

8 Imvoking P2........, 53
8.1 Writing P2 programs 53

8.1.1 p2.sample - Declaring Types...........ooiiiiiii... 53

8.1.2 p2.sample - Containers.................. ... 53

8.1.3 p2.sample - Cursor Declarations 54

8.1.4 p2.sample - Functions and Data 55

8.1.5 p2.sample - Main Program 56

8.2 Executing P2 58

8.3 P2 oplions. ..o 58

9 P2 Bibliography................................... 61
Concept Index 63
Functions and Variables Index 65

Appendix A Example P2 program.................. 67

