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Abstract
Software evolution is often driven by the need to

extend existing software.  "Design patterns" express
preferred ways to extend object-oriented software and
provide desirable target states for software designs. This
paper demonstrates that some design patterns can be
expressed as a series of parameterized program
transformations applied to a plausible initial software
state. A software tool is proposed that uses primitive
transformations to allow users to evolve object-oriented
applications by visually altering design diagrams.
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1   Introduction

In 1979, Parnas argued that software developers
should design each program as the first in a family of
programs [Par76]. Initial programs spawned versions as a
consequence of evolution and maintenance. By making
program families explicit in software design, the cost of
evolution and maintenance can be substantially reduced.

During the 1970s, evolution and maintenance
accounted for 35 to 40 percent of the software budget for
an information systems organization. This number
jumped to 60 percent in the 1980s. It was predicted that
without a major change in approach, many companies
will spend close to 80 percent of their software budget on
maintenance by the mid-1990s [Pre92].

Object-oriented design methodologies offer
important opportunities for reducing maintenance costs.
For example, object-oriented software is organized into
classes and frameworks that provide modularity and
enhance reusability. This, in turn, can substantially
reduce the cost of adding new functionality to a product.
Language features such as inheritance also contribute to
reuse and maintenance by allowing specializations of a
class to be built without altering the original class.

Another kind of reuse is the reuse of designs.
Commercial object-oriented languages such as C++
provide features to declare classes and relationships
between classes (e.g., public inheritance, private

inheritance, object pointers as instance variables of a
class) facilitating the construction and reuse of larger
software artifacts. Recent work has recognized an
important kind of design reuse: object-oriented design
patterns, i.e., recurring patterns of relationships between
classes, objects, methods, etc. that define preferred
solutions to common object-oriented design problems
[Gam92, Coa92, Joh92, Gam94].

While design patterns are useful when included in an
initial software design, they are often applied in the
maintenance phase of the software lifecycle [Gam93].
For example, the original designer may have been
unaware of a pattern or additional system enhancements
may arise that require unanticipated flexibility.
Alternatively, patterns may lead to extra levels of
indirection and complexity inappropriate for the first
software release.

We have discovered that some design patterns can be
expressed as compositions of primitive program
transformations. Moreover, we have noted that many of
the program transformations can be automated. This
raises the intriguing possibility that a software tool could
perform these transformations on application code
automatically by allowing users to graphically alter class
diagrams that capture the application design. Automating
transformations would reduce the cost of certain kinds of
program evolution, and eliminate programming errors
and debugging that would otherwise have been
introduced. We explore these ideas in this paper.

We begin by reviewing the concept of design
patterns and explain their relationship to program
transformations and program evolution.

2   Design Patterns

Design patterns capture expert solutions to many
common object-oriented design problems: support for
multiple implementations of a method, creation of
compatible components, adapting a class to a different
interface, subclassing versus subtyping, isolating third
party interfaces, etc. Patterns have been discovered in a
wide variety of applications and toolkits including
Smalltalk Collections [Gol84], ET++ [Wei88], MacApp
[App89], InterViews [Lin92], etc.
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In this section, we present a design pattern and
explain how it can be viewed as a program
transformation. The notation we use for displaying class
diagrams is adopted from Rumbaugh [Rum91] with
extensions for representing code fragments [Gam92] and
general class dependencies. A summary of the notation is
given in Appendix A.

2.1   A Design Pattern Example

Subclasses are often designed for use specifically
with other subclasses. The Abstract Factory design
pattern employed by InterViews [Lin92] and ET++
[Wei88] and documented in [Gam93] ensures that
compatible objects are created.

For example, consider the classes in Figure 2.1. The
superclass ScrollBar has two subclasses: MotifScrollBar and
OpenLookScrollBar. Window also has two subclasses:
MotifWindow and OpenLookWindow. Motif scrollbars are
intended to work with Motif windows. While it may be
possible for a program to create a Motif scrollbar and an
OpenLook window, it is unlikely that this combination of
objects will function properly.

A preferred solution to this problem is given in
Figure 2.2. The abstract factory WindowFactory is created
as an abstract class. It provides creation methods (known
as factory methods) for returning new window system
objects, i.e. scrollbars and windows. Two concrete
factories, MotifFactory and OpenLookFactory, are created as
subclasses of WindowFactory. MotifFactory only returns
Motif objects while OpenLookFactory only returns
OpenLook objects. At run time, the appropriate concrete
factory object is instantiated. Requests to create window
system objects are passed to this factory object. The
factory ensures that any window system objects that are
created will work together.

OpenLookScrollBar MotifScrollBar

ScrollBar

OpenLookWindow MotifWindow

Window

Figure 2.1: Scrollbar and window class hierarchies

2.2   Design Patterns as Transformations

Design patterns define target states for program
transformations. Suppose an application A relied on the
MotifScrollBar and MotifWindow classes. Now suppose A

needs to be generalized to Aprime to use OpenLook
widgets. The Abstract Factory design pattern just
described defines the needed generalization. A useful
tool would automatically transform the application code
of A to that of Aprime by applying the Abstract Factory
pattern to the MotifScrollBar and MotifWindow classes of A.

We believe that such tools can be created and that
many pattern transformations can be automated. In fact,
we show in Section 4 how an application comparable to
A could be generalized by applying a sequence of
primitive pattern transformations. Tools that modify
application code automatically would not only relieve
users of tedious and error-prone tasks, but also would
drastically reduce application evolution and maintenance
costs.

We have analyzed a variety of recognized design
patterns, and those that we believe could be automated
are given in Appendix B. This list is expected to grow as
additional pattern transformations are identified.
Furthermore, we have observed that these patterns are
actually compositions of a small number of primitive
object-oriented transformations. In the next section, we
present some of these transformations.

CreateWindow()

WindowFactory

CreateScrollBar()

Figure 2.2: Abstract factory

OpenLookFactory MotifFactory

CreateOpenLookScrollBar()
CreateOpenLookWindow()

CreateMotifScrollBar()
CreateMotifWindow()
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3   Object-Oriented Transformations

Object-oriented transformations are program
transformations which alter the classes or frameworks in
an object-oriented software system. Transformations
have the following properties:

• Description
• Arguments
• Initial state
• Target state
• Preconditions for application
In the following sections, we define three

parameterized object-oriented transformations. We use
C++ to represent the initial and target states of source
code that is being transformed. Arguments such as iv*

and m*() are used to denote zero or more instance
variables or methods provided as arguments to the
transformation. Other instance variables and methods not
specified are assumed to be unaffected.

3.1   Inherit[C1, C2, vm2*(), m2*(), iv2*]

The Inherit[ ] pattern transformation establishes a
superclass-subclass relationship between two existing
classes, C1 and C2. It also supports the promotion of
subclass methods m2*() and variables iv2* to the
designated superclass, as well as adding virtual methods
vm2*() to the superclass. The arguments of Inherit[ ] are:

C1 - superclass name
C2 - subclass name
vm2*() - list of superclass virtual methods to be

provided by subclass

C1

vm2*()

Figure 3.1: Inherit transformation

C2

vm2*()
m2*()
iv2*

C1 class C1 {
...  // rest of C1

}

class C2 {

  vm2*() { ... }

  m2*() { ... }

  iv2*;
  ...  // rest of C2
};

C2

vm2*()

m2*()
iv2

class C1 {
   // virtual methods added to C1

 virtual vm2*();

   // C2 methods moved to C1

 m2*() { ... }

   // C2 instance variables moved to C1

 iv2*;

      ...  // rest of C1
};

class C2 : public C1 {

vm2*() { ... }
     ...  // rest of C2
};

(a) Initial State (b) Target state

m2*() - list of methods and implementations moved
from subclass to superclass

iv2* - list of instance variables moved from subclass
to superclass

Figure 3.1 depicts the initial and target states of this
transformation. The preconditions for Inherit[ ] are:

• Other subclasses of C1 (if any) must support
virtual methods vm2*().

• Subclass C2 must support all virtual methods of
superclass C1.

• Methods m2*() moved from subclass C2 must not
reference any subclass specific methods or
instance variables.
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3.2   FactoryMethod[C1, C2, m(), C3, v]

The FactoryMethod[ ] transformation adds a
method m() to class C1 which creates new objects of class
C2. A call to this method replaces occurences of new C2

in the program. Expression v must return a C1 object so
that v->m() returns an object of class C2. The arguments
of FactoryMethod[ ] are:

C1 - factory class name
C2 - product class name
m() - name of new factory method to create a new

product
C3 - class of object returned by method m()
v - an expression which returns an object supporting

method m()

Figure 3.2 depicts the initial and target states of this
transformation. The preconditions for FactoryMethod[ ]
are:

• m() must not already exist in C1

• C3 must be C2 or a superclass of C2

• v must be a valid expression for all occurrences of
new C2. Automated checking of this condition is
equivalent to performing the substitution,
recompiling, and checking for ‘invalid
expression’ or ‘type mismatch’ errors.

C1

C2 C2

C1

m()

new C2

// variable v is global factory

C1 *v = new C1;

class C1 {
  ... // rest of C1
};

class C2 {
  ...  // rest of C2
};

main () {
  C2 *tmp;

  tmp = new C2;
  ...  // rest of main
}

// variable v is global factory

C1 *v = new C1;

class C1 {
// create a new method to return
// a C2 object
C2 *m() {

return new C2;
}
...  // rest of C1

};

class C2 {
...  // rest of C2

};

main () {
   C2 *tmp;

   // tmp now initialized with
   // factory method from global
   // factory v
   tmp = v->m();
   ...  // rest of main
}

Figure 3.2: FactoryMethod transformation

(a) Initial State (b) Target state

3.3   Substitute[C1, C2, C3]

The Substitute[ ] transformation substitutes class
C1’s references to class C2 with references to class C3. All
pointers in class C1 including instance variables, method
return types, method arguments, method local variables,
etc. are converted. Class C3 must support class C2’s
interface to class C1.

If class C3 is concrete, then occurences of new C2 are
replaced by new C3. If class C3 is an abstract superclass
of class C2, then no substitution is made. Otherwise, an
error is flagged.

The arguments of Substitute[ ] are:

C1 - class whose association is being changed
C2 - class originally associated with C1

C3 - class to be associated with C1

Figure 3.3 depicts the initial and target states of this
transformation. The preconditions for Substitute[ ] are:

• C3 must support C2’s interface to C1. Automated
checking of this condition is equivalent to
performing the substitution, recompiling, and
checking for ‘undefined variable’ or ‘undefined
method’ errors.

• Calls to C1 methods returning a pointer to a C2

object must accept objects of type C3. Automated
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checking of this condition is equivalent to
performing the substitution, recompiling, and
checking for ‘type mismatch’ errors.

• If C1 contains the statement new C2, then C3 must
be a superclass of C2 (in which case no
substitution is made) or C3 must be a concrete
class (in which case the expression new C3 is
substituted).

3.4   Other Transformations

Two other transformations will be used in our
example of Section 4. CreateClass[C1] creates a new
class. It takes the name of the new class as an argument.

CreateInstanceVariable[C1, type, iv, init] adds a
new instance variable to a class. It takes the class, the
type of the new variable, the name of the new variable,
and an initializer as arguments.

4   Program Transformation Example

We now show how pattern transformations can be
used to evolve a program. Our example is a simple
program that creates a Honda Prelude with a VTEC2_2

engine and GY184_HR14 tires. The car is driven for one
million miles. During the drive, tires are rotated and
changed, and the engine is replaced. The program and its
class diagram are displayed in Figure 4.1a and 4.2a.

The program only works for a Prelude. At some
point, we want other cars to create and drive. There are
several problems that must be addressed to generalize
this program. In this example, we use object-oriented
transformations to create and install an abstract factory
and demonstrate that the resulting program is easier to
extend and reuse.

The first step creates superclasses for GY184_HR14

and VTEC2_2. CreateClass[ ] creates the Tire and Engine

classes. Tire and Engine are then declared to be
superclasses of GY184_HR14 and VTEC2_2 respectively
using the Inherit[ ] transformation. The resulting code

C2

C3C1

C2

C3C1

class C1 {

C2 *iv*;
C2 *m1(...) {
...

}

m2(..., C2 *v*, ...) {
...

}
};

class C1 {

C3 *iv*;
C3 *m1(...) {
...

}

m2(..., C3 *v*, ...) {
...

}
};

Figure 3.3: Substitute transformation

(a) Initial State (b) Target state

changes and class diagram is displayed in Figure 4.1b
and 4.2b.

Step 1:Superclass Tire and Engine

CreateClass[Tire]

CreateClass[Engine]

Inherit[
Tire, - superclass,
GY184_HR14, - subclass
nil, - virtual methods

from subclass
(Drive), - methods from sub-

class
(miles, max_miles)]

- instance vari-
ables from sub-
class

Inherit[Engine, VTEC2_2, nil, (Drive),
(miles, max_miles)]

Next, we take advantage of the new Tire and Engine
superclasses by substituting them for GY184_HR14 and
VTEC2_2 respectively in the Car class. The Car class can
then operate with any Tire and Engine class. Note that this
transformation can only be applied if the enabling
conditions are satisfied. In this example, the class in
which substitution occurs must not reference any
subclass specific instance variables or methods of
GY184_HR14 or VTEC2_2. The transformed program now
employs the Abstract Factory design pattern. The final
class diagram is displayed in Figure 4.1c and 4.2c.

Step 2:Generalize Car to use Tire and Engine

Substitute[
Car, - class in which

substitution
occurs

GY184_HR14, - old association
Tire] - new association

Substitute[Car, VTEC2_2, Engine]
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We can now construct a concrete factory for creating
tires and engines. An instance variable is added to class
App which stores the concrete factory to be used by the
program. Factory methods can then be added to
PreludeFactory to create the appropriate tires and engines.
The resulting code changes and class diagram is
displayed in Figure 4.1c and 4.2c

Step 2:Create a concrete factory

CreateClass[CarFactory]

CreateInstanceVariable[
App - class to receive

new instance
variable

PreludeFactory* - type of new vari-
able

car_factory - name of new vari-
able

new PreludeFactory]
- initializer

FactoryMethod[
PreludeFactory, - concrete factory
GY184_HR14, - product produced

by method
MakeTire, - name of factory

method
Tire, - return type of

method
app->car_factory] - expression

returning a fac-
tory object. The
factory method
of the object is
used to replace
occurences of
"new GY184_HR14"

FactoryMethod[PreludeFactory, VTEC2_2,
MakeEngine, Engine, app->car_factory]

Next we create the abstract factory CarFactory as a
superclass of the concrete factory PreludeFactory. The
resulting class diagram is displayed in Figure 4.1e and
4.2e.

Step 4:Superclass PreludeFactory

Inherit[
CarFactory, - superclass
PreludeFactory, - subclass
(MakeTire, MakeEngine),

- virtual methods
from subclass

nil, - methods from sub-
class

nil] - instance vari-
ables from sub-
class

Using Substitute[ ], we generalize the App class to
work with any CarFactory. The resulting class diagram is
displayed in Figure 4.1e and 4.2e.

Step 5:Generalize App to use CarFactory

Substitute[
App, - class in which

substitution
occurs

PreludeFactory, - old association
CarFactory] - new association

The program now contains the abstract factory
CarFactory with concrete factory PreludeFactory. CarFactory

objects produce objects of the Tire and Engine classes.
PreludeFactory produces the GY184_HR14 and VTEC2_2

objects required by a Prelude.

5   Benefits

The transformed program now employs the Abstract
Factory design pattern which guarantees that only
coordinated car components will be produced. A
comparison of the initial (Figure 4.1a) and final (Figure
4.1f) class diagrams reveals that the transformed program
is more complex. In exchange for increased complexity,
the new program is more general and offers a number of
advantages over the original:

• other tire and engine subclasses can be added
which inherit state and behavior from the original
tire and engine

• switching the engine or tires for a Prelude requires
modification of only one factory method in
PreludeFactory

• other factories can be added to create other cars
• once another concrete factory has been

implemented, it is easy to reuse the program to
drive this new car.

The following sections illustrates each benefit.

5.1   Adding Other Classes

In this example, the new tire and engine inherits state
and behavior from Tire and Engine respectively (Figure
5.1). This inherited state and behavior originally
belonged to the GY184_HR14 and VTEC2_2 classes.

// adding engine used in Honda Accord which
// inherits from new Engine superclass
class AccordEngine : public Engine {
  AccordEngine {
    max_miles = 120000;
    miles = 0;
  }
}

// adding tire used in Honda Accord which
// inherits from new Tire superclass.
class Bridge184_SR14 : public Tire {
  Bridge184SR_13 {
    max_miles = 30000;
    miles = 0;
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Figure 4.1a: Initial class diagram

Figure 4.1b: Tire and Engine superclasses created

Figure 4.1d: Concrete factory added

Figure 4.1e: Abstract factory created

Figure 4.1f: App reference to PreludeFactory
interface is removed. App still
creates a PreludeFactory object

Figure 4.1c: Car dependency on GY184_HR14
and VTEC2_2 is removed

Engine

App

Car

GY184_HR14 VTEC2_2

Engine

PreludeFactory

Tire

App

Car

GY184_HR14 VTEC2_2

App

Car

GY184_HR14 VTEC2_2

MakeTire()
MakeEngine()

new GY184_HR14;

new VTEC2_2;

App

Car

GY184_HR14 VTEC2_2

Engine PreludeFactoryTire

CarFactory

EngineTire

miles
max_miles
Drive()

miles
max_miles
Drive()

App

Car

GY184_HR14 VTEC2_2

Tire

App

Car

GY184_HR14 VTEC2_2

Engine PreludeFactoryTire

CarFactory

MakeTire()
MakeEngine()
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#include <iostream.h>

class GY184_HR14 {
public:
  int miles, max_miles;
  void Drive(int m) {
    miles += m;
  }
  GY184_HR14 () {
    max_miles = 40000;
    miles = 0;
  }
};
class VTEC2_2 {
public:
  int miles, max_miles;
  void Drive(int m) {
    miles += m;
  }
  VTEC2_2 () {
    max_miles = 100000;
    miles = 0;
  }
};
class Car {
private:
  GY184_HR14 *lf_tire, *lb_tire,
    *rf_tire,*rb_tire;
  VTEC2_2 *engine;

public:
  int miles;
  Car();
  void RotateTires() {
    GY184_HR14 *tire;

    tire = lf_tire;
    lf_tire = lb_tire;
    lb_tire = lf_tire;
    tire = rf_tire;
    rf_tire = rb_tire;
    rb_tire = rf_tire;
    cout << "Rotating tires\n";
  }
  void ReplaceTires(GY184_HR14 *lf,
      GY184_HR14 *rf, GY184_HR14 *lb,
      GY184_HR14 *rb) {
    delete lf_tire;
    delete lb_tire;
    delete rf_tire;
    delete rb_tire;
    lf_tire = lf;
    lb_tire = lb;
    rf_tire = rf;
    rb_tire = rb;
    cout << "Replacing tires\n";
  }
  void ReplaceEngine(VTEC2_2 *e) {
    delete engine;
    engine = e;
    cout << "Replacing engine\n";
  }
  void Drive(int m) {
    miles += m;
    engine.Drive(m);
    lf_tire.Drive(m);

//     lb_tire.Drive(m);
    rf_tire.Drive(m);
    rb_tire.Drive(m);
    cout << "Driving " << m << " miles\n";
  }
  int TireMiles() {
    return lf_tire->miles;
  }
  int MaxTireMiles() {
    return lf_tire->max_miles;
  }
  int EngineMiles() {
    return engine->miles;
  }
  int MaxEngineMiles() {

    return engine->max_miles;
  }
};

class App {
public:
  App() {
  }
  void run();
};

App *app;

Car::Car(GY184_HR14 *lf, GY184_HR14 *lb,
    GY184_HR14 *rf, GY184_HR14 *rb, VTEC2_2 *e)
{
  engine = new VTEC2_2;
  lf_tire = new GY184_HR14;
  lb_tire = new GY184_HR14;
  rf_tire = new GY184_HR14;
  rb_tire = new GY184_HR14;
}
void App::run() {
  Car *car = new Car(new GY184_HR14,
      new GY184_HR14, new GY184_HR14,
      new GY184_HR14, new VTEC2_2);
  while (car->miles < 1000000) {
    car->Drive(1000);
    if (car->TireMiles() >=
        car->MaxTireMiles())
      car->ReplaceTires(new GY184_HR14,
        new GY184_HR14, new GY184_HR14,
        new GY184_HR14);
    else if (car->TireMiles() %5000 == 0)
      car->RotateTires();
    if (car->EngineMiles() >=
        car->MaxEngineMiles())
      car->ReplaceEngine(new VTEC2_2);
  }
  cout << "Total miles driven: " <<
    car->miles << "\n";
}

int main () {
  app = new App;
  app->run();
}

Figure 4.2a: Example Application

class Tire {
public:
  int miles, max_miles; // moved from subclass
  void Drive(int m) { // moved from subclass
    miles += m;
  }
};

class Engine {
public:
  int miles, max_miles; // moved from subclass
  void Drive(int m) { // moved from subclass
    miles += m;
  }
};

// subclass of Tire
class GY184_HR14 : public Tire {
  GY184_HR14 () { ... }
};

// subclass of Engine
class VTEC2_2 : public Engine {
  VTEC2_2 () { ... }
};

Figure 4.2b: Code changes for creating Tire and
Engine superclasses
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class Car {
public:
  // variables changed from GY184_HR14 to Tire
  Tire *lf_tire, *lb_tire, *rf_tire,
    *rb_tire;

  // variable changed from VTEC2_2 to Engine
  Engine *engine;

  void RotateTires() {
    // variable type changed from GY184_HR14
    // to Tire
    Tire *tire;
    ...
  }

  // variables changed from GY184_HR14 to Tire
  void ReplaceTires(Tire *lf, Tire *rf,
                    Tire *lb, Tire *rb) {
    ...
  }

  // variable type changed from VTEC2_2
  // to Engine
  void ReplaceEngine(Engine *e) {
    ...
  }

  ...
};

Figure 4.2c: Code changes to generalize Car class

class PreludeFactory {
public:
  // new method to create Tires
  Tire *MakeTire() {
    return new GY184_HR14;
  }

  // new method to create Engine
  Engine *MakeEngine() {
    return new VTEC2_2;
  }
};

class Car {
public:
  ...
  // arguments to constructor generalized
  Car (Tire *, Tire *,
    Tire *, Tire *, Engine *);
  ...
}

class App {
public:
  Car *car;

  // new instance variable created
  PreludeFactory *car_factory;

  App() {
    // new instance variable initialized
    car_factory = new PreludeFactory;

    car = new Car;
  }
  void run();
};

Car::Car(Tire *, Tire *,
  Tire *, Tire *, Engine *) {
  miles = 0;

    // use factory method to create the
    // engine

  engine = app->car_factory->MakeEngine();

  // use factory method to create the tires
  lf_tire = app->car_factory->MakeTire();
  lb_tire = app->car_factory->MakeTire();
  rf_tire = app->car_factory->MakeTire();
  rb_tire = app->car_factory->MakeTire();
}

void App::run() {
  // use factory methods to create the tires
  // and engine
  Car *car = new Car(
    app->car_factory->MakeTire(),
    app->car_factory->MakeTire(),
    app->car_factory->MakeTire(),
    app->car_factory->MakeTire(),
    app->car_factory->MakeEngine());
  while (car->miles < 1000000) {
    car->Drive(1000);

    // use factory method to create the
    // tires
    if (car->TireMiles() >=
        car->MaxTireMiles())
      car->ReplaceTires(
        app->car_factory->MakeTire(),
        app->car_factory->MakeTire(),
        app->car_factory->MakeTire(),
        app->car_factory->MakeTire());
    else if (car->TireMiles() %5000 == 0)
      car->RotateTires();

    // use factory method to create the
    // engine
    if (car->EngineMiles >=
        car->MaxEngineMiles)
      car->ReplaceEngine(
        car_factory->MakeEngine());
  }
  cout << "Total miles driven: " <<
    car->miles << "\n";
}

Figure 4.2d: Code changes to add concrete factory

class CarFactory {
public:
  // virtual method added
  virtual Tire *MakeTire();

  // virtual method added
  virtual Engine *MakeEngine();
};

// PreludeFactory is now a subclass of
// CarFactory
class PreludeFactory : public CarFactory {
  ...
};

Figure 4.2e: Code changes to create abstract
factory

class App {
public:
  ...
  // instance variable changed from
  // PreludeFactory to CarFactory
  CarFactory *car_factory;
  ...
}

Figure 4.2f: Code changes to generalize App class
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FactoryMethod[ ] transformation to redefine the

MakeTire() method:1

FactoryMethod[PreludeFactory,
Bridge184_SR14,MakeTire, Tire,
app->car_factory]

5.3   Adding Factories

Other concrete factories can be defined to create new
cars (Figure 5.3). This example creates a factory for
producing Honda Accords.

class AccordFactory : public CarFactory {
  Tire *MakeTire() {
    return new Bridge184SR_14;
  }
  Engine *MakeEngine() {
    return new AccordEngine;
  }
}

5.4   Application Reuse

Once other concrete factories have been
implemented, it is easy to reuse the application for
driving other cars (Figure 5.4)

Modifying the transformed program to create and
drive an Accord (instead of a Prelude) involves a change

1. This is possible provided that pattern transfor-
mations have “overwrite” semantics: i.e., the
ability to overwrite existing code with gener-
ated code.

Figure 5.3: Concrete factory added

PreludeFactory AccordFactory

CarFactory

Figure 5.4: App class changed to use
AccordFactory

AccordFactory

App

  }
}

Note that code templates for new subclasses could be
generated automatically.

5.2   Switching Classes

Switching the tires for a Prelude requires that only
one factory method be modified in PreludeFactory (Figure
5.2). The original program would have required more
than one dozen changes.

class PreludeFactory : public CarFactory {
  Tire *MakeTire() {

// tire produced by factory method changed
// from GY184_HR14 to Bridge184_SR14

    return new Bridge184_SR14;
  }
  Engine *MakeEngine() {
    return new VTEC2_2;
  }
}

Note that this change could be automated by using a

Figure 5.1: Engine and Tire subclasses added

GY184_HR14 Bridge184_SR14

VTEC2_2 AccordEngine

Tire

Engine

PreludeFactory

MakeTire() new Bridge184_SR14;

new VTEC2_2;

MakeEngine()

Bridge184_SR14 VTEC2_2

Figure 5.2: PreludeFactory altered to produce
Bridge184_SR14 tires
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to a single statement in the App class initializer:

car_factory = new AccordFactory;

The original program would have required
approximately twenty error-prone changes to achieve the
same result. Note that the change could also have been
automated with the transformation:

Reassociate[App, PreludeFactory,
AccordFactory]

6   An O-O Program Evolution Tool

The example presented illustrates the potential of
pattern transformations applied to evolving software
systems. The resulting program is more general,
extensible, and reusable than the original.

A key observation is that both the checks for
satisfaction of pattern transformation preconditions and
the actual code transformations performed in the example
appear to be automatable. Automating transformations
reduces the risk of introducing new errors when
upgrading software. It also allows the user to perform
selected changes quickly which can increase the speed at
which evolution can take place.

A second observation is that it is often easier to view
the effects of transformations at the class diagram level
rather than by inspecting a list of source code differences.
Class diagrams document classes and frameworks. Since
most transformations evolve classes and frameworks,
they are a useful method for documenting the effects of
transformations. Class diagrams also provide a language
independent means for representing changes that occur.

Our approach to reducing software maintenance costs
is to automate as much of the evolutionary process as
possible. This allows users to concentrate on essential
design decisions and leaves the burden of low-level
source code modifications to tools. We believe that
object-oriented transformations are a promising method
that can be exploited. In this section, we consider a tool
which evolves class diagrams and the underlying
software via object-oriented transformations.

6.1   Description

The purpose of a tool would be to reduce
evolutionary maintenance costs by automating the
implementation of common extension mechanisms
employed in object-oriented software systems.

The tool would parse source code and produce a class
diagram for the system. A user could then request that
transformations be applied to the class diagram to evolve
the classes and frameworks. The tool would verify the
enabling conditions of each transformation before

applying the transformation. The underlying source code
would also transformed. Source code could be
automatically checkpointed after each transformation so
that operations could be rolled back.

Choice of a language will affect the list of
transformations provided. For example, some languages
support factory methods directly. C++ was chosen as the
first target language for this tool because of its
widespread acceptance in industry.

A primary focus of research will be to develop a
complementary set of primitives which can be composed
to form design patterns occuring in the target language.
More advanced parameterized transformations could also
be provided which implement design patterns in a single
step. For example, a transformation might directly
implement the Abstract Factory design pattern given the
classes involved in the pattern. The design patterns in
Appendix B would be candidates for these advanced
transformations.

6.2   Expected Benefits

“Designing frameworks requires a great deal of
experience and experimentation” [Joh88]. Design
patterns capture object-oriented design experience.
Object-oriented transformations provide an evolutionary
means for employing design patterns in current systems.
A tool which automates object-oriented transformations
would give users the freedom to experiment with
different designs, something that is very difficult and
costly to do today.

7   Conclusions

The evolutionary phase of the software lifecycle can
be expected to account for up to half of a software
engineering organization’s budget. One method for
dealing with this cost is reuse.

Design patterns involve the reuse of designs. They
are often employed in evolving systems to achieve
additional degrees of flexibility or extensibility. Many
design patterns can be decomposed into a set of
parameterized object-oriented transformations. An
example is presented to demonstrate that a program can
be evolved to employ a design pattern using object-
oriented transformations. It is argued that the check for
enabling conditions and the actual source code
transformations are automatable.

We believe it is possible to build a tool that allows
users to employ design patterns in evolving systems by
transforming class diagrams. Required code changes are
carried out automatically which reduces the risk of
introducing new errors and facilitates rapid
generalization and evolution of classes, frameworks, and
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programs. The result is an automated tool for producing
more extensible and reusable software architectures.

8   Appendix A - O-O Notation

AbstractClass references ConcreteClass1 if one of its
class or instance variables is of type ConcreteClass1.
AbstractClass uses ConcreteClass2 if any AbstractClass

method mentions ConcreteClass2 in its type signature or
uses ConcreteClass2 local variables. ConcreteSubclass1 and
ConcreteSubclass2 are concrete subclasses of AbstractClass.
ConcreteSubclass2 has one instance variables and one
method.

9   Appendix B - Design Patterns

Object-oriented transformations could provide
support for the following patterns from [Gam94]:

• Abstract Factory: Abstract Factory supports the
creation of coordinated components.

• Adapter - Object: A class adapter allows an
adapter object to exhibit state and behavior of
another object by storing a pointer to an instance
of the object.

• Adapter - Class: A class adapter allows an adapter
object to exhibit state and behavior of another
object by storing a pointer to an instance of the
object.

• Bridge: Bridge is a fancier version of object
adapter. In this pattern, the adapter and adaptee
both have superclasses. The adapter superclass
points to the adaptee superclass.

• Builder: Builder is analogous to Abstract Factory.
A concrete factory is used to create a coordinated
set of components. A builder object is used to
provide some coordinated behavior for another
object. A pointer to a builder is kept and the
builder state and behavior is accessed through the
pointer. Different builders can be swapped in to
provide different behaviors.

ConcreteSubclass1 ConcreteSubclass2

InstanceVariable

AbstractClass

AbstractOperation()

Operation()

ConcreteClass1
references

Implementation

ConcreteClass2

uses

• Command: Command objectifies methods and
provides a uniform interface to them. Command
objects store pointers to objects needed to
implement the command (not the other way
around).

• Composite: Composite creates a sibling class
which stores a pointer to one or more objects of
the same superclass. Some of the superclass
methods may be implemented for the composite
object looping through all the objects being
pointed to and calling the same method.

• Exemplar: Exemplar objects have a common
superclass which supports the Clone method -- a
method which returns a copy of itself. An
Exemplar Manager maintains a list of known
Exemplar objects. New object requests are
handled by the manager. Requests are
parameterized by a key which specifies some
exemplar known to the manager. The exemplar is
then cloned and the clone is returned by the
manager.

• Factory Method: In Factory Method, one class has
a method which returns a new object of another
class.

• Glue: Glue is an Adapter for multiple classes.
• Mediator: When many different objects need to

talk to many other different object objects, it may
be useful to introduce a Mediator. The mediator
maintains pointers to objects on both sides. It also
interprets requests and routes them to the
appropriate objects.

• Solitaire: Solitaire provides a method for
returning a single instance of a class. Solitaires are
useful for storing global variables or one-of-a-
kind objects such as Concrete Factories. Solitaires
are slightly better than globals because they
reduce name space pollution.

• Strategy: Strategy objectifies an algorithm.
Commands store pointers to the objects on which
an algorithm is implemented. In contrast, objects
store pointers to strategies which implement an
algorithm.

• Template Method: Template Method uses
inheritance to implement some part of an
algorithm.

• Walker: Walker provides an extra level of
abstraction on aggregate structures. It is used to
implement methods on aggregates eliminating the
need to define the same methods for all
aggregates.
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