
1 9/1/95

Validating Component Compositions in Software System Generators1

Don Batory and Bart J. Geraci
Department of Computer Sciences

The University of Texas
Austin, Texas 78712

Abstract

Generators synthesize software systems by composing components from reuse libraries. In general,
not all syntactically correct compositions are semantically correct. In this paper, we present
domain-independent algorithms for the GenVoca model of software system generation to validate
component compositions. Our work relies on attribute grammars and offers powerful debugging
capabilities with explanation-based error reporting. We illustrate our approach by showing how
component compositions are debugged by a GenVoca generator for container data structures.

Keywords: Inscape, software architectures, software system generators, attribute grammars,
domain models, GenVoca, software components, explanation-based error reporting.

1 Introduction

Years from now, much of the software that we are developing today and the software design and imple-
mentation problems that we are now addressing will be so well understood, that it will be possible to auto-
mate the development of this software for large families of applications. This will be accomplished
through the use of software system generators. Such generators will automatically transform compact,
high-level specifications of target systems into actual source code, and will rely on libraries of parameter-
ized, plug-compatible, and reusable components for code synthesis.

Generators [Bat92, Bax92, Bla91, Gom94, Gra92, Lei94, Nin94] are among a number of approaches that
are now being explored to construct customized software systems quickly and inexpensively from reuse
libraries. CORBA and its variants simplify the task of building distributed applications from components
[Ude94]; CORBA can integrate components that are independently designed and stand-alone modules or
executables in a heterogeneous environment. In contrast, generators are closer to toolkits [Gri94], object-
oriented frameworks [Joh92], and other reuse-driven approaches (e.g, [Wei90, Sit94]), because they focus
on software domains whose components are not stand-alone, that are designed to be plug-compatible and
interoperable with other components, and that are written in a single language. The particular class of gen-
erators that we consider in this paper, called GenVoca generators [Bat92a], is distinguished from the above
approaches in that their components are parameterized forward-refinement program transformations that
encapsulate consistent data and operation refinements. Components also encapsulate logic to automate
domain-specific decisions about when to use a particular algorithm or when to apply a domain-specific
optimization. For many domains, such decisions are essential for generating efficient code.

A problem that is fundamental to all component-based software development technologies is: does a given
composition of components meet the behavioral or functional specifications of the target system? For the
case of GenVoca generators, this is the problem of design rule checking, i.e., the detection of illegal combi-
nations of components. To be viable tools of future software development environments, it is critical that
generators validate component compositions automatically (and suggest repairs when errors are detected),
rather than burdening users with the impossible task of debugging generated code.

1. This research was supported by Applied Research Laboratories at the University of Texas and Schlumberger.

Department of Computer Sciences
University of Texas at Austin
Technical Report TR 95-03

2 9/1/95

In this paper, we present domain-independent algorithms for solving the problem of design rule checking
for GenVoca generators, and present the domain-specific variants that we have used in the Genesis and P2
projects. Our work is related to Perry’s Inscape environment, which (among other topics) dealt with con-
sistency checking in software composition models [Per87-89b]. We adapt and generalize the component
consistency checking approach of Inscape to exploit the semantics of layers in the construction of hierar-
chical software systems. We explain how GenVoca models of software domains are grammars, where sen-
tences correspond to component compositions. By encoding component properties as inherited and
synthesized attributes, we find that attribute grammars provide a natural formulation of the legal sentences
(component compositions, software systems) of a domain. We illustrate our results by explaining how the
P2 data structure generator validates component compositions.

2 The GenVoca Model

GenVoca is a domain-independent model for defining scalable families of hierarchical systems from com-
ponents. Its basic premise is that standardizing both the fundamental abstractions of a mature software
domains and their implementations, one can define plug-compatible and interchangeable software “build-
ing blocks”. Although the number of fundamental abstractions in a domain is rather small, there is a huge
number of potential implementations. GenVoca also advocates a layered decomposition of implementa-
tions, where each layer or component encapsulates a primitive domain feature. The advantage of GenVoca
is scalability [Bat93, Big94]: component libraries are relatively small and grow at the rate new compo-
nents are entered, whereas the number of possible combinations of components (i.e., distinct software sys-
tems in the domain that can be defined) grows astronomically. Generators that use GenVoca organizations
have been built for the domains of avionics, data structures, databases, file systems, and network protocols
[Cog93, Bat93, Hei93, Hut91].

Components and Realms. A hierarchical software system is defined by a series of progressively more
abstract virtual machines. A component or layer is an implementation of a virtual machine. The set of all
components that implement the same virtual machine is called a realm; effectively, a realm is a library of
plug-compatible and interchangeable components. In Figure 1a, realms S and T have three components,
whereas realm W has four.

Parameters and Transformations. A component has a (realm) parameter for every realm interface that it
imports. All components of realm T, for example, have a single parameter of realm S.2 This means that
every component of T exports the virtual machine interface of T and imports the virtual machine interface
of S. Thus, each T component encapsulates a complex mapping or transformation between the virtual
machines T and S. Stated another way, each component of T implements the T abstraction; all implementa-
tions of T (in realm T) are expressed in terms of S abstractions. Similarly, components that have no (realm)
parameters are terminals; components with multiple parameters (e.g., q[T,S]) simply means that the
exported abstraction (of realm W) is implemented in terms of multiple abstractions (e.g., of realms T and S).

2. Parameterizations that we examine in this paper are simple enough to dispense with formal parameter names.

S := a | b | c ;

T := d S | e S | f S ;

W := n W | m W | p | q T S ;

S = { a, b, c }

T = { d[S], e[S], f[S] }

W = { n[W], m[W], p, q[T,S] }

Figure 1: Realms, Components, and Grammars

(a) (b)

3 9/1/95

Systems and Type Equations. A software system is modeled by a composition of components called a type
equation. Consider the following two equations:

System_1 = d[b];
System_2 = f[a];

System_1 is a composition of component d with b; System_2 composes f with a. Note that both systems
are equations of type T (because the outermost component of both systems are of type T). This means that
both implement the same virtual machine and hence, System_1 and System_2 are interchangeable
implementations of the interface of T (with respect to functionality, not performance).3

Grammars, Families of Systems, and Scalability. Realms and their components define a grammar whose sen-
tences are software systems. Figure 1a enumerated realms S, T, and W; the corresponding grammar is
shown in Figure 1b. Just as the set of all sentences defines a language, the set of all component composi-
tions defines a Parnas family of systems [Par76]. Adding a new component to a realm is akin to adding a
new rule to a grammar; the family of systems enlarges automatically. Because large families of systems
can be built using relatively few components, GenVoca is a scalable model of software construction.

Symmetry. Just as recursion is fundamental to grammars, recursion in the form of symmetric components
is fundamental to GenVoca. More specifically, a component is symmetric if it exports the same interface
that it imports (i.e., a symmetric component of realm W has at least one parameter of type W). Symmetric
components have the unusual property that they can be composed in almost arbitrary ways.4 In realm W of
Figure 1, components n and m are symmetric whereas p and q are not. This means that compositions
n[m[p]], m[n[p]], n[n[p]], and m[m[p]] are possible, the latter two showing that a component can be
composed with itself. In general, the order in which components are composed can significantly affect the
semantics, performance, and behavior of the resulting system.

Design Rules and Domain Models. In principle, any component of realm S can instantiate the parameter of
any component of realm T. The resulting equations would be type correct. Although an equation may be
type correct, there are always certain combinations of components that are semantically incorrect. That is,
there are often domain-specific constraints in addition to implementing a particular virtual machine that
instantiating components must satisfy. These additional constraints are called design rules. Design rule
checking (DRC) is the process of applying design rules to validate type equations.

A reference architecture model (or domain model) for a GenVoca generator consists of realms of compo-
nents and design rules that govern component composition. In the next section, we briefly review the
domain model of the P2 generator and illustrate some of its design rules.

3 P2 Domain Model

P2 is a GenVoca generator for container data structures [Bat93-94]. The domain model of P2 relies on two
realms: ds and mem. ds components export a standardized container-cursor interface. Among the compo-
nents of ds are those that implement common data structures (e.g., binary trees, doubly-linked ordered and
unordered lists) and cursor-container mappings (e.g., free lists of previously deleted elements, sequential

3. Note that composing components can be interpreted as stacking layers in hierarchical software systems. We use
the terms component and layer interchangeably in this paper.

4. Unix file filters can be composed in arbitrary orders and are simple examples of symmetric components. Other
examples are given in [Bat92a].

4 9/1/95

and random storage). mem components export standardized memory allocation and deallocation opera-
tions. Among its members are components that manage space in persistent and transient memory.

ds = { bintree[ds], // binary tree
dlist[ds], // unordered doubly-linked list
odlist[ds], // key-ordered doubly-linked list
avail[ds], // free list of deleted elements
mlist[ds, ds], // multilist indexing
malloc[mem], // heap storage
array[mem], // sequential storage
inbetween[ds], // has deletion actions for some components
top2ds[ds], // the topmost layer of a ds expression
… }

mem = { transient, // transient memory allocation
persistent, // memory mapped persistence
 … }

Currently there are over fifty components in P2, most of which are symmetric. Container data structures
are defined by type equations that typically reference from five to twenty components. Unfortunately, the
correctness of even the simplest equations is not obvious. Validation is complicated by the fact that many
components have nonobvious rules for their use.

As a simple example, the inbetween component encapsulates algorithms that are common to many data
structure components (e.g., bintree and dlist). These algorithms deal with the positioning of a cursor
immediately after an element has been deleted (e.g., does the cursor point to a “hole” or should it be posi-
tioned on the next element in the container?). Instead of replicating these algorithms in every data structure
component (and then dealing with the maintenance/consistency problems that would ensue), the algo-
rithms are written once (i.e., factored) as the inbetween component. A consequence of this factoring is
that a precondition for using a data structure component is the previous appearance of inbetween in a
type equation. More specifically, the valid use of inbetween requires that a single copy of inbetween be
present in a type equation that uses at least one data structure component (dlist, bintree, etc.) and it
should precede all such components in the equation. The right equation, below, shows a correct usage
 i.e., inbetween precedes all data structure components. The wrong equation, below, shows an incor-
rect usage: a data structure component dlist appears prior to inbetween.

right = … inbetween[… [dlist[dlist[…]]]] ;
wrong = … dlist[… [inbetween[dlist[…]]]] ;

Rules such as this should not be borne by programmers; they are much too easy to forget and to be misap-
plied. A design rule checker that tests such rules automatically and reports errors when they occur removes
a tremendous burden from P2 users. We first present a general model of design rule checking in Section 4
and then show how we adapted the model to P2 and Genesis generators in Section 5 and Section 6.

4 A Model of Design Rule Checking

Perry’s Inscape is an environment for managing the evolution of software systems [Per87-89b]. Among
the features it supports is consistency checking, a simplified form of verification. Components (i.e., opera-
tions) have preconditions for their use and postconditions (that describe what is known to be true as a result
of an operations’s execution). A novel aspect of Inscape is that components additionally have obligations
which are conditions that must be satisfied by the system that uses the component. Obligation predicates
require “action-at-a-distance”: although they might be satisfied locally by adjacent components, generally
they depend on global properties of the system (i.e., on properties of nonadjacent components). Obliga-

5 9/1/95

tions are propagated to their enclosing modules where eventually they must be satisfied by some postcon-
ditions. Another aspect of Inscape is that full-fledged verification is not attempted. Instead, primitive
predicates are declared and informally defined, typically with their names hinting at their semantics. Pre-
conditions, postconditions, obligations are expressed in terms of these predicates, thus enabling a practical
but powerful form of “shallow” consistency checking to be achieved using pattern matching and simple
deductions.

The Inscape approach can be adapted to design rule checking by exploiting the semantics of layers. First,
design rule checking examines states of software system (or type equation) development; it does not model
states of system execution. Figure 2 illustrates the distinction. Suppose s[Q] is a system that is parameter-
ized by realm Q. Suppose further that k[…] is a component of Q. Composing s with k maps system s to
system s’ = s[k[…]]. To model states of system (type equation) development, every system is described
by a set of attributes whose values define its states or properties. Thus, we might define an attribute State
whose value is no-loops in system s (meaning that s has no loops), and after instantiation, State has
the value has-loops (meaning that s’ has loops). Design rule checking deals with the testing and assign-
ment of system design states; it assumes that all transformations (components) are semantically correct.

Second, it is common for GenVoca components to have preconditions and obligations that are not satisfied
locally, i.e., by components that are adjacent to it in a type equation. Preconditions and obligations of a
component k are satisfied “at-a-distance”, that is, by components that either lie (far) beneath k or (far)
above k in a type equation.5 Moreover, the properties exported by k to “higher” layers are generally not
the same properties that are exported to “lower” layers. For this reason, we found it necessary to distin-
guish two kinds of preconditions and postconditions.6

Postconditions are properties of k that are to be exported to components beneath k in a type equation. Pre-
conditions define the properties that must hold for k to work properly; they test the cumulative postcondi-
tions of components that lie above k in a type equation.

Example. Suppose component k has a precondition that attribute A must have the value v (see
Figure 3a). For k to be used correctly, there must be some component, say u, that sits above k whose
postcondition sets A = v. Note that u need not be immediately above k; u might reside far above k.

5. We use the terms “higher” and “lower” refer to relative positions of components within a type equation when the
equation is interpreted as a (possibly nonlinear) stack of layers. The outermost component of an equation is the “high-
est” component, and the innermost components are the “lowest”.

6. There may be some dispute on the proper terminology to use; preconditions and postconditions usually refer to
run-time properties, not design-time properties. As there seems to be no commonly used terms for design-time pre-
conditions and postconditions, we chose not to invent more terms.

system s system s’

parameter

State = no-loops State = has-loops

Figure 2: Modeling States of Program Development

instantiation

ku

k
precondition: A = v

postcondition: A = v

d

prerestriction: A = w

postrestriction: A = w

(b)(a)

Figure 3: Different Kinds of Design Rules

6 9/1/95

Postrestrictions are properties of k that are to be exported to components above k in a type equation. Pre-
restrictions (which correspond to Inscape obligations) are preconditions for instantiating component
parameters; they test the cumulative postrestrictions of components that lie beneath k in a type equation.

Example. Suppose component k has a single parameter with the prerestriction that attribute A must
have the value w (see Figure 3b). For the parameter to be correctly instantiated, there must be some
component, say d, that lies below k whose postrestriction sets A = w. Analogously, d need not be
immediately beneath k; d might reside far below k.

Given GenVoca design rules (i.e., preconditions, postconditions, prerestrictions, and postrestrictions) of
every component of a type equation, design rule checking involves:

• a top-down propagation of postconditions and the testing of component preconditions, and

• a bottom-up propagation of postrestrictions and the testing of parameter prerestrictions.

In the following sections, we present general algorithms for top-down and bottom-up design rule checking.
We initially place no restrictions on the complexity of DRC predicates. Later in Section 5, however, we
show that predicates for domain-customized instances of our algorithms are very simple and are consistent
with the shallow consistency checking approach taken in Inscape [Per87-89a].

4.1 Top-Down Design Rule Checking

Consider component k[x] which has a single parameter x. k has both a precondition (precondition-k)
and a postcondition (postcondition-kx). Let top denote the set of attribute values that are known to
hold at the point immediately above k in a type equation. Component k is correctly used if top implies k’s
preconditions (i.e., top ⇒ precondition-k). The set of attribute values that hold immediately beneath
k in the type equation is computed by applying the postconditions of k to the current conditions (i.e., top-
x = postcondition-kx ⊕ top). The left-associative operator ⊕ denotes the postcondition propagation
operator. Figure 4 depicts this testing of preconditions and the propagation of postconditions. When type
equations correspond to a linear stack of components, the testing of preconditions and the propagation of
postconditions is straightforward: only two operators ⊕ and ⇒ are needed.

In general, type equations are trees of components, where branching arises when components have multi-
ple parameters. Every parameter of a component has its own postcondition which defines the set of
attribute values that hold for that parameter; these are the values that are propagated to any system instan-
tiating that parameter. Postconditions for different parameters are generally not the same. As an example,
the realm (type) of a parameter could be expressed as a postcondition. Thus, if a component had two
parameters and the realms for both parameters were different, so too would be their postconditions.

k

x

top

top-x = postcondition-kx ⊕ top

propagation
of conditions

component
with one
parameter

legend

Figure 4: Top-Down Test and Propagation for Components with a Single Parameter

design rule test: top ⇒ precondition-k

postcondition propagation:

7 9/1/95

Figure 5 depicts the general situation. Component d[x,y] has a postcondition for parameter x (post-
condition-dx) and a postcondition for parameter y (postcondition-dy). If top is the set of condi-
tions that hold prior to component d in a type equation, top-x is the set of conditions that hold for
parameter x after d has been applied, and top-y is the set of conditions that hold for parameter y. top-x
is computed by applying x’s postcondition to top (top-x = postcondition-dx ⊕ top) and top-y is
computed similarly (top-y = postcondition-dy ⊕ top).

Given the operators ⊕ and ⇒ , there is a straightforward, recursive algorithm for the top-down propagation
of postconditions and the testing of component preconditions (see Appendix).

4.2 Bottom-Up Design Rule Checking

Every parameter of a component has preconditions (called prerestrictions) for instantiation; every compo-
nent also has postconditions (called postrestrictions) that are exported to higher-level layers in a type equa-
tion. Figure 6 depicts a typical situation: components q, r, s, t, and w are composed hierarchically, and q
has a single parameter. In general, the prerestrictions for q are not satisfied by the component r that instan-
tiates its parameter, but rather by components deep within the system rooted at r. That is, the prerestric-
tions of q may be satisfied by r or s or t or w, or any combination thereof.

This gives rise to a different interpretation of instantiation, namely that systems instantiate parameters, not
components. Every system exports a realm interface plus a set of attribute values (called system postre-
strictions) that higher-level layers can reference. A component parameter has been correctly instantiated if
the postrestrictions of the instantiating system imply that parameter’s prerestrictions.

Consider component u[x]. u has both a prerestriction (prerestriction-ux) and a postrestriction
(postrestriction-u). Let bottom denote the set of attribute values that are exported by a system that
instantiates parameter x. x is instantiated correctly if bottom implies its prerestrictions (i.e., bottom ⇒
prerestriction-ux). The set of attribute values that are exported by the system rooted at u is computed
by applying the postrestrictions of u to the attribute values of the system that it imported (i.e., bottom’ =
postrestriction-u ⊕ bottom). Figure 7 depicts this testing of prerestrictions and the propagation of

d

x y

top

top-y = postcondition-dy ⊕ top

top-x = postcondition-dx ⊕ top

propagation
of conditions

component
with two
parameters

legend

Figure 5: Top-Down Propagation for Components with Multiple Parameters

q

r

s

t

system rooted at r

w

Figure 6: System Instantiation of Parameters

8 9/1/95

postrestrictions. Note that the same operators ⇒ and ⊕ used in top-down design rule checking are used in
bottom-up design rule checking.

When components have multiple parameters, an additional design rule checking operator is needed. Recall
component d[x,y]. Suppose system X instantiates parameter x and system Y instantiates y. The condi-
tions that will be exported by the system d[X,Y] are determined by the postrestrictions of d applied to a
merging of the conditions exported by systems X and Y. ∆ is the merging operator. That is, the postrestric-
tions of the system d[X,Y] equals postrestriction-d ⊕ ∆ (postrestriction-X, postrestriction-

Y). In theory, every component may have its own way of merging postrestrictions (i.e., properties of
imported systems may be selectively propagated), thus the ∆ operator may be component-specific. How-
ever, as we will see in Section 5.3, our experience suggests that domains rely only on a few ∆ operator def-
initions.

Given the operators ⊕ , ⇒ , and ∆, there is a simple, recursive algorithm for the bottom-up propagation of
postrestrictions and the testing of parameter prerestrictions (see Appendix).

4.3 Attribute Grammars

McAllester [McA94] observed that the concepts of realms, components, attributes, top-down and bottom-
up design rule checking can be unified by attribute grammars [Aho88]. From previous sections, we know
that realms of components define a grammar. Attributes model states of system (type equation) develop-
ment, where postconditions assign values to inherited attributes (i.e., attributes whose values are deter-
mined by component ancestors) and postrestrictions assign values to synthesized attributes (i.e., attributes
whose values are determined by component descendants). The practical benefit of this connection with
attribute grammars, besides the fact that design rule checking reduces to a well-studied problem, is that
common tools, such as lex and yacc, are well-suited for specifying design rule checkers, as we’ll see in
Section 6.

5 Targeting DRC Algorithms for Specific Domains

The design rule checking algorithms of Section 4 are domain-independent. To specialize them to a particu-
lar domain, we need definitions and representations for attributes, predicates, and the operators ⊕ , ⇒ , and
∆. In the following, we explain the representations that we implemented for P2; virtually the same repre-
sentations were used in Genesis.

5.1 Attributes

An attribute models a property that exposes a composition constraint. Although the properties in which we
are interested undoubtedly have complex formal definitions, we have found (like Perry [Per87-9a]) that in

u

x

bottom’ = postrestriction-M ⊕ bottom

bottom

propagation
of conditions

component
with one
parameter

legend

Figure 7: Bottom-Up Test and Propagation for Components with a Single Parameter

design rule test: bottom ⇒ prerestriction-Mx

postcondition
propagation:

9 9/1/95

practice we can define them informally as attributes that assume restricted values. These values (any,
assert, negate, inherit, and set) are defined in Table 1.7

Example P2 attributes are: df_present and retrieval. df_present represents the property that a
component realizes logical deletions. That is, instead of physically deleting an element, the component
marks the element deleted but does not immediately reclaim its space. The retrieval attribute represents
the property that a component interlinks all elements of a container to facilitate searching. Components
that implement data structures (e.g., bintree, dlist, etc.) have the retrieval property. The assign-
ment of assert or negate to these attributes as a postcondition or postrestriction depends on whether a
component satisfies the property. inherit is used when the value of an attribute is irrelevant to a compo-
nent.

5.2 Predicates

Preconditions and prerestrictions in P2 and Genesis request specific attribute values (e.g., any, assert,
negate, set), but not how the attribute value was determined (e.g., inherit). Table 2 lists the eight dif-
ferent primitive predicates that can be defined over a single attribute. P2 predicates are simple conjunctions
and disjunctions of primitive predicates. Conjunctive predicates, for example, encoded as a vector of prim-
itive predicates that are indexed by attribute. Thus, predicate P1 ∧ P2 ∧ … ∧ Pn would be encoded as the
vector [P1, P2, …, Pn] where Pi is the primitive predicate for attribute i.

5.3 Postcondition Propagation Operator ⊕

Component postconditions and postrestrictions selectively declare new attribute values (e.g. assert,
negate, or set) or propagate existing (inherited) values. Table 3 defines the condition propagation
operator + for a single attribute. Given a postcondition/postrestriction value vector V = [V1, V2, …, Vn]

7. set is a value that only arises during the merge of the postrestrictions of two or more systems, where one system
asserts a property while another negates this same property.

Attribute Value Interpretation

any nothing is known about the property of attribute

assert property of attribute is asserted

negate property of attribute is negated

inherit property value is inherited from existing conditions

set property of attribute is both asserted and negated

Table 1: Attribute Values used in P2 and Genesis

Predicate Interpretation

true (any) true (no constraints)

assert attribute has assert value

negate attribute has negate value

set attribute has the set value

not assert attribute does not equal assert

not negate attribute does not equal negate

not set attribute does not equal set

false false (unsatisfiable)

Table 2: Primitive Predicates used in P2 and Genesis

10 9/1/95

and the vector of existing conditions E = [E1, E2, …, En], the ⊕ operator is vector addition (using the +
operator of Table 3):

V ⊕ E = [V1 + E1, V2 + E2, …, Vn + En]

5.4 Implication Operator ⇒

The implication operator → for a single attribute is defined by a truth-table (Table 4). Given a vector of
existing conditions E = [E1, E2, …, En] and a precondition/prerestriction vector P = [P1, P2, …, Pn] (of a
conjunctive predicate) the implication operator ⇒ has a simple realization: all primitive predicates must
be true for the compound predicate to be true. (A simple generalization handles disjunctive predicates).

E ⇒ P = (E1 → P1) ∧ (E2 → P2) ∧ ... ∧ (En → Pn)

5.5 The Merge Operator ∆

A characteristic of the P2 and Genesis domain models is that most components share the same ∆ operator.
In general, the “merge” of the postrestrictions of n systems corresponds to copying of the postrestrictions
of the first system and discarding the postrestrictions of the rest. That is:

∆(postrestriction1, postrestriction2, …) = postrestriction1

The reasons for this are rather involved and peculiar to the domain of data structures and databases (see
[Bat85] for further justification).

Postcondition/Postrestriction
+ Existing Condition

Existing Condition

true assert set negate false

Postcondition or
Postrestriction

assert assert assert assert assert assert

set set set set set set

negate negate negate negate negate negate

inherit true assert set negate false

Table 3: The Propagation Operator + for a Single Attribute

Existing Condition →
Precondition/
Prerestriction

Precondition or Prerestriction

true assert set negate
not
assert

not
set

not
negate false

true true false false false true true true false

Existing

Condition

assert true true false false false true true false

set true false true false false false false false

negate true false false true true true false false

false true true true true true true true true

Table 4: The Implication Operator → for a Single Attribute

11 9/1/95

6 Implementation Notes

The implementation of our DRC algorithms and the P2/Genesis specializations of the ⊕ , ⇒ , and ∆ opera-
tors was straightforward: the source files consist of 1500 lines of lex and yacc. We wrote a general utility,
called dreck, that would allow designers to declare realms, components, and their design rules based on
the representations we noted previously for attributes, predicates, and DRC operators. Figure 8a shows a
dreck declaration of the array component and its design rules. A component’s name, realm membership,
and realm parameters are declared on the first line. Subsequent lines define design rules. A precondition for
array’s usage is that a layer above array needs to support logical deletion. This precondition is
expressed by asserting the df_present property. Another design rule is to assert to layers above and
below that array is a retrieval layer. Such a declaration is expressed by asserting the retrieval property
as a postcondition and postrestriction.

Algorithm Efficiency. Our DRC algorithms are efficient. Their complexity is O(mn), where m is the number
of attributes and n is the number of components in a type equation. To give readers upper estimates of m
and n, the most complicated type equations that we have encountered in Genesis and P2 have approxi-
mately 30 components (i.e., n ≤ 30). Genesis maintains the greatest number of attributes (m=14), whereas
P2 has fewer (m=8), even though both generators maintain a library of 50 components. Although it is not
difficult to envision greater values for m and n, substantially greater values (e.g., m, n > 100) seem unlikely.

Explanation-Based Error Reporting. Detecting precondition and prerestriction errors is only part of the
problem of debugging type equations; repairing equations are also important. One technique used in
Inscape that we found particularly effective, called precondition ceilings, is illustrated in Figure 8b. Sup-
pose component Y’s precondition A=v failed. This means that some component above Y, say X, set A ≠ v as
a postcondition. To repair this error, there needs to be another component, Z, that must be inserted below X
and above Y whose postcondition is A=v. Techniques such as this (including obligation/prerestriction ceil-
ings) form the basis of a powerful explanation-based error reporting scheme. The following illustrates the
idea.

Example. Suppose we would like a P2 container implementation that stores elements onto a binary tree,
whose nodes are stored sequentially in transient memory. A first attempt at a composition might be:8

first_try = top2ds[bintree[array[transient]]];

Our DRC algorithms report the following:

array : ds [mem] {
logical deletion layer required above array

precondition assert df_present

assert that array is a retrieval layer
to all descendants and ancestors

postcondition assert retrieval
postrestriction assert retrieval

}

name of component
realm of component

realm parameters of component
design rules

Figure 8: (a) Specification of Design Rules and (b) Locating and Fixing Errors

X

Y

postcondition:
A = negate

postcondition:
A = assert

precondition:
A = assert

(a) (b)

Z

12 9/1/95

Precondition errors:
an inbetween layer is expected between top2ds and bintree
a logical deletion layer is expected between top2ds and array

Prerestriction error:
parameter 1 of top2ds expects a subsystem with a qualification layer

The first error reminds us (from Section 3) that we forgot that a bintree layer requires the inbetween
layer to be above it. Not only that, the error message states exactly how to repair the equation; there is only
one location where inbetween can go (i.e., in between top2ds and bintree). The second error reminds
us (from Figure 8a) that array requires a logical deletion layer above it. Further, this layer must be below
top2ds. The third error tells us that a qualification layer is required below top2ds. Users with minimal
experience with P2 are able to repair all of these errors easily. But suppose repairs lead to the following
equation:

second_try = top2ds[inbetween[bintree[qualify[
delflag[array[transient]]]]];

where qualify is a qualification layer and delflag is a logical deletion layer. The DRC response to this
equation is:

Precondition error:
a retrieval layer (bintree) is not expected above qualify

This error tells us that all retrieval layers must lie beneath qualify; the fix is to transpose bintree and
qualify, which results in a correct equation:

correct = top2ds[inbetween[qualify[bintree[
delflag[array[transient]]]]];

In general, DRC error messages direct users to modify an incorrect equation to the nearest set of correct
type equations in the space of all equations. We have found this advice works well. With minimal experi-
ence, P2 users typically come very close to their desired equation on the first attempt; DRC messages
enable them to correct errors quickly.

Improvements. Design rule checking is rich area for research. There are many ways in which we could
improve our model; four are discussed here.

First, it is possible to distinguish different levels of error severity by labeling predicates with their error
strengths. Benign errors (such as the unnecessary redundancy of components) are reported to users by
dreck, while fatal errors terminate code generation.

Second, the notation that we adopted in Section 2 does not indicate that components often have non-realm
parameters. Such parameters, called configuration parameters [Cog93], include data types, tuning con-
stants, performance constraints, etc. Configuration parameters are presently checked during the compila-
tion of P2 programs or their corresponding C programs. We believe that a unified treatment of DRC for
realm and configuration parameters is possible.

8. bintree links elements of a container onto a binary tree; the nodes of the binary tree will be stored sequentially
in an array; the array will reside in transient memory. The top2ds layer must root all P2 type equations; had
top2ds been absent, the DRC algorithms would report additional errors.

13 9/1/95

Third, although we have a general model of design rule checking, DRC software (algorithms, attributes,
predicates, and DRC operators) must still be coded from scratch. We believe that a domain-independent
tool can be created that eliminates the burden of DRC software development. Generalizing attributes types,
predicates, and DRC operators  without sacrificing automatic DRC  is the key issue [Per89b].

Fourth, it may be possible to be more aggressive in repairing composition errors. For example, it seems
likely that some errors can be repaired automatically (e.g., inserting inbetween into an equation). Also, it
may be possible to identify the specific list of components (e.g., Z in Figure 8b) which could be used in
repairing errors, thus further simplifying the task of debugging equations.

7 Related Work and Insights

Related Work. Shallow consistency checking is certainly not new to generators. DRACO, for example
used a form of shallow consistency checking (called assertions and conditions) in composing layers of
transformations [Nei80]. An early version of our DRC algorithms appeared in DaTE, the design rule
checker for Genesis [Bat92b]. DaTE only supported component preconditions; there were no prerestric-
tions. The limitations of DaTE led to the work presented in this paper.

McAllester developed a functional programming language, VAG, based on variational attribute grammars,
to address the design rule checking issues for the ADAGE generator [McA94]. Preconditions and prere-
strictions are treated uniformly as constraints. The constraints associated with a component are expressed
as a VAG program. When an avionics system is composed from components, the set of constraints that
must be satisfied is defined by the composition of corresponding VAG programs. The VAG interpreter has
limited reasoning abilities to infer values of unbound VAG program parameters.

Parameterized programming is intimately associated with the verification of component compositions.
Goguen’s work on OBJ [Gog83] and library interconnection languages, such as LIL and LILEANNA
[Gog86, Tra93], are basic. The RESOLVE project explores the design of reusable and parameterized com-
ponents, component certifiability, and the certifiability of component compositions [Sit94]. There are
many similarities among these works and ours. One similarity is that GenVoca type equations are a simple
module/library interconnection language. However, there is a basic difference: there is no “action-at-a-dis-
tance”. Compositions of OBJ, LILEANNA, and RESOLVE components are verified locally; components
constrain the behavior of immediately adjacent components, and not components that reside far above or
below them in a hierarchy.

Our work is also an example of the types of consistency checking problems encountered in software archi-
tectures [Per92, Gar94-95, Mor94]. To our knowledge, other than Inscape, validating compositions of
components in the context of architectures has only begun to be addressed.

Insights. Our work on DRC was actually developed independently of DRACO and Inscape. That our
results are so similar is encouraging: we suspect that “shallow” consistency checking is a basic technique
for automatic software system generation.

An important distinction between Inscape and our work is the scale of componentry. An Inscape compo-
nent is a function; a GenVoca component is a subsystem (i.e., a suite of interrelated classes). Perry noted
that there can be many primitive predicates when there are thousands or tens of thousands of functions in a
system. In contrast, type equations rarely reference more than fifty components, and the number of primi-
tive predicates that we have encountered in modeling different and multiple domains is modest (i.e.,
O(10)). So, it would seem that scaling the size of a component reduces the number of primitive predicates
(attributes) that need to be maintained. This seems counterintuitive.

14 9/1/95

Our best explanation for this centers on two observations. First, we believe that modeling states of soft-
ware system development (instead of states of execution) reduces the number of properties to examine.
Second, we believe that GenVoca offers a powerful methodology for the design of reusable components.
Object-oriented design methodologies, for example, are powerful because of their ability to manage and
control software complexity [Rum91, Boo91]. It is not difficult to recognize that standardizing domain
abstractions and their programming interfaces (i.e., the core of GenVoca) is also a powerful way of manag-
ing and controlling the complexity of software in a family of systems. We believe that standardization
makes some problems tractable that would otherwise be very difficult. Standardization substantially sim-
plifies software composition (c.f., [Gar95]). Design rule checking is another example: standardization
seems to limit the number of ways in which components can constrain each other’s behavior. This, in turn,
makes DRC tractable.

8 Conclusions

Software system generators are becoming important tools for software developers. These generators utilize
libraries of reusable components to assemble complex, high-performance systems quickly and inexpen-
sively. Each library component will have limitations, called design rules, on how it can be combined with
other components. Experience has shown that validating component compositions is difficult to do by
casual inspection; as the number of components and the complexity of their rules grow, a mechanical
approach to validation is absolutely essential.

We have shown that a GenVoca domain model (or reference architecture model) is an attribute grammar,
where sentences of the grammar define valid compositions of components. We have shown how the shal-
low consistency checking approach of Perry’s Inscape environment can be adapted to exploit the semantics
of GenVoca layers to define the actions of GenVoca production rules. Our approach distinguishes predi-
cates and properties of component usage from those of parameter instantiation. We have shown (and our
experience confirms) that domain-specific instances of our algorithms are practical: they are simple, easy
to implement, and efficient. Moreover, they offer powerful explanation-based error reporting capabilities
to suggest how incorrect compositions can be repaired.

Finally, we have observed that the number of attributes (primitive predicates) that need to be maintained
for design rule checking GenVoca components is rather small. This is in contrast to small-scale compo-
nents (i.e., functions) where the number of primitive predicates to be maintained can become large. We
believe the explanation for this lies in the power of standardization to control the complexity of families of
software systems. Components that are designed to be interoperable, plug-compatible, and interchangeable
often make otherwise difficult problems tractable.

So that others may learn from our work, dreck is available free of charge via the Predator web page:
http://www.cs.utexas.edu/users/schwartz/.

Acknowledgments. We thank Dewayne Perry for stimulating discussions on Inscape’s shallow consistency
checking and his comments and insights on an earlier draft of this paper. We also thank Ira Baxter, Paul
Clements, Dave Weiss, Chris Lengauer, Bruce Weide, and Steve Edwards for their clarifying comments.

9 References

[Aho88] A.V. Aho, R. Sethi, and J.D. Ullman, Compilers: Principles, Techniques, and Tools, Addison-Wesley,
Reading, Massachusetts, 1988.

[Bat85] D. S. Batory, “Modeling the Storage Architectures of Commercial Database Systems.” ACM
Transactions on Database Systems, December 1985.

15 9/1/95

[Bat92a] D. Batory and S. O’Malley, “The Design and Implementation of Hierarchical Software Systems with
Reusable Components”, ACM Transactions on Software Engineering and Methodology, October 1992.

[Bat92b] D. S. Batory and J. R. Barnett. “DaTE: The Genesis DBMS Software Layout Editor.” In Conceptual
Modeling, Databases, and CASE, Pericles Loucopoulos and Roberto Zicari, eds. John Wiley & Sons,
New York, New York. 1992.

[Bat93] D. Batory, V. Singhal, M. Sirkin, and J. Thomas, “Scalable Software Libraries”, Proc. ACM SIGSOFT,
December 1993.

[Bat94] D. Batory, J. Thomas, and M. Sirkin, “Re-engineering a Complex Application Using a Scalable Data
Structure Compiler”, Proc. ACM SIGSOFT 1994.

[Bat95] D. Batory and B.J. Geraci, “Validating Component Compositions in Software System Generators”,
Dept. Computer Sciences, TR-95-03, University of Texas at Austin, 1995.

[Bax92] I. Baxter, “Design Maintenance Systems”, CACM April 1992, 73-89.

[Bla91] L. Blaine and A. Goldberg, “DTRE - A Semi-Automatic Transformation System”, in Constructing
Programs from Specifications, Elsevier Science Publishers, 1991.

[Boo91] G. Booch. Object-Oriented Design With Applications, Benjamin-Cummings, 1991.

[Big94] T. Biggerstaff. “The Library Scaling Problem and the Limits of Concrete Component Reuse”, IEEE
International Conference on Software Reuse, November 1994.

[Coh95] S. Cohen, R. Krut, S. Peterson, and J. Withey, “Models for Domains and Architectures: A Prescription
for Systematic Software Reuse”, 10th AIAA Computing in Aerospace, 1995.

[Cog93] L. Coglianese and R. Szymanski, “DSSA-ADAGE: An Environment for Architecture-based Avionics
Development”, Proc. AGARD, 1993.

[Gar94] D. Garlan, R. Allen, and J. Ockerbloom, “Exploiting Style in Architectural Design Environments”,
ACM SIGSOFT 1994.

[Gar95] D. Garlan, R. Allen, J. Ockerbloom, “Architectural Mismatch or Why It’s Hard to Build Systems out of
Existing Parts”, Proc. ICSE 1995, Seattle, 179-185.

[Gog83] J.A. Goguen, “Parameterized Programming”, Workshop on Reusability in Programming. Newport,
Rhode Island, September 1983.

[Gog86] J.A. Goguen, “Reusing and Interconnecting Software Components”, Computer. February 1986, 16-28.

[Gom94] H. Gomaa, L. Kerschberg, V. Sugumaran, C. Bosch, and I. Tavakoi, “A Prototype Domain Modeling
Environment for reusable Software Architectures”, IEEE International Conference on Software Reuse,
Rio de Janeiro, November 1994.

[Gra92] M. Graham and E. Mettala, “The Domain-Specific Software Architecture Program”, Proceedings of
DARPA Software Technology Conference, 1992. Also, in Crosstalk: The Journal of Defense Software
Engineering, October 1992.

[Gri94] M.L. Griss and K.D. Wentzel, “Hybrid Domain-Specific Kits for a Flexible Software Factory”,
Proceedings of SAC’94, ACM, March 1994.

[Hei93] J. Heidemann and G. Popek, “File System Development with Stackable Layers”, ACM Transactions on
Computer Systems, March 1993.

[Hut91] N. Hutchinson and L. Peterson, “The x-kernel: An Architecture for Implementing Network Protocols”,
IEEE Transactions on Software Engineering, January 1991.

[Joh92] R.E. Johnson, “Documenting Frameworks using Patterns”, OOPSLA 1992, 63-76.

[Lei94] J.C.S. do Prado Leite, M. Sant’Anna, and F.G. de Freitas, “Draco-PUC: A Technology Assembly for
Domain-Oriented Software Development”, IEEE International Conference on Software Reuse, Rio de
Janeiro, November 1994.

[McA94] D. McAllester. “Variational Attribute Grammars for Computer Aided Design.” ADAGE-MIT-94-01.

16 9/1/95

[Mor94] M. Moriconi and X. Qian, “Correctness and Composition of Software Architectures”, ACM SIGSOFT
1994.

[Nei80] J. Neighbors, “Software Construction Using Components”, Ph.D. Thesis, TR-160, ICS Department,
University of California at Irvine, 1980.

[Nin94] J.Q. Ning, K. Miriyala, and W. Kozaczynski, “An Architecture-Driven, Business-Specific, and
Component-Based Approach to Software Engineering”, IEEE International Conference on Software
Reuse, Rio de Janeiro, November 1994.

[Par76] D.L. Parnas, “On the Design and Development of Program Families,” IEEE Transactions on Software
Engineering, March 1976.

[Per87] D.E. Perry, “Software Interconnection Models”, Proc. ICSE 1987, 61-69.

[Per89a] D.E. Perry, “The Logic of Propagation in The Inscape Environment”, ACM SIGSOFT 1989, 114-121.

[Per89b] D. E. Perry, “The Inscape Environment”, Proc. ICSE 1989, 2-12.

[Per92] D.E. Perry and A.L. Wolf, “Foundations for the Study of Software Architecture”, ACM SIGSOFT
Software Engineering Notes, October 1992, 40-52.

[Rum91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, Object-Oriented Modeling and
Design, Prentice Hall, 1991.

[Sit94] M. Sitaraman and B. Weide, “Component-Based Software using RESOLVE”, ACM Software
Engineering Notes, October, 1994.

[Tra93] W. Tracz, “LILEANNA: A Parameterized Programming Language,” Advances in Software Reuse:
Selected Papers from the Second International Workshop on Software Reusability. Lucca, Italy. R.
Prieto-Dìaz and W.B. Frakes, eds. IEEE Computer Science Press, 1993.

[Ude94] J. Udell, “Componentware”, BYTE, May 1994.

[Wei90] D.M. Weiss, Synthesis Operational Scenarios, Technical Report 90038-N. Version 1.00.01, Software
Productivity Consortium. Herndon, Virginia. August 1990.

10 Appendix

Notations for referencing a component, its children, and its design rules are listed in Table 5.

Notation Meaning

k.parent the parent component of k

k.childi the component that instantiates parameter i of k

k.pre the precondition of k

k.posti the postcondition of parameter i of k

k.preresi the prerestriction of parameter i of k

k.postres the postrestriction of k

k.cpost the cumulative postcondition of k’s ancestors

k.cpostres the cumulative postrestriction of the system rooted at k

k.∆ the postrestriction merge operator of k

Table 5: The structure of a component k

17 9/1/95

Our algorithms for top-down and bottom-up design rule checking are listed in Figure 8 and Figure 9
respectively. A type equation is DRC correct if there are no precondition and prerestriction validation
errors.

// if te is the root component of a type equation and
// top defines the initial attribute states for an abstract program,
// precondition_validation(te, top) will return TRUE
// if te is free of precondition errors

boolean precondition_validation(root, root_conditions)
{

root.cpost = root_conditions;
if (root.cpost ⇒ root.pre) {

foreach child i of root {
cpost = root.posti ⊕ root.cpost;
if (¬ precondition_validation(root.childi, cpost))

return FALSE ;
}
return TRUE ;

}
return FALSE;

}

Figure 9: Precondition Validation Algorithm

// if te is the root component of a type equation and
// goal is the prerestriction that te is to satisfy,
// prerestriction_validation(te,goal) returns TRUE if
// te has no prerestriction errors and that it satisfies goal

boolean prerestriction_validation(root, root_prerestriction)
{

if (root has no children) {
root.cpostres = root.postres;

} else {
foreach child i of root {

// return false if any subtree has prerestriction errors

if (¬ (prerestriction_validation(root.childi, root.preresi))
return FALSE;

}
root.cpostres = root.postres ⊕

root.∆(root.child1.cpostres, root.child2.cpostres, …) ;
}
return root.cpostres ⇒ root_prerestriction ;

}

Figure 10: Prerestriction Validation Algorithm

