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Abstract. The future of software engineering lies in automation and will
exploit the combined strengths of generative programming, domain-specific
languages, and automatic programming. While each of these areas is still in
its infancy, a spectacularly successful example of their combination was re-
alized twenty-five years ago: relational query optimization. In this paper, I
chart the successes and mindset used by database researchers to generate ef-
ficient query processing programs automatically. I argue that the road that
they have so successfully followed is the same road that the generative pro-
gramming, domain-specific languages, and automatic programming commu-
nities are now traversing.

1 Introduction

Just as the structure of matter is fundamental to chemistry and physics, so too is the
structure of software fundamental to computer science. By the term ‘structure’ I mean
what are modules, and how are modules composed to build programs? Unfortunately,
the structure of software is not well-understood. Software design, which is the process
by which the structure of an application is defined, is an art form. And as long as it re-
mains so, our abilities to automate software development and make software engineer-
ing a true engineering discipline will be limited.

Our goal should be to create a mathematical science of software design. That is, we need
to create general purpose theories of how customized software can be synthesized au-
tomatically. Object-oriented models are adequate if we implement programs manually;
higher-level representations of programs are required for program synthesis. These the-
ories will embody advances in generative programming (GP). That is, we want to un-
derstand the programs in a domain so well that they can be generated automatically. We
want generators to synthesize these programs and do the hard technical work for us.
This is a shared goal of the generative programming, metaprogramming, and skeleton

1. Author’s note: This is the text of a keynote presentation at the Dagstuhl Seminar for
Domain-Specific Program Generation, March 2003. The quotations within this paper are
taken from the pre-seminar surveys that invitees identified as key research issues; the quo-
tations from Jim Neighbors are from his review of this paper.
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communities. Program generation should not be an ad-hoc set of implementation tech-
niques; rather, it is essential that we develop practical theories that integrate program-
ming concepts and domain knowledge to automate software development. 

We also need advances in domain-specific languages (DSLs), which are special-pur-
pose programming languages (or extensions to general-purpose languages) that allow
programmers to more easily express programs in terms of domain-specific abstractions
(e.g., state machines, EJB declarations). We do not want to be programming in Java and
C# twenty years from now. Rather, we want to elevate program specifications to com-
pact domain-specific notations that are easier to write, understand, and maintain.

And finally, we need advances in automatic programming (AP). This is the extreme of
GP and DSLs. Namely, the challenge of AP is to synthesize an efficient program from
a declarative specification. This is a very hard problem; in the early 1980s, researchers
abandoned AP as existing techniques simply did not scale to programs beyond a few
hundred lines [1]. Now AP is undergoing a renaissance, and its need (e.g., for fault tol-
erance) is even more critical than ever.

To make advances simultaneously on all these fronts seems impossible. Yet, there ex-
ists a spectacular example of GP, DSLs, and AP in a fundamental area of computer sci-
ence. And ironically, it was achieved about the same time that others were giving up on
AP. The area is databases; the result is relational query optimizers.

In this paper, I review the successes and mindset that database researchers used to gen-
erate efficient query processing programs automatically and explain that the road that
they followed so successfully is the same road that the GP, DSL, and AP communities
are now traversing. I cite lessons that should be learned and chart a road-map that others
could follow to achieve comparable successes in other domains. I use “Utopia” as the
name of the objective that lies at the end of this road.

2 Lessons Learned and Lessons To Be Learned

2.1 Relational Query Processing

Relational queries are expressed as SQL SELECT statements. A parser translates a SE-
LECT statement into an inefficient relational algebra expression, a query optimizer re-
writes this expression into an equivalent expression that has better (or optimal) perform-
ance properties, and a code generator translates the optimized expression into an exe-
cutable program (Figure 1). 

SQL is a classic example of a declarative DSL. It is a language that is specific to tabular
representations of data. The code generator, which maps a relational algebra expression
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Figure 1   Relational Query Optimization



to an executable program, is an example of GP. The query optimizer is the key to AP:
it searches the space of semantically equivalent expressions to locate an expression
which has good (or optimal) performance characteristics.

Relational query processing is an instance of a very powerful and very successful par-
adigm that researchers in GP should strive to replicate in other domains. If this could be
achieved, would this be Utopia? No, but it would be on the road…

2.2 Cognitive Systems

“The world changes quickly, and our applications need to adapt to these changes
quickly. Program generation (as useful as it is) is but a link in a long chain” — Cal-
ton Pu.

Software evolution is inevitable, and evolution is part of maintenance. Maintenance is
the most expensive part of a program’s life cycle. To minimize costs, we ideally would
like to automate as many maintenance tasks as possible.

Cognitive systems is an exciting area of contemporary research [8]. A cognitive system
is a program whose performance improves as it gains knowledge and experience. In ef-
fect, it is a program that automates some of its maintenance tasks. So how have relation-
al optimizers faired?

It turns out that relational optimizers are cognitive systems! Query optimization relies
on cost models that are driven by database statistics. Example statistics include the
number of tuples in a relation, the selectivity of predicates (e.g., what fraction of a re-
lation’s tuples satisfy a given predicate), the length of attribute values, etc. [22]. These
statistics change over time as data is inserted and removed from tables. Thus, keeping
statistics up-to-date is a key problem for optimizer maintenance. Interestingly, most op-
timizers — even simple ones — refresh their database statistics automatically. As gen-
erated query evaluation programs execute, statistics are gathered on data that is re-
trieved, and are used to refresh or update previously stored statistics. This allows the
optimizer to improve the programs that it subsequently generates. In this way, optimiz-
ers learn new behaviors automatically and thus are cognitive systems.

So if this also can be replicated in other domains, would this be Utopia? No, but it is on
the road…

2.3 Generating Non-Code Artifacts

“How do we cope with non-binary non-code artifacts, e.g., manuals, tutorials, help
files etc. that are specific for a generated product?” — Ulrich Eisenecker
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Figure 2   Cognitive Programming in Relational Query 



Generating non-code artifacts is an important problem, for no other reason than gener-
ating source code for a target program is always insufficient. Architects routinely use
multiple representations of programs to express a system’s design, using representa-
tions such as process models, UML models, makefiles, and documents [13]. The pro-
ductivity gains of generators that automatically synthesize source code is negated if oth-
er representations (which might be needed for integrating this program into a larger sys-
tem) must be written manually. Clearly, all needed representations of a program should
be generated. What are the experiences of database researchers in this regard?

Interestingly, relational optimizers use multiple representations of programs. In fact,
two different representations are maintained for each relational algebra operator. One is
the source code representation of the operator, and the second is a cost model represen-
tation, which is needed for optimization. Thus, for a relational algebra expression E:

E = join( select(...), select(...))

an optimizer derives a cost model of that program by composing cost model represen-
tations of the operators:

Ecost = joincost( selectcost(...), selectcost(...))

In a similar manner, an optimizer can also derive source code representation of an ex-
pression by composing the code representations of these same operators:

Ecode = joincode( selectcode(...), selectcode(...))

That is, the modularity and structure imposed on code (or code generators) is exactly
the same as that for cost models: they all align along operator boundaries.

During optimization, optimizers synthesize cost models for each program they evaluate.
They search the space of equivalent programs, synthesize the cost model of each pro-
gram, use the cost model to estimate the performance of that program, and identify the
program that will be the most efficient. Code is synthesized only for the most efficient
program.

So the need for multiple representations is indeed present, but the approach is not suf-
ficiently developed for general purpose needs. Recent work suggests it is indeed possi-
ble to synthesize arbitrary representations of programs using an algebraic approach [5].

2.4 The Quality of Performance (or Cost Model) Estimates

“A performance estimate of good quality, especially for modern hierarchical paral-
lel systems, is needed.” — Holger Bischof

“Especially important are rules and methods for composing skeletons in large-scale
applications with reliable performance prediction.” — Sergei Gorlatch

The quality of performance estimates has long been known to be critical for identifying
good access plans in query optimization. Interestingly, cost estimates used by query op-
timizers have historically been simple and crude, based on averages. For n-way joins
(for large n) estimates are known to be very poor [15]. Further, performance estimates
that are based on page caching – that is, knowing what pages are on disk and which are
in the cache, are highly unreliable. Despite these limited capabilities, relational optimiz-



ers have done quite well. I am sure there are domains other than query processing that
require more precise estimates.

In any case, if these problems are solved, would this be Utopia? No, its on the road… 

2.5 Extensibility of Domain Algebras

“A key technical problem is expressiveness: can we fix a general purpose set of
skeletons (read: operators) that covers all the interesting structures? Should we have
several different skeleton sets for different application domains?”— Susanna Pela-
gatti

“Expandability of skeleton frameworks must be studied. The programming model
of skeletons must provide open source skeleton libraries/frameworks.” — Marco
Danelutto

“DSLs are best understood in terms of their ‘negative space’ – what they don’t do
is just as important as what they do... How to avoid ‘mission creep’ for languages?”
— Shriram Krishnamurthi

Are domain algebras closed, meaning do they have a fixed set of operators, or are do-
main algebras open, allowing new operators to be added subsequently? This is a funda-
mental question whose answer is not immediately obvious. The experience of database
researchers is quite interesting with respect to this topic. To appreciate the lessons that
they learned (and the lessons that we should learn), it is instructive to see what database
researchers did “right”.

The success of relational query optimization hinged on the creation of a science to spec-
ify and optimize query evaluation programs. Specifically researchers:

• identified the fundamental operators of this domain, which was relational algebra,

• represented programs as equations (or expressions) which were compositions of
these operators, and 

• defined algebraic relationships among these operators to optimize equations.

Compositional programming is a holy grail for programming paradigms: it defines a set
of building-blocks or “legos” that can be snapped together to build different programs.
The key property of compositionality is made possible by algebraic models. Composi-
tionality is the hallmark of great engineering, of which relational query optimization is
an example.

Now, let’s return to the open or closed nature of domain algebras. Relational algebra
was originally defined by the project, select, join, and cross-product operators. For
years, by definition it was closed1. During this time, people were trying to understand
the implications of the classic 1979 Selinger paper on System R optimizer [22], which
revolutionized query evaluation and set the standard relational optimizers for the next
two decades. This paper dealt only with queries formed from compositions of the basic
relational operators. But from 1985 onward, there was a series of papers approximately

1. Not “closed” in a mathematical sense, such as addition is closed in integers but not in sub-
ranges. By “closed” I mean a social club: no new members were thought to be needed.



titled “I found yet another useful operator to add to relational algebra”. Among these
operators are data cube (aggregation) [10], transitive closure [16], parallelization of
query evaluation programs (that map a sequential program to a parallel program) [9],
and new operators for time series [24], just to mention a few.

So is relational algebra complete? No! It is obvious now that it will never be closed, and
will never be complete. There will always be something more. And this will be true for
most domains. Database systems now deal with open algebras, where new operators are
added as needed; they are more type extensible than before; hooks are provided into the
optimizer to account for the peculiarities of new operators, such as Hellerstein’s work
[14] on user-defined queries.

But the core of model remains fixed: query optimization is still based on an algebra and
programs are still represented algebraically, because the algebraic paradigm is simply
too powerful to abandon. 

2.6 Implications with Open Algebras

“Once a synthesis system solves non-trivial problems, it usually gets lost in vast
search spaces which is not only spanned by the different ways to derive a specific
program, but also the set of all possible programs satisfying the specification. Con-
trol of the search is thus a major problem, specifically the comparison and choice
between different ‘equivalent’ programs.” — Bernd Fischer

“How to represent the space of possible optimization alternatives for a component
(read: operator), so that the best combination of optimizations can be chosen when
the component is used?” — Paul Kelly

Given the fact that open algebras will be common, how has this impacted query process-
ing research? My guess is that the database community was lucky. The original opti-
mizers supported only the initial set of relational operators. This constraint made query
optimization amenable to a dynamic programming solution that admitted reasonable
heuristics [22]. The end result was that database people could legitimately claim that
their optimization algorithms were guaranteed to find the “best” query evaluation pro-
gram. And it was this guarantee that was absolutely crucial for early acceptance. Prior
work on query optimization used only heuristics, and the results were both unsatisfying
and unconvincing. Providing hard guarantees made all the difference in the world to the
acceptance of relational optimizers.

Ironically, the most advanced databases today use rule-based optimizers that offer many
fewer guarantees. But by now, database people are willing to live with this. So is this
Utopia? No, its on the road…

2.7 What is Domain Analysis?

“A key problem is what exactly are the common algorithmic structures which un-
derpin ‘enough’ parallel algorithms to be interesting? Is it reasonable to expect that
such a generic collection exists, or is it more appropriate to look in domain specific
ways?” — Murray Cole



“What is the target domain?” is a core question of generator technologies. An analysis
of a domain, called domain analysis, identifies the building blocks of programs. Gener-
ators implement the output of domain analysis. But what exactly is “domain analysis”
and what should be its output? Today, “domain analysis” is almost a meaningless term.
But oddly enough, whatever it is, we all agree domain analysis is important! For in-
stance:

“On domain engineering – any synthesis system which is useful to users must be
able to generate a large number of non-trivial programs which implies it must cover
a substantial part of the domain of interest. Formalizing and organizing this domain
is the major effort in building a synthesis system.” — Bernd Fischer

“We need a methodology to systematically map domain analysis into a DSL design
and implementation.” — Charles Consel

“We need a systematic way to design DSLs.” — Krzysztof Czarnecki

“Future work should improve existing methodologies for DSLs” — Laurent Rev-
eillere 

So what did database people do? They had two different outputs of domain analysis.
First, they defined relational algebra, which is the set of operators whose compositions
defined the domain of query evaluation programs. (So defining a domain algebra is
equivalent to defining the domain of programs to generate). Another related analysis
produced the SQL language, which defined declarative specifications of data retrieval
that hid its  relational algebra underpinnings. So database people created both and inte-
grated both.

In general, however, these are separable tasks. You can define a DSL and map it to a
program directly, introducing optimizations along the way. Or you can define a DSL
and map it to an algebra whose expressions you can optimize. 

This brings up a fundamental result on hierarchies of DSLs and optimizations. The first
time I saw this result was in Jim Neighbor’s 1984 thesis on DRACO [19]. The idea is
simple: programs are written in DSLs. You can transform (map) an unoptimized DSL
program to an optimized DSL program because the domain abstractions are still visible.
Stated another way, you can not optimize abstractions that have been compiled away.

Given an optimized DSL program, you translate it to an unoptimized program in a low-
er-level abstraction DSL and repeat the same process until you get to machine code. So
it is this “zig-zag” series of translations that characterize hierarchies of DSLs (or hier-
archies of languages, in general) and their optimizations (Figure 3a).

Figure 3b depicts a DRACO view of relational query optimization. You begin with an
SQL SELECT statement. A parser produces an unoptimized relational algebra expres-
sion. A query optimizer optimizes this expression and produces an optimized relational
algebra expression. A code generator translates this to an unoptimized Java program,
and the Java compiler applies its optimization techniques to produce an optimized Java
program.

GP occurs when mapping between levels of abstraction, and AP occurs when optimiz-
ing within a level of abstraction. More commonly, optimizations are done internally by



DSL compilers. That is, a DSL program is mapped to an unoptimized internal represen-
tation, and then this representation is optimized before translating to an executable. 

The point is that there can be different outputs of domain analysis, and that different op-
timizations occur between various translations. The most significant optimizations, I as-
sert, occur at the “architectural” or “algebraic” level.

So is this Utopia? No, its on the road…

2.8 Software Design

“Software technology in domain-specific programming involves getting the inter-
face right, getting the split right (how to separate the domain-specific from the do-
main-independent)” — Chris Lengauer

“It is most essential for component software to standardize well-defined interfac-
es.” — Wolfgang Weck

These are fundamental problems of software design. I’ll sketch a common problem, and
then show how a database approach solves it. But first, we need to understand the rela-
tionship between operator compositions and layered designs.

Figure 4 depicts a layered design, where layer a
is on the bottom, layer b sits atop a, and layer c
is atop b. Operator implementations often corre-
spond to layers or layers of abstraction. The de-
sign in Figure 4 corresponds to the composition
c(b(a)), where layers a, b, and c implement
their respective operators.

In general, systems are conceptually, but not
physically, layered [12]. Interfaces delineate the
boundaries of operators/layers a, b, and c. These
interfaces might be Java interfaces or they might be DSL specifications!
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Figure 3   DRACO DSL Hierarchies and Optimizations
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Now to an example. Suppose a program maintains a set of records of form (age, tag)
and these records are stored on an ascending age-ordered linked list (Figure 5). Here the
first record has age=1, tag=A, the next record age=10, tag=B and so on.

Periodically, we want to count all records that satisfy the predicate age>n and tag==t,
for some n, t. What is the code for this retrieval? Here’s our first try: we write an or-
dered list data type. Our retrieval is simple: we examine every record, and apply the full
predicate. This program is easy to write. Unfortunately it is inefficient.

int count = 0;
Node node = container.first;
while (node != null) {
   if (node.tag == t && node.age > n)
       count++;
   node = node.next;
}

Our next try exploits a property of ordered lists. The observation is that we can skip over
records that don’t satisfy the key predicate, age>n. As soon as we find the first record
that satisfies the predicate, we know that all records past this point also satisfy the pred-
icate, so all we need to do is to apply the residual predicate, tag==t, to the remaining
records. This leads to the following 2-loop program. It takes longer to write, longer to
debug, but the result is more efficient.

int count = 0;
Node node = container.first;

while (node != null && node.age <= n)
       node = node.next;

while (node != null) {
   if (node.tag == t)

       count++;
   node = node.next;
}

There is yet another alternative: a Java programmer would ask: Why not use the Java
library? With library classes, you would have to write even less code! In the J2SDK,
TreeSet implements SortedCollection. With TreeSet, the desired subcollection
can be extracted in one operation (called tail()). By iterating over the extracted ele-
ments and applying the residual predicate as before we can produce the desired result.
The code is indeed shorter:

int count = 0;
// ts is TreeSet with elements

TreeSet onlyOld = ts.tail(n);
Iterator i = onlyOld.iterator();

1,A 10,B 15,A 26,C 32,C 37,D 41,A1,A 10,B 15,A 26,C 32,C 37,D 41,A

Figure 5   A Linked List for our Example



while (i.hasNext()) { 
Node node = (Node) i.next();

   if (node.tag == t)
      count++;
}

Unfortunately, the TreeSet code is much slower (maybe even slower than original list
implementation). Why? The reason is TreeSet creates an index over all the records
that it sorts. Applying the tail operation creates an index that references the extracted
elements. Index construction can be very slow. This raises a classical dilemma: if you
want execution speed, stay with customized code. If you want to write the code fast, use
libraries.

This problem has everything to do with selecting the right interfaces and right abstrac-
tions and is a classical situation for the use of DSLs and GP. Let me review a database
solution to this problem [3]; a more general formulation is presented in [21].

Figure 6 depicts the code we wrote. Users
would write the code above the left hori-
zontal line, which is the user program and
traversal loop. But look what happens
when we swap data structures (or change
the record ordering). Our program
breaks. The reason is that implementation
details — specifically the record storage
order — of the data structure leaked into
our program. So if these details change,
our program has to change too.

What we need are higher-level abstrac-
tions (e.g., a DSL) to specify a data struc-
ture and its traversals. That means that us-
ers should write data structure generic
code, and the rest (loop, data structure itself) is generated. (That is, users should write
the code above the right horizontal line in Figure 6). A database solution is to use a SQL
to specify retrieval predicates and declarative relation implementation specifications to
implement the container. That is, a container is a relation. Predicates for cursors (itera-
tors) are declaratively specified in SQL and the SQL compiler generates the cursor/it-
erator class that is specific to this retrieval. This makes the user program data-structure
(relation implementation) independent! Further, it exploits DSLs, algebraic optimiza-
tions of relational optimizers and amazingly, the code a user has to write is even simpler
than using generics! And the code is efficient [4], too!

cursor1 c = new cursor1(n,t);
int count = 0;

for (c.first(); c.more(); c.next())
   count++;

So is this Utopia? No, its on the road…
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2.9 Scalability of Algebraic Approaches

Do algebraic approaches scale? Let’s face it, query evaluation programs and data struc-
tures are tiny. Can an algebraic approach synthesize large systems? If it can’t, then we
should pack our bags and try something else.

Interestingly, it does scale. And this brings us to a key result about scaling. Feature Ori-
ented Domain Analysis (FODA) is pioneering work by Kyo Kang, et al [17]. His work
deals with product-lines and producing a family of related applications by composing
primitives.

So the goal is to synthesize a large application from “primitives”. But what are these
primitives? Consider the following thought experiment. Suppose you have programs
that you want others to use. How would you describe them? Well, you shouldn’t say
what DLLs or object-oriented classes each uses. No one will care. Instead, you are more
likely to describe the program by the features it has. (A feature is a characteristic that is
useful in distinguishing programs within a family of related programs [11]). For exam-
ple, you might say Program1 has features X, Y, and Z. But Program2 is better because
it has features X, Q, and R. The reason is that clients have an understanding of their re-
quirements and can see how features relate to requirements.

A common way to specify products is by its set of features. While this is almost unheard
of in software, it is indeed common in many other engineering disciplines. For example,
go to the Dell Web site. You’ll find lots of web pages that provide declarative DSL
specifications (e.g. menu lists) from which you can specify the features that you want
on your customized PC. After completing this specification, you can initiate its order.
We want to do the same for software.

Here is a program synthesis vision that has evolved concurrently with FODA [2]. Pro-
gram P is a package of classes (class1—class4). P will have an algebraic definition
as a composition of features (or rather feature operators). Consider Figure 7. P starts
with featureX, which encapsulates fragments of class1—class3. featureY is
added, which extends class1—class3 and introduces class4, and featureZ ex-
tends all four classes. Thus, by composing features which encapsulate fragments of
classes, a package of fully formed classes is synthesized.

This algebraic approach is related to the age-old concept of step-wise refinement which
asserts that a complex program can be constructed from a simple program by adding
details (in this case, features), one at a time. This means that feature operators are im-
plemented by program refinements or program extensions.1 Program P is created by

class1 class2 class3 class4

featureX

featureY

featureZ

class1 class2 class3 class4

featureXfeatureX

featureYfeatureY

featureZfeatureZ

Figure 7   Program P = featureZ( featureY( featureX ) )



starting with a simple program, featureX. This program is extended by featureY and
then by featureZ — a classic example of step-wise development.

Here is an example problem that illustrates the scalability of algebraic approaches. I and
my students are now building customized tools for processing programs written in ex-
tensible-Java languages. These tools belong to Integrated Development Environments
(IDEs). The GUI shown in Figure 8 is a declarative DSL. We allow architects to select
the set of optional Java extensions that they want (in the left-most panel), the set of op-
tional tools that they want (in the middle panel), and by pressing the Generate button,
the selected tools will be synthesized and will work for that specified dialect of Java.
We are now generating over 200K Java LOC from such specifications, all of which are
(internally) driven by equations. So algebraic approaches do indeed scale, and there
seems to be no limit to the size of a system that can be produced [6].

So is this Utopia? No, its on the road…

2.10 Tool Support

“One of the biggest technical problems is that metaprogramming and generative
programming are not directly supported by programming languages. A cleaner and
safer mechanism (other than (ab)using the template mechanism and type system in
C++) is clearly needed.” — Andrew Lumsdaine

“The ‘big’ technical challenge is getting a good infrastructure for developing gen-
erators that includes extensible programming languages transformation systems,
and metaprogramming libraries.” — Yannis Smaragdakis

“Type safe program generation and efficient implementation of multi-stage lan-
guages are important.” — Walid Taha

1. The term “refinement” is often used in the context of adding implementation details
without modifying the original specification. “Extensions” add details to implementations
and can enhance the original specification. The definition of these terms is not agreed
upon in the OO and programming methodology communities, and my informal use of
these terms reflects this lack of consistency. Still, it remains is an open problem to relate
notions of program synthesis using features to concepts in algebraic program specifica-
tions. Defining these relationships clearly should lead to a valuable advance in both areas:
a formal theory for practical generative programming, and a practical outlet for theory.

Figure 8   A Declarative GUI Interface for Customized IDE 



Long ago, I realized that the scale of programs will have an impact on the tools that are
used. Some domains will have operators that can be implemented by comparatively
simple macro expanding techniques. Figure 9 shows a pair of classes that implement a
bare-bones singly-linked list program shown in black, non-italic font. By applying an
doubly-linked list operator, this program is transformed into a program that is a doubly-
linked list. The transformation-added code is shown in red, italic font. Relatively sim-
ple tools can be built to achieve this kind of program rewriting.

Surprisingly, this simple approach has worked well for large applications. However, for
smaller programs or algorithm synthesis, much more is needed. The work at Kestrel on
synthesizing scheduling algorithms [7] and the synthesis and optimization of orbital al-
gorithms at NASA Ames [23] are really impressive. They require nontrivial “domain
theories” and a non-trivial programming infrastructure. Even the simple data structures
domain requires more sophistication than macros.

One reason for this is that domain-specific optimizations are below the level of relation-
al algebraic rewrites; one has to break encapsulation of abstractions to achieve better
performance. And the operations (functions) seem much more complicated.

Oddly, the synthesis of large systems has different requirements. Architects generally
don’t care about low-level optimization issues. The problem is more of gluing operators
together; breaking encapsulations to optimize is rarely done. For years I thought lisp-
quote-unquote features were critical for all generative tools. I now think that most do-
mains don’t need such sophistication. Tools for synthesis-in-the-large will be very dif-
ferent than those for synthesis-in-the-small. 

There seems, however, to be a pleasing result: there is one way to conceptualize pro-
gram families using features, but how operators are implemented is domain-dependent.
There are there are lots of ways to implement operators: as macros, lisp-quote-unquote,
program transformation systems, objects, etc. It is a matter of choosing the right imple-
mentation technology. However, the process by which one identifies the fundamental
operators in a domain is largely independent of operator implementation.

So is this Utopia? No, its on the road…

class list {
Node first;
Node last;

void insert( Node x ) {
if (last == null)

last = x;
x.next = first;
first = x;
x.prior = null;

}
}

class Node {
Node next;
String value;
Node prior;

}

Figure 9   Transformation of a Singly-Linked List into a Doubly-



2.11 Verification

“What kinds of verifications are appropriate/feasible for what kinds of languages,
and what approaches are appropriate to carry out these verifications? How can lan-
guages be designed to facilitate verification?” — Julia Lawall 

We want guarantees about generated programs. We want proofs that properties of algo-
rithms that implement operators are not violated when operators are composed. What
are the lessons learned by database researchers?

As far as I can tell, verification has never been an issue. And it is not surprising either.
Historically there are no (or trivial) synchronization issues, no real-time issues in query
evaluation programs. Query evaluation programs in database systems wrestle with scale
and performance, not correctness issues. 

I want to point out that there is important work on verifying programs using features.
Most properties that are to be preserved in compositions are local properties of features.
You want to prove that feature properties are not violated by composition. I recommend
reading the Li, Krishnamurthi, and Fisler paper [18] to get a flavor of this line of work.

So is this Utopia? No, its on the road…

2.12 Technology Transfer

“How do we make our concepts accessible to ‘Joe Parallel Programmer’, who
knows Fortran/C+MPI/Threads and is no so unhappy with these?” — Murray Cole

“We need to reduce the necessary expertise to use generative programming and
metaprogramming tools for DSL definition and implementation. The use of current
systems is very much a craft.”’ — David Wile

Technology transfer are tough issues indeed. By far, technology transfer is the hardest
problem. Education is the key. We must demonstrate over and over again where GP,
DSLs, and AP are relevant and beneficial. We must be constantly looking for new ap-
plications to demonstrate their value. Sadly, I fear, not until large companies like Mi-
crosoft see the advantage, progress will be glacial. You have heard of the 17 year lag
between the discovery of ideas and practice; I think things are much longer for software
engineering simply because the inertia is so great.

So is this Utopia? No, its on the road…

2.13 And More!

“What are the relative merits of different programming models?” — Prem Devanbu

“Language design and hiding the meta-level is an important problem.” — Joerg
Striegnitz 

“The economic issues (cost, time-to-market, maintenance, flexibility) are not well
understood.” — Chris Ramming

There is no lack of other issues. Every issue raised above is indeed important. Often the
progress of a field hinges on economics. And until we understand the economic ramifi-
cations (i.e., benefits), transfer of our ideas to industry will be slow.



3 Epilog

So if we solved all of the previously mentioned problems, would this be Utopia? It
might be. But let’s put this in perspective: Did database people know they were on the
road to Utopia? Hardly. Let’s start with Codd’s 1970 seminal paper on the Relational
Model. Its first public review in Computing Surveys panned the idea [20]. And it is easy
to forget that the appreciation of the Relational Model grew over time.

“It isn’t like someone sat down in the early 1980’s to do domain analysis. No — we
had trial and error as briefly outlined: 

(1) CODASYL 1960s - every update type and every query type requires a custom
program to be written, 

(2) Codd 1970 - relational algebra - no keys but in theory no custom programs, 

(3) IBM & researchers (late) 1970s - compelling business issues press development
at business labs and universities. Query languages, schema languages, normal
forms, keys, etc. 

(4) Oracle early 1980s - and they are off... 

Now, which domain analysis methodology shall we assert could have achieved this
in a shorter term? It takes time and experience on the road to a solution; it also takes
the patience to continually abstract from the problem at hand until you recognize
you already have a solution to the immediate problem.” — Jim Neighbors

In short, it takes time and clarity of hindsight to find Utopia. Utopia is a small place and
is easy to miss.

“People of different backgrounds have very different opinions on fundamental
problems and principles of software engineering, amazingly.” — Stan Jarzabek 

“I am not convinced that any of these problems is concretely enough defined that if
solved I will recognize the solution as a big advance. I believe the area is in a state
where there is no agreement as to what will constitute the next big step.” — Yannis
Smaragdakis

“Mindset is a very important issue. How can researchers find Utopia if they are not
trying to get there? How can they be trying to get there if they are not solving a spe-
cific problem? Without a problem, they are on the road to where?” — Jim Neigh-
bors

My response: this is Science. The signs along the road to scientific advancement are
strange, if not obscure. But what did you expect? Some observations and results will be
difficult, if not impossible to explain. But eventually they will all make sense. However,
if you don’t look, you’ll just drive right past Utopia, never knowing what you missed.

My parting message is simple: database researchers got it right; they understood the sig-
nificance of generative programming, domain-specific languages, automatic program-
ming and lots of other concepts and their relationships, and they made it all work.

Software engineering is about the challenges of designing and building large-scale pro-
grams. The future of software engineering will require making programs first-class ob-



jects and using algebras and operators to manipulate these programs. Until these ideas
are in place, we are unlikely to reach Utopia. Our challenge is to replicate the success
of database researchers in other domains. I believe that our respective communities —
generative programming, metaprogramming, and the skeleton communities — repre-
sent the future of what software engineering will become, not what it is today. 

I hope to see you on the road!

Acknowledgements. I am grateful to Chris Lengauer and Jim Neighbors for their com-
ments and insights on an earlier draft of this paper.
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