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Abstract

A lightweight database system (LWDB) is a high-performance, application-specific
DBMS. It differs from a general-purpose (heavyweight) DBMS in that it omits one or more
features and specializes the implementation of its features to maximize performance.
Although heavyweight monolithic and extensible DBMSs might be able to emulate
LWDB capabilities, they cannot match LWDB performance.

In this paper, we describe P2, a generator of lightweight DBMSs, and explain how it was
used to reengineer a hand-coded, highly-tuned LWDB used in a production system com-
piler (LEAPS). We present results that show P2-generated LWDBs reduced the develop-
ment time and code size of LEAPS by a factor of three and that the generated LWDBs
executed substantially faster than versions built by hand or using an extensible heavy-
weight DBMS.

1  Introduction

General-purpose DBMSs are heavyweight; they are feature-laden systems that are designed to support the
data management needs of a broad class of applications. Among the common features of heavyweight
DBMSs are support for databases larger than main memory, client-server architectures, and checkpoints
and recovery. A central theme in the history of DBMS development has been to add more features to
enlarge the class of applications that can be addressed. As the number of supported features increased,
there was sometimes a concomitant (and possibly substantial) reduction in performance. A hand-written
application that does not use a DBMS might access data in main memory in tens of machine cycles; a com-
parable data access through a DBMS may take tens of thousands of machine cycles. It is well-known that
there are many applications that, in principle, could use a database system, but are precluded from doing so
by performance constraints (e.g., LEAPS [Mir90-91, Bra91-93]).

Extensible or open database systems ([Bat88, Car90, Haa90, Sto91-93, Wel92]) promoted DBMS custom-
ization by enabling individual features or groups of features to be added or removed. Unfortunately, exten-
sible DBMSs were basically customizable heavyweight DBMSs; their architecture and implementations
(e.g., layered designs, interpretive executions of queries) imposed the onerous overheads of heavyweight
DBMSs. While extensibility can improve performance, it has been our experience that the gains are rarely
sufficient to satisfy the requirements of performance-critical applications.

A lightweight database system (LWDB), in contrast, is an application-specific, high-performance DBMS
that omits one or more features of a heavyweight DBMS and specializes the implementations of its fea-
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tures to maximize performance. Examples include main memory DBMSs (e.g., Smallbase [Hey94]), per-
sistent stores (e.g., Texas [Sin92]), and primitive code libraries (e.g., Booch Components [Boo87]). Each
of these examples strip features from a general-purpose DBMS (e.g., Smallbase removes the disk-resident
database feature, Texas removes client-server architectures, and the Booch Components further strip
checkpoints and recovery) and demonstrate the performance advantages gained by doing so. In principle,
an application achieves its best performance when it uses a “lean and mean” LWDB that exactly matches
its needs.

Because there are no formalizations, tools, or architectural support, LWDBs are hand-crafted monolithic
systems that are expensive to build and tune. The challenge in building LWDBs stems from scalability: a
“lean and mean” LWDB by definition supports m features out of a set of n features, where m is application-
dependent and n is constantly growing [Big94]. Clearly, the number of unique combinations of features is
exponential, and thus, building a library of LWDBs that implement unique combinations is both impracti-
cal and unscalable. We believe that the only way of economically producing LWDBs that exactly match
application needs is via generation.

In this paper, we describe P2, a generator of LWDBs. P2 provides the architectural support to assemble
high-performance LWDBs from component libraries. P2 users code their applications in a database pro-
gramming language that is a superset of C. P2 automatically builds (generates) a custom LWDB by analyz-
ing application code and by following user-specified directives that define the database features that are to
be supported. P2 performs many optimizations at generation-time: it compiles queries, inlines code to
manipulate indices, and partially evaluates code statically. These optimizations enable the performance of
P2-generated LWDBs to be comparable or to exceed that of hand-written LWDBs.

A classical lightweight database application is the LEAPS production system compiler [Mir90-91, Bra91-
93]. LEAPS produces the fastest sequential executables of OPS5 rule sets by relying on highly-tuned,
complex, and unusual data management features. No existing DBMS provides the features and perfor-
mance necessary for LEAPS: non-extensible heavyweight DBMSs lack certain features and performance,
and extensible heavyweight DBMSs lack performance. Thus, prior to the introduction of P2, LEAPS relied
on hand-coded LWDBs. In this paper, we present results that show P2-generated LWDBs reduced the
development time and code size of LEAPS by a factor of three and that the generated LWDBs executed
substantially faster than versions built by hand or using an extensible heavyweight DBMS.

2  Generating Lightweight Database Systems

The conventional approach to lightweight database system construction is fraught with problems. With a
partial understanding of the work loads that a LWDB is to support, LWDB designers invent data/storage
structures and algorithms that match the perceived need. Implementing the design is tedious, expensive,
and time-consuming, as it often involves adapting, coding, and debugging well-known algorithms. Once
completed, the LWDB is integrated with the target application to see how well it performs. Without excep-
tion, the anticipated work load is different than the actual work load, and thus some of the design deci-
sions/features of the hand-coded LWDB are recognized to be sub-optimal. At this point, designers face two
unpleasant options: either leave the LWDB as is, knowing that it’s performance could be improved, or
redesign and recode the LWDB for yet another round of testing. Redesigning has the additional unpleasant
side-effect that the interface to the LWDB may change, which in turn, would cause parts of the application
that use the LWDB to be recoded.

There are two fundamental problems with this approach. First, LWDBs should not have ad hoc interfaces.
A LWDB should provide a stable, well-designed interface that would permit applications to be insulated
from changes in LWDB implementations. Second, there needs to be a way of reusing well-known algo-
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rithms, so that the rote tasks of adapting, coding, etc. can be largely avoided. These are the motivating
objectives of P2. To accomplish them, P2 users follow a two-phase approach to the development of
LWDBs and their applications.

The first phase is application development. P2 extends the C language with special data types (e.g., cursors
and containers). LWDB applications are coded in terms of these data types without regard to how these
types are implemented. This approach radically simplifies programming: application development using
high-level database abstractions is substantially easier than using low-level, ad hoc interfaces of hand-
crafted LWDB modules. In Section 2.1, we present the data model and embedded language of P2. In
Section 4, we document the productivity gains by programming with P2 types.

The second phase of development is LWDB feature specification, i.e., how the features of a LWDB are
declared and how implementations of the P2 data types are to be generated. For P2, a lightweight database
system for an application is the implementation of the P2 data types that it references. We will see in
Section 2.2 that both feature specification and data type implementations are accomplished by composing
components from the P2 library. An important advantage of this approach is that it is possible to radically
alter the implementations of cursors, containers, etc. of an application (via a recombination of compo-
nents) to improve application efficiency without modifying application code. Thus, tuning P2 LWDBs is
considerably simplified. We demonstrate the power of this capability in Section 4.

2.1  Phase 1: Application Development using P2 Data Types

The P2 data modeling concepts are rather conventional: a P2 database consists of one or more containers,
where a container is a sequence of elements that are instances of a single data type. Container elements can
be retrieved, referenced, and updated via cursors. Our choice of these abstractions was deliberate: we
wanted the P2 API to be as familiar and easy to learn as possible to database programmers.

The P2 data language is a superset of C; cursors and containers are added as built-in parameterized types.2

Containers are parameterized by the type of element that is to be stored; cursors are parameterized by the
container to be traversed and optionally by a selection predicate and/or sort criterion. An abbreviated dec-
laration of a container of EMP_TYPE instances and a cursor that references selected instances are given
below. In general, P2 cursor and container types are first-class; they can be used like any C type. (Note that
predicates in P2 are strings; attribute A of the element referenced by a cursor is denoted $.A. The $ denotes
to P2 the name of the cursor):

typedef struct { ... } EMP_TYPE; // C struct declaration

container < EMP_TYPE > emp_container; // abbreviated container decl

typedef cursor < emp_container > // cursor typedef declaration
where “$.deptno == 10 && $.age < limit” // limit is user-defined variable
EMP_CURSOR_TYPE;

EMP_CURSOR_TYPE emp_cursor, *ptr, array[5]; // cursor instances

int foo(EMP_CURSOR_TYPE *ptr) { ... } // function with cursor parameter

2. We chose C, rather than C++, as the host language for P2 initially for convenience because our target applications
were written in C. Also, it was not clear to us when we began the P2 project three years ago how successful LWDB
generation would be. C++ would, in retrospect, have been a better host language.



4

P2 offers an (extensible) set of operations on cursors and containers. The code fragment below illustrates
the P2 foreach construct, which is used to iterate over elements of a container. Once a cursor is posi-
tioned, the referenced element can be examined, updated, and/or deleted.

foreach(emp_cursor) // for each selected employee
{

printf(“%s\n”, emp_cursor.name); // print employee name

if (emp_cursor.jobcode == 7) // examine employee jobcode
delete(emp_cursor); // delete employee

else
emp_cursor.deptno = 12; // update employee

}

Composite cursors are used to retrieve tuples of elements produced by multicontainer retrievals. A com-
posite cursor k is an n-tuple of cursors, one cursor per container to be joined. A particular n-tuple of ele-
ments <e1, e2, ..., en> is represented by having the i-th cursor of k positioned on element ei. By advancing
k, successive tuples of a multicontainer join are retrieved. A composite cursor (compcurs) declaration is
given below that joins the department and employee containers. d and e are aliases for the cursors over
the department and employee containers, respectively:

typedef compcurs < d department, e employee > // composite cursor typedef
where “$d.deptno == $e.deptno” // declaration
JOIN_CURSOR_TYPE;

JOIN_CURSOR_TYPE k; // composite cursor instance

foreach(k) // for each ordered pair
{

printf(“(%s, %s)\n”, k.d.name, k.e.name); // print department & employee
delete(k.d); // delete department

}

Perhaps the most novel aspect of composite cursors is that P2 permits the elements referenced by a com-
posite cursor to be updated. Unlike view updates (where changes are restricted [Kel82]), updates are unre-
stricted, but they may effect the tuples that are subsequently retrieved. For instance, once an element of a
tuple is deleted, that element should not belong to any subsequently retrieved tuple. In the code fragment
above, if tuples of k were computed eagerly (i.e., set-at-a-time), k might return tuples with deleted ele-
ments. Figure 1a shows an eager join returning department-employee tuples (d1,e2) and (d1,d3) after
department d1 has been deleted. (Clearly, modifying or deleting previously deleted elements is meaning-
less). Figure 1b, in contrast, shows a valid join which notes database updates performed since the last
advance of k, and skips tuples containing deleted elements. P2 generates the code that supports valid
retrieval semantics.

tuples returned

( d1, e1 )

( d1, e2 )

( d1, e3 )

( d2, e4 )

( d2, e5 )

( d3, e6 )

tuples returned

( d1, e1 )

( d2, e4 )

( d3, e6 )

skip

skip

(a) (b)
by eager join by valid join

Figure 1: Eager and valid joins.



5

Tuple validation is specified through a valid clause predicate, which disqualifies tuples for retrieval. The
following declaration and code fragment eliminates the problems of Figure 1a by only returning tuples
with undeleted department elements. deleted() is a P2 operation that returns TRUE iff the specified ele-
ment has been deleted.

compcurs < d department, e employee >
where “$d.deptno == $e.deptno”
valid “!deleted($d)”
valid_cursor;

foreach(valid_cursor) // skips pairs with deleted departments
{

printf(“(%s, %s)\n”, valid_cursor.d.name, valid_cursor.e.name);
delete(valid_cursor.d);

}

Tuple validation is a general-purpose feature that is useful in graph traversal and garbage collection algo-
rithms where previously positioned cursors may suddenly find themselves referencing deleted elements,
and automatic repositioning of cursors upon advancement is critical for algorithm correctness.

2.2  Phase 2: Feature Specification using Component Compositions

Coding LWDB applications in terms of P2 data types is straightforward. The second phase of P2 applica-
tion development is to define the features that the application’s LWDB is to support and to declare how
implementations of the P2 data types are to be generated. The key to any generative approach is to create a
“domain model” of families of P2 data type implementations (i.e., families of LWDBs), where individual
members of this family have a precise and unique specification in the model [Pri91]. We used the GenVoca
model to express our domain model of LWDBs [Bat92].

As a brief overview, the GenVoca model of software system generation was distilled from the experiences
of building generators for the disparate domains of database management systems, communication proto-
cols, avionics, file systems, and data structures [Bat88, Hut91, Bat93, Cog93, Hei94]. The motivation for
these generators was the scalability problem outlined in Section 1: customized software systems imple-
ment m features out of a possible n features. Rather than building an exponential number of monolithic
systems that offer unique sets of features, one should build systems by composing primitive components
that encapsulate individual features. Thus, by making feature combinatorics explicit, it is possible to
describe vast families of systems with a relatively small number of components. In P2, a target LWDB is
specified as a composition of P2 components.

The set of components that implement the same interface is called a realm. A realm is, in effect, a library
of plug-compatible and interchangeable components. Among the realms of P2 are ds and mem. ds compo-
nents export a standardized container-cursor interface. Among the components of ds are those that imple-
ment common storage structures (e.g., binary trees, doubly-linked ordered and unordered lists) and cursor-
container mappings (e.g., free lists of previously deleted elements, sequential and random storage). mem
components export standardized memory allocation and deallocation operations. Among its members are
components that manage space in persistent and transient memory. A partial listing of ds and mem compo-
nents are given below.

ds = { odlist[ keyfld, ds ], // key-ordered doubly-linked list
bintree[ keyfld, ds ], // binary tree
dlist[ ds ], // unordered doubly-linked list
avail[ ds ], // free list of deleted elements
mlist[ keyfld, ds, ds ], // multilist indexing
predindx[ pred, tfld, ds ], // predicate index
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hpredindx[ pred, tfld, hfld, ds ] // hashed predicate index
tlist[ tfld, ds ], // timestamp ordered lists
htlist[ tfld, ds ], // hashed timestamp ordered lists
malloc[ mem ], // heap storage
array[ mem ], // sequential storage
delete_flag[ ds ], // logical element deletion
... }

mem = { transient, // transient memory allocation
persistent[ file ], // memory mapped persistence
 ... }

Note that components have two kinds of parameters: realm parameters (i.e., parameters that are instanti-
ated by components) and nonrealm or configuration parameters (i.e., parameters that are instantiated by
field names, constants, etc.). Realm parameters are indicated in boldface above; nonrealm parameters are
unemphasized. To illustrate their distinction, consider the component odlist, which encapsulates the con-
cept of key-ordered linked lists. odlist has two parameters: a nonrealm parameter keyfld and a realm
parameter ds. The keyfld parameter declares the key field of the list. The ds parameter indicates that
odlist imports the ds interface. Other components are interpreted in a similar way.3 Currently there are
over fifty P2 components. LWDBs are defined by compositions of components, called type equations, that
typically reference up to twenty components. We will illustrate a P2 type equation shortly.

A unique feature of P2 components (and GenVoca components, in general) is that they are program trans-
formations that encapsulate consistent large-scale data and operation refinements. It is beyond the scope of
this paper to explain the GenVoca methodology or to present an in-depth discussion of these concepts and
their relationships; however, we will illustrate the essential ideas with elementary examples.

A large-scale transformation is a program transformation that refines multiple data types simultaneously.
All P2 components refine element, cursor, and container data types in a consistent manner. As an exam-
ple, the odlist component transforms a container of elements into a container whose elements are linked
together onto an ordered doubly-linked list.

odlist encapsulates the following data refinements:

• element types are augmented with next and prev pointer fields (for double-linking);

• container types are augmented with first and last pointer fields (for head and tail list accessing);

• cursor types are augmented with a current pointer field (to indicate the current element of the list).

odlist is a large-scale transformation because it automatically refines element, container, and cursor

data types by adding new data members, algorithms, and optimizations (e.g., query optimization, code

3. Components that export and import the same interface, such as odlist, are called symmetric; most P2 (and Gen-
Voca components, in general) are symmetric. Symmetric components can be composed in virtually arbitrary ways;
this feature significantly enhances the scalability and composibility of GenVoca components.

cursor

container

elements

Figure 2: The odlist Transformation

cursor

container

elements

first

last
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inlining, partial evaluation) for the ordered-list feature. So, the way to understand the odlist transforma-
tion is that it takes a P2 program (with cursors, containers, elements) as input, and produces a refined P2
program (with refined cursors, containers, elements) as output. By cascading transformations (i.e., com-
posing components in type equations), implementation details of the target LWDB are progressively
revealed.

Some simple P2 type equations are:

T1 = odlist[“age”, delete_flag[ malloc[ transient ]]];
T2 = bintree[“name”, odlist[“city”, array[ persistent[“/tmp/x”]]];

T1 means that the elements of a container will be linked together onto a doubly-linked list ordered on field
“age” (by odlist). List nodes will be marked deleted without reclaiming their space (by delete_flag)
and will be allocated from a heap (by malloc) that resides in transient memory (by transient).

On the other hand, T2 defines a very different storage structure. eqn2 means that the elements of a con-
tainer will be linked together onto a binary tree whose key field is “name” (by bintree); binary tree nodes
will be linked together onto a linked list ordered by field “city” (by odlist). List nodes will be stored
sequentially (by array) in persistent file “/tmp/x” (by persistent).

Type equations are declared via the P2 typex declaration; complete container declarations specify the type
of elements to store and the type equation that defines the container/cursor/element implementation map-
pings:

typex {
T1 = odlist[“age”, delete_flag[ malloc[ transient ]]]; // type eqn decl

};

typedef container <EMPLOYEE_TYPE> stored_as T1
EMP_CONTAINER_TYPE; // full container decl

EMP_CONTAINER_TYPE e1, e2, *e3, e_array[12]; // container instances

As these examples suggest, P2 programmers are armed with a small handful of P2 components that can be
composed in vast numbers of ways to produce large families of distinct LWDB implementations. This
powerful feature allows P2 users to explore different LWDBs implementations easily by altering just a
container’s type equation and recompiling; no other source code modifications are needed. Further details
about type equations and P2 components are discussed in [Bat93, Bat94b-c].

3  The LEAPS Lightweight Database Application

The LEAPS production system compiler is a classical lightweight database application. LEAPS (Lazy
Evaluation Algorithm for Production Systems) produces the fastest sequential executables of OPS5 rule
sets [Mir90-91]. A LEAPS executable is a lightweight database application, because it represents its data-
base of assertions as a set of containers, and because it uses unusual search algorithms and novel container
implementations to enhance rule processing efficiency; no heavyweight DBMS offers the performance or
features needed by LEAPS.

As a brief overview, OPS5 is a forward-chaining rule programming language [Coo88]. An OPS5 program
is a set of rules; an OPS5 rule named done is shown below. It consists of a left hand side of three condition
elements, an arrow (-->), and a right hand side with two actions.

(p done
(context ^value check_done)
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(last_seat ^seat1 <seat>)
(seating ^seat2 <seat>)

-->
(write Yes we are done)
(modify 1 ^value print_results))

Each condition element (CE) specifies a container and one or more selection predicates. Names in angle
brackets <> denote variables whose values are to be instantiated during a search. The first CE of done

defines the selection predicate context.value == ‘check_done’ over the context container. The next
two CEs join the last_seat and seating containers by the equijoin predicate last_seat.seat1 ==

seating.seat2. The selection predicate of an OPS5 rule is the conjunction of the predicates of its CEs,
which in this case is “context.value == ‘check_done’ && last_seat.seat1 == seating.seat2”.

OPS5 execution follows a match-select-act cycle: rules whose predicates can be satisfied are identified
(match), a satisfiable rule is chosen (select), and the actions of the chosen rule are evaluated by a tuple that
satisfies the rule predicate (act). (The actions of the done rule print the string “Yes we are done” and
update the value field of the selected context element to be print_results). This cycle continues until
no rule can be satisfied.

LEAPS translates OPS5 rule sets into C programs (Figure 3). To implement LEAPS using P2, we wrote a
translator RL (Reengineered Leaps) that converts an OPS5 rule set into a P2 program that embeds the
LEAPS algorithms. The RL-generated P2 program is converted into a C program by the P2 generator, thus
accomplishing in two translation steps what the LEAPS compiler does in one.

3.1  Phase 1: Application Development

The LWDB applications produced by RL are very complicated. Every OPS5 rule set is translated into a set
of containers, a composite cursor type for each rule, and the LEAPS algorithms that manipulate elements,
cursors, and containers. The rule set containing the done rule would have at least the following P2 contain-
ers, where RLx is a LEAPS container type equation to be defined in Phase 2.

container < CONTEXT > stored_as RLx context; // CONTEXT, SEATING, and
container < LAST_SEAT > stored_as RLx last_seat; // LAST_SEAT are C struct
container < SEATING > stored_as RLx seating; // typedefs

The done rule itself would be translated into the following composite cursor data type:

#define done_query “$a.value == ‘check_done’ && $b.seat1 == $c.seat2”
#define done_temporal “$a.ts <= gts && $b.ts <= gts && $c.ts <= gts”
#define done_valid “!deleted($a) && !deleted($b) && !deleted($c)”
typedef compcurs < a context, b last_seat, c seating >

where done_query “ && ” done_temporal

ops5
rule
set

RL System

C
program

RL
translator

P2
program

P2
generator

LEAPS

Figure 3: Relationship between LEAPS and RL.
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valid done_valid
DONE_CURSOR_TYPE;

The containers to be joined by done are parameters to the compcurs declaration. The done selection predi-
cate is expressed by done_query. This part of the translation is simple.

During rule set execution, it is possible that multiple cursors of DONE_CURSOR_TYPE may be active. Times-
tamps are used by LEAPS to achieve fairness—i.e., to preclude rules from being fired more than once by
the same tuple of elements. LEAPS augments every element with a timestamp field ts, whose value indi-
cates when the element was inserted. done_temporal is the temporal predicate used by LEAPS to accom-
plish fairness; ts is the timestamp field of an element and gts is a global timestamp whose value is
determined by LEAPS.

When a rule is fired, a composite cursor (whose tuple seeded the rule firing) is pushed on a stack, thereby
suspending the execution of its joins. Only when the cursor is popped off and advanced are its joins
resumed. During the time the cursor is on the stack, any or all of the elements that it referenced may have
been deleted. Consequently, the cursor must be validated upon advancement. The done_valid predicate
defines the valid conditions.

There are many other sources of complexity in LEAPS. For example, an OPS5 rule can have any number
of negated condition elements. A negated CE is a predicate that disqualifies tuples of elements that satisfy
the (positive) CEs of a rule. An unusual aspect of negated CEs is that their predicate is temporal; additional
containers (called shadows) must be created to contain the elements deleted from non-shadow containers
in order to evaluate negated CEs. As another example, LEAPS reduces string matching time by maintain-
ing a symbol table (i.e., a container) so that element address comparisons can be used in place of expensive
string comparisons. Other details are explained in [Bat94a].

3.2  Phase 2: Feature Specification

LEAPS algorithms require containers to be searched in timestamp order. Thus, all container storage struc-
tures used by LEAPS maintain timestamp ordering. The P2 tlist component maintains elements of a con-
tainer on a time-stamp ordered list. (The P2 component odlist might also be used, where the key-field
would be the element’s timestamp field. However, tlist is preferred as it has special optimizations that
give it superior performance).

Because rule sets are static, LEAPS takes advantage of the fact that it knows the complete set of predicates
that will be evaluated during rule set execution. A special storage structure, called a predicate index, is
used to enhance rule processing efficiency. A predicate index is a timestamp-ordered list of elements that
satisfy a given predicate; the predicate itself is over a single container and has no variables. The P2 compo-
nent predindx implements predicate indices.

The reclamation of deleted elements in LEAPS is delayed until execution reaches a fix-point; the reason is
that composite cursors (whose executions have been suspended) may reference deleted elements. For this
reason, elements are logically (but not physically) deleted using the delete_flag component.

Finally, as the number of elements to be stored is unbounded, allocation of storage space must be done
through heaps (using the P2 component malloc). Memory allocation in transient memory is accomplished
using the P2 component transient; persistent memory allocation via memory-mapped I/O is accom-
plished using persistent.
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An unusual, but critical, aspect of the LEAPS algorithms is its dependency on nested loop join algorithms.
All other join algorithms (hash-join, merge-sort, etc.) create intermediate relations during join processing.
The LEAPS implementors discovered the creation of intermediate relations to be a primary obstacle to fast
rule processing.4 Given this dependency, we discovered that we could improve the efficiency of nested
loop joins by emulating hash joins. This was accomplished by replacing timestamp-ordered lists with
hashed-timestamp ordered lists (component hlist) and predicate indices with hashed-predicate indices
(component hpredindx). That is, rather than searching a time-stamp ordered list for elements with a given
join key, we hashed on join keys to search a (small) bucket of timestamp-ordered elements. As we’ll see in
Section 4, using these structures yields a substantial improvement in LEAPS performance.

The general forms of the P2 type equations that we used to store LEAPS databases are RL1-RL4:

typex {
RL1 = predindx[ … tlist[ delete_flag[ malloc[ transient ]]]…];
RL2 = predindx[ … tlist[ delete_flag[ malloc[ persistent[“/tmp/x”]]]…];
RL3 = hpredindx[ … htlist[ delete_flag[ malloc[ transient ]]]…];
RL4 = hpredindx[ … htlist[ delete_flag[ malloc[ persistent[“/tmp/x”]]]…];

}

For each equation, there are zero or more predicate indices (or hashed predicate indices) maintained per
container. RL1 differs from RL2 only in the transient or persistent storage of containers. RL3 differs from
RL1 by replacing structures that don’t use hashing with ones that do. RL4 is the persistent storage counter-
part of RL3.

4  Results

The LEAPS algorithms are notoriously difficult to understand. In interviews with the LEAPS development
team, they felt that their expertise would enable them to rewrite LEAPS in 2-3 months, whereas novices
(us) would take at least twice that long to code (e.g., 6 months). It did take us several months to compre-
hend the algorithms, but only took us two months to code RL.5 As supporting evidence, RL is less than 5K
lines of C, lex, and yacc. LEAPS is four times larger — almost 20K lines: 10K for the basic compiler and
another 10K for the run-time system included in all LEAPS-produced executables. Thus for the LEAPS
application and LWDBs, using P2 reduced the development time and code size by a factor of three.

We discovered two reasons for this. First, P2 offers substantial leverage in developing LWDBs and their
applications. P2 is currently 50K lines of code; it performs general optimizations that LEAPS experts had
to hand-code into their compilers. Second, by far the most substantial productivity gain was using P2 data
types to express the LEAPS algorithms. Although complicated, the LEAPS algorithms are elegant when
expressed in P2. The P2 separation of LWDB implementation details from its client applications signifi-
cantly reduced the complexity RL’s development and the understanding, coding, and debugging of the
LEAPS algorithms.

To help us evaluate the performance of RL/P2-generated programs, the LEAPS development team pro-
vided us with OPS5 rule set benchmarks: tripl (3 rules that output 3-tuples of numbers ranked in

4. Remember that the execution of many composite cursor retrievals can be suspended during rule execution in
LEAPS. If cursors used temporary files for intermediate join results, the space and time complexity of LEAPS would
greatly increase. Computing joins in a “lazy” manner gives LEAPS its name and execution efficiency.

5. The un-optimized algorithms of LEAPS were coded in a week. P2 was being written at the time of our RL work;
the remainder of the two months included the time spent waiting for P2 to be debugged and the time needed to add
the myriad optimizations to RL that LEAPS uses [Bat94a].
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descending order), manners (8 rules that find seating arrangements with constraints), waltz (33 rules that
define a 2-D line labeling program), and waltzdb (38 rules that define a more complex version of waltz).
Each of these rule sets processed scalable input data sets; programs that generated these data sets were
included with each rule set. The LEAPS development team also provided us with two versions of LEAPS:
OPS5.c (a version that generates programs whose databases are main-memory resident [Mir90-91]) and
DATEX (a version that generates programs whose databases are disk-resident [Bra93]). DATEX databases are
stored by Jupiter, the (heavyweight) Genesis file management system [Bat88]. Thus, OPS5.c and DATEX

provided us with an ideal opportunity to evaluate the scalability of P2: we could compare P2-generated
LWDBs with both hand-coded main-memory LWDBs and a heavyweight extensible disk-resident DBMS.
We accomplished this using the same P2 programs generated by RL, but swapping the type equations RL1
and RL2 (defined previously).

Prior to benchmarking, it was our goal to have RL/P2 generated programs have a performance within 10%
of LEAPS. We expected to be slower because (1) P2 is a general-purpose tool whereas LEAPS was hand-
coded by experts, and (2) we converted OPS5 programs to C programs in two translation steps, whereas
LEAPS accomplished this in one step (Figure 3).

Results of our benchmarking are presented in Figure 4.6 Let’s consider first the performance of RL1 and
RL2. In all cases, their performance exceeded that of OPS5.c and DATEX. RL1 was typically two times faster
than OPS5.c, while RL2 was typically fifty times faster than DATEX.

RL1’s improved performance over OPS5.c was due to several reasons. First, P2 generated code is more effi-
cient than that of OPS5.c; P2 can perform optimizations automatically that are difficult, if not impractical,
to do by hand. Second, expressing the LEAPS algorithms in terms of P2 abstractions clearly revealed some

6. The timing results presented here were obtained on a SPARCstation 5 with 32 MB of RAM running SunOS

4.1.3 using the gcc2.5.8 compiler with the -O2 option. Similar results have been obtained on other architectures.

Figure 4: Results of LEAPS Experiments
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simple optimizations that were otherwise obscured. Third, the design and implementation of OPS5.c was
so complicated that it was necessary to replicate predicate indices for understandability; eliminating repli-
cated indices was trivial in the RL/P2 version. Fourth, OPS5.c used a tagged type system and performed
dynamic garbage collection unnecessarily. (This was an example of a LWDB being designed to meet per-
ceived needs that never arose). It was through our experiments with RL/P2 that the LEAPS implementors
learned that garbage collection was unnecessary.

RL2’s improved performance over DATEX was due in part to the reasons cited over OPS5.c, but by far the
most substantial gains came from eliminating the large overheads of heavyweight (extensible) DBMS con-
struction. These included: layered software designs, interpretive execution of queries, buffer management,
and general-purpose storage structures that were not as efficient as the LEAPS-optimized storage struc-
tures of OPS5.c. These overheads caused DATEX to be slower than OPS5.c by more than an order of magni-
tude, whereas swapping the transient component in RL1 with persistent to produce RL2 (i.e., replacing
transient memory with memory-mapped I/O) reduced performance by only a few percent.

When we swapped RL1 and RL2 with RL3 and RL4 (i.e., when we used hashed structures instead of non-
hashed), we observed an astounding performance improvement for three of the rule sets. For manners,
waltz, and waltzdb, RL3 executed over an order of magnitude faster than OPS5.c and RL1; RL4 was three
orders of magnitude faster than DATEX. The reason is simple: nested loops is an inefficient join algorithm;
by emulating hash joins, we obtained big improvements in performance. We did not achieve speedups for
tripl, as tripl has only inequality-joins and thus hash-joins could not improve its performance.

We can make three important observations here. First, experimenting with very different LWDB imple-
mentations was effortless: all we needed to do was to alter type equations and recompile. Second, when
needed components were absent from the P2 library (as was the case for htlist and hpredindx), it took us
only three days to write them. We were able to reuse other components of the P2 library to minimize our
coding efforts. In contrast, DATEX was a full rewrite of OPS5.c and took many months to complete. Third,
P2 provides a technology by which customized LWDBs (i.e., customized type equations) can be generated
per rule set to maximize performance; this capability is impossible with standard LWDB implementation
techniques, including those used by LEAPS.

5  Conclusions

The data management needs of many applications are not met by conventional DBMSs: non-extensible
heavyweight DBMSs lack certain features and performance, and extensible heavyweight DBMSs lack per-
formance. What is needed are lightweight DBMSs, database systems that omit features of heavyweight
DBMSs and that optimize the implementations of the supported features to maximize performance.

In this paper, we described P2, a lightweight DBMS generator that combines a relatively traditional data
model and embedded data language with a powerful model of software system construction (GenVoca).
This combination of technologies enables P2 to generate efficient LWDBs automatically from a simple set
of specifications (e.g., GenVoca type equations). We reported results of several experiments on a very com-
plex LWDB application (LEAPS) that showed P2 generates efficient code, offers a powerful form of
LWDB customizability, and substantially simplifies the development of LWDB applications as well as the
tuning of LWDBs by enabling different algorithms/features to be tried merely by plugging and unplugging
components.

We are currently extending the capabilities of P2. New components will offer additional DBMS features
(e.g., concurrency control, client/server architecture, set-oriented queries) as well as a greater variety of
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implementations of existing features (e.g., t-trees [Leh86] and sort-merge joins). This will allow us to use
P2 to generate LWDBs for a broader range of applications.

We believe lightweight DBMSs have a wide applicability and practical importance. We feel that our work
with the P2 demonstrates that generating lightweight DBMSs is feasible. In the hope that P2 will benefit
other researchers, we provide the source code and documentation for P2 via anonymous ftp from
ftp.cs.utexas.edu:/pub/predator/.
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