
Copyright

by

Emilia Elizabeth Villarreal

1994

Automated Compiler Generation for Extensible Data

Languages

by

Emilia Elizabeth Villarreal, B.S., M.S.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Ful�llment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

December, 1994

Automated Compiler Generation for Extensible Data

Languages

Approved by
Dissertation Committee:

For my family,

Chris and Nigel

Acknowledgments

First and foremost, I'd like to thank my family, Chris and Nigel, who were always

there for me. Chris resonated with my angst especially well. I'd like to thank my

advisor, Don Batory, who alternately provided encouragement and impetus. Finally,

I'd like to thank the folks of the Computer Science Department at Cal Poly State

University in San Luis Obispo, who generously provided computing and lab facilities.

Emilia Elizabeth Villarreal

The University of Texas at Austin

December 1994

v

Automated Compiler Generation for Extensible Data

Languages

Publication No.

Emilia Elizabeth Villarreal, Ph.D.

The University of Texas at Austin, 1994

Supervisor: Don S. Batory

To meet the changing needs of the DBMS community, e.g., to support new database

applications such as geographic or temporal databases, new data languages are

frequently proposed. Most o�er extensions to previously de�ned languages such as

SQL or Quel. Few are ever implemented. The maturity of the area of data languages

demands that researchers go beyond the proposal stage to have hands-on experience

with their languages, if only to separate the good ideas from the bad. Tools and

methodologies for building families of similar languages are de�nitely needed; we

solve this problem by automating the generation of compilers for data languages.

Our work, Rosetta, is based on two concepts. First, underlying the domain

of data languages is a common backplane of relational operations. Backplane oper-

ations are primitive building blocks for language execution and construction, where

a building block has standardized semantics. The de�nition of a well-designed back-

plane is implementation-independent; that is, the backplane is de�ned once but can

be used to model arbitrarily many data languages.

Second, there exist primitive building-blocks for language construction. From

our analysis of the database data language domain, we have identi�ed three classes

of building-blocks: one class maps language syntax to backplane functions, another

builds an internal representation of the backplane operator tree, and a third class

manages contextual information.

For modeling data languages, we de�ne the Rosetta speci�cation language,

a grammar-based speci�cation language tailored to our needs with the power to

de�ne syntax, map it to the target language, and build an operator tree all in one

vi

rule. Thus each rule is a microcosmic model of a language clause which encapsulates

input parsing and code generation.

Our speci�cation language models data languages based on the composition

of primitive building blocks for semantics and the customization of the syntax for

invoking the compositions. A compiler for a data language is generated by �rst

modeling the language and then compiling the speci�cation. The ease and e�ciency

with which Rosetta customizes languages derives from the reuse of the backplane

operations and the high-level speci�cation supported.

vii

Contents

Acknowledgments v

Abstract vi

List of Tables xi

List of Figures xiii

Chapter 1 Introduction 1

1.1 Other Approaches : 2

1.1.1 Extensible Databases : 2

1.1.2 Extensible Programming Languages : : : : : : : : : : : : : : 3

1.1.3 Compiler Technology : 4

1.1.4 Natural Language Processing : : : : : : : : : : : : : : : : : : 4

1.2 Overview of Dissertation : 5

Chapter 2 The Rosetta Model 6

2.1 Domain Modeling : 6

2.2 Language Semantics : 7

2.3 Language Syntax : 11

2.4 Directive Sections : 15

2.4.1 Local Variables : 15

2.4.2 Global Variables : 17

2.4.3 A Simple Example : 18

2.4.4 Directive Functions : 20

2.5 Cycle Subcatalogs : 23

2.6 A Larger Example : 25

2.7 Summary : 29

viii

Chapter 3 The Rosetta Prototype 30

3.1 Generating the bison �le : 31

3.1.1 Structure of the bison �le : 31

3.1.2 Generating the bison �le : 32

3.2 Generating the
ex �le : 39

3.2.1 Structure of the
ex �le : 39

3.2.2 Generating the
ex �le : 40

3.3 Static Type Analysis of the Speci�cation : : : : : : : : : : : : : : : : 41

3.4 Conclusions : 43

Chapter 4 Model Validation 45

4.1 Introduction : 45

4.2 The SQL Family : 46

4.2.1 SQL : 46

4.2.2 SQL/NF : 56

4.2.3 TSQL2 : 70

4.3 The Quel Family : 85

4.3.1 Quel : 85

4.3.2 TQuel : 99

4.4 Comparison of Language Models : 113

4.5 Recap : 116

Chapter 5 Related Work 117

5.1 Extensible DBMS Projects : 117

5.1.1 Fixed Data Language Approach : : : : : : : : : : : : : : : : 118

5.1.2 The Toolkit Approach : 119

5.1.3 Summary : 119

5.2 Other Tool Generators : 119

5.3 Extensible Programming Languages : : : : : : : : : : : : : : : : : : 120

5.3.1 Preprocessing : 121

5.3.2 Compiler Extension : 121

5.3.3 Summary : 122

5.4 Compiler Technology : 122

5.4.1 Syntax Directed De�nition. : : : : : : : : : : : : : : : : : : : 122

5.4.2 Compiler Generators. : 123

5.5 AI/NLP : 124

5.6 Summary : 125

ix

Chapter 6 Conclusions 126

6.1 Limitations : 126

6.1.1 Model Limitations : 126

6.1.2 Implementation Limitations : : : : : : : : : : : : : : : : : : : 128

6.2 Extensions : 130

6.2.1 Cycle Subcatalogs : 130

6.2.2 Backplane Rede�nition and Re�nement : : : : : : : : : : : : 130

6.2.3 Generalize Compiler Memory : : : : : : : : : : : : : : : : : : 131

6.2.4 Syntax Representation : 131

6.3 Conclusions : 132

Appendix A A Database Backplane 134

A.1 Backplane Function De�nitions : 135

A.2 Directive Function De�nitions : 151

Appendix B SQL: Speci�cation 155

Appendix C SQL/NF: Speci�cation 161

Appendix D TSQL2: Speci�cation 168

Appendix E Quel: Speci�cation 178

Appendix F TQuel: Speci�cation 186

Bibliography 194

Vita 200

x

List of Tables

2.1 Summary of Calculator Backplane Functions : : : : : : : : : : : : : 8

2.2 Interpretation of Catalogs as Grammar Rules : : : : : : : : : : : : : 9

2.3 In-Fix Calculator De�nition : 14

2.4 Post-Fix Calculator De�nition : 14

2.5 Selected Data Language Types : 16

2.6 Selected Data Language Backplane Functions : : : : : : : : : : : : : 17

2.7 Partial Speci�cation of Quel RANGE and RETRIEVE Statements : 19

2.8 Rosetta Speci�cation of Simpli�ed SQL SELECT Statement : : : : : 25

4.1 SQL SELECT Statement : 47

4.2 SQL Subqueries : 49

4.3 SQL UNION, INTERSECT, and EXCEPT Statements : : : : : : : : 49

4.4 SQL INSERT Statement : 52

4.5 SQL DELETE Statement : 53

4.6 SQL UPDATE Statement : 54

4.7 SQL/NF SELECT Statement : 59

4.8 SQL/NF Subqueries : 61

4.9 SQL/NF UNION, INTERSECT, and DIFFERENCE Statements : : 63

4.10 SQL/NF MODIFY, ERASE, and STORE Statements : : : : : : : : 65

4.11 SQL/NF Function Statements : 67

4.12 SQL/NF NEST and UNNEST Statements : : : : : : : : : : : : : : : 68

4.13 TSQL2 SELECT Statement : 74

4.14 TSQL2 SELECT Statement (cont.) : : : : : : : : : : : : : : : : : : : 75

4.15 TSQL2 INSERT Statement : 79

4.16 TSQL2 DELETE Statement : 81

4.17 TSQL2 UPDATE Statement : 83

4.18 Quel RANGE OF Statement : 86

4.19 Quel RETRIEVE Statement : 88

4.20 Quel Subquery : 91

xi

4.21 Quel Aggregation : 92

4.22 Quel APPEND TO Statement : 95

4.23 Quel DELETE Statement : 96

4.24 Quel REPLACE Statement : 97

4.25 TQuel RETRIEVE Statement : 102

4.26 TQuel APPEND TO Statement : 106

4.27 TQuel DELETE Statement : 108

4.28 TQuel REPLACE Statement : 111

4.29 Summary of Modeled Languages : 114

xii

List of Figures

2.1 Operator Trees for Expressions : 9

2.2 Computing Variance: Original and Desired Operator Trees : : : : : 22

2.3 Application of rewrite() to an Operator Tree : : : : : : : : : : : : : 23

2.4 Original Operator Tree for Variance Computational Formula : : : : 26

2.5 Result of First Call to rewrite() : 27

2.6 Result of Second Call to rewrite() : 27

2.7 Result of Third Call to rewrite() : 27

2.8 Final Operator Tree for Variance Query : : : : : : : : : : : : : : : : 28

3.1 Rosetta Generator Prototype : 30

3.2 Structure of the Bison File : 31

3.3 Mapping a Rosetta Speci�cation to a Bison File : : : : : : : : : : : : 33

3.4 Mapping a List Subcatalog to a Bison Rule : : : : : : : : : : : : : : 36

3.5 Mapping a Cycle Subcatalog to a Bison Rule : : : : : : : : : : : : : 38

3.6 Structure of the Flex File : 40

3.7 Mapping a Rosetta Speci�cation to a Flex File : : : : : : : : : : : : 41

3.8 Type Analysis Algorithm : 43

4.1 Operator Tree: SQL SELECT Statement : : : : : : : : : : : : : : : 48

4.2 Operator Tree: SQL SELECT Statement with Subquery : : : : : : : 50

4.3 Operator Tree: SQL UNION Statement : : : : : : : : : : : : : : : : 51

4.4 Operator Tree: SQL INSERT Statement : : : : : : : : : : : : : : : : 51

4.5 Operator Tree: SQL DELETE Statement : : : : : : : : : : : : : : : 53

4.6 Operator Tree: SQL UPDATE Statement : : : : : : : : : : : : : : : 55

4.7 :1NF Data Model | Illustration : 57

4.8 Operator Tree: SQL/NF SELECT Statement : : : : : : : : : : : : : 60

4.9 Operator Tree: SQL/NF SELECT Statement with Subquery : : : : 62

4.10 Operator Tree: SQL/NF UNION Statement : : : : : : : : : : : : : : 64

4.11 Operator Tree: SQL/NF MODIFY Statement : : : : : : : : : : : : : 66

xiii

4.12 Operator Tree: SQL/NF NEST Statement : : : : : : : : : : : : : : : 67

4.13 :1NF Data Model | Another Illustration : : : : : : : : : : : : : : : 69

4.14 Operator Tree: TSQL2 SELECT Statement : : : : : : : : : : : : : : 76

4.15 Operator Tree: TSQL2 INSERT Statement : : : : : : : : : : : : : : 80

4.16 Operator Tree: TSQL2 DELETE Statement : : : : : : : : : : : : : : 81

4.17 Operator Tree: TSQL2 UPDATE Statement : : : : : : : : : : : : : : 82

4.18 Operator Tree: Quel RETRIEVE Statement : : : : : : : : : : : : : : 87

4.19 Operator Tree: Quel RETRIEVE Statement with Subquery : : : : : 90

4.20 Operator Tree: Quel RETRIEVE Statement with Aggregation : : : 93

4.21 Operator Tree: Quel APPEND TO Statement : : : : : : : : : : : : : 94

4.22 Operator Tree: Quel DELETE Statement : : : : : : : : : : : : : : : 96

4.23 Operator Tree: Quel REPLACE Statement : : : : : : : : : : : : : : 98

4.24 Operator Tree: TQuel RETRIEVE Statement : : : : : : : : : : : : : 103

4.25 Operator Tree: TQuel APPEND TO Statement : : : : : : : : : : : : 107

4.26 Operator Tree: TQuel DELETE Statement : : : : : : : : : : : : : : 109

4.27 Operator Tree: TQuel REPLACE Statement : : : : : : : : : : : : : 110

4.28 Compiler Generation: Cumulative Lines of Code : : : : : : : : : : : 115

xiv

Chapter 1

Introduction

Languages have a history of development. Families of functionally and syntactically

similar languages are prevalent today. The family or domain of non-object-oriented

imperative programming languages (e.g., C [KR78], Pascal [JW78], Algol [ISO72]) is

one example; another is the domain of relational data languages (e.g., SQL [vdL89],

Quel [Dat87], TQuel [Sno87]).

In the domain of data languages, there is a seemingly endless procession of

new languages that are being proposed to meet the changing needs of the DBMS

community. In particular, there are numerous proposals for object-oriented data

languages: GEM [Zan83], Opal [Ser86], ORION [KBB+87], etc. Until a standard

is established for object-oriented data languages, multiple competing languages will

persist and, indeed, proliferate.

Few are wholly new; most o�er extensions to previously de�ned languages

such as SQL or Quel. Many languages never go beyond the proposal stage; even

fewer are ever implemented. But without an implementation and actual testing,

they cannot be adequately evaluated and compared. The maturity of data languages

hinges on such experimentation.

With few exceptions, every language is built from scratch. Despite the sim-

ilarity of languages within a domain, considerable e�ort, time, and resources are

needlessly expended in duplicating basic functionality already available in previous

implementations of other languages. Unfortunately, leveraging existing ad hoc soft-

ware designs is di�cult, and the e�ort and time needed to reuse software artifacts

is substantial and rarely cost e�ective.

Clearly, there will always be families of functionally similar but syntactically

distinct languages, if only for the simple reason that no single language suits all

situations. While we cannot eliminate language families, we can improve the way

languages are constructed. Tools and methodologies that enable building language

1

families inexpensively and quickly are de�nitely needed. Our system, Rosetta, is

designed to meet this need.

Rosetta is based on two concepts. First, underlying every family of function-

ally similar but syntactically distinct languages is a common backplane of opera-

tions. The backplane is an object-oriented virtual machine, whose objects are the

fundamental objects of the application domain and whose operations are the fun-

damental operations on these objects. Languages are syntax-customized front-ends

to a virtual machine, where language statements map to compositions of backplane

operators. Because the objects and operations of the backplane are standardized,

many di�erent languages within the domain can be built on the same virtual ma-

chine.

Second, there exist primitive building-blocks for language construction. Ev-

ery building-block has immutable semantics. From our analysis of the database data

language domain, we have identi�ed three classes of building-blocks: one class maps

language syntax to backplane functions, another converts parse trees to an internal

representation, and a third class manages contextual information. We view lan-

guages as compositions of building-blocks, where di�erent languages have di�erent

compositions or, if they have identical compositions, di�er in the syntax they assign

to their building-blocks.

Rosetta exploits these two key observations to deliver language extensibility.

Our model of data languages imposes extensible syntax on building-blocks having

standardized semantics. A compiler for a target language is produced by compiling

a speci�cation, written in the Rosetta speci�cation language, which maps syntax to

the given domain backplane. The ease and e�ciency with which Rosetta customizes

languages derives from the reuse of libraries of standardized building-blocks.

1.1 Other Approaches

As extensible languages have been of interest for many years, many other approaches

have been applied in other areas, including extensible DBMS work, extensible pro-

gramming languages, compiler technology, and Arti�cial Intelligence (Natural Lan-

guage Processing). We discuss each brie
y in turn.

1.1.1 Extensible Databases

Several projects have addressed how to build extensible databases. Those of interest

here include e�orts to support extensible data languages. Two basic approaches are

taken in designing extensible databases: the �xed data language approach, [Gut89,

SK91, MD90, HFLP89], and the toolkit approach, [CDV87].

2

In the �xed data language approach, the extensible database includes a �xed

data language but provides a methodology and (sometimes) tools to allow the user

to augment it with new data types and new operations on them. Thus the basic

data language cannot be changed; one cannot, for instance, abandon the built-in

language and replace it with an entirely new language.

The toolkit approach is more
exible. Any language can be generated, using

the tools provided by the generator for building the data language of choice. While

this is an improvement, typically the support provided for specifying a language and

generating its compiler is minimal.

1.1.2 Extensible Programming Languages

To realize extensible programming languages, two basic approaches are taken: pre-

processing and direct compiler extension.

In the preprocessing approach, new constructs of the extended language are

mapped to built-in constructs (or compositions of constructs) of the base language.

The input to the preprocessor is a program in the extended language; its output is

a program in the base language which can be compiled and executed just as any

program written originally in the base language. There are preprocessors for many

languages, e.g., C, Fortran, and PL/1, and there are preprocessors which can be used

for multiple languages, e.g., M4. Embedding Quel in C, called EQuel [SWKH76],

was achieved by preprocessing the EQuel program into a C program.

The preprocessing approach can be as simple or ambitious as desired. Some

preprocessors are capable of only simple syntactic substitution; others are capable

of code migration [CHHP91].

The other approach, compiler extension, makes the code of the compiler avail-

able to the user. Languages which can be extended in this way include Lisp and its

variants, such as Scheme and Clos, and Icon, an extension of Snobol. Extensions to

the language are added directly to the compiler in the form of new functions, which

should adhere to a protocol supplied for adding new functions. This approach is

much more powerful than the preprocessor approach, allowing the addition of sig-

ni�cant new features, such as adding call-by-reference to a compiler which originally

supported only call-by-value.

While extensible programming languages can add signi�cant new functional-

ity, neither approach can be used to create a compiler for a completely new language.

Because we are interested in generating compilers for new as well as evolving lan-

guages, this is a major failing.

3

1.1.3 Compiler Technology

More related work is found in the area of compiler technology. Of particular interest

to us are the syntax-directed translation method for language speci�cation and

compiler generators.

A syntax-directed translation is a context-free grammar whose rules are aug-

mented with associated attributes [ASU86]. These attributes may be anything:

numbers, strings, structures, etc. Also associated with each rule of the grammer is a

set of semantic function calls which may implement any function desired, including

compiler utilities.

Work in compiler generators includes both simple parser and lexical analyzer

generators [LS86, Joh86, DS91] and expert systems which control other compiler

generation tools [GHL+92]. A parser generator requires a speci�cation of the lan-

guage syntax, while a lexical analyzer requires a speci�cation of the tokens of the

language. Their input has no built-in capabilities for semantic speci�cation, so they

produce programs which recognize the syntax of the language but do not address

mapping syntax to semantics. Input to the generators is hand-crafted anew for each

compiler.

The second approach of interest is the construction of an expert system which

controls o�-the-shelf tools [GHL+92]. Such an expert system initiates the tools in

the proper order, passing to each its associated input �les and connecting the output

of one to the input of another.

Our model of languages di�ers substantially from that of these approaches:

Rosetta has built-in constructs designed for specifying semantics with a functional

semantic model. Furthermore, our focus is on data languages, and none of these

approaches is targeted for that �eld.

1.1.4 Natural Language Processing

Finally, work in natural language processing aims at facilitating the addition of

natural language interfaces to existing software systems [Hen77c, HSSS78]. The ap-

proach taken is similar to that of Rosetta: an interface speci�cation is a grammar

whose rules are augmented with expressions implementing a response. The speci-

�cation is stored in an internal form, and is used by the parser to map an input

natural language statement to an expression of the underlying system.

One way in which Rosetta di�ers signi�cantly from this approach is that

Rosetta is targeted to the domain of data languages. In building Rosetta, we have

analyzed our target domain to provide a backplane of functions which model it. By

focusing our e�orts on the data language domain, we are able to include domain-

4

speci�c support that is lacking in more general work.

1.2 Overview of Dissertation

Although we believe the concepts that underlie Rosetta to be domain-independent,

we have developed and applied Rosetta only in the context of database data lan-

guages. Applying Rosetta to other domains is not within the scope of our work and

may be the subject of future e�orts.

In the rest of the dissertation we discuss the approach taken in Rosetta. We

begin with a discussion of how we model data languages, then consider implemen-

tation details of the Rosetta prototype. Next, we continue with a discussion of

the �ve languages we modeled to validate the Rosetta approach. The dissertation

closes with a chapter on related work and another on evaluation, future work, and

conclusions.

5

Chapter 2

The Rosetta Model

In this section we de�ne the Rosetta model. We take a three-step approach to

language modeling: we begin by identifying the objects of the language and a back-

plane of functions which operate on them. The set of all type-correct compositions

of backplane functions is adopted as the initial model of the language. Next, we

re�ne the model to eliminate unwanted compositions of functions. Finally, we im-

pose syntax to dictate when particular compositions of functions should be invoked.

These three steps yield a language de�nition consisting of a speci�cation which de-

�nes the compositions of backplane functions, or operator trees, generated by the

language and the syntax which invokes them. This chapter explores these steps in

detail.

2.1 Domain Modeling

A domain is a family of related programs all having approximately the same func-

tionality. Examples of domains include operating systems, database systems, and

data languages.

A domain model is a library of building blocks for programs in the domain

and mechanisms for composing them. These building blocks consist of a set of

functions and objects which are capable of modeling elements of the domain. For

example, the relational database domain includes primitive objects such as strings

and integers, and complex objects such as tuples and relations. Functions on the

objects of this domain include select(), join(), project(), etc.

A backplane is an object-oriented virtual machine whose objects are the fun-

damental objects of the domain and whose functions (or, equivalently, operations)

on these objects are the fundamental functions of the domain.

Designing a backplane is a classic problem in designing reusable software.

6

Called domain analysis, the basic idea is to study a set of functionally similar systems

of a domain to postulate empirically the backplane underlying the set. The goal of

domain analysis is to design an implementation-independent backplane; that is, a

backplane that can be re-used to build multiple systems. Domain analysis generally

requires a considerable amount of hard work [PDA91].

Domain modeling and backplane design is a process of iterative re�nement.

We say that a backplane B models language L if each statement in L maps to a

composition of functions in B. After studying languages L1; : : : ;Ln, we postulate

an underlying backplane B, then determine if B is su�ciently general to model an

additional language Ln+1 with little or no modi�cation. If B models Ln+1 without

modi�cation, we proceed to consider language Ln+2. Otherwise, we �rst extend B

to enable it to model Ln+1 and then proceed to consider Ln+2. Domain analysis is

a never-ending process, as domain members evolve over time to meet the changing

needs of their communities. Inevitably, the addition of some new feature exceeds

the capabilities of the backplane. Thus, extensibility is inherent in the design of a

backplane.

Backplane De�nition. Our objective in domain modeling is the ability to map

individual language statements from a multiplicity of data languages into composi-

tions of previously identi�ed database backplane functions.

We refer to backplane functions with a functional representation,

f (a1:T1, a2:T2, : : :) : T,

de�ning the function's name \f", its formal parameter list \a1:T1, a2:T2, : : :", and

its type ``T'', where \� :�" denotes that � is of type � .

Example. Calculators are elementary data languages. Table 2.1 shows a back-

plane for the domain of simple integer-arithmetic calculators. Only four data types

are referenced in this backplane|Int, String, Var, and Void|where Int is an integer,

Var is a variable reference, etc. This simple domain o�ers only four arithmetic op-

erations +, -, *, and �, represented by backplane functions add(), sub(), mul(), and

div(). Also included are functions which manipulate variables; turn the calculator

on and o�; print values; and convert strings to integers or variable references.

2.2 Language Semantics

We refer to a composition of backplane functions as an operator tree1, and de�ne

the semantics of a data language by de�ning the set of operator trees that it can

1Note that the leaves of an operator tree are constants rather than functions.

7

assign (v:Var,y:Int) : Void assigns to variable v the value y

clear () : Void discards all active variables

list () : Void lists all active variables and their values

print (x:Int) : Void prints its input value

on () : Void turns the calculator on

o� () : Void turns the calculator o�

and discards de�ned variables

add (x:Int, y:Int) : Int computes the sum x + y

div (x:Int, y:Int) : Int computes the division x � y

mul (x:Int, y:Int) : Int computes the product x * y

sub (x:Int, y:Int) : Int computes the di�erence x - y

refvar (v:Var) : Int returns the value stored in variable v
str2int (s:String) : Int converts string s to an Int

varcnt () : Int returns a count of the de�ned variables

str2var (s:String) : Var interprets s as a previously de�ned variable

de�ne var (s:String, v:Int) : Var de�nes a new variable s with initial value v

Table 2.1: Summary of Calculator Backplane Functions

express. To do so, we restrict the set of all operator trees that can be generated

from the backplane functions to the set of operator trees expressible by the data

language.

Catalogs. The catalog T is the set of all backplane functions that produce a result

of type �
2. We write the elements of the set using \j" as a separator:

T = f f1() j f2() j : : :g.

The calculator backplane of Table 2.1 is arranged in three catalogs: Void, Int, and

Var.

The set of all operator trees expressible by a backplane is de�ned by a gram-

mar. The productions of this grammar are the catalogs of the backplane: T is a

production name and fi() is its ith rewrite rule (see Table 2.2). Every parameter

� : � of a function is a reference to a nonterminal, whose production is de�ned by

2While our use of catalogs may appear to run counter to the object-oriented philosophy, it
actually does not. A class in the object-oriented paradigm is de�ned by its objects plus the set of

all functions on them. We build on this by imposing an orthogonal classi�cation on the functions,

classifying them according to the types of their results.

8

Void ! assign Var Int

j clear

j list

j o�

j on

j print Int

Int ! add Int Int

j div Int Int

j mul Int Int

j sub Int Int

j refvar Var

j str2int String
j varcnt

Var ! str2var String

j de�ne var String Int

Table 2.2: Interpretation of Catalogs as Grammar Rules

T , the catalog of � . The distinguished or start symbol of the grammar is the �rst

catalog listed. A sentence of the grammar is an operator tree, and the language

de�ned by the grammar is the set of all operator trees that are expressible by the

backplane. For example, the expressions \5 + 7" and \v = 5/10" are represented

by the operator trees shown in Figure 2.1.

(a) 5 + 7 (b) v = 5 − 10..

assign

v

str2var div

str2int

5

str2int

10

add

str2int

5

str2int

7

Figure 2.1: Operator Trees for Expressions

Clearly, not all compositions of functions make sense. In the case of the

integer calculator, printing the square of the number of de�ned variables seems

meaningless. Similarly, statements of data languages correspond not to arbitrary

9

compositions of backplane functions but to speci�c ones, and not every meaningful

composition can be expressed by every language. The need to restrict composability

to de�ne the semantics of a language leads us to the notion of subcatalogs.

Subcatalogs. A subcatalog is a subset of a catalog whose membership is de�ned

by a combination of enumeration and union (denoted by \j") of previously de�ned

subcatalogs:

S0 = f f0() j f1() g

S1 = f f2() g j S0

The subcatalog S0 contains the functions f0() and f1(), while the subcatalog S1

contains the functions f0(), f1(), and f2().

Subcatalogs are further specialized by replacing each parameter x:� of each

function with x:S� , where S� is a subcatalog of T . This restricts the set of functions

that can instantiate x to those de�ned in S� . By appropriately restricting catalogs to

subcatalogs, the semantics of a language is declared by a grammar that de�nes the

set of operator trees the language can express. To accommodate optional arguments

to functions, we also allow catalogs to include �, signifying that the empty parameter

is allowable.

Example. Recall the Int catalog of the calculator backplane, which includes arith-

metic functions and an administrative function, varcnt(). To preclude the use of

varcnt() in arithmetic expressions, we de�ne two subcatalogs, int1 and int2:

int1= fadd(x:int1,y:int1) j sub(x:int1,y:int1)

j mul(x:int1,y:int1) j div(x:int1,y:int1)

j str2int(s:string) j refvar(v:Var) g

int2= f varcnt() g

and combine them in a general-purpose catalog:

int = int1 j int2.

The action subcatalog describes the top-level (user interface) actions:

action = f print(i:int) j assign(v:Var,i:int1)

j list() j clear() j on() j off() g

Any integer, whether computed or a variable count, can be printed. But only the

functions of the int1 subcatalog can participate in assignment and computation.

10

Restricting the set of operator trees that a language can express is the most

basic way a language is customized. A more visible language customization is the

grafting of syntax onto the language speci�cation, generating the same set of oper-

ator trees but associating a speci�c syntax with each operator tree.

2.3 Language Syntax

Customizing the syntax of a simple language consists of assigning an invoking syn-

tax signature to each backplane function of every subcatalog. Syntax signatures

de�ne the composition of the backplane functions; they are used to directly trans-

late an input statement of the language into an operator tree. Speci�cation of these

signatures is simple in some domains, harder in others.

Syntax Signatures. There are three variations on syntax signatures; all derive

from the functional representation. The general form of the syntax signature is

f [<invoking condition>, p1:�1, p2:�2, : : :],

where f() names the backplane function to be invoked, the <invoking condition>

speci�es a condition which must hold in order for the backplane function to be

invoked, and the formal parameters p1, p2, : : : , are listed in the same order as in the

functional representation. Super�cial changes distinguish the syntax signature from

the functional representation: the parentheses are replaced with square brackets and

the invoked function's type is dropped, as it can be determined from the function's

de�nition.

All signatures succeed or fail based on some condition. For the parameterized

signature and the conversion signature, the condition is the detection of speci�c

syntax whereas for the cycle signature the condition is success of a function call.

Parameterized Signatures. The �rst variant, the parameterized signature, as-

signs invoking syntax to a backplane function. For this variant, the invoking condi-

tion is the recognition of particular syntax in the input.

Formal parameters may appear in any order in the invoking syntax. When

referenced in the invoking syntax, they are pre�xed by an underscore, ` ', distinguish-

ing them from keywords. A successful match of the invoking syntax instantiates the

parameters and composes the named function into the operator tree.

As an example, a syntax signature invoking the assign() function in our

calculator might be:

assign[``let v = x; '', v:var, x:int1].

11

The keyword let and the symbol = signal invocation of assign(), while x supplies

the value to be assigned to the variable named in v and ; terminates the statement.

Elements of the invoking syntax are separated by spaces; in the actual input, they

may be separated by any amount of white space3.

Some syntaxes may require a statement terminator to force complete parsing

of the input. For example, z and z + 8 are both expressions. In parsing z + 8, the

expression z may be recognized and + 8 left unparsed unless a terminating symbol,

such as the `;' of the assignment statement, follows the expression.

Conversion Signatures. The second variant, the conversion signature, manages

the use of conversion functions, i.e., string-to-backplane-object mappings. Con-

version functions have exactly one parameter|the literal string to be converted.

Backplane objects have simple syntax signatures consisting only of the invoking

syntax de�ned by a regular expression enclosed in single quotes. The invoked back-

plane function must be a conversion function which translates the character string

matched by the regular expression into a backplane object.

For example, an integer de�ned as a string of digits which begins with a

non-zero digit is matched by the regular expression [1-9][0-9]* and has the syntax

signature

str2int[`[1-9][0-9]*'],

where str2int() is the string-to-integer conversion function.

Cycle Signatures. The third syntax signature, the cycle signature, has a boolean

function as its invoking condition. The cycle signature introduces a way to add

backplane functions to the operator tree based on non-syntactic considerations: a

function can be injected into the operator tree based on the value of some global

variable which is tested by the function of the invoking condition.

For example, suppose we wanted to add error detection to the simple calcu-

lator. We might de�ne a function, signal error(s:String):Void, to print an error mes-

sage and an error detection function variable limit exceeded():Boolean which tests

that the number of de�ned variables does not exceed the limit. Then to add the

function signal error() to the operator tree, we would de�ne the cycle subcatalog:

signal error[variable limit exceeded(), ``VAR LIMIT'']

But the cycle signature is much more powerful, and more will be said about it in

Sections 2.5 and 2.6.

3White space includes spaces, tabs, and newlines; thus, actual input is free-form.

12

Multiple Operations. Frequently, a keyword phrase references a composition of

functions that precludes simple syntax signature de�nitions. Two mechanisms are

provided to handle this situation; both are equally expressive. Choosing between

them is a matter of personal preference.

The �rst mechanism generalizes the instantiation of parameters in the syntax

signature by allowing the insertion of calls to backplane functions (of the proper

type) directly into the signature's formal parameter declaration list. The parameters

of the inserted function call are instantiated from elements of the invoking syntax.

For example, we can de�ne a cube operation cube v for the calculator using nested

calls to the mul() backplane function4:

mul[``cube v; '', v : int1, mul(v,v)].

The alternative mechanism builds on the �rst and uses a built-in Rosetta

backplane function, noop():

noop[<invoking syntax>, p:�p]

The noop() backplane function, which has exactly one parameter, is discarded when

it is seen and does not appear in the operator tree, so that the produced operator

tree is the tree produced for the parameter p. We can use the noop() function in an

alternative de�nition of the same calculator cube v operation:

noop[``cube v; '', mul(v: int1,mul(v,v))].

No Operations. There are times when keywords or symbols signal no function

invocation, e.g., the use of parentheses to alter the order of evaluation. The noop()

backplane function can handle this because it adds no additional nodes to the op-

erator tree supplied by its parameter:

noop[`` (x) '', x:int1].

We use the noop() backplane function in Table 2.3 to realize parentheses in in-�x

arithmetic expressions.

Language Speci�cation. A Rosetta language speci�cation is a �le containing a

set of subcatalogs whose constituent elements are syntax-and-subcatalog customized

signatures. Each subcatalog maps to a bison rule, and each of its elements maps to

a bison rule option. Information contained in the signatures de�nes the semantic

actions to be associated with the bison rule options.

4Note that the de�nition v : int1 need not be repeated multiple times.

13

Tables 2.3 and 2.4 show de�nitions for two integer calculators, one in-�x and

the other post-�x, which, despite di�erent syntax, generate the same set of operator

trees. Generating operator trees for these calculators is quite straightforward; it is

more complex for data languages.

Finally, the speci�cation �le also includes a special section for bison-style

declarations of operator precedence and associativity. Operators are listed in a

table with those on the same row having the same associativity and with the rows

ordered by increasing precedence; e.g., the lines

%left + -

%left * �

de�ne `+' and `-' to be left associative operators having the same precedence, while

`*' and `�' are also left associative operators having the same precedence but with

higher precedence than `+' and `-'.

action = print[\ x ", x:int]

j assign[\ let v = x ",v:Var,x:int2]

j assign[\ v = x ", v:Var, x:int2]

j de�ne var[\ de�ne s = x ",

s:string, x:int2]

j list[\ list "]

j on[\ ON "]

j o�[\ OFF "]

j clear[\ clear "]

int2 = add [\ x + y ", x:int2, y:int2]
j sub [\ x - y ", x:int2, y:int2]

j mul [\ x * y ", x:int2 , y:int2]

j div [\ x � y ", x:int2 , y:int2]
j noop[\ (x) ", x:int2]

j str2int [` [0-9]+ ']

j refvar[\ v ", x:Var]

int = varcnt[\ report variables "]
j int2

var = str2var[`[a-z][a-z0-9]*']

%left + -

%left * �

Table 2.3: In-Fix Calculator De�nition

action = print[\ x ", x:int]
j assign[\ v x = ",v:Var,x:int2]

j de�ne var[\ s x de�ne ",

s:string, x:int2]
j list[\ list "]

j on[\ ON "]

j o�[\ OFF "]

j clear[\ clear "]

int2 = add [\ x y + ", x:int2, y:int2]

j sub [\ x y - ", x:int2, y:int2]

j mul [\ x y * ", x:int2, y:int2]

j div [\ x y � ", x:int2, y:int2]

j str2int [` [0-9]+ ']

j refvar[\ v ", x:Var]

int = varcnt[\ report variables "]

j int2

var = str2var[`[a-z][a-z0-9]*']

%left + -

%left * �

Table 2.4: Post-Fix Calculator De�nition

14

2.4 Directive Sections

For very simple languages, such as calculators, producing an operator tree directly

from the speci�cation is quite straightforward. Because this is certainly not true for

all applications, data languages in particular, we must be able to manipulate oper-

ator trees as they are being produced. (An example will be shown in Section 2.6.)

We de�ne directive functions as functions (distinct from backplane functions)

which manipulate operator trees, and a directive section as a sequence of directive

function calls delimited by curly braces, `f' and `g'. Two directive sections are added

to the parameterized signature|a pre-action, placed before the signature and used

mainly to test for pre-conditions, and a post-action, placed after the signature and

used mainly to manipulate syntax pattern elements.

f

pre-action directive0;

pre-action directive1;

: : :

g

f [< invoking condition >, p1:T1, p2:T2, : : :]

f

post-action directive0;

post-action directive1;

: : :

g

Directive functions are evaluated sequentially at compile time. First the

directives of the pre-action are evaluated, then the syntax pattern is matched, and

�nally the directives of the post-action are evaluated. Note that these are compiler

directives which generate no additional function calls in the operator tree.

2.4.1 Local Variables

Without variables, directives' results can be obtained only by destructive side-e�ects

on their inputs. Variables are needed for passing parsed parameters into directives

and for passing results out.

The scope of a local variable is limited to only its associated parameterized

signature and the directive section where it is declared. Thus, a local variable de�ned

in a pre-action can be referenced in the pre-action and the signature but not in the

post-action; similarly, local variables de�ned in the post-action can be referenced

in the post-action and the signature but not in the pre-action. Local variables are

declared at the top of the directive section, e.g.,

15

f �0 :�0;

�1 :�1;

: : :

directive0;

directive1;

: : :

g.

Like parameters of backplane functions, local variables are typed with sub-

catalog names. The functions of the directive are responsible for enforcing type

restrictions on the local variables. Local variables are assigned values only in func-

tions or as a result of parsing; there is no direct assignment operator.

As production of operator trees is quite straightforward in the simple calcula-

tor domain, this and later examples are drawn from the domain of data languages.

Tables 2.5 and 2.6 describe some data types and backplane functions from that

domain which we will use extensively throughout the remainder of this section.

Attribute : attribute information (name, access, : : :)

Boolean : binary truth type

Expression : evaluable expression of any type
List[<T>] : a list with any number of elements all of type T

Record : a composite structure with �elds of di�ering or same types

Relation : relation information (name, alias, access information, : : :)
Stream : a structure imposed on an arbitrary number of Records

Void : the empty type

Table 2.5: Selected Data Language Types

Example. Consider the simplest form of the Quel RETRIEVE statement,

RETRIEVE (<attribute list>)

which simply prints the values of the listed attributes for all tuples. Attributes

must be pre�xed by a relation name (e.g., \R.a" instead of simply \a"). We de�ne

a signature to model this simple statement5:

retrieve[``RETRIEVE (a)'', r, a:List[Attribute], TRUE]

f r:List[Relation];

5
TRUE and FALSE are built-in boolean constants; NULL is a built-in empty value.

16

aggregate(a:List[Expression],s:Stream):Stream

applies the aggregations of a to Stream s

compute(e:List[Expression],s:Stream):Stream

applies the expressions in e to Stream s

retrieve(r:List[Relation], a:List[Attribute], p:Boolean):Stream
gets attributes a satisfying p from relations r

print (s:Stream) : Void

prints the records of the input Stream s

Table 2.6: Selected Data Language Backplane Functions

add relation info(a, r);

g.

The �rst parameter of the retrieve() function, r, is a list of relations referenced

in the query. To identify the relations referenced, we de�ne a directive function

add relation info(a:List[Attribute],r:List[Relation]) which creates, from the list of

attributes, a list of all relations accessed. The call to add relation info() succeeds

if each attribute in a is successfully mapped to a valid relation reference and fails

otherwise.

While local variables were su�cient for this example, sometimes informa-

tion must be shared across subcatalogs. This brings us to our next topic|global

variables.

2.4.2 Global Variables

Occasionally, information parsed in one syntax signature is also needed in other

syntax signatures. Sometimes the entire parameter is needed; sometimes only part

of it is shared. All variants of the syntax signature may reference global variables.

Rosetta shares information across subcatalogs via a mechanism for the global

collection and distribution of information: the context. When an input statement

is parsed, a context is supplied to make multiply-referenced information available

wherever it is needed. Global variables can store information needed by multiple

functions or gather information speci�ed in multiple clauses. The scope of a context

variable is global in that it can be referenced by any rule which is being satis�ed

while the context variable is on the stack.

Like global variables in any programming language, Rosetta global variables

17

should be used judiciously and sparingly: using them is easy to do but hard to justify.

Usually, the parameters needed to construct a function call are bundled with the

keywords indicating the function call and are not needed for the construction of

other function calls; in this case, using a global variable is unnecessary. Only when

information is shared across subcatalogs are global variables needed.

In the data language domain, global variables collect such information as

attributes to be projected, de�nitions of aliases for relations, etc. For data languages,

we have found that three global variables are a necessary part of the context:

rel list { List[relation]: relations which may be accessed and their aliases.

proj list { List[attribute]: attributes to be retrieved.

xpr { List[expression]: expressions to be computed and displayed.

To increase generality, these global variables are de�ned as lists; however, for other

domains (and for additional global variables in the data language domain), it may

make sense to de�ne global variables which are single objects and not lists.

Context de�nition is speci�ed once, at the head of a Rosetta �le, in a special

section delimited by BEGIN CONTEXT and END CONTEXT keywords. A speci�cation

�le may de�ne more than one context. To distinguish between them, contexts are

named when de�ned and referenced by name. Between the begin and end clauses

the global variables are de�ned using the � :� type notation:

BEGIN CONTEXT <context name>

rel list : List[Relation];

proj list : List[Attribute];

xpr : List[Expression];

END CONTEXT <context name>

The context is similar to the execution stack in programming languages.

When a subquery requests a new context, the new context is pushed on top of

the stack. A new backplane function, new context(), creates and pushes the new

context. The new context remains on the stack until completion of the subcatalog in

which it was created, when it is popped o� the context stack. Popping the context

is actually an implicit pop: allocation is explicit, but the matching deallocation is

not. All context elements on the stack are always visible.

2.4.3 A Simple Example

As a simple example from the data language domain which exhibits the use of the

context, consider the combination of Quel RANGE and RETRIEVE statements:

18

RANGE OF T IS R

RETRIEVE (T.a)

WHERE T.a > 10

Once the RANGE statement has been processed, the alias T continues in e�ect

for relation R until it is rede�ned in another RANGE statement. While it is in e�ect,

it must be maintained independent of any other Quel statements so that it can be

referenced as needed.

In Table 2.7 we de�ne �ve subcatalogs which partially parse the Quel RANGE

and RETRIEVE statements. (For brevity, we omit subcatalogs which parse standard

parts of the language such as the relation, identi�er, expr list, and predicate sub-

catalogs, which model relation names, identi�ers, expression lists, and predicates,

respectively.)

BEGIN CONTEXT Ci

rel list : List[relation alias]

proj list : List[Attribute]
END CONTEXT Ci

decl = noop[\ RANGE OF a IS r ", NULL]

f a:identi�er;

r:relation;

new alias(rel list,[(r,a)]);

g

;

ret = f new context(Ci); g

print[\ RETRIEVE r ", r:eval]

;

eval = compute[\ e s ", e:expr list, s:access]

f ext attr(e,proj list); g

;

access = retrieve[\ w ", r, proj list, w:where]

f r:rel list;

ext rel(proj list,rel list,r);

ext rel(w,rel list,r);

g

;

where = noop[\ WHERE p ", p:predicate]

;

Table 2.7: Partial Speci�cation of Quel RANGE and RETRIEVE Statements

19

The decl subcatalog parses the RANGE statement. Since the only purpose of

a RANGE statement is to de�ne aliases for relations, the only action is the addition

of the alias to the relation list in the context, new alias(rel list,[(R,T)])
6. Specifying

the noop() backplane function with a NULL parameter produces an empty operator

tree.

The ret subcatalog, recognizing the RETRIEVE statement, sets up the call

to print(). Next, the eval subcatalog sets up a call to compute(), which applies

the expressions listed in its expression list parameter e to its stream parameter s,

computing the values to be displayed. In its post-action, the eval subcatalog uses

the directive function ext attr()
7 to create a list of all attributes referenced in the

expression list. This list is used in the retrieve() function as the list of attributes

for projection.

In the access subcatalog, the relation retrieval is set up by composing a call to

the retrieve() function and by two calls in the post-action to ext rel()8. Information

for the retrieve() function|relation aliases and the projection list|is supplied by

references to the local variable r and the global variable proj list. (Since information

can be added to a global variable from any subcatalog, this context element is

referenced after parsing the statement is complete.)

Finally, the where subcatalog parses the WHERE clause. It consumes the

WHERE keyword, setting up the remaining input for parsing by the predicate sub-

catalog (not shown in Table 2.7). No backplane function is called, so the noop()

backplane function is speci�ed.

Some directive functions have already been introduced. We now discuss more

generally the functions which may be called from a directive section.

2.4.4 Directive Functions

We found in modeling data languages that for some backplane function parameters,

the standard operator tree does not coincide cleanly to the desired operator tree.

The directive functions provide a way to modify an operator tree even as it is be-

ing produced. Modi�cation operations on operator trees include rearranging nodes

and augmenting the operator tree with additional nodes. Any modi�cation to the

emerging operator tree can be done if a directive function is de�ned and added to

Rosetta. Because of the likelihood that new language requirements will outstrip

6
new alias() maintains the list of aliases rel list, adding new aliases, deleting re-de�ned aliases,

and checking that all relation references are valid.
7
ext attr() returns in its second parameter a list of all attributes referenced in its �rst parameter.

8
ext rel() extracts the relation references from a list of expressions, making sure that they are

de�ned either in the schema or in rel list.

20

any set of �xed capabilities, we allow the addition of new directive functions; thus,

Rosetta is itself extensible.

Note that there is a de�nite distinction between directive functions and back-

plane functions: directive functions are used solely in syntactic modeling of lan-

guages whereas the backplane functions are applied only in the semantic modeling

of languages. There is no overlap between the two.

Only one requirement is imposed on directive functions: a directive function

must not introduce changes which result in type violations. In particular, an oper-

ator tree (and each of its subtrees) must compute a result of the same type before

and after modi�cation.

An example of a situation when directive functions are necessary is in the

computation of variance with the computational formula, 1

n

P
x
2
i
� x

2, which

involves both aggregate and arithmetic operations.

When translated into a data language, the computational formula for vari-

ance is a single expression and is parsed as a unit, but it is evaluated by calling two

backplane functions, compute() and aggregate(). The call to compute() evaluates

the arithmetic operations; the call to aggregate() evaluates the aggregate operations.

Calls to these functions can be nested; e.g., to evaluate the �rst term, compute()

evaluates x2
i
, aggregate() sums that result, then compute() divides the sum by n.

An operator tree built while parsing the expression for computing variance

of the attribute Age is shown in Figure 2.2a; the corresponding operator tree which

actually evaluates the variance is shown in Figure 2.2b. (A more detailed explanation

of this example is given in Section 2.6.)

The original operator tree of Figure 2.2a needs major surgery to transform it

into the desired operator tree of Figure 2.2b. To manipulate the nodes of the orig-

inal operator tree into the desired operator tree, we devised the rewrite() directive

function.

The Rewrite Function. The rewrite() directive function makes node rearrange-

ment explicit. Before explaining the operation of the rewrite() directive function,

we present some de�nitions which will simplify its explanation.

In the implementation of Rosetta, every node is tagged at its creation. We

make use of the tags in rearranging the tree.

Given a list ta of tags and a tree tr, we say that a node of tr is t-tagged if its

tag is an element of ta.

We de�ne the cluster(ta,tr): If the root of tr is t-tagged, then it is included

in the cluster; otherwise, the cluster is the empty tree. For each node in the cluster,

each t-tagged child is included in the cluster. Thus, the cluster(ta,tr) is the maximal

21

−

/

sum count

*

AgeAge Age Age Age

avg avg

*

compute

aggregate

compute

[#1/#2−#3*#4]

[sum(#1),
 count(#2),
 avg(#3),
 avg(#4)]

[#1*#2,
 #3, #4,
 #5]

 <input stream>
[Age,Age,Age,Age,Age]

(a) original operator tree (b) desired operator tree

attribute of a tuple in the input stream.)
(The notation "#i" refers to the ith

Figure 2.2: Computing Variance: Original and Desired Operator Trees

group of neighboring t-tagged nodes which includes the root. Note that the cluster

is a tree.

Finally, we de�ne the residual subtrees as the maximal subtrees consisting

entirely of nodes which are not in the cluster(ta,tr). Figure 2.3 shows a tree which

has been separated into its cluster and residual subtrees.

We use these de�nitions to de�ne the rewrite() function:

rewrite(ta,tr,c):Boolean.

The �rst parameter, ta, is a list of tags (tags are strings); the second parameter, tr,

is a list of operator trees; and the third parameter, c, also a list of operator trees, is

an output parameter for the clusters.

One by one, and proceeding left to right through tr, for each operator tree

tri in tr, rewrite() determines the cluster(ta,tri), then detaches the cluster from the

residual subtrees. A call to rewrite() leaves the residual subtrees in the list tr and

returns the list of clusters in the output parameter c. As each residual subtree

is detached, rewrite() replaces it in the cluster with a node which refers to it by

its position in tr, providing a handle for access during evaluation to the result it

computes.

In Figure 2.3, the original operator tree on the left is rewritten as a cluster

and three subtrees. In the cluster, the �rst subtree is referenced by #1, the second

by #2, and the third by #3. The references #1, #2, and #3 are used as placehold-

22

a

a b

e f

c

a d

original tree

e f

c

a d

residual subtrees

a

a b#1

#2 #3

cluster

tags = { a, b }

Figure 2.3: Application of rewrite() to an Operator Tree

ers referring to the �rst, second, and third attributes of the tuples of the stream

generated by evaluating the subtrees.

The call to rewrite() succeeds if, after processing all input trees in tr, at least

one non-empty cluster is detected, i.e., if c is not empty. Otherwise, rewrite() fails.

Combining rewrite() with the cycle subcatalog allows us to produce the oper-

ator tree of Figure 2.2b from the original tree of Figure 2.2a. An example combining

the two will be given in Section 2.6, after a closer examination of the cycle subcat-

alog.

2.5 Cycle Subcatalogs

In form, the cycle subcatalog is the same as any other subcatalog:

<subcatalog name> =

< signature0 >

j < signature1 >

j : : :

j < signaturen >

However, the cycle subcatalog consists exclusively of cycle signatures. The cycle

signature, de�ned in Section 2.3, adds the ability to inject function calls into the

operator tree. It does not rely on the detection of particular syntax in the input;

instead it is enabled if a speci�ed condition tested by a boolean function is satis�ed.

Input is not consumed in a cycle subcatalog; the objective is to re-process previously

parsed input. The cycle subcatalog can augment the operator tree with as many

additional functions as necessary.

The cycle subcatalog may have an arbitrary number of recursive signatures;

that is, signatures in which the cycle subcatalog is itself named as one of the param-

23

eters of the invoked backplane function. As the cycle subcatalog is not referenced

in the post-action or elsewhere, no variable name is needed in the parameter list.

In addition to the recursive signatures, there must be at least one non-

recursive signature; this is the exit signature for the cycle subcatalog. The non-

recursive signature names as a parameter the subcatalog through which parsing

continues.

For example, consider the proc expr subcatalog in Table 2.8. The �rst two

cycle signatures are recursive, each incorporating the proc expr subcatalog as the sec-

ond parameter, while the third signature is the non-recursive exit signature. Parsing

continues with the f ret subcatalog.

Besides the cycle subcatalog, parameters of the cycle signatures' invoked

functions may be local or global variables. Just as local variables referenced in the

parameter list of a parameterized signature are instantiated in the syntax pattern,

so local variables declared in the parameter list of a cycle signature are instantiated

by the condition function. Global variables may also be instantiated elsewhere, in

another subcatalog.

During parsing, the conditions of the signatures of the cycle subcatalog are

tested in the same order as they are entered. Conditions are tested until one suc-

ceeds; whereupon the associated function is added to the operator tree. While the

signature applied is recursive, this process is repeated until a non-recursive signa-

ture is applied. As the conditions of the cycle signatures are independent, they are

not necessarily mutually exclusive and multiple conditions may hold simultaneously.

Thus, to prevent premature exit, the exit signatures are listed last. If no condition

is successful, an error is signaled and parsing fails. As for any recursive process,

processing may not terminate if the conditions are not well designed.

We impose certain restrictions on cycle signatures which increase the clarity

of the model without loss of generality. First, cycle signatures may have post-actions

but not pre-actions. As input is not being consumed, the pre-action can be easily

folded into the condition or the post-action. In addition, cycle signatures cannot

be combined in a subcatalog with parameterized and conversion signatures. Such

a combination would make it di�cult to interpret the language speci�cation, as it

would be unclear whether processing of previously read input or consumption of

additional input should take place. Instead, multiple smaller cycle subcatalogs can

be interspersed with parameterized and conversion subcatalogs to achieve the same

e�ect.

24

2.6 A Larger Example

To give a clearer picture of the interactions between the context, local variables,

directive sections, cycle subcatalogs, and the rewrite() function, we now discuss a

larger example|a simple form of the SQL SELECT statement:

SELECT <attr list>

FROM <relation list>

WHERE <predicate>,

where items delimited by angle brackets < and > represent parameters.

Table 2.8 gives a partial speci�cation of subcatalogs for the simpli�ed SQL

SELECT statement. Again, to keep the example brief, low-level subcatalogs' de�ni-

BEGIN CONTEXT C

rel list : relation list

proj list : attribute list

xpr : expression list

END CONTEXT C

display = f new context(C); g
print[\ SELECT x ", x:estream]

;

estream = noop[\ xpr ", proc expr]
;

proc expr = compute[rewrite(xpr,\+ - * /",x), x:expression list, proc expr]

j aggregate[rewrite(xpr,aggr-ops,x), x:expression list, proc expr]
j noop[is attr list(xpr), f ret]

;

f ret = retrieve[\ FROM r p ", rel list, proj list, p:where]

f r:relation list;

insert attr(proj list,xpr);

insert rel(rel list,r);
g

;

where = noop[\ WHERE p ", p:predicate]
f a:attribute list;

ext attr(p,a);

insert attr(proj list,a);
g

j �

;

Table 2.8: Rosetta Speci�cation of Simpli�ed SQL SELECT Statement

25

tions are not shown. (References to those subcatalogs are italicized.)

For this example, we assume the relation Student(SSN,Name,Ranking,Age)

and compute the statistical variance of Age for students whose Ranking is Junior.

We translate the computational formula for variance, 1

n

P
x
2
i
� x

2, into an SQL

SELECT statement:

SELECT (sum(Age*Age) � count(Age)) - (avg(Age)*avg(Age))

FROM Student

WHERE Ranking=Junior

In processing this SQL statement with the speci�cation of Table 2.8, the

display subcatalog �rst sets up the new context for the query and consumes the

SELECT keyword. The remaining input is parsed from the estream subcatalog.

The sole option of the estream subcatalog is exercised: it references two

other subcatalogs, of which the second is a cycle subcatalog. First, the expres-

sion (sum(Age*Age) � count(Age)) - (avg(Age)*avg(Age)) is parsed via the

expression list subcatalog into the context element xpr (see Figure 2.4). Next, the

second subcatalog reference, proc expr, is activated.

−

/

sum count

*

AgeAge Age Age Age

avg avg

*

Figure 2.4: Original Operator Tree for Variance Computational Formula

The proc expr subcatalog has three options of which only the �rst can suc-

ceed. The second option cannot succeed because it depends on the condition func-

tion rewrite() with aggregation operators as tags; that call to rewrite() fails because

the root of the input operator tree is not an aggregate operator. The third option

depends on the condition is attr list(), which succeeds only if the context variable

xpr is a list of attributes; however, xpr is a list whose sole element is an expression.

But the �rst option, which is contingent on rewrite() being able to remove

arithmetic clusters, succeeds. The call to rewrite() manipulates the expression list;

there is one cluster and four residual subtrees (see Figure 2.5). After rewrite(),

the context variable xpr contains the four residual subtrees and the local variable x

contains the single cluster. Parsing continues with the proc expr subcatalog.

26

This time, because the root nodes of all four clusters are aggregate operators,

only the second option of proc expr succeeds, �nding four clusters and four residual

subtrees (see Figure 2.6). Again, the clusters are elements of x; the residual subtrees

are left in the context variable xpr; parsing continues in the proc expr subcatalog.

−

/

#1 #2

sum count

* Age

avg

Age

avg

Age
*

#3 #4

(a) cluster (b) residual subtrees

Age Age

Figure 2.5: Result of First Call to rewrite()

sum

#1

count

#2

avg

#3

*

Age Age

Age Age Ageavg

#4

(a) clusters (b) residual subtrees

Figure 2.6: Result of Second Call to rewrite()

On the third iteration, only the �rst option of proc expr succeeds. rewrite()

�nds only one cluster and �ve residual subtrees (see Figure 2.7). Parsing continues

with the proc expr subcatalog.

*
Age Age

#1 #2

Age Age Age

(a) clusters (b) residual subtrees

Figure 2.7: Result of Third Call to rewrite()

After the third iteration, xpr contains a list of attributes, [Age, Age, Age,

Age, Age], so that neither of the conditions of the �rst two alternatives succeeds.

As the condition of the exit signature (the third alternative) succeeds, cycling ter-

minates successfully, and parsing continues with f ret, the exit subcatalog.

The f ret and where subcatalogs consume the remaining input:

27

FROM Student

WHERE Ranking=Junior

Figure 2.8 shows the operator tree produced by this chain of subcatalogs.

Evaluation of the operator tree is bottom-up. First, retrieve() creates, from the tu-

ples of the relation Student which satisfy Ranking=Junior, a stream of �ve-tuples,

[Age,Age,Age,Age,Age] 9. It is input to compute(), which produces a stream of

four-tuples: [Age*Age,Age,Age,Age]. Next, aggregate() produces the four-tuple

[sum(Age*Age),count(Age),avg(Age),avg(Age)]. Finally, compute() applies the di-

vision, subtraction, and multiplication to produce the �nal result, which is then

printed.

print

compute

aggregate

compute

retrieve

[Student]

[Ranking=Junior]

[#1/#2−#3*#4]

[sum(#1),
 count(#2),
 avg(#3),
 avg(#4)]

[#1*#2,
 #3,#4,#5]

[Age,Age,
 Age,Age,
 Age]

Figure 2.8: Final Operator Tree for Variance Query

The proc expr subcatalog iteratively processes the input expression. With-

out consuming any more input, the �rst two options of the proc expr subcatalog

iteratively process the global expression list xpr, using rewrite() to extract clusters

of arithmetic operations or aggregations. Finally, when the expression list consists

of attributes only, neither call to rewrite() can remove any more clusters, cycling

terminates, and parsing continues with standard subcatalogs.

During evaluation of the query, the retrieved stream will undergo either com-

putation (arithmetic evaluation or aggregation or both) or projection. The proc expr

subcatalog is an artifact of the necessity of separating arithmetic operations from

9Clearly, a simple optimization eliminates replicating the retrieved attribute values; for clarity

of exposition, we did not apply it.

28

aggregations10.

2.7 Summary

Data language extensibility can be achieved by leveraging a common but extensible

backplane of database operators. The semantics of data languages can be expressed

in terms of the set of operator trees that can be formed; we have expressed such sets

in terms of rewrite rules called subcatalogs.

Data language syntax can be customized by grafting the invoking syntax

signatures onto backplane operator trees. Special functions called directive func-

tions were introduced to add
exibility and generality to language speci�cation.

Local variables, context variables, and directive functions all interact in the direc-

tive sections to allow the manipulation of operator trees. Local variables allow

information-sharing within a subcatalog; global variables allow information-sharing

across subcatalogs; and directive functions can use both in manipulating nodes of

the operator tree. As the generated compiler creates the operator tree in a standard

form, these features are necessary to accommodate quirks in data languages which

may cause the standard operator tree to fall short of the desired operator tree.

10Although expressions may include both aggregation and arithmetic operations, these are eval-

uated by di�erent backplane functions|aggregate() and compute().

29

Chapter 3

The Rosetta Prototype

In Chapter 2, we discussed the Rosetta speci�cation language. In this chapter,

we consider the implementation of the generator prototype, which maps a Rosetta

language speci�cation to a compiler for the language.

The input to Rosetta (see Figure 3.1) is a Rosetta language speci�cation and

the set of backplane function de�nitions. The generator type-checks the speci�cation

using the backplane function de�nitions and maps the speci�cation to bison[DS91]

and
ex[LS86] �les. These �les specify a lexical analyzer and parser and, together

with C �les which de�ne compiler structures and compiler utilities, comprise the

generated compiler for the customized data language. The generated compiler maps

a statement of the language to an operator tree which can be used by a query

evaluator to evaluate the statement, possibly after optimization.

In the rest of this chapter, we explore how the prototype generates the bison

and
ex �les from a speci�cation. We discuss �rst the structure of the bison �le

and show how we generate its speci�cation, then we do the same for the
ex �le.

data
language

specification

flex

bison

data
language
statement

customized
data language

compiler

operator
tree

Rosetta

definitions
function

backplane

query
evaluator

implementation)
(includes backplanecompiler

utilities

Figure 3.1: Rosetta Generator Prototype

30

%{
 include files
 global variable declarations
%}

union declaration
declaration of operator associativities
type declarations:
 token declarations
 non−terminal declarations

%%

rules section

%%

C code section

Figure 3.2: Structure of the Bison File

Next, we consider the type-checking that can be done during translation. Finally,

we conclude with a summary of the prototype.

3.1 Generating the bison �le

The bison �le is generated after a complete pass over the speci�cation �le. A spec-

i�cation �le is composed of three sections: a set of context de�nitions, possibly

empty; a non-empty set of subcatalogs; and a set of associativity and precedence

declarations, also possibly empty. Each of these is mapped to the bison �le in its

own way. We �rst discuss the structure of the bison �le, and then discuss the role

each part of the speci�cation �le plays in generating the bison �le.

3.1.1 Structure of the bison �le

There are three sections in a bison �le: the declarations section, the rules section, and

the C code section (see Figure 3.2). The sections are delimited by a line containing

only the string %%. Information from the speci�cation �le is disseminated among

the three sections but is concentrated in the second.

The declarations section consists of several distinct subparts: a section (de-

limited by %f and %g) to be included literally in the �nal C �le, followed by a

union declaration, declarations for operator associativities, and type declarations

for terminal and non-terminal symbols.

The second section, the rules section, is the heart of the bison �le, and

31

correspondingly most of the work goes into mapping the subcatalogs into the rules.

The syntax of a bison rule is quite simple:

symbol : pattern

j : : :

;

Each rule consists of a symbol on the left hand side, which de�nes its name, and

a right hand side which de�nes everything else: the pattern (terminal and non-

terminal symbols) which must be observed in the input and any C code which is

to be executed as part of the rule. Rule options are delimited by a j, and the right

hand side may include any number of options.

Finally, the third and last section of the bison �le consists of C code which is

copied unchanged to the bison output �le. This may include additional C de�nitions

as well as C functions.

3.1.2 Generating the bison �le

The �rst two elements of the declarations section are generated by rote; no language-

speci�c information is necessary. Following these, the declarations of operator prece-

dence and associativity are copied in directly from the speci�cation �le. The last

element of the declaration section declares types for the terminal and non-terminal

symbols. The type declarations are language dependent; they are generated from

symbol tables after the speci�cation �le has been processed. In order to make gen-

eration feasible, token types are standardized: all terminals return values of type

string and all non-terminals return values of type nodeptr1.

Most of the work in generating the bison �le is in handling the context

variables and subcatalogs. We discuss �rst how contexts are incorporated, then

discuss subcatalogs.

Contexts. Contexts provide global memory during query compile-time. However,

we have to generate code at compiler generation-time to manage context variable

references.

A context variable is globally available whenever the context which de�nes

it is active2 (see Chapter 2.4.2). To manage context variables, we de�ne a global

structure and functions to store and access values of context variables. This global

1
string is de�ned as char * and nodeptr is a pointer to a C union which will constitute the

nodes of the operator tree.
2A context X is active whenever it has been allocated by a call to new CNTXT(X) and has not

yet been deallocated. Once a rule activates a context, the context is active until the rule is satis�ed.

Thus it is active while the sub-goals of the activating rule are being satis�ed.

32

(b) generated bison code

$$ = alloc_node(FUNCTION,NULL);
$$−>u.fn−>fncode = str2FUNC("union");

$$−>u.fn−>argl = (node **) calloc(2,sizeof(node *));
$$−>u.fn−>argl[0] = $1;
$$−>u.fn−>argl[1] = $3;

}

{

}
$$ = $1;

;

|

%type <nodeptr> display

%%

// allocate a node for a function
// initialize function code
// initialize number of parameters
// allocate array for parameters
// initialize 1rst parameter to display
// initialize 2nd parameter to display2

$$−>u.fn−>argc = 2;

display: display UNION_RL display2
{

;

(a) Rosetta specification

|
display = union[" _x UNION _y ", x:display, y:display2]

. . .

| select
. . .

| select
. . .

Figure 3.3: Mapping a Rosetta Speci�cation to a Bison File

structure is the context stack. Allocating a context adds enough space at the top of

the context stack to accommodate the variables of the named context.

To make context de�nitions available at run-time, we generate a function (in

the C code section of the bison �le) which both allocates and initializes a structure

storing context de�nition information. We include in this structure the context

name, the number of variables, and their names and types.

Subcatalogs. In Figure 3.3, we show how a Rosetta subcatalog maps to elements

of a bison �le. Each Rosetta subcatalog is mapped to a single bison rule, with its

signatures mapping to rule options. Each rule generated recognizes some part of

the customized language and creates a node for the operator tree. Each subcatalog

name becomes a bison non-terminal name, and its type is declared in a bison %type

statement. Subcatalogs have many parts; each is discussed in turn.

33

Signatures. Each signature of a subcatalog maps to an option of the associated

rule, with the signature pattern mapping to the rule option pattern. Elements

of the signature pattern are either keywords or parameters3. The keywords must

appear precisely in the input while the parameters, which represent varying input,

are mapped to non-terminals (bison rule names).

A keyword cannot be copied directly into the bison �le as it may contain

characters special to bison and
ex, e.g., `*', `.', etc. For each keyword, a unique

identi�er is generated which represents the keyword in the pattern and is also used

in the token type declaration in the bison �le.

A parameter is replaced in the bison pattern by its associated subcatalog

type name, which is de�ned in the parameter list, in a pre- or post-action's list of

local variables, or in a context. As an example, the parameters of the �rst signature

in Figure 3.3 are mapped to display and display2. In accordance with the scoping

rules for Rosetta variables, we look �rst for a de�nition in the parameter list; as

a parameter de�nition may be arbitrarily deeply nested in a function call in the

parameter list, this look-up is done recursively.

A parameter may also be de�ned as a local variable in either a pre- or post-

action. Local variables are available only in the subcatalog in which they are de�ned,

and their de�nitions are maintained in a local symbol table4.

Finally, a parameter which is not de�ned in either the parameter list or a

pre- or post-action must be a context variable. A context variable reference is also

replaced by its de�ning subcatalog name, but it is looked up in the stack of active

contexts.

An error is reported if a parameter is not de�ned in the parameter list, in a

pre- or post-action, or in a context.

Pre- and Post-Actions. Pre- and post-actions contribute both local variable

de�nitions and function calls. Since local variables are available only in the subcat-

alog in which they are declared, each signature has an associated symbol table in

which we can look up a local variable's de�ning subcatalog name whenever neces-

sary. Furthermore, code is added after the pattern to initialize the value of the local

variable so that its initial value can be passed to any functions that reference it.

Wherever a local variable is referenced as a parameter, it is replaced with a function

call which resolves the name to a pointer to be passed.

Furthermore, functions which are called in the pre- and post-actions are

intended to be called before or after the pattern of the rule option is matched,

3Recall that parameters are distinguished from keywords by a ` ' pre�x, e.g., in Figure 3.3, \ x"

and \ y" are parameters while UNION, INTERSECT, and EXCEPT are keywords.
4At run-time, memory is allocated for local variables in a global stack.

34

respectively. Since these functions are called at run-time, they are simply copied

into the bison �le instead of having nodes created for them.

Creating Operator Tree Nodes. After the post-action function calls are copied

into the bison �le, C code is generated to allocate and initialize an operator tree

node for calling the speci�ed backplane function. Each node of the operator tree is a

union, so we allocate the node, initialize its tag, and allocate and initialize its variant

�elds. We convert the string naming the function to an internal function code and

set the function code. From the backplane de�nition, we determine the number of

arguments, set the argument count �eld, and allocate and initialize the parameter

node pointers. In Figure 3.3, the function to be invoked is union(), and it has two

arguments which are initialized to the pattern elements display and display2.

The parameters are matched by other rules and their nodes are created and

initialized in those other rules, so each element of the parameter list is set to the ap-

propriate parameter subtree using the $i notation5. Parameters which are matched

in the pattern are initialized by the bison $i reference; other parameters are either

local or context variables and are initialized by a function call to access variable

storage.

Finally, we have to create and initialize nodes for the backplane functions

nested in the parameter list, if any. As functions in the parameter list can be

arbitrarily deeply nested, node allocation can be arbitrarily deeply nested.

Automatic Context Allocation and Deallocation. A context is explicitly

allocated by a call to the backplane function newCNTXT() from a pre- or post-

action; however, there is no corresponding deallocation function. Instead, a context

is active as long as its associated rule is unsatis�ed, and is automatically deactivated

when the rule is satis�ed. Allocating a new context adds a context element to the

context stack, making variables de�ned in the named context available for reference

in the rule and whatever rules it references.

The matching call to dropCNTXT() is the last function called in the action

of a rule; it follows the code generated to create an operator tree node. It removes

the allocated context from the active contexts stack, making context variables in-

accessible, but does not reclaim memory allocated for the variables as that would

potentially destroy values needed at query evaluation-time.

Conversion Subcatalogs. Conversion subcatalogs (see Chapter 2.3) are handled

similarly to parameterized subcatalogs. A conversion subcatalog is also mapped to

5
$i is bison notation which refers to the ith element matched in the pattern. There is also a

special notation $$ which refers to the value of the current bison rule.

35

;
valuelist = list [‘(’ ,‘)’ , ‘,’ , literal, emptyok]

(a) Rosetta source

{ }

| literal

;

;

{

}

create list node for $3

{

}

create list node for $1

link to list from $1

return $2 ;

return $1

return $1

‘(’ valuelist_X ‘)’

valuelist_X ‘,’ literalvaluelist_X:

{ }return NULL

valuelist:

(b) generated bison code

| ‘(’ epsilon ‘)’

Figure 3.4: Mapping a List Subcatalog to a Bison Rule

a bison rule, with the subcatalog name acting as the non-terminal which names the

bison rule. Each conversion signature is mapped to a bison rule option.

However, a conversion signature di�ers in that its invoking syntax is a regular

expression. As for keywords, we generate a unique token identi�er from it and

declare its type in the bison �le as <string>. The unique token identi�er is the only

element of the bison rule pattern. Following the pattern, generated C code allocates

and initializes a node for the backplane conversion function speci�ed in the signature.

Node generation for conversion functions is simpli�ed by the uniformity of conversion

function de�nitions: all conversion functions have exactly one parameter|the string

matched by the regular expression.

List Subcatalogs. List subcatalogs (see Chapter 2.3) are handled di�erently from

either parameterized or conversion subcatalogs. In Figure 3.4, we show an example

of how a list subcatalog is mapped to bison rules.

A list subcatalog maps to not one but two bison rules. The �rst rule consumes

the brackets enclosing the list6 and matches the sequence of list elements with a

reference to the second rule.

The second rule has two options: the �rst option recursively matches a se-

quence of elements, a separator (if speci�ed), and the last element of the list; the

6Brackets need not be speci�ed for lists; if they are not, those positions in the generated rule

are simply left empty.

36

second option matches a single element.

Furthermore, each rule option has some generated C code which collectively

creates and initializes a list. Unlike other subcatalogs, a list subcatalog does not

invoke a function. Instead, a node is allocated and initialized for each element of

the list and then additional code links the nodes together tagged as list elements.

This is the standard generation pattern for a list. But list de�nitions have

variations. The list may be a unit list7, which has exactly one element. In this case,

the �rst rule is the only rule, and it consumes the brackets and inside the brackets

matches exactly one element.

In another variation, a list de�nition may allow the empty list, in which

case the �rst rule has a second option which matches the empty string: its pattern

consists of a reference to the epsilon subcatalog8. If the list cannot be empty, then

the second option is simply not included, thereby forcing the rule to match at least

one list element.

Cycle Subcatalogs. Cycle subcatalogs, explained in detail in Chapter 2.5, are

mapped to the bison �le completely di�erently than are other subcatalogs. The

di�erences extend to subcatalogs which merely reference cycle subcatalogs. Fig-

ure 3.5 illustrates the complexity of rewriting a cycle subcatalog as a bison rule.

This example is taken from the SQL speci�cation.

Cycle implementation is based on controlled error generation and detection.

The cycle rule matches the error condition and clears it, evaluates one of the options,

then regenerates the error condition if cycling should continue.

To initiate cycling, the bison rule generated from the subcatalog referencing

the cycle subcatalog raises an error condition just before the reference to the cycle

subcatalog. (See the mapping of the comp attr subcatalog to the comp attr bison

rule in Figure 3.5.) Since it generates an error just before the reference to the cycle

subcatalog, the parser rejects that rule option, but tries to satisfy the same rule

with another option. Therefore, that pattern must be split into two parts: one

which raises the error condition and another which matches the cycle subcatalog

(and any others after it). Furthermore, the exit subcatalog of the cycle subcatalog

is moved to follow the reference to the cycle subcatalog.

Unlike other subcatalogs, cycle subcatalogs do not consume additional input;

instead, the signatures of a cycle subcatalog test condition functions. In the gener-

ated bison rule, these condition functions become the conditions of a nested if state-

7A unit list is simply a list with exactly one element. Unit lists are useful when a backplane

function parameter is speci�ed as a list but the language being modeled is more restrictive and

allows only a single item.
8The epsilon subcatalog is a built-in subcatalog which matches the empty string.

37

(b) generated bison code(a) Rosetta source

yyerrok;
push_signature(1);

}
else YYABORT;

}

}

cycle_error_flag = 0;

YYABORT

pop_signature();

YYERROR
else

{
if (test cycle status ok) {

else if (rewrite(xpr,[count,min,...])) {

if (rewrite(xpr,[add,sub,...])) {

create a node for aggregate()

create a node for compute()
link it to the cycle result subtree

link it to the cycle result subtree

if (cycle_error_flag)

$$ = cycle result subtree

else {
signal ERROR (all guards failed)

}

};

proc_stream: error

{
*getCNTXTref("xpr") = $1;
push_cycle();
cycle_error_flag = 1;
YYERROR;

}

{
link_cycle_exit($2);
$$ = cyc_hd−>top;
pop_cycle();

}
;

compattr: expr_list

| proc_stream having

else if (is_attr_list(...)) {

link it to the cycle result subtree
create a node for noop()

}

;

x:expr_list,proc_stream]

x:expr_list, proc_stream]
| aggregate[rewite(xpr,[count,min,...],x),

proc_stream = compute[rewrite(xpr,[add,sub,...],x),

| noop[is_attr_list(xpr), having]

;
compattr = noop[" _xpr _s ", s:proc_stream]

BEGIN CONTEXT X

END CONTEXT X

xpr : expr_list;

. . .

Figure 3.5: Mapping a Cycle Subcatalog to a Bison Rule

38

ment, and their post-actions become the conditional statements. The post-action

of the �rst condition that is satis�ed is evaluated, then either cycling terminates or

condition testing begins anew with the �rst condition9.

The �rst step in the cycle body is to test that the cycle is operating properly.

If it is, the synthesized error is cleared and local variables are allocated; otherwise,

parsing aborts.

The core of the cycle rule body is a nested if statement which selects between

the alternatives of the cycle. Its conditions are the conditions of the cycle subcatalog

and the conditional statements are the post-actions of the conditions of the cycle

subcatalog coupled with some generated C code which creates an operator tree node

and links the node to the result of the cycle. Cycling terminates when a non-recursive

option is selected.

To continue cycling after the nested if statement, the error condition is re-

generated. To terminate cycling, no new error condition is generated; instead, the

result of the cycle subcatalog is assigned to the $$ value.

The last detail is arranging for the cycle subcatalog to return a result. Cycle

subcatalogs return results just as other subcatalogs do. However, the results must

be accumulated in a global structure as each cycle generates a new error condition,

causing the parser to discard the result of the current cycle. Instead of assigning

the return value to $$ each time, a chain of result values is maintained in a global

structure and �nally in the exit cycle the result is set to the accumulated structure.

The global structure is initialized when we set up for cycling (in Figure 3.5, in the

comp attr subcatalog) and demobilized when cycling terminates.

3.2 Generating the
ex �le

In addition to generating the bison �le, we generate a
ex �le which speci�es the

lexical analyzer for the customized compiler. Only the elements of the patterns in

the signatures of the speci�cation �le play a role in generating the
ex �le. This

section will discuss �rst the structure of the
ex �le and then how it is generated.

3.2.1 Structure of the
ex �le

Like the bison �le, the
ex �le has a �xed structure to which our generated �le must

conform (see Figure 3.6). It too has three major sections, again separated by a line

containing only a %%. The �rst section consists of C code (de�nitions, functions,

etc.) which is copied into the
ex output �le. The second section consists of
ex

9Recall that signatures of a cycle subcatalog may not have pre-actions.

39

%{
 include files
 global variable declarations
 C code
%}

%%

rules section:
 pattern { <action> }

%%

C code section

Figure 3.6: Structure of the Flex File

rules. Each rule consists of a regular expression to be matched followed by an action

(written in C) to be executed when the expression is matched. The last section also

consists of C code which is copied into the
ex output �le.

3.2.2 Generating the
ex �le

By comparison with generation of the bison �le, generation of the
ex �le is quite

simple (see Figure 3.7). The contents of the �rst and third sections are �xed so

they can be generated by rote, without reference to the speci�cation �le. The rules

section is somewhat more complex.

Our generated rules fall into two categories: those which match keywords and

those which match regular expressions (e.g., from conversion subcatalogs). In order

to avoid matching a keyword with a more general regular expression, we generate

�rst the keyword rules and then follow them with the regular expression rules.

The keywords and the tokens generated to represent them are available from

a symbol table. So we simply dump the entries of the symbol table (alphabetically

ordered) and add a prede�ned action for each which augments the column count

(useful for debugging) and returns the associated token name. For the rules matching

a regular expression, we also duplicate the matched string and return the copy in a

bison global variable.

Finally, two rules which match and discard white space are automatically

added. One rule matches strings of spaces and tabs and augments the column

count; the second matches the end-of-line character, increments the line count, and

resets the column count to zero.

40

display = union[" _x UNION _y ", x:display, y:display2]

| intersect[" _x INTERSECT _y ", x:select, y:select]
| difference[" _x EXCEPT _y ", x:select, y:select]
| display2
| select

;

| union[" _x UNION _y ", x:display, y:select]

string = str2str[‘ \"[a−zA−Z0−9 ._]+\" ’]

;

\"[a−zA−Z0−9 ._]+\"

return(_a_zA_Z0_9_p_RL);
}

EXCEPT

INTERSECT

UNION

{ column += yyleng; return(INTERSECT_RL); }

{ column += yyleng; return(EXCEPT_RL); }

{ column += yyleng; return(UNION_RL); }

{
column += yyleng;
make duplicate of matched string

(a) Rosetta source

(b) generated flex code

Figure 3.7: Mapping a Rosetta Speci�cation to a Flex File

3.3 Static Type Analysis of the Speci�cation

We type-check the speci�cation to determine, as best we can at compiler generation-

time, that the generated compiler can generate type-correct operator trees. This

phase is called static type-checking. Generation-time type analysis is necessar-

ily inexact as the base types of complex elements are indeterminate at compiler

generation-time, e.g., an attribute of a retrieved tuple may be of any type. How-

ever, the types of all functions invoked are known: some return base types, others

return streams or tuples.

Successful static type analysis means that the generated compiler constructs

operator trees in which the composition of backplane functions is type-correct if

parameters of the expected type are passed in to them. For example, an add()

function returns either
oat or integer depending on its parameters, so if a
oat is

passed in when an integer was expected, the function may return an undesirable

type.

Consider an aggregation operator, such as AVG, which applies an expression

41

to a stream of tuples. It is incorrect for the expression to reference a string at-

tribute; however, such an error cannot be detected until compiling an actual query.

But we can ascertain, at generation-time, that the backplane function compositions

produced by the generated compiler are potentially type correct.

Static Type Analysis. Subcatalog \types" are really just a restriction of de-

�ned base types, so subcatalog types have to be translated to de�ned types. The

backplane function de�nitions are used for this.

The �rst step in doing the static type analysis is to analyze the subcatalogs

and build the subcatalog dependency network (SDN), an array which represents the

type relationships between signatures and subcatalogs. We say that a subcatalog si

depends on another subcatalog sj if some parameter of si is of type sj . The SDN is

a matrix, number-of-signatures � number-of-subcatalogs. The subcatalogs represent

types here and the signatures represent function calls. During static type analysis,

the subcatalogs are numbered sequentially, and the signatures are also numbered

sequentially independently of the subcatalogs. SDN[i][j] == 1 means that the ith

signature has a parameter whose type is the jth subcatalog.

After the subcatalog dependency network has been constructed, we further

analyze the subcatalogs with a standard depth-�rst search procedure to identify the

recursive cliques and the signatures that comprise them. At this point, the actual

static type analysis begins.

Static type analysis proceeds recursively through the subcatalogs and signa-

tures. A subcatalog reference can be satis�ed by any of its signatures, so the type

of a subcatalog can be inferred as the union of the types of its signatures. Thus,

to determine the type of a subcatalog, we must determine the types of each of its

signatures.

The type of a signature is the union of all types that can be returned by the

backplane function f() it invokes10. Backplane functions may be multiply de�ned,

with the type returned depending on the types of the parameters. For example,

the add() backplane function returns an integer if both parameters are integer

or a float if both parameters are floats, and also has other de�nitions. Certain

combinations of parameter types will not be de�ned for a backplane function; we

can't check for this now. All we can do is discover if it is possible to have a type-

correct function call; if so, we include its type in the signature's type.

The type inference process is recursive (see Figure 3.8): for each subcatalog

determine its type by determining the types of each of its signatures and then taking

10A signature can also be a simple subcatalog reference. When it is, the type of the signature is

the same as that of the referenced subcatalog.

42

get types for all recursive signatures in the clique
(iterate while additional types are being added)

get types for all non−recursive signatures in the clique

// determine the type of C:for (each recursive clique C) {

pseudo−code for type analysis

build subcatalog dependency network:
for (each signature S)

check off entry j if S has a parameter of type j

use depth−first search to find mutually dependent subcatalogs

identify recursive subcatalog cliques:

get types of all clique signatures’ non−clique dependencies

}

Figure 3.8: Type Analysis Algorithm

the union of those types. To determine the type of a signature, we recursively

determine the types of the subcatalogs it depends on. Knowing these, we can

determine from the backplane function de�nition which combinations of parameter

types might occur and therefore which types a backplane function call might return.

We take the union of the backplane function de�nitions which can be composed from

this signature. Clearly, this process converges for non-recursive subcatalogs11.

We treat recursive cliques similarly, but iterate over the entire clique. Type

inference for the clique continues as long as we continue to infer a new type for

some clique member in an iteration. Since types are never eliminated, the number

of types inferred for clique members can only increase. Thus, as there is an upper

limit on the number of types12 that a recursive subcatalog can compute, eventually

type analysis must terminate for the recursive clique.

3.4 Conclusions

In this chapter, we have discussed implementation details of how a Rosetta language

speci�cation is mapped to
ex and bison �les. Patterns for
ex rules are generated

from keywords and the regular expressions speci�ed in conversion catalogs. Each

rule returns its token in the
ex variable provided for that purpose; rules matching

regular expressions also return a copy of the matched string.

11Our base case is the conversion subcatalogs, which have known parameter type (string) and

known output type.
12Recall that subcatalog \types" are mapped to base types, so no subcatalog can compute more

types than the number of base types.

43

Some of the bison �le is generated by rote, but most of it is generated from the

speci�cation �le. Each subcatalog is mapped to one bison rule, with the exception of

list subcatalogs, which are mapped to two rules. Each subcatalog name is mapped

to a bison non-terminal, representing a bison rule whose options are derived from

the subcatalog signatures. The patterns for the bison rule options are derived from

a transformation of the invoking conditions of the signatures. Finally, C code is

generated to build the operator tree which evaluates the input statement.

The prototype generator has been fully implemented and includes all Rosetta

language features, including parameterized, conversion, list, and cycle subcatalogs,

and local and context variables. To validate the approach, we used the Rosetta

system to design models and generate compilers for �ve di�erent data languages.

Validation of the approach is the topic of the next chapter.

44

Chapter 4

Model Validation

4.1 Introduction

Previous chapters have discussed the design of the Rosetta speci�cation language

and implementation of the prototype Rosetta generator. This chapter presents

experiences in modeling data languages with Rosetta. We present both anecdotal

evidence of how easy it is to model languages and concrete evidence of the success

we have had with code and speci�cation reuse. Furthermore, we will show in our

discussions of the modeled languages that Rosetta is able to model quite diverse

languages.

Five languages were modeled: SQL [vdL89], SQL/NF [RKS89, RKB88],

TSQL2 [Sno94], Quel [Dat87], and TQuel [Sno87]. Each presented its own chal-

lenges; we resolved them in a variety of ways: by modeling tricks, by de�ning new

backplane functions, or by generalizing existing backplane functions.

We classify languages into families. A language family contains a parent

language and languages derived from it. For instance, SQL/NF and TSQL2, both

extensions of SQL, are members of the SQL family while TQuel, an extension of

Quel, is a member of the Quel family. Our experiences with Rosetta are discussed

within the context of language families because we found empirically that given a

language speci�cation, specifying a derivative of the language follows readily. Con-

sidering languages in families also demonstrates that using Rosetta can simplify

language evolution.

In the following discussion, we will make use of a relation,

Canine(breed,size,low,high),

where the attributes represent a dog breed, its size category (small, medium, large,

or giant), and integer values representing the minimum and maximum of the breed's

45

weight range.

The rest of this chapter discusses our experiences with Rosetta. Sections 4.2

and 4.3 focus on the SQL and Quel families, respectively. While discussing each

language model, we will give examples of actual queries and the operator trees

produced from them by the generated compilers. We close with a discussion of our

results on usability and productivity in Section 4.4.

4.2 The SQL Family

The SQL family is large and diverse. Because SQL is the standard relational data

language of the database community, it has had a signi�cant impact on data lan-

guage development, frequently serving as the base language to which researchers add

experimental features. Although SQL itself is a traditional relational data language,

the SQL family includes languages which support alternative data models, include

new data types, and extend the syntax. We modeled three members of the SQL

family: SQL; SQL/NF, a :1NF data language; and TSQL2, a temporal data lan-

guage. The latter two were chosen because they both make signi�cant but diverse

extensions to SQL.

4.2.1 SQL

The �rst language we consider in the SQL family is SQL itself. Our model of SQL is

based on the 1987 ISO standard, [vdL89]. It includes the data retrieval statement,

SELECT; the set operation statements, UNION, INTERSECT, and EXCEPT; and

the data modi�cation statements, INSERT, DELETE, and UPDATE. This section

considers only the high-level elements of the language model; the full SQL model,

including low-level constructs such as arithmetic expressions and primitives, is spec-

i�ed in Appendix B.

4.2.1.1 Modeling SQL Statements

The SELECT Statement. Table 4.1a shows the syntax of the SELECT state-

ment, one of the most complex statements in the language, and Table 4.1b outlines

our model. The SQL SELECT statement includes �ve optional clauses: DISTINCT,

WHERE, GROUP BY, HAVING, and ORDER BY. The remaining three clauses|

SELECT, <select list>, and FROM|must appear.

In Rosetta, an optional clause is modeled by a subcatalog de�ned as a com-

bination of signature enumeration and subcatalog union. For example, the distinct

subcatalog of Table 4.1a enumerates one signature, which composes the unique()

46

SELECT

[DISTINCT]

<select list>

FROM

<relation list>

[WHERE
<predicate>]

[GROUP BY

<attribute list>]
[HAVING

<predicate>]

[ORDER BY
<attribute list>]

BEGIN CONTEXT X
rel list : relation list;

proj list : attr list;

xpr : expr list;
END CONTEXT X

SQL = : : :

j f newCNTXT(X); g

printstream[\ x ", x:display]
;

display = : : :

j select
;

select = f newCNTXT(X); g

noop[\ SELECT x ", x:order]
;

order = sort[\ y ORDER BY x ", x:attr list, y:distinct]

j distinct

;

distinct = unique[\ DISTINCT x ", x:compattr]

j compattr
;

compattr = noop[\ xpr s ", s:proc stream]

;
proc stream = compute[rewrite(xpr,[add,sub,div,mul,assign,

str2int,str2real],x),x:expr list, proc stream]

j aggregate[rewrite(xpr, [count,min,max,avg,sum], x),
x:expr list, proc stream]

j noop[is attr list(xpr), having]

;
having = having[\ y HAVING x ", x:predicate, y:group]

j group

;

group = groupby[\ y GROUP BY x ", x:attr list, y:f ret]

j f ret

;
f ret = retrieve[\ FROM r w ", rel list, xpr, w:where,NULL]

f r:relation list;

mergerelation(r,rel list);
g

;

where = noop[\ WHERE x ", x:predicate]
j epsilon

;

(a) syntax (b) model

Table 4.1: SQL SELECT Statement

47

(a) SQL query (b) operator tree

WHERE C.low > 40

SELECT C.breed, C.size, C.low, C.high
FROM Canine C

printstream

retrieve

C.low, C.high]
[C.breed, C.size []

40

gt

C.low

[[Canine,C]]

Figure 4.1: Operator Tree: SQL SELECT Statement

backplane function if the DISTINCT keyword appears, and also unions the com-

pattr subcatalog, so that if the DISTINCT keyword does not appear, the unique()

function is not composed into the operator tree and statement processing continues

with the compattr subcatalog.

A simple SELECT statement and the operator tree which our model maps

it to are shown in Figure 4.1. The root of the operator tree, the printstream() back-

plane function, is composed in the SQL subcatalog. Its parameter is the operator

tree created beginning with the display subcatalog.

The SELECT keyword is not recognized until the select subcatalog, and it

triggers no additional function composition at that point. The next clauses which

may appear are the DISTINCT and ORDER BY clauses; as neither is present,

parsing passes through their subcatalogs without composing additional functions.

Finally, the compattr and proc stream subcatalogs together recognize the

<select list>. However, since there is neither arithmetic nor aggregation, no func-

tions are composed from these subcatalogs.

As neither of the HAVING or GROUP BY clauses are present, parsing passes

through the having and group subcatalogs to the f ret subcatalog, where the FROM

clause is detected and the retrieve() backplane function is composed into the oper-

ator tree.

Last of all, the WHERE clause is recognized in the where subcatalog. No

computation is needed to evaluate the WHERE clause; instead, its predicate is a

parameter to the retrieve() backplane function.

Subqueries. Syntactically, subqueries are merely parenthesized SELECT state-

ments, so we can reuse the SELECT statement speci�cation in modeling subqueries

(see Table 4.2). There is one semantic di�erence: the subquery's result is not

printed. The di�erences are re
ected in the subquery subcatalog, which consumes

48

(

SELECT
[DISTINCT]

<select list>

: : :

)

subquery = noop[\ (x) ", x:select]
;

select = f newCNTXT(X); g

noop[\ SELECT x ", x:order]
;

(a) syntax (b) model

Table 4.2: SQL Subqueries

<derived relation>

UNION

<select-from-where>

<derived relation>

UNION

(<derived relation>)

<select-from-where>

INTERSECT

<select-from-where>

<select-from-where>

EXCEPT

<select-from-where>

SQL = : : :

j f newCNTXT(X); g

printstream[\ x ", x:display]

;
display = union[\ x UNION y ", x:display, y:display2]

j union[\ x UNION y ", x:display, y:select]

j intersect[\ x INTERSECT y ", x:select, y:select]

j di�erence[\ x EXCEPT y ", x:select, y:select]

j display2

j select

;

display2 = noop[\ (x) ", x:display]

;

(a) syntax (b) model

Table 4.3: SQL UNION, INTERSECT, and EXCEPT Statements

the parentheses of a parenthesized SELECT statement.

A SELECT statement which utilizes a subquery is shown in Figure 4.2, along

with an operator tree which evaluates it. Parsing the subquery is almost identical

to parsing a SELECT statement|the di�erence is that parsing the subquery begins

in the subquery subcatalog instead of in the SQL subcatalog.

The UNION, INTERSECT, and EXCEPT Statements. These statements

are considered together because they have similar structure and because they all

perform set operations on derived relations. UNION computes the union of two

derived relations; INTERSECT computes the relation consisting of tuples which

appear in both of its parameters; EXCEPT computes set di�erence. The syntax

and models of these statements are listed in Table 4.3a and Table 4.3b respectively.

Figure 4.3 shows a sample UNION statement and the operator tree it was

49

(b) operator tree(a) SQL query

WHERE EXISTS

AND

AND
Co.high >= Ci.high

Co.low <= Ci.low)

SELECT Co.breed,Co.size,Co.low,Co.high
FROM Canine Co

WHERE Co.breed != Ci.breed
FROM Canine Ci

(SELECT Ci.breed

printstream

retrieve

[][Co.breed, Co.size
Co.low, Co.high]

retrieve

[][Ci.breed] and

and lteq

neq gteq

Co.breed Ci.breed Co.high Ci.high

Co.low Ci.low

exists

[[Canine,Ci]]

[[Canine,Co]]

Figure 4.2: Operator Tree: SQL SELECT Statement with Subquery

mapped to. At the root of the operator tree is the printstream() backplane function,

composed in the SQL subcatalog. In the display subcatalog, detection of the UNION

keyword causes composition of the union backplane function. Operator trees for the

two SELECT statements are generated just as for any other SELECT statement,

and this holds for the parameters of the INTERSECT and EXCEPT statements as

well.

In general, the operands of the union() backplane function can be instanti-

ated from any of the SELECT, UNION, INTERSECT, and EXCEPT statements;

therefore, we can specify these parameters with the display subcatalog. But the sec-

ond parameter of the UNION statement must be parenthesized if it is not a select1.

To accommodate this limitation, we de�ned the display2 subcatalog to recognize a

parenthesized display, and included two forms of the UNION signature in the dis-

play subcatalog, one to specify the second parameter as a display2 and the other to

specify the second parameter as a select.

The INSERT Statement. The SQL INSERT statement has two forms (see Ta-

ble 4.4a for syntax) which di�er in the source of the stream of tuples to be inserted.

1This is required in the 1987 ISO standard.

50

(a) SQL query (b) operator tree

FROM Canine C
SELECT C.breed

FROM Canine C
SELECT C.breed

WHERE C.size = large

UNION

WHERE C.size = giant

printstream

retrieve

[]eq

large

union

retrieve

[][C.breed] eq

giantC.size C.size

[[Canine,C]][[Canine,C]] [C.breed]

Figure 4.3: Operator Tree: SQL UNION Statement

(b) operator tree(a) SQL query

INSERT INTO Canine
VALUES ("collie", "large", 55, 125)

insert

[] values

["collie", "large", 55, 125]

[[Canine,Canine]]

Figure 4.4: Operator Tree: SQL INSERT Statement

The �rst alternative is a stream of length one, consisting of a single tuple speci�ed

as a list of literal values; the second is a stream of derived tuples. Table 4.4b shows

a Rosetta model for the INSERT statement.

In Figure 4.4, we show a sample INSERT statement and the operator tree

to which it is mapped by the generated SQL compiler. The input stream for the

insert() backplane function can be either literal or derived. (In the �gure, it is a

literal stream. The values() backplane function takes as input a list of values and

converts it into a tuple, which is returned as a stream of length one.) Thus, the

insrtstrm subcatalog recognizes two stream sources: the �rst and third signatures

recognize the input stream as a literal tuple while the second and fourth signatures

handle the input stream from a derived relation. The �rst and second, however,

recognize the attribute name list (which is optional) while the other two come into

play when the attribute name list is not present.

51

INSERT INTO

[(<attribute list>)]

<relation>

VALUES

<literal tuple>

INSERT INTO

[(<attribute list>)]
<relation>

<derived relation>

BEGIN CONTEXT X

rel list : relation list;
: : :

END CONTEXT X

SQL = f newCNTXT(X); g

insert[\ INSERT INTO x y ",

x:unit rel list, NULL, y:insrtstrm]
f mergerelation(x,rel list); g

j : : :

;
insrtstrm = rename[\ (x) y ", x:strng list, y:lit tuple]

j rename[\ (x) y ", x:strng list, y:select]

j lit tuple
j select

;

lit tuple = values[\ VALUES x ", x:valuelist]
;

valuelist = list[\(", \)", \,", literal, NE]

;

(a) syntax (b) model

Table 4.4: SQL INSERT Statement

The DELETE Statement. The syntax of the SQL DELETE statement (see

Table 4.5a) is quite simple. Exactly one relation is speci�ed in the FROM clause,

modeled by the d ret subcatalog, and the WHERE clause is optional (the model

is in Table 4.5b). Tuples which satisfy the <predicate> of the WHERE clause (all

tuples satisfy it vacuously if the WHERE clause is missing) are deleted from the

named relation.

Figure 4.5 shows an SQL DELETE statement and the operator tree produced

by the generated SQL compiler.

The UPDATE Statement. The SQL UPDATE statement has the most complex

syntax of all the SQL modi�cation statements (see Table 4.6a). Tuples of the named

relation which satisfy the predicate of the (optional) WHERE clause are updated

according to the expressions of the assignment list speci�ed in the SET clause. Our

model of the UPDATE statement is shown in Table 4.6b.

In Figure 4.6, we show a sample UPDATE statement and the operator tree

to which the generated SQL compiler maps it. The update() backplane function is

composed in the SQL subcatalog. The SET clause is modeled in the u expr subcata-

log but the assignment list is actually recognized in the assgn list subcatalog. In the

u ret subcatalog, the retrieve() backplane function is composed into the operator

52

DELETE FROM

<relation>
[WHERE

<predicate>]

BEGIN CONTEXT X

rel list : relation list;

proj list : attr list;
: : :

END CONTEXT X

SQL = : : :

j f newCNTXT(X); g

delete[\ DELETE x ", rel list, x:d ret]
;

d ret = retrieve[\ FROM x w ",

x:unit rel list,proj list,w:where,NULL]
f mergerelation(x,rel list); g

;

where = noop[\ WHERE x ", x:predicate]
j epsilon

;

(a) syntax (b) model

Table 4.5: SQL DELETE Statement

(a) SQL query

DELETE
FROM Canine
WHERE Canine.high = 500

(b) operator tree

[Canine,Canine]

delete

[Canine,Canine] [] []eq

Canine.high

retrieve

500

Figure 4.5: Operator Tree: SQL DELETE Statement

53

UPDATE

<relation>

SET

<assignment list>

[WHERE <predicate>]

BEGIN CONTEXT X

rel list : relation list;
proj list : attr list;

xpr : expr list;

: : :

END CONTEXT X

SQL = : : :

j f newCNTXT(X); g
update[\ UPDATE x a u ",

x:unit rel list,a:u expr,u:u ret]

f mergerelation(x,rel list); g

;

u expr = noop[\ SET y ", y:assgn list]
;

u ret = retrieve[\ w ", rel list, NULL, w:where, NULL]

;
where = noop[\ WHERE x ", x:predicate]

j epsilon

;

assgn list = list[, , \,", assgn, NE]

;

assgn = assign[\ x = y ", x:attribute, y:expr]

f z:attr list;

extattr(y,z);

mergeattr(z, proj list);

extattr(x,z);

mergeattr(z, proj list);

g

;

(a) syntax (b) model

Table 4.6: SQL UPDATE Statement

54

(b) operator tree(a) SQL query

update

Canine.high 500 Canine.low mul

Canine.low 8

retrieve

[] lt []

Canine.low 10

Canine.low = Canine.low * 8

UPDATE
SET

WHERE Canine.low < 10

Canine.high = 500,
Canine

[assign, assign][[Canine,Canine]]

[[Canine,Canine]]

Figure 4.6: Operator Tree: SQL UPDATE Statement

tree. Finally, in the where subcatalog, the WHERE clause is recognized.

4.2.1.2 SQL Run-Time Experiences

Enough of the backplane functions were implemented (in Prolog) to evaluate SQL

queries. We evaluated approximately forty queries, covering all data manipulation

statements, including data retrieval (with aggregations and nested subqueries) and

modi�cation; all executed correctly. The queries were evaluated on relations ranging

in size from ten tuples to about �ve hundred tuples.

4.2.1.3 Conclusions for SQL

As the SQL model was developed concurrently with the Rosetta model, we do not

have the same development time numbers for this language that we will later show

for the other languages. SQL was used as a test case during the development of

the Rosetta speci�cation language and the backplane. Each time the speci�cation

language or the backplane changed, the change was tried out on the evolving SQL

speci�cation. In addition, our own inexperience with this approach to specifying

languages made modeling SQL slow and ine�cient. For example, we did not ini-

tially fully recognize the possibilities of contexts and post-actions for information

sharing. Thus, development time numbers for SQL are tainted by its relationship

with development of the Rosetta model.

Nevertheless, we can say a few things about enhanced programmer produc-

tivity. Our SQL speci�cation required fewer than 240 lines. This is su�cient to

specify the statements of the data manipulation language: the data retrieval state-

55

ment SELECT; the set operations UNION, INTERSECT, and EXCEPT; and the

data modi�cation statements DELETE, INSERT, and UPDATE. The speci�cation

includes aggregation and subqueries but does not include all base data types.

We chose to focus on the functionality of the language rather than on adding

data types ad in�nitum; the missing data types have little impact on the function-

ality of our model. Varying length character strings are included, but �xed-length

character strings are not. For numeric types, we modeled both real numbers and in-

tegers. However, the ISO SQL standard has three di�erent versions of real numbers,

whereas in our model precision is not speci�able. Similarly, our model has only one

integer representation, whereas the SQL standard supports three. Finally, we do

not support BIT strings at all. In addition to these data types, one boolean com-

parison operator|the LIKE string comparison operator|was not included in the

speci�cation. None of these omissions detract signi�cantly from the expressiveness

of the language; all could easily be added.

4.2.2 SQL/NF

The �rst extension of SQL we consider is SQL/NF, a language developed at The

University of Texas at Austin by Roth, et. al. [RKS89, RKB88]. SQL/NF was

designed expressly to support applications beyond traditional data processing. This

language is of interest today for two reasons: because it addresses unresolved short-

comings of SQL; and because its non-traditional data model marks a signi�cant

departure from conventional relational data languages.

Overall, quite a few extensions were made to SQL. Some address shortcom-

ings of SQL identi�ed by Date [Dat84]. For example, Date suggested that a cleaner

language design would allow a query expression to appear wherever a relation name

was allowed to appear in the original language; this followed quite naturally from

generalizing the data model. However, the most fundamental changes were made to

support the generalized data model.

4.2.2.1 SQL/NF Data Model

SQL/NF supports the Non First Normal Form (:1NF) relational data model. This

data model supersets the 1NF data model|all the power and expressiveness of the

original 1NF data model remain but the :1NF data model adds nested relations: in-

stead of restricting attribute values to scalar domains, the :1NF data model permits

attributes to be relation-valued.

Consider the relations, illustrated in Figure 4.7, of the employee database

popular in database literature. In the 1NF data model, two relations are needed to

56

Employees

name empno dept

Millie 462 DB

Don 283 DB

Children

empno name age

462 Michael 5

462 Peter 4

462 David 3

462 Patrick 2

462 Veronica 1

283 Alex 2

283 Hanna 0

()

Employees
:1NF

name empno dept Children
:1NF

name age

Millie 462 DB Michael 5

Peter 4

David 3

Patrick 2

Veronica 1

Don 283 DB Alex 2

Hanna 0

(a) 1NF relations (b) :1NF relation

Figure 4.7: :1NF Data Model | Illustration

model employees and their children. But in the :1NF data model, the names and

ages of an employee's children can be modeled as a relation attribute nested within

the employee's tuple regardless of the number of children. The two 1NF relations,

Employee(name,empno,dept)

Children(empno,name,age),

can be merged into one nested relation which models the same information:

Employee
:1NF(name,empno,dept,Children:1NF(name,age)).

Extending the data model to :1NF means that the language must be ex-

tended to support relation-valued attributes. In particular, it must include relation

operations on relation-valued attributes: wherever an attribute name can appear in

SQL, a relation name can appear in SQL/NF. The SQL data language was modi�ed

extensively to re
ect the generalized data model. There are, of course, other issues

such as storage and access, but we consider only language design issues.

4.2.2.2 Modeling SQL/NF Statements

Our model of SQL/NF includes all the data manipulation statements (for the spec-

i�cation, see Appendix C), including statements for data retrieval, set operations,

and data modi�cation. We discuss only high-level language elements in this section.

57

The SELECT Statement. Signi�cant changes were made to the SELECT state-

ment. The SQL/NF SELECT statement incorporates new syntax for retrieving tu-

ples and for the outer join operation (see Table 4.7a). Furthermore, three clauses|

DISTINCT, GROUP BY, and HAVING|were eliminated2 , simple changes which

required only removing the subcatalogs for those clauses from the model, replacing

references to them with a reference to the signature composing the next function in

the composition. Other changes were not as easy (see the model in Table 4.7b).

The �rst of the changes we consider is a fundamental change which is prop-

agated throughout the language. SQL/NF allows the shorthand

<relation>

to be used in place of the usual

SELECT * FROM <relation>

construct. The brief form is interpreted as retrieval of a single relation without

computation or projection. Thus, the query

SELECT * FROM Canine WHERE Canine.low > 40

may be expressed more simply as

Canine WHERE Canine.low > 40.

As the SQL/NF WHERE clause is optional, the minimal SQL/NF statement con-

sists of just a relation name. The query in Figure 4.8 utilizes this new construct to

print all tuples of the Canine relation satisfying the predicate \Canine.low > 40."

In SQL, the retrieve() backplane function was composed in the f ret subcat-

alog, where the FROM clause is recognized; in SQL/NF, the retrieve() backplane

function can be composed in either the f ret or select subcatalogs. In our sample

query, the retrieve() backplane function is composed via the second signature of

the select subcatalog. The extended select subcatalog still recognizes the SELECT-

FROM-WHERE-expression (SFW-expression), just as in SQL. The last clause of

our example, the WHERE clause, is recognized in the where subcatalog.

Another extension to the SQL/NF SELECT statement was the addition of

the outer join operation. Outer join includes in the result all tuples from speci�ed

relations whether they satisfy the join condition or not. These tuples are padded

with NULLs in the remaining attributes and added to the result.

2In contrast to SQL, grouping can be built in to SQL/NF relations by utilizing relation-valued

attributes.

58

SELECT

<select list>

FROM

<relation list>

[WHERE
<predicate>]

[PRESERVE

<relation list>]

<relation>

[WHERE

<predicate>]

BEGIN CONTEXT X

outer list : relation list;
rel list : relation list;

slst: select list;

xpr : sel list2;
END CONTEXT X

sql nf = printstream[\ x ", x:display]
;

display = select

;
select = f newCNTXT(X); g

noop[\ SELECT slst p ", p:proc stream]

j retrieve[\ r w ",rel list,xpr,w:where,outer list]
f r:unit rel list;

newCNTXT(X);

mergerelation(r,rel list);
get all attr(rel list,xpr);

g

select list = noop[\ ALL ", xpr]

f get all attr(rel list,xpr); g

j noop[\ ALL BUT a ",xpr]

f a:attr list; all but attr(rel list,xpr,a); g

j noop[\ xpr ", xpr]

;

proc stream = compute[rewrite(xpr,[add,assign,div,mul,sub,distinct,

subsume],x),x:sel list2, proc stream]

j aggregate[rewrite(xpr,[avg,count,max,min,sum],x),

x:sel list2, proc stream]
j noop[is attr list(xpr), f ret]

;

f ret = retrieve[\ FROM r w ",rel list,xpr,w:where,outer list]
f r:relation list; mergerelation(r,rel list); g

;

where = noop[\ WHERE x p ", x:predicate]
f p:preserve; skip(); g

j epsilon

;
preserve = noop[\ PRESERVE outer list ", outer list]

j epsilon

;
sel list2 = list[, , \,", select item, NE]

;

select item = expr
j noop[\ x AS a ", a:attr name]

f x:expr; regATTR(x,a); g

j noop[\ r ALL ", r:dot ref list]
f mergerelation(r,rel list); get all attr(r,xpr); g

;

(a) syntax (b) model

Table 4.7: SQL/NF SELECT Statement

59

(b) operator tree(a) SQL/NF query

Canine

WHERE Canine.low > 40

printstream

retrieve

gt

40

[] []

Canine.low

[[Canine,Canine]]

Figure 4.8: Operator Tree: SQL/NF SELECT Statement

The outer join operation was added in SQL/NF by augmenting the SELECT

statement with a new clause, the PRESERVE clause, which speci�es the list of re-

lations to be outer joined. The PRESERVE clause, which follows the WHERE

clause, is modeled in the preserve subcatalog. Like the WHERE clause, the PRE-

SERVE clause speci�es an input parameter for the retrieve() backplane function

and composes no additional backplane functions into the operator tree.

The original retrieve() backplane function was not designed to implement

outer join. But tuple preservation must be done during and not after relation re-

trieval. To handle outer join, we extended the retrieve() backplane function with a

new parameter for the list of preserved relations. When no relations are preserved,

the generalized retrieve() backplane function operates as originally de�ned. Adding

outer join required modifying no backplane function de�nitions besides retrieve()3.

Subqueries. A language design principle, the principle of orthogonality, states

that an expression evaluating to an element of some type should be allowed wherever

an element of that type is allowed. In accordance with this principle, SQL/NF

generalizes relation references and allows an SFW-expression to appear wherever a

relation name can occur in SQL. Our model of subqueries is shown in Table 4.8.

For example, the relation name list in the FROM clause was generalized to

include SFW-expressions with an optional correlation name. The fourth signature

in the relationref subcatalog models this.

A sample SQL/NF SELECT statement which includes a subquery is shown

in Figure 4.9. Operator trees for both the SELECT statement and the subquery are

generated from the display subcatalog.

3Backplane function implementations are, of course, a di�erent matter. They would need to be

extended to handle :1NF tuples.

60

(SELECT

<select list>

FROM
<relation list>

[WHERE

<predicate>]

: : :

)

j

(<relation>

[WHERE

<predicate>]

)

j

<relation>

BEGIN CONTEXT X
rel list : relation list;

xpr : sel list2;

: : :

END CONTEXT X

nested query = nqe1
j nqe2

;

nqe1 = noop[\ (d) ", d:display]
;

nqe2 = retrieve[\ r ", rel list, xpr, NULL, NULL]

f r:unit rel list;
newCNTXT(X);

mergerelation(r,rel list);

get all attr(r,xpr);
g

;

relationref = is relation[\ r ",r:relation, NULL]
j is relation[\ n AS a ",n:relation,a:relation]

j retrelation[\ n ", n:nqe1,NULL]

j retrelation[\ n AS a ",n:nqe1,a:relation]
;

(a) syntax (b) model

Table 4.8: SQL/NF Subqueries

61

(b) operator tree

WHERE EXISTS

AND

AND
Co.low <= Ci.low)

SELECT Co.breed,Co.size,Co.low,Co.high

(SELECT Ci.breed

printstream

retrieve

[][Co.breed, Co.size
Co.low, Co.high]

retrieve

[][Ci.breed] and

and lteq

neq gteq

Co.breed Ci.breed Co.high Ci.high

Co.low Ci.low

exists

FROM Canine AS Co

FROM Canine AS Ci

(a) SQL/NF query

WHERE Co.breed <> Ci.breed

[[Canine,Co]]

[[Canine,Ci]]

Co.high >= Ci.high

Figure 4.9: Operator Tree: SQL/NF SELECT Statement with Subquery

As another example of new subqueries, attributes in the SELECT list may

be relation-valued; therefore relation expressionsmay appear in the SELECT list. In

this way, relation-valued attributes can receive additional processing after selection,

including applying a predicate to a relation-valued attribute to eliminate unwanted

tuples or aggregating a relation-valued attribute.

The UNION, INTERSECT, and DIFFERENCE Statements. The set op-

eration statements were also generalized for SQL/NF. The INTERSECT and DIF-

FERENCE statements may be nested to arbitrary levels, and their inputs can come

from any statement computing a derived relation, including the UNION, INTER-

SECT, and DIFFERENCE statements. The subcatalogs modeling the SQL/NF

UNION, INTERSECT, and DIFFERENCE statements are shown in Table 4.9.

By orthogonality, the new <relation> retrieve construct may appear wher-

ever SELECT * FROM <relation> can. For instance, the UNION statement

SELECT * FROM R0 UNION SELECT * FROM R1

can also be expressed as

R0 UNION R1.

62

<derived relation>

UNION

<derived relation>

<derived relation>

INTERSECT

<derived relation>

<derived relation>

DIFFERENCE

<derived relation>

BEGIN CONTEXT X

outer list : relation list;
rel list : relation list;

slst: select list;

xpr : sel list2;
END CONTEXT X

sql nf = printstream[\ x ", x:display]
j : : :

;

display = : : :

j union[\ x UNION y ", x:display, y:display]

j intersect[\ x INTERSECT y ", x:display, y:display]

j di�erence[\ x DIFFERENCE y ", x:display, y:display]
j select

;

select = retrieve[\ r w ",rel list,xpr,w:where,outer list]
f r:unit rel list;

newCNTXT(X);

mergerelation(r,rel list);
get all attr(rel list,xpr);

g

j f newCNTXT(X); g
noop[\ SELECT slst p ", p:proc stream]

;

(a) syntax (b) model

Table 4.9: SQL/NF UNION, INTERSECT, and DIFFERENCE Statements

63

(b) operator tree

UNION retrieve

[]eq

large

union

retrieve

[]eq

giant

Canine

Canine
WHERE Canine.size = large

WHERE Canine.size = giant

Canine.size Canine.size

(a) SQL/NF query

[] [][[Canine,Canine]] [[Canine,Canine]]

printstream

Figure 4.10: Operator Tree: SQL/NF UNION Statement

As the select subcatalog is an alternative in the display subcatalog, the signature

added for the new construct to the select subcatalog allows the new construct to

appear wherever the SFW-expression can. The change in the speci�cation of the SE-

LECT statement is independent of the speci�cation of the set operation statements;

therefore, the select and display subcatalogs work together to map the statement

R0 UNION R1 to an operator tree (see Figure 4.10).

The MODIFY Statement. The INSERT and DELETE statements were limited

to keyword changes but the MODIFY statement4 required more complex changes

(see Table 4.10).

Updating a value in the 1NF data model is simple: one merely speci�es

a new scalar value (or expression) to replace the former value for each attribute

to be modi�ed. But in the :1NF data model, attributes may be relation-valued,

with the result that modifying an attribute value may require relation modi�cation.

Like other relations, relation-valued attributes may be modi�ed in three ways: by

inserting new tuples or by deleting or modifying existing tuples.

In SQL/NF, as in SQL, expressions specifying attribute updates are listed

in the assignment list. However, in SQL/NF, an update expression can be not

only an arithmetic expression or a literal value but may also be any of the relation

modi�cation statements INSERT, DELETE, and MODIFY. The assignment list is

modeled by the assgn list subcatalog.

4The keyword UPDATE was changed to MODIFY.

64

MODIFY

<relation>

SET
<assignment list>

[WHERE

<predicate>]

ERASE

<relation>

[WHERE

<predicate>]

STORE

<relation>
[<attribute list>]

VALUES

<value list>

STORE

<relation>

[<attribute list>]
<derived relation>

BEGIN CONTEXT X

rel list : relation list;
urel list : unit rel list;

assgnmnts : assgn list;

proj list : attr list;
END CONTEXT X

update stmt = f newCNTXT(X); g

update[\ MODIFY x ", urel list, assgnmnts, x:u ret]

j f newCNTXT(X); g
delete[\ ERASE x ", rel list, x:d ret]

j insert[\STORE x y",x:unit rel list,NULL,y:insrtstrm]

;
u ret = compute[\ urel list SET y z ", y:assgn list,

retrieve(rel list, a, z:where,NULL)]

f a:attr list;
mergerelation(urel list,rel list);

get all attr(urel list,a);

g

;

assgn list = list[, , \,", assgn, NE]

;

assgn = assign[\ x = y ", x:attribute, y:uvalue]

;

uvalue = noop[\ e ", e:expr]
f z:attr list;

extattr(e,z);

mergeattr(z, proj list);
g

j noop[\ (u) ",u:update stmt]

;
d ret = retrieve[\ x w",x:unit rel list,proj list,w:where,NULL]

f mergerelation(x,rel list); g

;
insrtstrm = rename[\ (x) VALUES y ",

x:attr list, values(y:tuple seq)]

j rename[\ (x) y ", x:attr list, y:select]
j values[\ VALUES t ",t:tuple seq]

j select

;
where = noop[\ WHERE x p ", x:predicate]

f p:preserve; skip(); g

j epsilon
;

tuple seq = list[, , ,tuple literal,NE]

;
tuple literal = list[\f",\g",\,",literal,NE]

;

tuple expr = list[\<",\>",\,",expr,NE]
;

(a) syntax (b) model

Table 4.10: SQL/NF MODIFY, ERASE, and STORE Statements

65

(b) operator tree(a) SQL/NF query

update

MODIFY Canine

WHERE Canine.low < 10

SET Canine.low = Canine.low * 8,
Canine.high = 500

[[Canine,Canine]]

retrieve

lt []

Canine.low 10

[[Canine,Canine]] [Canine.all]

[] compute

Canine.high 500Canine.low mul

Canine.low 8

[assign, assign]

Figure 4.11: Operator Tree: SQL/NF MODIFY Statement

An example of an SQL/NF MODIFY statement is given in Figure 4.11.

Function Statements. To promote clarity of the language, certain statements

were recast into a functional form so that the structure of the statement would

re
ect its semantics. The SQL/NF function statements are modeled in Table 4.11.

Whereas an SQL aggregation function is invoked in-line, either as an expres-

sion in the select list or as part of an arithmetic expression, an SQL/NF aggregate

may be either an independent statement or a subquery.

Aggregate functions were generalized to apply to relations instead of to at-

tributes. An aggregate function is applied to each attribute of the tuples in its

input relation and produces a relation with one tuple as its output. Aggregates may

appear as subqueries wherever a scalar may appear.

There are function statements besides aggregation. The DISTINCT clause

which was deleted from the SQL/NF SELECT statement resurfaces as a functional

statement. In addition, a new SUBSUME statement is similar to DISTINCT but

allows for NULL values. Given two tuples, if all non-null attributes of the �rst tuple

agree with their counterparts in the second tuple, the second tuple is said to subsume

the �rst. The SUBSUME statement eliminates from a stream of tuples each tuple

which is subsumed by some other tuple in the stream.

NEST/UNNEST: New Statements To Support :1NF Relations. Rela-

tions in SQL/NF may be arbitrarily deeply nested; however, occasionally a less

nested or more nested version is needed. Two new statements, NEST and UNNEST

66

<function> (<derived relation>)

where <function> is one of

f MAX, MIN, AVG,
SUM, COUNT,

DISTINCT, SUBSUME g

sql nf = printstream[\ x ", x:display]

j : : :

;

display = : : :

j function stmt
;

function stmt = max[\ MAX (x) ", NULL, x:display]

j min[\ MIN (x) ", NULL, x:display]
j avg[\ AVG (x) ", NULL, x:display]

j sum[\ SUM (x) ", NULL, x:display]

j count[\ COUNT (x) ", NULL, x:display]
j unique[\ DISTINCT (x) ", x:display]

j subsume[\ SUBSUME (x) ", x:display]

;

(a) syntax (b) model

Table 4.11: SQL/NF Function Statements

NEST Canine
ON breed, low, high
AS SizeGroup

(b) operator tree(a) SQL/NF query

printstream

nest

[] [] []

retrieve [breed, low, high]

[SizeGroup, SizeGroup]

[[Canine,Canine]]

Figure 4.12: Operator Tree: SQL/NF NEST Statement

(see Table 4.12), were added to SQL/NF for dynamically adjusting the level of

nesting in relations. The NEST statement nests a relation more deeply while the

UNNEST statement expands nested relations.

To implement these statements, two new functions, nest() and unnest(), were

added to the backplane. Figure 4.12 shows a sample SQL/NF NEST statement and

the operator tree it is mapped to.

The NEST and UNNEST statements produce the 1NF and :1NF relations

shown in Table 4.13. The SQL/NF statement

NEST Canine

ON breed,low,high

AS SizeGroup

67

NEST <table>

ON <attribute list>
[AS <nested relation name>]

UNNEST <table>

ON <attribute list>

sql nf = printstream[\ x ", x:display]

j : : :

;

display = : : :

j operator stmt
;

operator stmt = nest[\ NEST x ON c AS a ",

x:nested query, c:attr list, a:relation]
j nest[\ NEST x ON c ",

x:nested query, c:attr list, NULL]

j unnest[\ UNNEST x ON c ",
x:nested query, c:attr list]

j : : :

;

(a) syntax (b) model

Table 4.12: SQL/NF NEST and UNNEST Statements

produces the relation Canine
:1NF , while the statement

UNNEST Canine
:1NF

ON breed,low,high

produces the relation Canine.

4.2.2.3 Conclusions for SQL/NF

In this section we consider the model size and development time for SQL/NF.

The SQL/NF speci�cation �le consists of approximately 270 lines. All of the

data retrieval statements are modeled|SELECT, DIFFERENCE, INTERSECT,

and UNION|as well as the data modi�cation statements STORE (insert), ERASE

(delete), and MODIFY (update). As for SQL, some base types are not modeled.

Character strings are varying length only; �xed length strings are not supported.

Integers and reals are present only with unspeci�ed precision, and bit strings are not

included at all. Again, this does not detract from the expressiveness of the language.

Rosetta maps the SQL/NF speci�cation �le into bison and
ex �les, compris-

ing approximately 1320 and 120 lines, respectively. As the SQL/NF speci�cation is

approximately 270 lines, the expansion factor is approximately 1:6.

The SQL/NF speci�cation �le is approximately 30 lines longer than the SQL

speci�cation �le. Although a di�erence of 30 lines sounds minor, simply comparing

the lengths of the two speci�cations does not indicate the magnitude of the modi�ca-

tions because the changing content of subcatalogs is not re
ected in the di�erential

line count.

68

Canine

breed size low high

australian medium 40 60

shepherd

basenji small 15 25

beagle small 10 25

dachshund small 8 15

german shepherd large 75 150

great dane giant 150 210

keeshond medium 30 50

labrador large 60 150

newfoundland giant 145 205

saint bernard giant 175 220

Canine
:1NF

size SizeGroup
:1NF

breed low high

small basenji 15 25
beagle 10 25

dachshund 8 15

medium australian 40 60

shepherd
keeshond 30 50

large german shepherd 75 150
labrador 60 150

giant great dane 150 210

newfoundland 145 205

saint bernard 175 220

(a) 1NF relation (b) :1NF relation

Figure 4.13: :1NF Data Model | Another Illustration

A better indication of the magnitude of the changes made to the SQL speci�-

cation �le is the quantity of speci�cation reuse. The SQL speci�cation �le consists of

approximately 115 signatures. Of these, 37 were reused unchanged in the SQL/NF

speci�cation. In addition, 22 signatures were reused with only minor modi�cations.

As the SQL/NF speci�cation contains 120 signatures, approximately half of the sig-

natures came from the SQL speci�cation with no more than minor changes. Thus,

virtually half of the SQL/NF speci�cation was done before we even began modeling.

Finally, we consider the time to make the modi�cations to the language. We

needed approximately 16 days to understand the :1NF data model and to make the

necessary extensions to the SQL model. Presumably, a modeler already experienced

with the :1NF data model could have made the extensions more quickly.

Overall, SQL/NF di�ers quite dramatically from SQL. Because the data

model changed from 1NF to :1NF, the philosophy of SQL/NF is fundamentally

di�erent from that of SQL. Generalizing relation references to allow relation ex-

pressions was the most signi�cant extension made, as it added the relation as a

primitive data type. Some syntactic changes were made to make the syntax more

closely match the semantics of function calls such as the aggregate functions. Al-

though fundamental changes were made to the data model, because the speci�cation

is so high-level the changes required consisted of adding new backplane functions or

generalizing existing ones.

69

4.2.3 TSQL2

For our third data point, we selected TSQL2, a temporal data language [Sno94]. We

developed our model for this language while the speci�cation was still under discus-

sion. As a result, the SELECT statement and the primitives of the language conform

to the proposed speci�cation which we obtained in December, 1993 while the modi-

�cation statements, whose speci�cations were sketchy in the proposed speci�cation,

conform to the �nal speci�cation, published in March, 1994.

TSQL2 was designed to serve the temporal database community as the stan-

dard temporal data language, providing a basis for future temporal database re-

search. Therefore, TSQL2 augments SQL with temporal constructs derived from

well-de�ned temporal database technology but does not address the areas of active

research. For compatibility, the TSQL2 design e�ort does not correct de�ciencies

of SQL. Because this language is important to the temporal database community,

it was de�ned by a committee drawn from the temporal database community and

chaired by Richard Snodgrass, at the University of Arizona at Tucson, Arizona.

There were several reasons for choosing TSQL2 as one of our data points.

First, TSQL2 is an important development in the domain of data languages because

it is intended to be the de facto standard for temporal data languages. Furthermore,

the language speci�cation, published March, 1994, is very recent, showing that

Rosetta can model recent data language developments. Finally, we wanted our last

data point in the SQL family to extend the relational data model in a signi�cantly

di�erent way than did SQL/NF, our �rst data point.

The rest of this section discusses brie
y the extensions made to SQL; for the

full model, see Appendix D. Our focus is on the data manipulation language; we

do not model data de�nition aspects. We discuss �rst the temporal data model,

including primitive temporal data types, and then the changes made to the SQL

statements to support temporal constructs. Finally, we consider model size, devel-

opment time, and productivity gains.

4.2.3.1 TSQL2 Data Model

One of the �rst tasks faced by the design committee was extending the relational data

model to include temporal constructs. The resulting data model is the bitemporal

conceptual data model (BCDM). This model of time is linear, discrete, and bounded.

A model of time is linear if it assumes a total order on both past and future temporal

elements.

A model of time is discrete if time is divided into units of time called chronons,

and chronons are totally ordered and in 1:1 correspondence with the natural num-

bers.

70

The time line can be divided into chronons of arbitrarily �ne granularity,

e.g., days, hours, seconds, microseconds, etc. Time is assumed to be bounded both

in the past and in the future, so there is a least chronon and a greatest chronon.

Temporal databases support timestamps, which can be applied to either tu-

ples or attributes. A valid-time timestamp denotes the time in the modeled reality

that the tuple actually becomes valid, whereas a transaction-time timestamp re
ects

the time when the information was added to the database. When both valid-time

and transaction-time timestamps are supported, the data model is termed a bitem-

poral data model.

TSQL2 relations are either temporal relations or snapshot relations, where a

snapshot relation is simply a traditional relation having no temporal attributes.

New Primitive Data Types of TSQL2. The chronons of the time line can be

grouped in various ways into the primitive data types of TSQL2: spans, events, and

intervals.

Spans. The span models the concept of temporal distance. The units of

span constants are limited by the granularity of the chronons. Examples of spans

include a day, a week, or a month.

To model spans, we de�ne a new backplane function, str2span(), which con-

verts a literal string to the corresponding span in an internal representation. TSQL2

spans are
anked by a pair of %, e.g., %day%. Our TSQL2 model includes four span

literals: %day%, %week%, %month%, and %year%. A span literal may optionally

specify a length multiplier, e.g., %5 week% or %35 day%.

TSQL2 includes Gregorian date to span conversion. A date can be either

partial or complete, e.g., 9/95 vs. 9/1/95. The partial date, 9/95, is converted to

the span %1 month%, while the complete date is converted to the span %1 day%.

Events. An event represents the moment of an occurrence, with no asso-

ciated duration, and is modeled by a single chronon. Elements of type event are

anked by a pair of j's. In the TSQL2 model of time, chronons are totally ordered

and bounded. TSQL2 de�nes special literals that signal the value of negative in-

�nite time, positive in�nite time, and the current chronon: beginning, forever,

and present. To convert these literal strings into internal event values, we extend

the backplane with a conversion function, str2event(), which maps a string to the

corresponding event in an internal representation.

Besides event literals, TSQL2 allows the coercion of dates, correlation names,

and attribute references to events. Coercion is handled by the event() backplane

71

function, which takes speci�c inputs, such as a correlation name or a date, and

converts them to the event internal format.

Intervals. An interval denotes a time span covering a speci�c portion of

the time line and is modeled by a pair of events, representing the start and the

end of the interval, enclosed in square brackets, [and]. An interval enclosed in

square brackets includes its ending event; to exclude the ending event, the interval

is terminated with a) instead.

Timestamps. In temporal databases, tuples are timestamped with either

transaction-time or valid-time timestamps, or both. In TSQL2, a timestamp is

referenced according to its kind: the valid-time timestamp of a tuple is referenced

by the unquali�ed correlation name corresponding to its relation while the value of

the transaction-time timestamp is accessed by a function call:

transaction(<correlation name>).

Referencing a timestamp yields a temporal value which may be either event or

interval.

Operations on Temporal Data Types. Various operations are de�ned on tem-

poral data types: constructors, deconstructors, arithmetic operations, and compar-

isons.

A constructor takes as input temporal elements and constructs from them

another temporal element, e.g., the interval operator takes as input two events

and returns an interval.

Conversely, the deconstructor functions extract information from their in-

puts. For example, given an interval, the built-in TSQL2 functions begin and end

return its beginning and ending events, respectively.

The arithmetic operators were extended to operate on temporal values. For

example, adding a span to an interval increases the length of the interval by the

duration of the span.

Comparisons are also de�ned on temporal values: events can be compared

to determine which occurred earlier or later; spans can be compared to determine

which is longer or shorter; intervals can be compared to determine if they have a

sub-interval in common or if one includes the other.

4.2.3.2 Modeling TSQL2 Statements

For simplicity, we assume the Gregorian calendar, with the �nest granularity chronon

being one day.

72

The SELECT Statement. The SELECT statement (modeled in Tables 4.13 and

4.14) produces either a snapshot or temporal relation. To indicate which, three new

clauses were added: the SNAPSHOT, VALID, and VALIDINTERSECT clauses.

The SNAPSHOT clause indicates that the relation is a snapshot relation while the

other two clauses specify how to compute the valid time for the derived tuples.

The simplest case is the SNAPSHOT clause, as the derived relation is not

a temporal relation and therefore has no valid time. The VALID clause speci�es a

temporal expression for computing the valid-time timestamp of the derived tuples.

The VALIDINTERSECT clause is provided as a notational convenience: it calls for

computing the valid-time timestamp as the temporal intersection of the valid-time

timestamps of the underlying tuples and the speci�ed temporal expression.

These three clauses are mutually exclusive; at most one may appear. If no

clause is speci�ed, TSQL2 determines the valid time of the derived tuples using as

a default the intersection of the valid times of the underlying tuples5. However, if

any participating relation is a SNAPSHOT relation, then the result relation is also

a SNAPSHOT relation. Computing a valid-time timestamp is known as valid-time

projection.

A sample TSQL2 SELECT statement and the operator tree to which it is

mapped are shown in Figure 4.14. Parsing the statement begins with the TSQL2

subcatalog, where the printstream() backplane function is composed into the op-

erator tree. Parsing continues through the select, order, and distinct subcatalogs,

composing no additional backplane functions from any of these, and reaches the

validtime subcatalog.

5The result is NULL if the intersection is empty.

73

SELECT

[DISTINCT]
SNAPSHOT

<select list>

FROM
<relation list>

[WHERE

<predicate>]
[GROUP BY

<attribute list>]

[HAVING
<predicate>]

[ORDER BY

<attribute list>]

SELECT

[DISTINCT]

<select list>
[

VALID

<temporal expression>
j VALIDINTERSECT

<temporal expression>

j <epsilon>

]

FROM

<relation list>

[WHERE

<predicate>]

[GROUP BY
<attribute list>]

[HAVING

<predicate>]

[ORDER BY

<attribute list>]

BEGIN CONTEXT X

rel list : relation list;

xpr : expr list;
val : element;

END CONTEXT X

TSQL2 = f newCNTXT(X); g

printstream[\ x ", x:display]

j : : :

;

display = display2

j : : :

;

display2 = select

j : : :

;

select = f newCNTXT(X); g
noop[\ SELECT x ", x:order]

;

order = sort[\ y ORDER BY x ", x:attr list, y:distinct]
j distinct

;

distinct = unique[\ DISTINCT x ", x:validtime]

j validtime

;

validtime = valid[\ SNAPSHOT t ", NULL, t:compattr]

j valid[\ xpr VALID t ", val, NULL, t:compattr2]

j valid[\ xpr VALIDINTERSECT t ",

overlapt(val,a), NULL,t:compattr2]

f a:element; gen expr(rel list,overlapt,left,a); g

j valid[\ t ", a, NULL, t:compattr]

f a:element; gen expr(rel list,overlapt,left,a); g

;

compattr = noop[\ xpr s ", s:proc stream]

;

compattr2 = noop[\ val s ", s:proc stream]

;

(a) syntax (b) model

Table 4.13: TSQL2 SELECT Statement

74

proc stream= compute[rewrite(xpr,[add,sub,div,mul,assign,str2int,

str2real,intervalc,span],x),x:expr list,proc stream]
j aggregate[rewrite(xpr, [count,min,max,avg,sum,

unique], x), x:expr list, proc stream]

j noop[is attr list(xpr), having]
;

having = having[\ y HAVING x ", x:predicate, y:group]

j group
;

group = groupby[\ y GROUP BY x ", x:attr list, y:f ret]

j f ret
;

f ret = retrieve[\ FROM r w ", rel list, xpr, w:where,NULL]

f r:relation list;
mergerelation(r,rel list);

map coalesce depnds(r,w);

g

;

where = noop[\ WHERE x ", x:predicate]

j epsilon
;

relation list = list[, , \," , relationref, NE]

;

relationref = : : :

j retrelation[\ n AS a ",n:coalescrel, a:relation]

;

coalescrel = coalesce[\ r a (i) ",retrieve(r:relation,NULL,NULL,NULL),

a:clscattrlst,i:clscintrvl]

j coalesce[\ r a ",retrieve(r:relation,NULL,NULL,NULL),
a:clscattrlst,NULL]

j coalesce[\ r (i) ",retrieve(r:relation,NULL,NULL,NULL),

NULL,i:clscintrvl]

;

Table 4.14: TSQL2 SELECT Statement (cont.)

75

(a) TSQL2 query (b) operator tree

printstream

valid

overlapt

E D

NULL

retrieve

retrieve

NULL NULL NULL

NULL

retrieve

NULL NULL NULL

NULL

[[coalesce,E], [coalesce,D]] [E.name,
E.dept,

[Employee,

[Employee,
Employee]

Employee]

and

and eq

E.dept D.dept

and

eq

D.name

eq

E.dept

gt

D.salary 30000 "Toy"

E.name

[name,dept]

salary]
[name,dept,

NULL

D.salary]

E(salary) AS D

AND E.dept = "Toy"

SELECT E.name, E.dept, D.salary

WHERE D.salary > 30000

FROM Employee(name,dept) AS E,

Figure 4.14: Operator Tree: TSQL2 SELECT Statement

76

As none of the valid-time projection clauses appear, the valid() backplane

function must use the default temporal expression to compute the valid-time times-

tamp. The default valid-time timestamp of a derived tuple is computed as the tem-

poral intersection of the valid-time timestamps of the tuples which joined to produce

it. The temporal expression for computing the default valid-time timestamp is gen-

erated in the post-action of the last signature of the validtime subcatalog by a call

to the gen expr() directive function6.

Parsing continues with the compattr and proc stream subcatalogs, which rec-

ognize the <select list> and separate arithmetic computation from aggregation. The

next clauses in line for recognition are the HAVING and GROUP BY clauses; as neither

appears, parsing continues with the f ret subcatalog.

Relations participating in the query are speci�ed in the FROM clause. They

may optionally be coalesced. To coalesce a relation, its name is followed in the

FROM clause by a list of attributes; in the sample query, the Employee relation

is coalesced on \(name,dept)." The tuples of the relation are grouped on the listed

attributes. For each group, all tuples whose valid-time timestamps can be merged

into a continuous interval are merged into a single tuple. Attributes which are not

listed may not be referenced in the query.

To implement coalescing, a new function, coalesce(), was added to the back-

plane. The coalesce() backplane function groups its input stream on the named

attributes, and then coalesces the stream on them: all tuples in a group whose

valid-time timestamps can be merged into a single temporal element are merged

into a single tuple.

Coalescing a relation is treated as a subquery appearing in the FROM clause.

This is modeled by adding a signature to the relation ref subcatalog to allow a coa-

lesced relation to appear as a relation reference and then adding a new subcatalog,

coalescrel, to model the coalesced relation. In the coalescrel subcatalog, the coa-

lesce() and retrieve() backplane functions are composed to �rst retrieve and then

coalesce the relation.

Furthermore, coalescence can be inherited. Inherited coalescence is speci�ed

in the FROM clause by referencing the correlation name of a coalesced relation as

the relation name. The result is that the second coalesced relation is coalesced on

the same attributes of the �rst, as well as the additional attributes speci�ed in its

own attribute list. In the example, the �rst element of the FROM clause is a tem-

porary relation E, coalesced on attributes \(name,dept)," while the second element

6The gen expr() directive function generates an expression from its inputs, a list of expressions, a

binary operator, and an associativity. The generated expression applies the operator to the expres-
sions in the list, observing the given associativity. For example, the call gen expr([1,2,3],\+",\left")

would produce the expression ((1 + 2) + 3).

77

of the FROM clause, \E(salary) AS D," produces a temporary relation D coalesced

on \(name,dept,salary)." To handle inheritance of coalescence, we added a new

directive function, map coalesce depnds(), which propagates coalescing attributes.

Finally, inheriting coalesced attributes links the two relations more inti-

mately: the predicate of the WHERE clause is augmented with conjuncts that en-

sure that the inherited grouped attributes are equal. In our example, the conjuncts

\eq(E.name,D.name)" and \eq(E.dept,D.dept)" were generated automatically in the

function map coalesce depnds() and ANDed with the WHERE predicate.

The last clause recognized, the WHERE clause, is parsed in the where subcat-

alog. Besides adding valid-time projection, TSQL2 adds valid-time selection, the

ability to select tuples based on their timestamp values. Temporal expressions can

be compared to each other and the result used to select tuples. Valid-time selection

is added by augmenting the predicate of the WHERE clause with temporal compar-

isons. We de�ned subcatalogs to model temporal comparisons, then added the root

subcatalog timecompare as an option of the compare subcatalog, thereby allowing

temporal comparisons to participate in predicates.

The INSERT Statement. Our model of the INSERT statement is shown in

Table 4.15(b); its syntax is shown in Table 4.15(a).

We show a sample INSERT statement in Figure 4.15. Parsing the INSERT

statement begins with the TSQL2 subcatalog, where the INSERT INTO keywords

are recognized and the tminsert() backplane function is composed into the operator

tree.

The backplane was augmented with a new backplane function, tminsert(), for

insertion as temporal insertion di�ers from conventional insertion. TSQL2 speci�es

that modi�cations should not overlap existing tuples, so if the non-temporal values

of a tuple are already valid in the current state of the database, the tminsert()

backplane function must not insert them again. Instead, it must split the new

tuple, potentially into two, to cover the portions of the time-line that are in the new

tuple but not in the existing tuple.

Parsing the input stream continues with the insrtstrm subcatalog, where the

rename() backplane function is composed. The �rst parameter of rename() is a

list of strings, recognized in the strng list subcatalog, which rename the attributes

of the incoming stream, associating them with the attributes of the relation being

augmented. The second is the input stream itself.

As for the SQL INSERT statement, input tuples may come from either a

literal stream of tuples or an SFW-expression. If they are derived from the lat-

ter, their valid-time timestamps are computed with them and included in the input

78

INSERT INTO

<relation>

(<insert list>)
SELECT-FROM-: : :

INSERT INTO

<relation>

(<insert list>)

<literal tuple stream>

BEGIN CONTEXT X

unrel list : unit rel list;

: : :

END CONTEXT X

TSQL2 = : : :

j f newCNTXT(X); g

tminsert[\ INSERT INTO x y ",
x:unit rel list, NULL, y:insrtstrm]

f mergerelation(x,unrel list); g

;
insrtstrm = rename[\ (x) v ", x:strng list, v:i valid]

j rename[\ (x) y ", x:strng list, y:select]

j valid[\ l ", NULL, NULL, l:litrelation]
j select

;

i valid = valid[\ l VALID e ", e:element, NULL,
l:litrelation]

;

litrelation = values[\ VALUES x ", x:littuples]

;

littuples = list[, , \,", valuelist, NE]

;

valuelist = list[\(", \)", \,", literal, NE]

;

strng list = list[, , \,", String, NE]
;

(a) syntax (b) model

Table 4.15: TSQL2 INSERT Statement

79

(a) TSQL2 query (b) operator tree

INSERT INTO Canine
("breed","size","low","high")

VALUES

VALID [|present| TO |forever|]

("chihuahua","small",3,8),
("dingo","medium",25,52),
("collie","large",55,125"),
("husky","large",55,125)

tminsert

[[Canine,Canine]] NULL rename

"low","high"]
["breed","size", valid

intervalc NULL values

event event

present forever

[["chihuahua","small",3,8],
["dingo","medium",25,52],
["collie","large",55,125"],
["husky","large",55,125]]

Figure 4.15: Operator Tree: TSQL2 INSERT Statement

stream. However, if the input stream of tuples is a literal relation, then the INSERT

statement is augmented with a VALID clause to compute valid-time values for the

tuples. In our example, the input stream to the rename() backplane function is rec-

ognized in the i valid subcatalog, where the valid() backplane function is composed

to add a valid-time timestamp to its input stream.

The actual input stream, which in our example is a literal stream of tuples

speci�ed in the VALUES clause, is recognized in the litrelation subcatalog. Here the

values() backplane function is composed along with its input, a sequence of lists of

literal values.

The DELETE Statement. Our model of the TSQL2 DELETE statement is shown

in Table 4.16. In Figure 4.16, we show a sample TSQL2 DELETE statement.

Parsing the DELETE statement begins in the TSQL2 subcatalog, where

the tmdelete() backplane function is composed into the operator tree. Like the

tminsert() backplane function, the tmdelete() backplane function must delete only

the portion of an existing tuple that matches the valid time on the incoming tuple.

Furthermore, it doesn't actually delete the tuple: by setting the value of the endpoint

of the valid-time timestamp, tmdelete() marks the tuple invalid while leaving it in

the database, thereby allowing the user to query the historical state of the database.

Parsing continues with the d valid subcatalog. Augmenting the DELETE

statement with temporal capabilities consists of one basic change: adding a VALID

80

DELETE

FROM
<relation>

WHERE

<predicate>

VALID

<temporal expression>

BEGIN CONTEXT X

unrel list : unit rel list;
proj list : attr list;

END CONTEXT X

TSQL2 = : : :

f newCNTXT(X); g

tmdelete[\ DELETE x ",unrel list,x:d valid]
;

d valid = valid[\ d VALID v ",v:element,NULL,d:d ret]

;
d ret = retrieve[\ FROM x w ", x:unit rel list,

proj list, w:where, NULL]

f mergerelation(x,unrel list); g
;

where = noop[\ WHERE x ", x:predicate]

j epsilon
;

(a) syntax (b) model

Table 4.16: TSQL2 DELETE Statement

(a) TSQL2 query (b) operator tree

FROM Canine

DELETE

WHERE Canine.high = 500

[[Canine,Canine]] valid

intervalc NULL

event event

tmdelete

grgrndate

7 19945

[[Canine,
Canine]]

eq

Canine.high 500

retrieve

present

VALID [| 7/5/1994 | TO | present |] [] []

Figure 4.16: Operator Tree: TSQL2 DELETE Statement

81

(a) TSQL2 query (b) operator tree

VALID [| 7/5/1994 | TO | present |]

UPDATE Canine

SET Canine.high = 500,
Canine.low = Canine.low * 8

WHERE Canine.low < 10

[[Canine,Canine]]

tmupdate

intervalc NULL

event event

grgrndate

7 19945

[[Canine,
Canine]]

retrieve

present

lt

valid[assign, assign]

Canine.high 500 Canine.low mul

Canine.low 8

Canine.low 10

[][]

Figure 4.17: Operator Tree: TSQL2 UPDATE Statement

clause to determine the valid times which are to be deleted from the database.

This valid-time timestamp is computed by the valid() backplane function after the

tuples to be deleted have been selected. In our example, all selected tuples having a

valid timestamp in the interval \7/15/1994" through the present are to be deleted.

Creating the operator tree to produce the stream of tuples to be deleted continues

with the d ret subcatalog.

Selection of the tuples to be deleted occurs in the retrieve() backplane func-

tion, composed in the d ret subcatalog. The WHERE clause, modeled in the where

subcatalog, provides a predicate for the retrieve() backplane function.

The UPDATE Statement. The TSQL2 UPDATE statement modi�es values of

tuples in the database; see Table 4.17 for its syntax and model. Figure 4.17 shows

a sample TSQL2 UPDATE statement and the operator tree to which it is mapped.

Parsing the UPDATE statement begins in the TSQL2 subcatalog, where

the tmupdate() backplane function is composed as the root of the operator tree.

Like the temporal insert and delete, temporal update is more complex than non-

temporal update. We augmented the backplane with a new function for temporal

82

UPDATE
<relation>

SET

<assignment list>

VALID

<temporal expression>

WHERE
<predicate>

BEGIN CONTEXT X

unrel list : unit rel list;

proj list : attr list;

: : :

END CONTEXT X

TSQL2 = : : :

j f newCNTXT(X); g

tmupdate[\ UPDATE x a u ",

x:unit rel list,a:u expr,u:u valid]
f mergerelation(x,unrel list); g

;

u expr = noop[\ SET y ", y:assgn list]
;

u valid = valid[\ VALID v u ",v:element,NULL,u:u ret]

;
u ret = retrieve[\ w ",unrel list,NULL,w:where,NULL]

;

where = noop[\ WHERE x ", x:predicate]
j epsilon

;

assgn list = list[, , \,", assgn, NE]

;

assgn = assign[\ x = y ", x:attribute, y:expr]

f z:attr list;

extattr(y,z);

mergeattr(z, proj list);

extattr(x,z);
mergeattr(z, proj list);

g

;

(a) syntax (b) model

Table 4.17: TSQL2 UPDATE Statement

83

update, tmupdate(). The stream of tuples input to tmupdate() arrive with a valid-

time timestamp already computed. If an existing tuple in the database has the same

non-temporal values but a di�erent valid-time timestamp than a tuple in the input

stream, then only the portions of the existing tuple which overlap the valid-time

timestamp of the new tuple are changed. An existing tuple may be split into as

many as three parts.

The �rst parameter of the tmupdate() backplane function is the name of

the relation to be updated; in our example, the Canine relation. The tmupdate()

backplane function has two parameters of interest: an assignment list and an input

stream of tuples selected for update. The assignment list is recognized in the u expr

subcatalog, where it composes no additional backplane functions. Recognizing the

input stream of tuples begins in the u valid subcatalog.

The UPDATE statement is augmented with a VALID clause to specify the

valid-time timestamp for the new values. This clause is recognized in the u valid

subcatalog and the valid() backplane function is composed into the operator tree.

Finally, the u ret subcatalog composes the retrieve() backplane function to

select from the database the tuples to be updated. The predicate for tuple selection

is speci�ed in the WHERE clause, which is recognized in the where subcatalog.

4.2.3.3 Conclusions for TSQL2

In this section we consider our results for TSQL2, including the model size and

development time. Our model includes all of the new temporal types and operations

on them, as well as the data retrieval and modi�cation statements. As for our other

languages in the SQL family, certain primitive data types were not included: �xed

length strings, BIT strings, and numeric types with speci�ed precision. Furthermore,

the LIKE predicate was not included. Finally, we assumed the Gregorian calendar,

with the �nest granularity chronon being one day. We do not feel that this detracts

signi�cantly from the expressiveness of the language.

A more serious omission was the run-time support for specifying calendars.

TSQL2 includes a feature to support di�erent calendric systems, and the user should

be able to switch dynamically between using the di�erent calendric systems. A date

which is speci�ed in a query is interpreted relative to the calendar in e�ect at the

time the query is issued. Because the generated compilers do not have static run-

time memory, we were unable to support this feature. Static run-time memory for

generated compilers is a topic for future work on Rosetta; we will say more about

this in Chapter 6.

Our model of TSQL2 required 350 lines. The speci�cation was mapped to

bison and
ex �les comprising a total of about 2500 lines, yielding an expansion

84

ratio of 1:7, quite similar to our results for SQL and SQL/NF.

Speci�cation reuse for modeling TSQL2 was very high|87%. This is at-

tributable to the goal of the TSQL2 designers to maintain upward compatibility

with SQL.

Finally, the time needed to produce the TSQL2 model was approximately

16 days. This included the time needed to understand the speci�cation and make

the necessary additions and changes to our SQL model. Again, this was the time

needed by a novice in temporal databases.

Most of the changes made to SQL were quite low-level, such as modeling

the primitive temporal data types and operations on them. Other changes, such as

allowing a form of subquery in the FROM clause, were higher level. Overall, TSQL2

di�ers signi�cantly from both SQL and SQL/NF.

4.3 The Quel Family

The second family we consider is the Quel family. The Quel family was chosen

because, like the SQL family, it is a large family with wide variation among its

members. Quel is a popular language in the database community and has had a

signi�cant impact on data language development: like SQL, Quel frequently serves as

the base language on which researchers graft experimental features and extensions.

Members of the Quel family support non-traditional data models, include new data

types, and extend the syntax. We modeled Quel and one other member of the Quel

family|TQuel, a temporal data language.

4.3.1 Quel

Our interest in Quel stems from both its popularity and its historical interest: Quel

was one of the earliest relational data languages [SWKH76]. Like SQL, Quel is a

traditional relational data language. However, Quel is of interest in its own right,

as there are signi�cant functional and syntactic di�erences between SQL and Quel.

Quel was developed at the University of California at Berkeley as the data language

of the database management system INGRES, [HSW75].

This section focuses on only the high-level elements of the language speci-

�cation; the full Quel model, including low-level constructs such as arithmetic ex-

pressions and primitives, is listed in Appendix E.

85

RANGE OF <correlation list>

IS <relation>

Quel = : : :

j dfnCORR[\ RANGE OF v IS r ",
v:relation list, r:relation]

;

relation list = list[, , \," , relation, NE]
;

(a) syntax (b) model

Table 4.18: Quel RANGE OF Statement

4.3.1.1 Modeling Quel Statements

Quel has many of the same statements (modulo syntax) that SQL has. Both lan-

guages have statements to retrieve and display tuples, to insert new tuples, and to

delete or modify existing tuples. Both languages have subqueries and aggregation.

But there are di�erences: SQL has set operation statements UNION, INTERSECT,

and EXCEPT which Quel lacks; furthermore, Quel cannot group selected tuples or

apply a predicate to select groups. However, Quel has more powerful aggregation

constructs.

The RANGE OF Statement. The Quel RANGE OF statement performs the

same function as the SQL FROM clause, associating correlations with relations, but

its scope is global and therefore its consequences are more far-reaching. The syntax

and model of the RANGE OF statement are shown in Table 4.18.

The RANGE OF statement de�nes the names in the <correlation list> as

correlations of the named relation. Unlike the SQL FROM clause, the e�ect of the

Quel RANGE OF statement is global. Once de�ned, a correlation remains active

until it is rede�ned, and may be referenced in any number of Quel statements. Quel

correlations are de�ned by the dfnCORR() backplane function7.

The RETRIEVE Statement. The Quel RETRIEVE statement is functionally

very similar to the SQL SELECT statement: both retrieve and print tuples which

satisfy a predicate. Although the Quel RETRIEVE statement and the SQL SE-

LECT statement are functionally similar, syntactically they are quite di�erent.

The syntax of the Quel RETRIEVE statement is shown in Table 4.19a. The

only clauses of the RETRIEVE statement which must appear are the RETRIEVE

7The dfnCORR() backplane function, added when modeling Quel, has parameters a list of
correlation names and a relation name. It manages a global correlation list which associates each

correlation name with a relation.

86

(b) operator tree(a) Quel query

RANGE OF C IS Canine

WHERE C.low > 40

retrieve

[C.breed, C.size []

rename

[_, _, _, _]

40

gt

C.low

UNIQUE
RETRIEVE

(C.breed, C.size, C.low, C.high)

printstream

unique

C.low, C.high]
[[Canine,C]]

Figure 4.18: Operator Tree: Quel RETRIEVE Statement

clause and the <list of expressions>; all the others are optional. Our model of the

Quel RETRIEVE statement is shown in Table 4.19b.

Figure 4.18 shows a Quel RETRIEVE statement and the operator tree our

model maps it to. Mapping this statement to the operator tree begins with the Quel

subcatalog, which di�erentiates between statements of the Quel language. The

RETRIEVE keyword is detected in the Quel subcatalog, but no function can be

composed at this point; only when keywords which di�erentiate the alternatives

of the RETRIEVE statement have been detected can the action to be taken be

determined.

In the retstmt subcatalog, one option is eliminated. The INTO clause, which

indicates that a temporary relation should be created and populated with the re-

trieved tuples, is recognized in the �rst signature of the retstmt subcatalog. In the

example, INTO is not present, and the second signature of the retstmt subcatalog

is successful. No clause is recognized in the second signature, but since all other

variations of the RETRIEVE statement print retrieved tuples, the printstream()

backplane function is composed as the root of the operator tree. The input stream

of tuples to be printed derives from the operator tree generated from the display

subcatalog.

The RETRIEVE statement includes a UNIQUE clause, handled by the dis-

play subcatalog, which signals duplicate elimination. As the UNIQUE keyword

is speci�ed in our example, the unique() backplane function is composed into the

operator tree. Its input stream is produced from the rename subcatalog.

In the rename subcatalog, the <list of expressions> which determines the

87

RETRIEVE

[INTO
<temporary relation>]

(<list of expressions>)

[WHERE <predicate>]

RETRIEVE

[UNIQUE]
(<list of expressions>)

[WHERE <predicate>]

BEGIN CONTEXT X

rel list : relation list;

xpr : expr list;

: : :

END CONTEXT X

Quel = : : :

j f newCNTXT(X); g

noop[\ RETRIEVE x ",x:retstmt]

;

retstmt = create[\ INTO x y ", x:relation, y:insertstrm]

j printstream[\ x ", x:display]

;

display = unique[\ UNIQUE r ", r:rename]

j rename

;

rename = rename[\ (p c ", p:renamelst,c:process1]

;

process1 = noop[\) c ",c:proc cycl1]

;

proc cycl1= compute[rewrite(xpr,
[add,sub,div,mul,uminus,str2int,str2real], x),

x:expr list, proc cycl1]

j aggregate[rewrite(xpr,

[count,min,max,avg,sum,�lter,aggregate,groupby,

gt,ge,lt,le,eq,str2int,str2real],x),

x:expr list, proc cycl1]

j noop[is attr list(xpr), retstrm1]

;
retstrm1 = retrieve[\ w ", rel list, xpr, w:where, NULL]

;

where = noop[\ WHERE x ", x:wpredicate]
j epsilon

;

(a) syntax (b) model

Table 4.19: Quel RETRIEVE Statement

88

values of the output tuples is recognized via the renamelst subcatalog8. Next, aggre-

gations and arithmetic computations are separated for Quel as they were for SQL;

this happens in the process1 and proc cycl1 subcatalogs. In our example, there is no

computation or aggregation, so only the rename() backplane function is composed

into the operator tree.

Finally, in the retstrm1 and where subcatalogs, the retrieve() backplane func-

tion is composed into the operator tree and the WHERE clause is recognized. The

<predicate> of the WHERE clause is passed in to the retrieve() backplane function

to �lter the retrieved tuples. The WHERE clause is optional; if it is not present,

the predicate is vacuously satis�ed by all tuples. Global variables are referenced to

provide a relation list and an attribute projection list for the retrieve() backplane

function.

Overall, the Quel RETRIEVE statement has almost the same functionality

as the SQL SELECT statement. However, the RETRIEVE statement has no clauses

to divide a stream into groups or to test predicates on groups.

Subqueries. Quel has a version of the subquery which implements existential

quanti�cation (see Table 4.20 for syntax and model). The integer construct ANY

tests the result of a subquery, returning 1 if the result is not empty and 0 otherwise.

Figure 4.19 shows a query which uses the ANY construct and the operator tree

our model maps it to. As our example is a RETRIEVE statement, generating the

operator tree begins in the usual way, with the subcatalogs of Table 4.19 composing

the printstream(), rename(), and retrieve() backplane functions into the operator

tree. The subquery itself, which is parsed as part of the predicate, is recognized in

the wquelexpr subcatalog.

Two backplane functions are used to model the ANY construct. The exists()

backplane function tests a stream, returning the boolean values TRUE if non-empty

and FALSE otherwise. To use it to model the ANY construct, the boolean result must

be converted to an integer. We added a new backplane function boolean2int() which

maps TRUE to 1 and FALSE to 0, and modeled the ANY construct by a composition

of these two functions.

The stream argument of the exists() backplane function is modeled in the

subquery subcatalog. The two remaining clauses to be modeled, BY and WHERE,

are both optional. The BY clause, if present, is modeled by a groupby() backplane

function call on the retrieved stream, while the predicate of the WHERE clause is

passed as a parameter to the retrieve() backplane function.

8The rename() backplane function renames the attributes in a stream; its parameters are a list
of names and an input stream. Unspeci�ed name list elements result in no change to the attribute

name.

89

(b) operator tree(a) Quel query

RANGE OF Co is Canine
RANGE OF Ci is Canine

RETRIEVE (Co.breed, Co.size, Co.low, Co.high)
WHERE ANY (Ci.breed

AND
WHERE Co.breed != Ci.breed

Co.high >= Ci.high
AND

Co.low <= Ci.low)
= 1

printstream

retrieve

[]

retrieve

[][Ci.breed][Canine,Ci]

rename

[_, _, _, _]

eq

1boolean2int

exists

and

[Canine,Co] [Co.breed, Co.size
Co.low, Co.high]

and lteq

Ci.breed

gteqneq

Co.breed Co.high Ci.high

Co.low Ci.low

Figure 4.19: Operator Tree: Quel RETRIEVE Statement with Subquery

90

ANY

(<expression list>)

[BY
<attribute list>]

[WHERE

<predicate>]

BEGIN CONTEXT X
rel list : relation list;

xpr : expr list;

: : :

END CONTEXT X

wquelexpr = : : :

j f newCNTXT(X); g
boolean2int[\ ANY (x) ", exists(x:subquery)]

f enforcescope(\X",\rel list"); g

;
subquery = groupby[\ xpr BY g w",g:attr list, w:substream]

j retrieve[\ xpr w ",rel list,xpr,w:where,NULL]

;

substream = retrieve[\ w ",rel list,xpr,w:where,NULL]

;

(a) syntax (b) model

Table 4.20: Quel Subquery

Aggregation. Like SQL aggregations, Quel aggregations are applied to an input

stream. However, a Quel aggregation can specify additional computation on its input

stream: a list of attributes on which to group the input stream; a predicate to further

�lter the input stream; even nested aggregations (see the syntax in Table 4.21a).

These powerful aggregation expressions add a great deal of expressiveness to Quel.

Aggregates in Quel are handled di�erently depending on whether they occur

in the select list or in the predicate. An aggregate which occurs in the select list is

evaluated against the stream of tuples which satisfy the predicate of the WHERE

clause, whereas an aggregate occurring in the predicate of the WHERE clause is

evaluated as a subquery, so that tuples are retrieved exclusively for the aggregation.

In this section, we will consider only aggregation in the select list (the model is

displayed in Table 4.21b). Aggregation in the predicate is included in the Quel

model in Appendix E.

Figure 4.20a shows a Quel query with aggregation in the select list. This

query retrieves the size attribute for each tuple in the Canine relation and also

computes the averages of the low and high values for that category. Our Quel

model maps it to the operator tree of Figure 4.20b.

Recognition of the statement is initially the same as recognition of any other

RETRIEVE statement, composing the printstream() and rename() backplane functions

from the Quel, retstmt, and display subcatalogs (see Table 4.19).

Actually parsing the select list begins in the renamelst subcatalog (see Ta-

91

<aggregate operator>

<expression>

[BY

<attribute list>]
[WHERE

<predicate>]

where <aggregate operator>

is one of

f MAX, MIN, AVG,

COUNT, SUM,
COUNTU, AVGU,

SUMU g

BEGIN CONTEXT X

xpr : expr list;
: : :

END CONTEXT X

rename = rename[\ (p c ", p:renamelst,c:process1]

;

renamelst = list[, , \,", retcolumn, NE]
;

retcolumn = noop[\ x = y ", x:String]

f y:quelexpr; linknode(xpr,y); g
j noop[\ x = y ", x:String]

f y:String; linknode(xpr,y); g

j noop[\ y ", NULL]
f y:quelexpr; linknode(xpr,y); g

;

quelexpr = add[\ x + y ", x:quelexpr, y:quelexpr]
j sub[\ x - y ", x:quelexpr, y:quelexpr]

j mul[\ x * y ", x:quelexpr, y:quelexpr]

j div[\ x / y ", x:quelexpr, y:quelexpr]

j uminus[\ - x ", x:quelexpr]

j noop[\ (x) ", x:quelexpr]

j Numeric

j attribute

;

Numeric = LitNumeric

j quelaggr

;

quelaggr = avg[\ AVG (e b) ", e:aggrexpr, b:aggrgrp]
j count[\ COUNT (e b) ", e:aggrexpr, b:aggrgrp]

j max[\ MAX (e b) ", e:aggrexpr, b:aggrgrp]

j min[\ MIN (e b) ", e:aggrexpr, b:aggrgrp]
j sum[\ SUM (e b) ", e:aggrexpr, b:aggrgrp]

j avg[\ AVGU (e b) ", e:aggrexpr,

unique(b:aggrgrp)]
j count[\ COUNTU (e b) ", e:aggrexpr,

unique(b:aggrgrp)]

j sum[\ SUMU (e b) ", e:aggrexpr,
unique(b:aggrgrp)]

;

aggrgrp = groupby[\ BY a w ", a:attr list, w:select]
j select

j quelaggr

;
aggrexpr = smexpr

j epsilon

;
select = �lter[\ WHERE x ", x:predicate, NULL]

j epsilon

;

(a) syntax (b) model

Table 4.21: Quel Aggregation

92

(b) operator tree(a) Quel query

RANGE OF C is Canine

BY C.size
WHERE MIN(C.low < 55),

BY C.size
WHERE MIN(C.low < 55))

("size" = C.size,

RETRIEVE

printstream

rename

["size", "avg_low", aggregate

[#1, avg, avg]

#2 groupby groupby

#3 filter filter

#5

#6

lt

#4

55min

lt

55min

#7

[][]

[C.size, C.low,
C.size, C.low,
C.high, C.size,
C.low]

retrieve

"avg_high" = AVG(C.high

"avg_low" = AVG(C.low

"avg_high"]

[[Canine,C]]

Figure 4.20: Operator Tree: Quel RETRIEVE Statement with Aggregation

93

RANGE OF C is Canine

APPEND TO C
(C.breed = "collie",

C.high = 125)

(a) Quel query (b) operator tree

insert

["collie", "large", 55, 125]

[C.breed,
C.size,
C.low,
C.high]

compute

C.low = 55,
C.size = "large",

[[Canine,C]]

NULL

Figure 4.21: Operator Tree: Quel APPEND TO Statement

ble 4.21). The retcolumn subcatalog recognizes a single assignment; the quelexpr

subcatalog recognizes the expression of the assignment, including aggregations. In

the retcolumn subcatalog, the expressions are linked into the xpr context variable,

from which they are later processed in the proc cycl1 cycle subcatalog, producing

the expression list parameter of the aggregate() backplane function.

Finally, the subtree rooted at the retrieve() backplane function is produced

from the retstrm1 subcatalog (from Table 4.19). As there is no WHERE clause in

this query, the predicate parameter of the retrieve() backplane function is empty

and defaults to TRUE.

The APPEND TO Statement. The Quel APPEND TO statement inserts new

tuples into relations (see Table 4.22a for the syntax of the APPEND TO statement).

The new tuples may be either literal or derived tuples. The Rosetta model of the

APPEND TO statement is shown in Table 4.22b.

In Figure 4.21, we show a sample APPEND TO statement. The APPEND

TO clause is recognized in the Quel subcatalog, where the insert() backplane func-

tion is composed into the operator tree. The relation to be augmented is determined

in the unit rel list subcatalog,

The insertstrm subcatalog models the stream of tuples to be inserted into

the named relation, recognizing the expressions which compute the tuples to be

inserted, while the process2 and proc cycl2 subcatalogs separate arithmetic compu-

tation and aggregation, composing compute() and aggregate() backplane function

calls as needed.

Finally, if there is a WHERE clause, it is recognized in the retstrm2 subcatalog

and the retrieve() backplane function is composed into the operator tree.

94

APPEND TO

<relation>

<list of values>

[WHERE <predicate>]

BEGIN CONTEXT X

attrlst : attr list;

rel list : relation list;
: : :

END CONTEXT X

Quel = : : :

j f newCNTXT(X); g

insert[\ APPEND TO r y ",r:unit rel list,

attrlst,y:insertstrm]
;

insertstrm = noop[\ (p j ", j:process2]

f p:insertlst;
skip();

g

;

process2 = noop[\) c ",c:proc cycl2]

;
proc cycl2 = compute[

rewrite(xpr,[add,sub,div,mul,uminus,

str2int,str2real,str2str],x),
x:expr list, proc cycl2]

j aggregate[

rewrite(xpr,[count,min,max,avg,sum,�lter,

groupby,gt,ge,lt,le,eq,str2int,str2real,

str2str],x),x:expr list, proc cycl2]

j noop[is attr list(xpr), retstrm2]

;

retstrm2 = retrieve[\ WHERE w ",

rel list,xpr,w:wpredicate,NULL]
j epsilon

;

(a) syntax (b) model

Table 4.22: Quel APPEND TO Statement

95

DELETE <relation>

[WHERE <predicate>]

BEGIN CONTEXT X

rel list : relation list;
: : :

END CONTEXT X

Quel = f newCNTXT(X); g

delete[\ DELETE r x ", r:unit rel list, x:delstrm]

f mergerelation(r,rel list); g
;

delstrm = retrieve[\ w ",rel list,NULL,w:where,NULL]

;
where = noop[\ WHERE x ", x:wpredicate]

j epsilon

;

(a) syntax (b) model

Table 4.23: Quel DELETE Statement

(a) Quel query

DELETE C
WHERE C.high = 500

RANGE OF C IS Canine

(b) operator tree

delete

[] []eq

retrieve

500C.high

[[Canine,C]]

[[Canine,C]]

Figure 4.22: Operator Tree: Quel DELETE Statement

The DELETE Statement. The Quel DELETE statement (see syntax in Ta-

ble 4.23a) deletes tuples from a named relation. An optional WHERE clause speci-

�es a predicate which restricts the tuples to be deleted. Our model of the DELETE

statement is shown in Table 4.23b.

A sample DELETE statement and its operator tree are shown in Figure 4.22.

The DELETE keyword, recognized in the Quel subcatalog, signals composition of

the delete() backplane function into the operator tree. Also in that signature, the

name of the relation to be modi�ed is recognized. The post-action of the Quel

subcatalog makes the name of that relation globally available in the rel list context

variable. The retrieve() backplane function is composed in the delstrm subcata-

log. Finally, the WHERE clause is recognized in the where subcatalog, where its

predicate is made available to the retrieve() backplane function.

96

REPLACE <relation>

<update expressions>

[WHERE <predicate>]

BEGIN CONTEXT X

updlist : assgnlst;
rel list : relation list;

: : :

END CONTEXT X

Quel = : : :

j f newCNTXT(X); g
update[\ REPLACE r y ",

r:unit rel list,updlist,y:updatestrm]

f mergerelation(r,rel list); g
;

updatestrm = retrieve[\ (updlist) w ",

rel list,NULL,w:where,NULL]
;

where = noop[\ WHERE x ", x:wpredicate]

j epsilon
;

(a) syntax (b) model

Table 4.24: Quel REPLACE Statement

The REPLACE Statement. The Quel REPLACE statement updates exist-

ing tuples, replacing old attribute values with new attribute values. Disregarding

keywords9, the Quel REPLACE statement is quite similar to the SQL UPDATE

statement.

The syntax of the Quel REPLACE statement is shown in Table 4.24a. Only

the WHERE clause is optional; the rest of the syntax must appear. Our model of

the Quel REPLACE statement is shown in Table 4.24b.

A sample REPLACE statement, with the operator tree to which our model

maps it, is shown in Figure 4.23. The REPLACE clause is recognized in the Quel

subcatalog and the update() backplane function is composed into the operator tree.

In the updatestrm subcatalog, the <update list of expressions> is recognized and

the retrieve() backplane function is composed into the operator tree. Finally, the

WHERE clause is recognized in the where subcatalog and the predicate made avail-

able for the call to the retrieve() backplane function.

4.3.1.2 Quel Run-Time Experiences

Enough of the backplane functions were implemented (in Prolog) to evaluate Quel

queries. Approximately forty Quel queries were evaluated. We used relations rang-

ing in size from ten tuples to about �ve hundred tuples. All statements were ex-

9The UPDATE keyword is replaced by REPLACE; the SET keyword is eliminated.

97

(b) operator tree

RANGE OF C is Canine

REPLACE C

WHERE C.low < 10

(C.high = 500,
C.low = C.low * 8)

update

500 mul

8

retrieve

[] []

10

C.low

C.low

C.low

C.high

(a) Quel query

[[Canine,C]]

[[Canine,C]] lt

[assign,assign]

Figure 4.23: Operator Tree: Quel REPLACE Statement

ercised, including data retrieval, with nested subqueries and nested aggregations,

and updates; all executed correctly. Thus, we feel that the prototype satisfactorily

demonstrates a proof of concept.

4.3.1.3 Conclusions for Quel

In this section we consider the model size and development time for Quel. Our expe-

riences in modeling Quel and other languages are used to evaluate the e�ectiveness

of Rosetta.

Our Quel model is quite complete. All Quel data manipulation statements

are included in the model: the RETRIEVE statement for data retrieval, with all

its options, as well as the data modi�cation statements APPEND TO (insert),

DELETE, and REPLACE (update). The primitive types are limited to varying

length character strings and integers and reals of unspeci�ed precision.

Furthermore, our Quel model is compact. The Quel speci�cation �le consists

of approximately 270 lines. From the speci�cation, Rosetta generates a bison �le and

a
ex �le comprising approximately 100 lines and 1400 lines, respectively, yielding

an expansion factor of approximately 1:6.

Overall, Quel is syntactically quite di�erent from SQL. There is some overlap

in functionality, but there are di�erences as well. The most signi�cant functional

di�erence was generalizing aggregations to allow nesting.

As an indication of the magnitude of the changes to the SQL speci�cation �le

we consider speci�cation reuse. The SQL speci�cation �le is composed of approx-

imately 115 signatures. Approximately 25% of the SQL signatures were included

either unchanged or with only minor modi�cations in the Quel model. Thus, even

98

though Quel syntax di�ers radically from SQL syntax, about one quarter of the

Quel speci�cation was done before we even began modeling.

Modeling Quel required generalizing one backplane function and adding four

new backplane functions and �ve new directive functions.

Finally, the time required to develop our model of Quel was approximately

four weeks, including both the time needed to understand the syntactic and semantic

di�erences between SQL and Quel and to develop the model.

4.3.2 TQuel

Our second data point in the Quel family, and the last language we consider, is

TQuel [Sno87], a temporal data language developed by Richard Snodgrass at the

University of North Carolina at Chapel Hill, NC. We chose TQuel as one of our data

points because it is an extension of Quel which augments the standard relational

operators with temporal constructs.

Like TSQL2, TQuel is a temporal data language. Although TQuel is a

derivative of Quel while TSQL2 is a derivative of SQL, TQuel bears some func-

tional resemblance to TSQL2, perhaps because Snodgrass was instrumental in the

development of both languages10.

TQuel supersets Quel: all Quel statements are included in TQuel. Overall,

quite a few extensions were made to Quel, including new temporal primitives and

new functions to operate on them. No new statements were introduced; instead new

clauses were added to the existing statements.

The rest of this section discusses the extensions which transform Quel into

TQuel. As usual, we do not consider the data de�nition language; instead, we focus

on the high-level elements of the data language. The full TQuel model, including

such low-level constructs as arithmetic expressions and primitives, is listed in Ap-

pendix F. We consider �rst the temporal data model, including primitive temporal

data types, then the impact of new clauses added to the Quel statements. Finally,

we consider model size, development time, and productivity gains.

4.3.2.1 TQuel Data Model

With respect to temporal capabilities, databases can be classi�ed in four categories:

snapshot, rollback, historical, and temporal databases. Snapshot databases have no

support for temporal capabilities; they re
ect the state of the world at a particular

moment in time and maintain no historical information.

10Snodgrass was the chair of the TSQL2 design committee.

99

A rollback database maintains historical information, enabling the user to

issue queries with respect to a particular moment in time, but allows modi�cations

to only the current version of the database. Each tuple in the database is given

a transaction-time timestamp. Historical databases allow updates to all tuples,

whether current or not. A valid-time attribute added to each tuple distinguishes

between valid and invalid tuples.

Temporal databases incorporate both transaction-time and valid-time times-

tamps to provide the facilities of both rollback and historical databases. The trans-

action time timestamp is automatically computed by the DBMS while valid time is

computed in clauses added to the language for that purpose.

Traditional database management systems include operations to delete and

modify tuples. When tuples are deleted from the database, it as though they had

never existed; when tuples are modi�ed, the old values are written over with new

values. However, in a temporal database, information is never deleted: it is marked

invalid but can still participate in answering historical queries.

To support temporal queries, TQuel timestamps the tuples of derived re-

lations and extends the query language with temporal selection. The traditional

relational data model is extended with two temporal primitives: events and inter-

vals. An event pinpoints a particular moment in time, whereas an interval covers a

duration of time, starting at one event and continuing up to a second event. Interval

constants are input as strings. There are also prede�ned constants, beginning, now,

and forever, which are interpreted as either events or intervals depending on the

context. Except for these there are no event constants.

Various operations are de�ned on temporal primitives. Two operations which

return intervals are de�ned. The overlap operator operates on two intervals and

returns the interval which is common to both. If the operands have no events in

common, the result is unde�ned. The extend operator, another binary operator on

interval operands, returns the maximal interval which includes both operands. Thus

overlap can be viewed as interval intersection whereas extend corresponds to interval

union.

Operations returning events are also de�ned: the begin of operator operates

on an interval, returning its starting event, and the end of operator returns the

interval's terminating event.

Finally, functions are provided to access valid-time and transaction-time

timestamp values. All operate on a correlation name, interpreting it as referring

to the current tuple. The validat(), validfrom(), and validto() backplane functions

return valid-time timestamp values, either a valid-time event or the starting or end-

ing event of a valid-time interval, respectively. The transactionstart() and transac-

100

tionstop() backplane functions return the transaction-time timestamp starting and

ending events, respectively. These functions may be used only in the target list and

WHERE clause.

In addition, there are comparison operations on temporal primitives which

compute boolean values: precede, overlap, and equal. The binary operator precede

operates on two intervals, returning TRUE if the �rst interval ends before the second

interval begins and FALSE otherwise. The binary operator overlap also operates

on two intervals, returning TRUE if the �rst interval is completely contained within

the second interval and FALSE otherwise11. The third comparison operator, equal,

operates on two events, returning TRUE if the two events are the same event and

FALSE otherwise.

Finally, temporal predicates can be constructed from temporal comparisons

using the boolean connectives and, or, and not.

4.3.2.2 Modeling TQuel Statements

TQuel includes all the statements of Quel but introduces no new ones. Our model

of TQuel (see Appendix F) is restricted to the DML (even though some DDL state-

ments were augmented). We consider the four augmented DML statements: RE-

TRIEVE, DELETE, APPEND TO, and REPLACE. Other DML statements, such

as the RANGE OF statement, and certain constructs were not changed for TQuel

and are not discussed although they are included in the model.

The RETRIEVE Statement. Like the Quel RETRIEVE statement, the TQuel

RETRIEVE statement (see Table 4.25 for syntax and model) retrieves from the

database those tuples which satisfy a predicate. To add temporal capabilities, three

new clauses were added to the TQuel RETRIEVE statement: the VALID, WHEN,

and AS OF clauses. The �rst adds an expression to compute the valid time for

the derived tuples; the second adds a temporal predicate which the retrieved tuples

must satisfy; the third speci�es an interval during which tuples participating in

computation must be valid.

Figure 4.24 shows a sample TQuel RETRIEVE statement which retrieves

pairs of breed names, where the �rst breed has a lower low weight value than the

second breed.

Generating the operator tree commences in the TQuel subcatalog, where

the RETRIEVE keyword is recognized. No action can be taken at this point as the

single keyword RETRIEVE is insu�cient to di�erentiate between the variations of the

RETRIEVE statement.

11The overlap operator is overloaded.

101

RETRIEVE

[UNIQUE j INTO]

<relation>

VALID

<valid expression>

WHERE

<predicate>

WHEN
<when expression>

AS OF

<when expression>

BEGIN CONTEXT X

rel list : relation list;
END CONTEXT X

TQuel = f newCNTXT(X); g

noop[\ RETRIEVE x ", x:retstmt]

;
retstmt = create[\ INTO x y ", x:relation, y:rename]

j printstream[\ x ", x:display]

;
display = unique[\ UNIQUE r ", coalesce(r:rename,NULL,NULL)]

j rename

;
rename = rename[\ (p c ", p:rettuple, c:process1]

;

rettuple = list[, , \,", retcolumn, NE]
;

process1 = noop[\) c ", c:proc cycl1]

;

proc cycl1= compute[rewrite(xpr,[add,sub,div,mul,uminus,str2int,str2rel,

validat,validfrom,validto,xactionstart,xactionstop],x),

x:expr list, proc cycl1]

j aggregate[rewrite(xpr,[count,min,max,avg,sum,�lter,

groupby,gt,ge,lt,le,eq,str2int], x),x:expr list, proc cycl1]

j noop[is attr list(xpr), valid1]
;

valid1 = valid[\ VALID AT e r ",e:e expr,NULL,r:retstrm1]

j valid[\ VALID FROM i TO k r ", i:e expr, k:e expr,
r:retstrm1]

j valid[\ r ", i, NULL, r:retstrm1]

f i:i expr; gen expr(rel list,\overlapt",\left",i); g
;

retstrm1 = retrieve[\ c ", rel list, xpr, c:retcond, NULL]

;
retcond = and[\ w n a ", a:asof, and(n:when, w:where)]

;

asof = asof[\ AS OF a ", a:e expr, NULL]
j asof[\ AS OF a ", a:interval, NULL]

j asof[\ AS OF a THROUGH b ", a:e expr, b:e expr]

j asof[\ e ", \now", NULL]
f e:epsilon; skip(); g

;

when = when[\ WHEN tp ", tp:tpred]
j when[\ e ", overlapt(i,\now")]

f e:epsilon; i:i expr;

gen expr(rel list,\overlapt",\left",i);
g

;

where = noop[\ WHERE x ", x:predicate]
j epsilon

;

(a) syntax (b) model

Table 4.25: TQuel RETRIEVE Statement

102

(b) operator tree(a) TQuel query

RANGE OF C1 IS Canine
RANGE OF C2 IS Canine

("smallerbreed" = C1.breed,
"largerbreed" = C2.breed)

VALID FROM
(BEGIN OF (C1) TO BEGIN OF (C2))

WHEN
C1.size = C2.size AND C1.low < C2.low

WHERE

(C1 OVERLAPB C2)
AS OF

NOW

[]

rename

retrieve

valid

beginof beginof

C1 C2

[Canine,C2]]
[C1.breed,

C2.breed]
and

asof

NOW NULL

and

and

overlapb

C1 C2

eq lt

C1.size C2.size
C1.low C2.low

[[Canine,C1],

when

"largerbreed"]
["smallerbreed",

RETRIEVE
UNIQUE

printstream

unique

coalesce

NULL[]

Figure 4.24: Operator Tree: TQuel RETRIEVE Statement

103

In the retstmt subcatalog, if the INTO keyword is detected, it is clear that

a temporary relation is to be created and populated with the tuples of a derived

relation, so the create() backplane function could be composed into the operator

tree. In our example, the derived relation should be printed, and the printstream()

backplane function is composed as the root of the operator tree.

Parsing our example continues with the display subcatalog, where the UNIQUE

keyword is recognized in the �rst signature. Two backplane functions are composed

as a result, unique() and coalesce(). The unique() backplane function eliminates

duplicates while the coalesce() backplane function merges tuples having identical

non-temporal attribute values and adjacent or overlapping valid-time timestamps.

The input stream for the coalesce() backplane function comes from the re-

name subcatalog, which composes the rename() backplane function into the operator

tree. Its �rst parameter, the assignment list, is recognized in the rettuple subcatalog

and processed to separate the arithmetic computation from the aggregation in the

process1 and proc cycl1 subcatalogs. The actual stream of tuples comes from the

valid1 subcatalog.

In the valid1 subcatalog, the VALID clause, if present, is detected. As valid-

time timestamps may be either interval or event, the VALID clause has variants

which compute each: \VALID FROM <event> THROUGH <event>" and \VALID

AT <event>," respectively. The VALID FROM clause in our example is computed

by composing the valid() backplane function into the operator tree.

Had the optional VALID clause been omitted, the default valid time would

have been computed as the interval which is the temporal intersection (overlap) of

the valid times of all the underlying tuples:

(t0 overlap t1 overlap : : :tk)

where the ti represent the relations that are involved in the query. When it is needed,

the default temporal expression is generated by a call to the gen expr() directive

function12 in the post-action.

The operator tree evaluating the input stream for the valid() backplane func-

tion comes from the retstrm1 subcatalog, where the retrieve() backplane function

is composed. Some parameters of the retrieve() backplane function are context

variables, but the condition comes from the retcond subcatalog.

Three clauses of the RETRIEVE statement remain to be modeled: the

WHERE, WHEN, and AS OF clauses. As all of these represent selection on the

retrieved tuples, their conditions are AND'ed together in the retcond subcatalog and

passed as one integrated condition to the retrieve() backplane function.

12see Appendix A for a description of the gen expr() directive function.

104

The WHEN clause, modeled in the when subcatalog, speci�es selection based

on a temporal condition. The TQuel RETRIEVE statement eliminates all tuples

which do not satisfy the predicates of the WHERE clause and the WHEN clause.

The when() backplane function was added to test temporal predicates. The default

WHEN predicate is

(t0 overlap t1 overlap : : :tk) overlap now

where the ti represent the relations that are involved in the query. The default

predicate stipulates that the underlying tuples must share an interval of validity,

and that that interval must include the present, i.e., that all underlying tuples are

current. Note that this is consistent with the VALID default, which computes the

valid time for the derived tuple as the interval when all the underlying tuples are

valid. Once again, the gen expr() directive function is used to generate the default

temporal expression.

Finally, the AS OF clause, modeled in the asof subcatalog, speci�es a moment

or interval in time to which the database is rolled back; no tuples added later are

considered in evaluating the query. With the optional keyword THROUGH,

AS OF <event expression> [THROUGH <event expression>]

the rollback is further re�ned; the two events specify an interval <e0,e1> which

brackets the tuples participating in the query, eliminating from consideration infor-

mation not known in that interval. We added a boolean asof() backplane function

which tests that a tuple is valid in the proper interval. The AS OF default, AS OF

now, requires that all the underlying tuples be current in the database.

The APPEND TO Statement. The TQuel APPEND TO statement (see Ta-

ble 4.26 for the Rosetta model) inserts new tuples into a relation. Tuples may be

either literal or derived.

Figure 4.25 shows an example of the TQuel APPEND TO statement. Parsing

the APPEND TO statement begins in the TQuel subcatalog, where the APPEND TO

clause is recognized and the tminsert() backplane function is composed as the root

of the operator tree. This function has temporal functionality not de�ned for the

standard insert() backplane function: the insert() backplane function simply adds

to the database the new tuples from its input stream but the tminsert() backplane

function must check for existence of any portion of the tuple to be inserted and add

only the new interval of the new tuple to the database.

The input stream is derived from the insertstrm subcatalog, where the re-

name() backplane function is composed but no input is consumed. Parsing passes

on to the valid2 subcatalog.

105

APPEND TO

<relation>

<list of values>

[VALID

<valid expression>]

[WHERE

<predicate>]

[WHEN

<when expression>]

BEGIN CONTEXT X

urel list : unit rel list;
rel list : relation list;

all attr : attr list;

proj list : attr list;
: : :

END CONTEXT X

TQuel = : : :

j f newCNTXT(X); g

tminsert[\ APPEND TO urel list y ",
urel list, NULL, y:insertstrm]

f a:attr list;

get all attr(urel list, all attr);
g

;

insertstrm = rename[\ (j ", proj list, j:valid2]
;

valid2 = valid[\ VALID AT e r ", e:e expr, NULL, r:process2]

j valid[\ VALID FROM i TO k r ",

i:e expr, k:e expr, r:process2]

j valid[\ r ", \now", \forever", r:process2]

;
process2 = noop[\ rtt) c ", c:proc cycl2]

;

proc cycl2 = compute[rewrite(xpr,[add,sub,div,mul,uminus,str2int,
str2real,str2str],x),x:expr list,proc cycl2]

j aggregate[rewrite(xpr,[count,min,max,avg,sum,�lter,

groupby,gt,ge,lt,le,eq,str2int],x),x:expr list,proc cycl2]
j noop[is attr list(xpr), retstrm2]

;

retstrm2 = retrieve[\ w ", rel list, all attr, w:modcond, NULL]
j epsilon

;

modcond = and[\ w n ", asof(\now",NULL),

and(n:modwhen,w:where)]

;

where = noop[\ WHERE x ", x:predicate]
j epsilon

;

modwhen = when[\ WHEN tp ", tp:tpred]
j when[\ e ", overlapt(i,\now")]

f e:epsilon; i:i expr;

mergerelation(urel list,rel list);
gen expr(rel list,\overlapt",\left",i);

g

;

(a) syntax (b) model

Table 4.26: TQuel APPEND TO Statement

106

RANGE OF C is Canine

APPEND TO C
(C.breed = "collie",

C.high = 125)

(b) operator tree

C.low = 55,
C.size = "large",

(a) TQuel query

[C.breed,
C.size,
C.low,
C.high]

compute

tminsert

55, 125]

valid

now forever

[]

NULL rename[[Canine,C]]

["collie","large",

Figure 4.25: Operator Tree: TQuel APPEND TO Statement

Like the RETRIEVE statement, the APPEND TO statement is augmented

with a VALID clause which computes the valid time for the derived tuples. The

valid() backplane function is composed even though no VALID clause is speci�ed

in the example. The timestamp assigned is the default valid-time timestamp, now

to forever. The input stream for the valid() backplane function comes from the

process2 and proc cycl2 subcatalogs, where the compute() backplane function is com-

posed.

Finally, parsing terminates in the retstrm2 subcatalog. As no attributes are

referenced, the retrieve() backplane function is not composed.

The DELETE Statement. The TQuel DELETE statement (the syntax and

Rosetta model are in Table 4.27) deletes tuples from relations. However, deletion in a

temporal database has di�erent semantics than deletion in a conventional database.

In a conventional database, deleted tuples cease to exist; in a temporal database,

deleted tuples are marked invalid so that although the information they represent

is no longer valid, it is still available for answering historical queries.

In Figure 4.26, we show an example of a TQuel DELETE statement. Map-

ping the DELETE statement to an operator tree begins in the TQuel subcatalog,

where the DELETE keyword is recognized and the tmdelete() backplane function is

composed as the root of the operator tree.

The backplane function tmdelete() implements tuple deletion in temporal

databases, with temporal functionality not available in the standard delete() back-

plane function. First, the tmdelete() backplane function sets the transaction stop

107

DELETE

<relation>

[VALID
<valid expression>]

[WHERE

<predicate>]
[WHEN

<when expression >]

BEGIN CONTEXT X

all attr : attr list;
rel list : relation list;

urel list : unit rel list;

END CONTEXT X

TQuel = f newCNTXT(X); g

tmdelete[\ DELETE urel list x ", urel list, x:valid3]

f a:attr list;
get all attr(urel list, all attr);

g

j : : :

;

valid3 = valid[\ VALID AT e d ", e:e expr, NULL, d:delstrm]

j valid[\ VALID FROM i TO k d ",
i:e expr,k:e expr,d:delstrm]

j valid[\ r ", \now", endof(urel list), r:delstrm]

;

delstrm = retrieve[\ y ", rel list, all attr, y:modcond, NULL]

;
modcond = and[\ w n ", asof(\now",NULL),

and(n:modwhen,w:where)]

;
where = noop[\ WHERE x ", x:predicate]

j epsilon

;

modwhen = when[\ WHEN tp ", tp:tpred]

j when[\ e ", overlapt(i,\now")]

f e:epsilon;

i:i expr;

mergerelation(urel list,rel list);

gen expr(rel list, \overlapt", \left", i);

g

;

tpred = precede[\ a PRECEDE b ", a:evnt intrvl, b:evnt intrvl]

j overlapb[\ a OVERLAPB b ",a:evnt intrvl,b:evnt intrvl]

j sametime[\ a EQUAL b ", a:evnt intrvl, b:evnt intrvl]

j and[\ x AND y ", x:tpred, y:tpred]
j or[\ x OR y ", x:tpred, y:tpred]

j not[\ NOT x ", x:tpred]

j noop[\ (x) ", x:tpred]
;

(a) syntax (b) model

Table 4.27: TQuel DELETE Statement

108

(b) operator tree(a) TQuel query

WHERE

RANGE OF C IS Canine

DELETE C

C.high = 500

[]

retrieve

and

asof

NOW NULL

and

eqwhen

tmdelete

[[Canine,C]] [C.all]

overlapt

C NOW

C.high 500

valid

now

[[Canine,C]]

endof

C

Figure 4.26: Operator Tree: TQuel DELETE Statement

time on these tuples to the current transaction time, which marks them invalid13 .

Then a new tuple with identical values, but with a known valid interval and trans-

action interval now to 1, is added. Finally, if the valid time of the selected tuple

overlaps the interval to be deleted, some of it must be \added back" so a compen-

sating tuple (or possibly two) is created and inserted into the database.

Generation of the operator tree continues with the valid3 subcatalog. In the

DELETE statement, the VALID clause speci�es an event or interval during which the

tuple values are to be deleted. As the VALID clause is missing, the default valid-time

timestamp is used and parsing continues with the delstrm subcatalog.

The delstrm and modcond subcatalogs combine to compose the retrieve()

backplane function into the operator tree. The WHEN clause speci�es a temporal

predicate which must be satis�ed by the tuples to be deleted; if it is not speci�ed,

the default temporal expression is used. To select only current tuples for deletion,

the AS OF clause is not speci�ed and defaults to \AS OF now." Thus, the tuples

targeted for deletion are those which satisfy the WHEN and WHERE predicates

13Tuples in a temporal database are never directly modi�ed or deleted. Setting the transaction

stop time e�ectively deletes a tuple as that marks it as containing information which is no longer
valid. Only a tuple with a transaction stop time value of 1 is current.

109

(b) operator tree(a) TQuel query

WHERE

RANGE OF C IS Canine

REPLACE C
(C.high = 500, C.low = C.low * 8)

C.low > 100

[]

retrieve

and

asof

NOW NULL

and

when

[[Canine,C]] [C.all]

overlapt

C NOW

tmupdate

[[Canine,C]] NULL rename

["high", "low"] compute

[500, mul]

#1 8

valid

gt

C.low 100

now endof

C

Figure 4.27: Operator Tree: TQuel REPLACE Statement

and are current during the interval speci�ed by the VALID clause.

The REPLACE Statement. The TQuel REPLACE statement (see Table 4.28

for its syntax and model) updates tuple values. Like the DELETE and APPEND

TO statements, extending the Quel REPLACE statement to support the temporal

model adds complexity to the statement. Both the WHEN and VALID clauses

were added to the REPLACE statement; just as for the other tuple modi�cation

statements, the AS OF clause defaults to AS OF now.

A sample TQuel REPLACE statement is shown in Figure 4.27. Generating

an operator tree for it begins in the TQuel subcatalog, where the REPLACE keyword

is recognized and triggers the composition of the tmupdate() backplane function as

the root of the operator tree.

The tmupdate() backplane function handles modi�cation of temporal rela-

tions. As for other modi�cations, the computed valid-time of the derived tuple

might span only part of the interval of an actual tuple in the database. In this case,

110

REPLACE

<relation>

<update expressions>

[VALID

<valid expression>]

[WHERE

<predicate>]

[WHEN

<when expression>]

BEGIN CONTEXT X

urel list : unit rel list;
all attr : attr list;

rel list : relation list;

xpr : sel list2;
END CONTEXT X

TQuel = f newCNTXT(X); g

tmupdate[\ REPLACE urel list y ",urel list,

NULL,y:updatestrm]
f a:attr list;

get all attr(urel list, all attr);

g

;

updatestrm= rename[\ (a p ", a:assgnlst, p:process3]

;
process3 = noop[\) p ", p:proc cycl3]

;

proc cycl3 = compute[rewrite(xpr,[add,sub,div,mul,uminus,
str2int,str2str,str2real], x),x:expr list,proc cycl3]

j aggregate[rewrite(xpr,[count,min,max,avg,sum,�lter,

groupby,gt,ge,lt,le,eq], x),x:expr list,proc cycl3]

j noop[is attr list(xpr), valid4]

;

valid4 = valid[\ VALID AT e r ", e:e expr, NULL, r:retstrm2]

j valid[\ VALID FROM i TO k r ", i:e expr,

k:e expr,r:retstrm2]

j valid[\ r ", \now", endof(urel list), r:retstrm2]

;

retstrm2 = retrieve[\ w ", rel list, all attr, w:modcond, NULL]

j epsilon
;

modcond = and[\ w n ",asof(\now",NULL),and(w:modwhen,n:where)]

;
where = noop[\ WHERE x ", x:predicate]

j epsilon

;
modwhen = when[\ WHEN tp ", tp:tpred]

j when[\ e ", overlapt(i,\now")]

f e:epsilon; i:i expr;

mergerelation(urel list,rel list);

gen expr(rel list, \overlapt", \left", i);

g

;

tpred = precede[\ a PRECEDE b ", a:evnt intrvl, b:evnt intrvl]

j overlapb[\ a OVERLAPB b ",a:evnt intrvl,b:evnt intrvl]

j sametime[\ a EQUAL b ", a:evnt intrvl, b:evnt intrvl]

j and[\ x AND y ", x:tpred, y:tpred]

j or[\ x OR y ", x:tpred, y:tpred]

j not[\ NOT x ", x:tpred]

j noop[\ (x) ", x:tpred]

;
(a) syntax (b) model

Table 4.28: TQuel REPLACE Statement

111

only during the spanned part of the original tuple should the new values replace the

old, and the original tuple must be split.

The stream of derived tuples with their new values comes from the updatestrm

subcatalog, where the assignment list is recognized and the rename() backplane

function is composed into the operator tree. The list of assignments are processed in

the process3 and proc cycl3 subcatalogs, which separate the arithmetic computations

from aggregations. In the process, the compute() backplane function is composed

into the operator tree.

Processing the statement continues with the valid4 subcatalog, where the

VALID clause is recognized. As usual, the VALID clause computes a valid time

(interval or event) for the derived tuples. In the case of the REPLACE statement,

the valid time computed is the interval (or event) during which the new values

should replace the old. In our example, there is no VALID clause, so the default

temporal expression is used.

The input stream for the valid() backplane function comes from the retstrm2

subcatalog, where the retrieve() backplane function is composed into the opera-

tor tree. The predicate for the retrieve() backplane function is generated by the

combination of the modcond, when, and where subcatalogs. The WHERE and WHEN

clauses specify predicates which must be satis�ed by the tuples to be updated. The

WHERE and WHEN predicates and the default AS OF predicate are and'ed together in

the modcond subcatalog and supplied to the retrieve() backplane function as the

predicate.

4.3.2.3 Conclusions for TQuel

Finally, we consider the model size and development time for TQuel. Our model

of TQuel DML statements is based on the language de�nition in [Sno87]. All of

the TQuel DML statements are included in the model: the RETRIEVE statement

for data retrieval, with all its options, as well as the data modi�cation statements

APPEND TO (insert), DELETE, and REPLACE (update). The primitive types

are limited to varying length character strings; integers and reals of unspeci�ed

precision; and of course temporal primitives.

There are some shortcomings in our TQuel model. As Rosetta does not

have a module for checking semantic constraints, we cannot discriminate between

occurrences of an overloaded operator. In particular, to handle ambiguities in the

language de�nition from an overloaded operator (OVERLAP returns either boolean

or interval depending not on the types of its parameters but on the context), we

had to slightly modify the operator (OVERLAPB for boolean vs. OVERLAPI for

interval) so that its function could be distinguished from context.

112

Our speci�cation of TQuel is compact. The TQuel speci�cation �le consists

of approximately 250 lines. From the speci�cation, Rosetta generates a bison �le and

a
ex �le comprising approximately 125 lines and 1300 lines, respectively, yielding

an expansion factor approximately 1:6.

As an indication of the magnitude of the changes to the Quel speci�cation �le

we consider speci�cation reuse. The Quel speci�cation �le is composed of approx-

imately 115 signatures. Approximately 44% of the Quel signatures were included

either unchanged or with only minor modi�cations in the TQuel model. Thus, even

though TQuel is a superset of Quel, less than half of the Quel speci�cation was

reusable.

Modeling TQuel required generalizing six existing backplane functions and

adding eighteen new backplane functions. This number re
ects the numerous addi-

tional temporal functions added to TQuel.

Finally, the time required to develop our model of TQuel was approximately

one and one half weeks, including both the time needed to understand the syntactic

and semantic di�erences between Quel and TQuel and to develop the model.

4.4 Comparison of Language Models

Numbers for the language models are summarized in Table 4.29. The �rst row of the

table shows the range of number of lines in our language models, while the second

row shows the sizes of the generated
ex and bison �les. The ratio of the two, the

expansion ratio, illustrates the di�erence between using Rosetta and writing the

ex and bison �les by hand. All the expansion ratios are in the neighborhood of

1:6. Typically, using Rosetta saves writing about 1200 lines of
ex and bison code.

Considering that Rosetta comprises about 6000 lines of C, this is a nice, but not

particularly impressive, gain.

However, there are considerations besides the
ex and bison �le expansion

ratios: development time; reusability of language speci�cations; reusability of back-

plane and directive functions and compiler utilities; clarity; and maintainability.

Our development times for languages range from one and one half weeks

to four weeks. This is the time it took us to read and understand the literature

pertaining to each language, and then to create the speci�cation.

Speci�cation reuse was measured in terms of signature reuse. We counted

only those signatures which were reused unchanged or with only minor modi�ca-

tions14. Percentages refer to the fraction of the signatures of the parent language

which were reused.

14Minor modi�cations include variable and subcatalog name changes and keyword changes.

113

SQL SQL/NF TSQL2 Quel TQuel

Speci�cation Size 240 270 350 275 240

ex/bison input �les 1400 1440 2530 1500 1425

Expansion Ratio 1:7 1:6 1:7 1:6 1:6

Development Time NA 3 wk. 3 wk. 4 wk. 1.5 wk.

Speci�cation Reuse NA 60% 87% 27% 44%

New Functions NA 7 16 7 18

Generalized Functions NA 7 7 1 6

Table 4.29: Summary of Modeled Languages

Speci�cation reuse ranged from a high of 87% for TSQL2 to a low of 27% for

Quel. We achieved a very high reusability rate for TSQL2 because it was designed

to be upward compatible with SQL, its parent language. The low speci�cation

reusability rate for Quel can be explained by noting that our starting point for the

Quel model was the SQL model. The two languages are quite di�erent, so achieving

even a 27% reuse rate is gratifying. Most of the signature reuse in modeling Quel

comes from the primitives shared by the two languages.

Another consideration is that of backplane reusability. Our goal is to design

the backplane functions to be as general and
exible as possible, so that additional

languages can be modeled with few or no changes to the backplane.

The graph in Figure 4.28 shows the cumulative lines of code written during

the speci�cation of the �ve languages we modeled15. To model SQL using Rosetta,

we wrote 6240 lines of code, comprising the generator and the SQL speci�cation. A

user building SQL without Rosetta would have written the
ex and bison �les by

hand, for a total of about 1400 lines of code. Clearly, writing Rosetta to generate

only one language is not a winning proposition.

But writing a generator to generate one program is never a winning proposi-

tion. The point of writing Rosetta is that one can write it once and then derive the

bene�t of using it to generate multiple compilers, writing only a simple speci�cation

15Overhead consists of lines of code for building Rosetta.

114

SQL SQL/NF TSQL2 Quel TQuel cumulative
languages

cumulative

1000

2000

3000

4000

5000

6000

7000

8000

By Hand (est.)

Rosetta Builder and User9000

Other Rosetta Users

code

lines of

Figure 4.28: Compiler Generation: Cumulative Lines of Code

for each language.

Looking across the graph, it can be seen that the development overhead for

Rosetta becomes more and more cost-e�ective (in terms of lines of model speci�-

cation) with each additional language generated, until the �fth language, when it

becomes competitive.

Finally, the last row of the graph shows the cumulative lines of code that a

user who was given Rosetta would have had to write, i.e., the cumulative count of

lines in the speci�cations.

In addition, there is the advantage of code reuse. Every backplane function

and directive function that is used in the SQL speci�cation is available for reuse

in the speci�cation of any other language. Furthermore, there is a core body of

infrastructure compiler code which is included in every compiler generated. These

�les, written in C, include the main function, the backplane function table, symbol

tables, etc., and total approximately 4400 lines. Because we are concerned only

with declarative languages at this time, we can operate with only a minimal symbol

table.

Not only is the C code reusable; the speci�cation itself is reusable. For

example, speci�cations of languages which extend SQL might well include parts of

115

the SQL speci�cation. New subcatalogs can be added directly to the SQL model,

or subcatalogs can be borrowed from the SQL model and incorporated into models

for other languages.

4.5 Recap

This chapter has shown the diversity of languages and language families that can

be modeled using Rosetta. We have modeled traditional data languages as well

as languages that signi�cantly extend these languages. We have also modeled a

very recent language (TSQL2), showing that Rosetta is general enough to capture

contemporary ideas in data languages. Other approaches, discussed in the next

chapter, have not done this with the degree of automation and software reuse that

we have achieved.

116

Chapter 5

Related Work

As Rosetta is a compiler generator for data languages, there is plenty of related

work in the areas of database and programming languages, and even some related

AI/Natural Language Processing (NLP) work. There are several ongoing extensi-

ble DBMS projects which have implemented or are implementing extensible data

languages; none of these are generators. Compiler generators are a live area of

programming languages research, but no projects have the emphasis that we do:

declarative languages and code reuse. Finally, some NLP work used a similar ap-

proach in the generation of NL interfaces.

5.1 Extensible DBMS Projects

There are two basic approaches to extensibility in data languages. The more popular

(but more restrictive) choice is to build a particular data language into the DBMS

and then provide a well-de�ned interface through which extensions can be made.

A second approach is to supply a toolkit which can be used to implement a broad

class of data languages. Rosetta is an example of the latter approach.

At a minimum, a data language should be extensible with new data types

and new operations on data items, e.g., the addition of a polygon data type and

the area operation on it. A more powerful extensible data language allows the

addition of new operations on relations, e.g., transitive closure or new aggregation

functions (such as standard deviation). Rosetta is capable of generating both kinds

of extensions.

117

5.1.1 Fixed Data Language Approach

Most extensible DBMSs have a �xed language to which extensions can be added.

The usual approach to adding extensibility to data languages is to make the parser

and optimizer table-driven. Of the extensible DBMSs of which we are aware, all of

those which have a �xed data language use this approach.

If extensions can be added dynamically, the data language will also include

a protocol for adding extensions. New data types are implemented by �rst de�ning

the data type (usually by a type de�nition in the implementation language) and

then creating procedures to manipulate the object, e.g., operations to store, load,

print, etc. The type name and the names of its supporting procedures are entered

in a table by the type manager, where they are available for use by the parser and

optimizer. Addition of descriptive and executable operators is similar: �rst they

are implemented, then they are registered with an operator manager module which

adds de�nitional information to a system table.

Gral [Gut89] has its own query language based on an extended relational

algebra|a many-sorted algebra|which is basically relational algebra extended with

types. Gral di�erentiates between declarative conceptual operations and concrete

operations. Extensions may be made to both. All extensions supported, including

the addition of new data types and operations, the addition of information for

optimization of new operations, and the addition of new relation representations

or index structures to support the new type, are made using basically the same

mechanism of dynamic registration with the DBMS.

Postgres [SK91] also has a �xed data language, called PostQuel, with dy-

namic de�nition of functions and data types, including new base types. Postgres

closely follows the general table-driven approach described earlier (and, indeed, pop-

ularized it).

In Probe [MD90], the general approach as outlined above is used. To add

a new class, the DBI produces an adapter, a function which implements the class

in terms of lower-level DBMS primitives. Since the data model is object-oriented

while the underlying DBMS is relational, when a new class is added the adapter

must reconcile the two views.

Starburst [HFLP89], was designed with the goal of total extensibility. Its

query language, Hydrogen, is a generalized and extensible variant of SQL. New

functions can be added to it, including new aggregate and relational functions.

Hydrogen queries are rewritten into an internal form, and the customizer is able to

write code to translate language extensions into this internal form and to supply

heuristics for optimizing extensions.

118

5.1.2 The Toolkit Approach

In the toolkit approach, a collection of tools for the generation of a DBMS is sup-

plied. We are aware of only two DBMS generators|Exodus [CDV87] and Genesis

[BBG+90, Bat88, BLW88].

The Exodus toolkit includes components which are a mix of generic solutions,

generators, libraries, and tools. There is no generator for query languages; instead,

a programming language E is supplied for use in the implementation of query lan-

guages. E is an extension of C++ augmented with generic classes, iterators, and

support for persistent object types. The E compiler is part of the generated DBMS.

Queries are �rst translated to E programs, then compiled and executed.

The query language can also be dynamically augmented with extensions writ-

ten in E using the usual protocol of registration with the DBMS. Exodus supplies a

Dependency Manager for managing dynamic extensions.

Genesis, the other DBMS generator, uses the same building-blocks approach

to extensibility that Rosetta does. There are facilities for generating other DBMS

modules, but no generator for data languages is supplied. However, the interface

for the data language is standardized, and hand-written language modules can be

plugged in to replace the supplied language modules.

5.1.3 Summary

While all of these projects o�er extensibility in the data language, none of them

o�ers the
exibility of a compiler generator. All but Exodus are limited to a single

data language. Exodus does have the
exibility of choice of data language, but

doesn't o�er much besides E for building it.

One attractive feature of these DBMSs is dynamic extension. Rosetta does

not o�er dynamic extension; languages are extended by generating a new compiler

from extended speci�cations.

5.2 Other Tool Generators

The Genoa generator of code analyzer tools [Dev92, DRW94] takes a similar ap-

proach to Rosetta. Genoa is a language independent generator for code analyzer

tools. It uses an independent lexical analyzer and parser (produced, for example, by

lex and yacc) to produce a parse tree for a program of the language. After the parse

tree is converted into an internal form, it is traversed by the generated analyzers

during analysis of the program.

119

Genoa has two major components. The �rst is a component called Genii

which takes as input a syntax speci�cation for the target language and a description

of the nodes of the syntax tree. This node description includes code to access

various �elds of the node. Genii produces two results: a translator which maps the

parse trees into the Genoa internal form, and an Abstract Syntax Dictionary
1. The

second major component is the generator Genoa, which produces an analyzer from

a speci�cation of the analyzer.

An analyzer is generated to answer a speci�c query. The speci�cation of

an analyzer contains commands (in a language peculiar to Genoa) to traverse a

parse tree (in Genoa internal form) to collect data to answer its query. Given a

transformation of a program to the Genoa internal parse tree form, the analyzer

carries out the traversal commands in its speci�cation and produces an answer.

Similar approaches are taken by Genoa and Rosetta. The Genii component

produces from a description of the target language and the input parse tree nodes

a speci�cation of the internal form of the parse tree which corresponds to a Rosetta

language speci�cation. Genii produces node descriptions which combine node tag

values and code fragments; the Rosetta signatures combine syntax and semantics.

From an input speci�cation, Genoa produces a tool generator which corre-

sponds to a Rosetta-generated compiler. The input to the tool generator is a tool

speci�cation which addresses a speci�c question; this corresponds to a query in the

data language. Finally, the produced tool corresponds to an operator tree.

Despite these similarities, the two are fundamentally di�erent: Genoa is

not syntax-oriented but value-oriented and thus cannot produce a data language

compiler. More importantly, Genoa lacks extensibility in the operations that can be

applied in its analyzer speci�cations.

5.3 Extensible Programming Languages

Extensibility in programming languages can be realized in several ways. Often, ex-

tensible programming languages utilize a preprocessor which translates a program

written with extensions into a program utilizing only the built-in constructs of the

language. Another possibility is augmenting the compiler with new functions im-

plementing extensions to the language.

1The Abstract Syntax Dictionary is used by Genoa to validate an analyzer speci�cation, e.g., to
determine that accessed �elds of the parse tree actually exist.

120

5.3.1 Preprocessing

Before compilation, a preprocessor translates the extensions into language constructs

recognized by the compiler. The input to the preprocessor is a program written in

the extended form of the language; its output is a program in the standard form of

the language. The output of the preprocessor is then translated and executed just

as any other program written originally in the base language. Many languages have

preprocessors, e.g., C, Fortran, PL/1, and there are preprocessors which can be used

for multiple languages, e.g., M4. Embedding the data language Quel in C, called

EQuel [SWKH76], was achieved by preprocessing the EQuel program, converting it

into a C program.

One quite general preprocessor is TXL [CHHP91], a project at Queens Uni-

versity at Kingston. TXL can be used to extend any imperative language for which

a compiler and a complete syntactic description of the base language are available.

A bipartite description is supplied for each extension, consisting of a context-free

speci�cation of the extension and rules specifying semantic transformations which

map it to the base language. TXL decouples extension syntax from semantic trans-

formation; the two are independently speci�ed and independently applied.

TXL parses the extension syntax and applies semantic transformations in

separate passes. First, it parses an input program in the extended language and

builds a parse tree, then applies semantic transformations to the parse tree, and

�nally de-parses the parse tree, generating code in the base language. Like other

preprocessors, TXL maps extensions into the base language; however, it also allows

extensions to reference library functions which augment functionality of the base

language.

5.3.2 Compiler Extension

Another way to make languages extensible is to allow extensions to be added directly

to the compiler. This
exibility makes it possible to add signi�cantly new capabili-

ties, for example, adding call-by-reference to a compiler which originally supported

only call-by-value. Making such additions also allows the creation of new notation

which does not rely on constructs available in the base language, for instance, an

in�x notation for complex numbers can be added.

Lisp and its variants, e.g., Scheme, CLOS, as well as others, are extensible by

virtue of the self-reference capability of Lisp which allows the rede�nition of built-in

interpreter functions. New functions which can be used just like the built-in ones

can be de�ned.

Scheme provides for adding new syntax with an extend-syntax function which

121

maps syntactic extensions into core syntactic forms. CLOS (Common Lisp Object

System) also allows the user to modify some built-in methods for metaclasses and

to de�ne new metaclasses.

This approach to extensibility is also used in Icon [GG86], a descendent

of SNOBOL. Functions implementing the extension are written and registered (by

editing the appropriate compiler tables), then the entire compiler is re-compiled.

Functions implementing extensions are required to follow speci�ed conventions, e.g.,

they must use standard macros to signal success or failure, and they must use the

memory allocation and deallocation functions of the compiler. Because functions

are added directly to the compiler, Icon can accommodate many kinds of extensions:

new types, new or improved operations on types, generalization of the way it handles

parameter passing for function calls, etc.

5.3.3 Summary

From our perspective, a major weakness of extensible languages is that a working

compiler must be available before extensions can be made. The point of Rosetta is

to automatically generate a compiler for a broad class of data languages. Some data

languages are extensions to previously de�ned languages, but others are wholly new.

5.4 Compiler Technology

Not surprisingly, there is a lot of related work from the compiler �eld, ranging from

methods for language speci�cation, such as syntax directed translation, to compiler

generators, including early bare-bones generators such as lex and yacc, and later,

more mature compiler generators such as Eli.

5.4.1 Syntax Directed De�nition.

A syntax-directed translation [ASU86] is a context-free grammar whose symbols

are extended with associated attributes. Attributes may be just about anything|

strings, numbers, etc. A rule of the grammar has an associated set of semantic rules

which assign to attributes values computed by function calls. The functions can

do virtually anything: generate code, manipulate the symbol table, generate error

messages, and so forth.

A Rosetta speci�cation is essentially a syntax-directed translation which

is augmented with global variables. Furthermore, Rosetta rules have implicit at-

tributes which constitute the nodes of the automatically constructed parse tree.

122

5.4.2 Compiler Generators.

Early work in compiler generation immediately brings to mind lex [LS86], which

generates a lexical analyzer, and yacc [Joh86], which generates a parser.

A lex input �le consists of regular expressions to be matched and associated

actions (written in C) to be executed when a matching string is found. The regular

expressions match tokens of the language and the actions can specify manipulations

to be performed on them. From its input, lex generates a �le, lex.yy.c, containing

C source code for a lexical analyzer.

A yacc input �le consists of a context-free grammar with optional semantic

actions associated with each alternative of the rules. From its input yacc generates a

�le (called y.tab.c), consisting of C source code for an LALR(1) parser. If there are

ambiguities in the grammar, yacc uses its own built-in precedence rules to resolve

them, but it also reports the con
icts. The parser requires a separate lexical analyzer

(perhaps produced using lex) and a separate error handling routine to be supplied.

Lex and yacc generate programs but supply no actions except for those put

in by the user. From a speci�cation, Rosetta generates complete input for both

lex and yacc, including both patterns and semantic actions and eliminating the

tedious enumeration of tokens. One reason for using Rosetta instead of lex and

yacc is that a Rosetta speci�cation is more readable than lex and yacc input. But

Rosetta is more than a preprocessor for lex and yacc and its framework is more

expressive. A data language speci�cation expressed in Rosetta's functional semantic

model captures both syntax and semantics. Furthermore, Rosetta automates code

reuse and encapsulates reusable components.

Another compiler generator, the Eli compiler-compiler [GHL+92], a project

at the University of Colorado, Boulder, consists of an expert system controlling

o�-the-shelf tools including lex, yacc, LIDO2, and other tools.

Specifying a compiler to Eli consists of supplying speci�cation �les which

contain information used for lexical analysis and parsing, semantic analysis, and

code generation. Six di�erent �les are necessary to convey this information to Eli:

one for type analysis, one for lexical analysis and parsing, one describing an attribute

grammar used in translation, one for a name analysis module, one for a de�nition

table module, and one for specifying the target language for code generation. Each

of these speci�cations is written using its own special syntax with no uniformity of

interface among them.

Our model of languages is substantially di�erent from that of Eli. Rosetta

provides a functional language model and maps language constructs to backplane

functions, simplifying the code generation/assembly phase. Furthermore, we have

2LIDO is an attribute grammar tool.

123

standardized attributes for nodes, eliminating the use of an attribute grammar for

speci�cation.

5.5 AI/NLP

LIFER [Hen77c] is a general package of tools which facilitates the rapid addi-

tion of natural language interfaces to existing software systems. It has two major

components|a set of interactive functions for language speci�cation and a parser.

A language speci�cation is a context free grammar whose rules are augmented with

expressions implementing a response. The language speci�cation functions map the

speci�cation to an Augmented Transition Network (ATN) which the parser uses to

parse input and build expressions in the language of the underlying system. LIFER

also provides for other extensions: synonyms, paraphrases, and elliptical inputs.

LIFER was used to build a natural language interface for LADDER [HSSS78],

a front-end to a distributed database. LADDER is comprised of three components:

INLAND, IDA, and FAM3. INLAND translates a natural language query into a set

of Lisp-syntax-like constraints; IDA converts the constraints into a query or queries

in the underlying language; and FAM requests �le accesses at the appropriate site.

INLAND, the module produced with LIFER, cannot handle joins. Nor does

it translate input natural language queries to the data language of the underlying

DBMS. In [HSSS78], Hendrix, et.al. state that joins are handled by handing o� a

predicate to the IDA module. While LADDER does have join capability, the IDA

splits the predicate into a sequence of single �le queries, and it composes the records

obtained to produce the result. Thus, LADDER does not actually pass a join query

to the underlying DBMS.

Q&A, a commercial product from Symantec, is a commercial version of

LIFER technology. Like LIFER, Q&A allows the user to query individual rela-

tions via natural language and does not allow the formation of queries involving

joins.

The similarity of LIFER to Rosetta is the triggering of an operation when an

input text pattern is recognized. A point of divergence is an important part of our

research: the de�nition of a standardized (but open) set of operations for a DBMS

backend. A fundamental part of our approach in Rosetta is the use of standardized

semantic actions with user-de�nable syntax.

3These are acronyms for Informal Natural Language Access to Navy Data, Intelligent Data
Access, and File Access Manager, respectively.

124

5.6 Summary

In short, while there is plenty of related work, none does everything we want to do.

Speci�cally, we automate reuse in several ways.

First, a Rosetta language speci�cation can be reused when extensions are

added. To generate a language variant we can start from a de�nition of the language,

extend it, and then generate a compiler for the extended language.

Alternatively, components of a language can be reused in the design of an-

other language. For example, most data languages have the same base types and

operations on them; these can be copied from one language to another.

Furthermore, both the backplane functions and compiler components are

reused in the construction of new languages. While extensible languages encourage

reuse of the base compiler, there is no structure in place for reuse across languages.

Finally, Rosetta will generate most data languages, not merely extensions to

one language, and it is not necessary to have a working compiler in order to build

a variant.

125

Chapter 6

Conclusions

We have developed an approach to model a broad class of data languages and to

generate a compiler for a data language from its speci�cation. Components of our

approach include a backplane of functions derived from a domain analysis of data

languages and a speci�cation language which models both data language syntax and

semantics. Versions of a data language can be readily spawned from earlier versions,

enabling experimentation with evolving language features.

A prototype has been implemented and demonstrated. Five diverse data

languages were modeled and compilers were generated for them. Su�cient backplane

functions were implemented to enable evaluation of queries in two of these languages.

6.1 Limitations

However, there are limitations both in the model and in the implementation. Lim-

itations in the model diminish the expressiveness of Rosetta while implementation

limitations reduce the e�ectiveness of the generated compilers.

6.1.1 Model Limitations

Various model limitations surfaced during the course of modeling �ve data lan-

guages. Some were generalized immediately; others were not recognized as genuine

limitations until later. The primary de�ciencies are documented in the following

sections.

6.1.1.1 Run-time Global Memory

One of the more versatile features of the Rosetta speci�cation language is the abil-

ity to de�ne and use compile-time global memory, i.e., context variables, to share

126

information across subcatalogs.

However, context variables are available only at compile-time, and their scope

is limited to only a single query. This is insu�cient to meet all needs for global

memory.

One example of the need for persistent global memory is the de�nition of

correlation variables in Quel and its derivatives. The RANGE OF statement de�nes

a correlation C which is known to all subsequent statements until it is rede�ned in

another RANGE OF statement. This was modeled using a suite of directive functions

to de�ne and look up correlations. The opportunity to generalize the model was lost

by the assumption that global correlations represent an isolated need for persistent

compiler global memory.

We encountered this need a second time. The TSQL2 data language speci-

�cation allows users to specify a default calendar to use in interpreting dates. Like

correlations, the default calendar is speci�ed in a TSQL2 statement and persists

through subsequent statements until it is rede�ned.

Having needed persistent compiler global memory modeling each of two lan-

guage families, we feel con�dent that it will be needed again in modeling future

languages. Rosetta should supply persistent global memory in its generated com-

pilers.

6.1.1.2 Random Clause Recognition Order

Another weakness in the model is that the speci�ed clause recognition order cannot

be truly random. This limitation stems from bison limitations, which requires us to

specify a linear progression on parsing the input string.

Consider the syntax of an abstract language statement, consisting of a se-

quence of three clauses \C2 C0 C1" where clause Ci signals the composition of the

function fi into the operator tree. Bison requires that the clauses be processed in

left-to-right order: �rst C2, then C0, and �nally C1. Thus, to get the composition

order f0(f1(f2)), we have to de�ne the monolithic signature S0:

S0 = f0[`` C2 C0 C1 '', f1(f2())]

But a cleaner de�nition would de�ne independent signatures:

S0 = f0[`` v2 C0 v1 '', v2jjv1:S1]

S1 = f1[`` v2 C1 '', v2:S2]

S2 = f2[`` C2 '']

where the symbol \jj" means string concatenation.

127

There are ways to work around this limitation: one way is to specify a

monolithic signature as above. Another is to store parameter values in context

variables until their backplane function(s) can be composed. While this is not a

serious limitation, it does detract from the clarity of the language speci�cations.

6.1.1.3 Semantic Constraints Checking

Languages often impose semantic constraints on statements in addition to syntactic

ones. Such a constraint is exempli�ed in the SORT statement, with the requirement

that all attributes to be sorted on must be included in the input stream. Another

example comes from the SQL SELECT statement, which requires that if the GROUP

BY clause is present, then only aggregations or attributes which are grouped on may

appear in the select list. It is not possible to specify constraints such as these in the

current model of Rosetta.

Adding semantic constraints checking to Rosetta would entail the de�nition

of a formalism to specify semantic requirements for backplane functions and the

implementation of a generator which would convert a speci�cation in the formalism

into a function for testing semantic constraints.

This same module would also handle the analysis of overloaded operators

to determine which capacity they are being used in. For example, the result of

the TQuel OVERLAP operator depends on the context. Given two intervals, the

OVERLAP operator returns either the interval which is common to both (a temporal

intersection), or a boolean, TRUE if its inputs share a non-NULL common interval

and FALSE otherwise. Note that the types of the inputs are identical in both cases

so that even if a call to OVERLAP is type-correct, the type of its result must still

be determined from context. Which is the type of the result is determined by the

context in which the OVERLAP operator appears.

6.1.2 Implementation Limitations

In addition to model limitations, there are implementation limitations. Although

all of the Rosetta modeling constructs were satisfactorily implemented, the imple-

mentation encompasses more than just the generator, and it provides somewhat

inadequate infrastructure for the generated compilers. There are several areas in

which the generated compilers should have additional included code.

6.1.2.1 Type Checking

The generated compilers lack included infrastructure for type-checking operator

trees. When an operator tree is created, each function's parameters should be

128

compared against the function de�nition to determine that the parameters are of

the proper type. Type-checking is a lower-level operation than semantic constraints

checking; it can be done automatically without any speci�cation whereas checking

semantic constraints requires de�nition of a formalism to specify constraints and a

generator to map the formalism to an implementation.

Static type-checking serves only to determine that the generated compiler

may produce type-correct operator trees, and not that it will produce only type-

correct operator trees. While static type checking assures that constants are type-

correct, it cannot make the same claim for attributes. For example, we can specify

using subcatalogs that a particular operation applies only to integer constants, but

we cannot specify that the operation applies only to integer attributes. More gen-

erally, a composite structure, such as a tuple, may contain an element whose type

is incompatible with operations applied higher in the operator tree. This means,

of course, that a function in an operator tree may receive actual parameters of

improper types undetected.

6.1.2.2 Schema Lookup

Another limitation is that schema lookup was not fully implemented. The generated

compilers should include a module which determines if a referenced relation exists in

the database, gets its schema, and also generates access information for it. This same

module should also test for the existence of attributes in the referenced relations.

The rami�cations of unimplemented schema lookup are that non-existent relations

or attributes may be referenced in an operator tree.

6.1.2.3 Error Detection

Another shortcoming of the generated compilers is the lack of infrastructure for

trapping run-time errors. Some of these implementation limitations may potentially

crash the generated compiler. Parsing errors are announced gracefully, but generated

compilers have no infrastructure to avoid a catastrophic failure during evaluation

of an operator tree. For example, failure in a backplane function can cause the

compiler to fail. If a backplane function signals a \Floating point exception," the

error is not detected and the compiler fails.

An error trapping component should be included with every generated com-

piler. It should also be possible to specify di�erent errors and to associate with each

error the action to be taken if it is detected.

129

6.1.2.4 Backplane Implementation

Furthermore, it could be quite rewarding to reimplement the interpreter in C. The

backplane functions were implemented in Quintus Prolog and interfaced using the

Quintus IPC library with the generated compilers, which were written in C. Unques-

tionably, we took both a performance and portability hit by using Quintus Prolog

instead of C for backplane function implementation, both in the slower running time

of the functions and in the extra overhead of communication.

However, this was o�set by the advantage o�ered by using Quintus Prolog

to implement the prototype backplane functions: since Prolog is a very high-level

language with built-in primitive database capabilities, we were able to quickly imple-

ment these functions and get the prototype running queries so as to have hands-on

experience with our system.

6.2 Extensions

There are several potentially rewarding directions for extending the model which

would increase its expressiveness.

As it stands, the expressiveness of the model was su�cient to allow us to

model diverse data languages. However, extensions to the model would permit us

to model more complex languages, as well as adding new functionality not available

in the current generated compilers.

6.2.1 Cycle Subcatalogs

In our experience with Rosetta, limitations on cycle subcatalogs have not been a

problem. Nevertheless, we surmise that the expressiveness of the model could be

increased by generalizing cycle subcatalogs to allow multiple exit conditions.

The current de�nition of cycle subcatalogs allows only one non-recursive exit

subcatalog. For example, in the cycle subcatalogs separating computation from

aggregation (e.g., the proc stream subcatalogs in Tables 4.1, 4.7, and 4.13), the

only exit condition is the reduction of the expression list to a list of attributes and

constants. A more general de�nition of cycle subcatalogs would permit multiple exit

conditions, so that di�erent actions could be taken depending on the exit condition

selected.

6.2.2 Backplane Rede�nition and Re�nement

It is hard to overestimate the importance of thorough domain analysis in developing

the backplane and of scrupulous backplane maintenance. However, what can be

130

done with the backplane depends on its de�nition. Our de�nition did not limit our

development of language models, but it does impose limitations on other activities.

In particular, our backplane function de�nitions are too coarse for query

optimization. For example, the retrieve() backplane function encapsulates relation

access, application of predicates to select tuples and join relations, and projection.

Such a monolithic encapsulation of functionality de�es optimization.

Another reason to rede�ne and re�ne the backplane is to add the ability to

model more expressive languages than those we have considered. Currently, the

backplane has no constructs which can model either loops or alternation (if state-

ments). However, more sophisticated data languages may include these constructs,

and a generalized backplane would increase the expressiveness of Rosetta.

Currently, our data language backplane comprises about 95 functions. We

implemented about two-thirds of the backplane functions, su�cient to evaluate SQL

and Quel queries, both data retrieval and data modi�cation. The rest of the back-

plane should be implemented so that queries could be evaluated in the other modeled

languages as well as languages modeled in the future.

6.2.3 Generalize Compiler Memory

Our generated compilers currently have global compile-time memory (contexts).

While it su�ced to model many language features, it was not su�ciently powerful to

model all; the need for persistent compiler memory was discussed in Section 6.1.1.1.

But generalizing global compile-time memory would also be useful. Foremost

is to make assignment of global variables \instantaneous." Currently, assignment to

a global variable is made in the post-action. This means that its value is not imme-

diately available to subcatalogs which are active before the post-action is evaluated.

While this is not di�cult to work around, it is aesthetically displeasing. Thus, the

generated compilers should have a full complement of memory: persistent memory

as well as transitory compile-time memory (contexts).

6.2.4 Syntax Representation

Extending Rosetta's capacity for specifying primitives would allow us to distinguish

during parsing between syntactically identical but semantically distinct language

elements. Allowing such primitives to sometimes (but not always) appear inter-

changeably in the language leads to ambiguities in the language speci�cation. In or-

der to eliminate these ambiguities, the lexical analyzer should be able to distinguish

between them. Since the lexical analyzer is generated, it follows that the language

speci�cation must include a description of how they are to be distinguished.

131

For each primitive element to be distinguished, we would supply a boolean

function to di�erentiate it. Consider an identi�er, which may be interpreted as either

a relation or an attribute. To distinguish identi�ers, functions such as is a relation()

and is an attribute() would be supplied, returning TRUE if the identi�er is a relation

or an attribute, respectively.

But augmenting the syntax representation in this way is more general than

schema lookup. Such a distinction could be made for any class of primitives having

subclasses some of which subsume others. For example, suppose that an integer

constant is automatically stored as a long integer if its value exceeds a certain

threshold. Then one might distinguish long integer constants from small integer

constants by testing the value of an integer constant in the lexical analyzer using

supplied distinguishing functions.

Finally, automating the detection of identical conversion patterns would en-

able merging the patterns in the
ex �le. Generalizing the actions generated for

the lexical analyzer to select the token type returned based on the response of the

distinguishing functions would enable making this distinction during token recogni-

tion.

Another extension to the speci�cation of primitives would add the speci�ca-

tion of output functions for primitives. The conversion subcatalogs handle conver-

sion of input strings to primitive types but there is no inverse de�nition of functions

which convert primitives to strings for output. Currently, all primitives are printed

out as strings. No additional characters, e.g., units such as `$' or mg. can be printed

with the value. Furthermore, more complex types need more sophisticated format-

ting. This has not been a serious limitation as the languages modeled do not have

complex data types. Nevertheless, the model should include the speci�cation of

output functions for primitives.

6.3 Conclusions

In order to support new applications of databases, new features for data languages

are frequently proposed. Typically, these new features are added to existing lan-

guages. To evaluate new features thoroughly, researchers need hands-on experience

with their proposed languages. However, because it is a time- and resource-intensive

task to build a compiler from scratch, few of these proposed languages are ever im-

plemented. This was the motivation for Rosetta.

Our goal was to develop a systematic approach which would speed and sim-

plify the generation of compilers for data languages. We began with de�nitional

work|a domain analysis to develop a backplane of functions which model the do-

132

main of data languages. A composition of backplane functions speci�es the seman-

tics of a data language statement. A data language can express a subset of the set

of all compositions of backplane functions. Finally, we de�ned the Rosetta speci-

�cation language to explicitly specify which compositions can be expressed by the

language and to associate compositions with statements.

Following development of these de�nitions, the next step was to validate

our model. We wanted to discover the limitations on the expressiveness of our

approach: what features, if any, can not be expressed by Rosetta. We hoped that

the speci�cations would prove to be compact, because compactness goes hand in

hand with readability and maintainability. Another hoped-for characteristic was

ease of use of the system. Finally, we needed to evaluate the correctness of the

operator trees produced by the generated compilers.

To answer these questions, we needed empirical evidence which could only be

obtained by implementing Rosetta and using it. The Rosetta prototype was built,

including all speci�cation language features. Models were designed and compilers

generated for �ve di�erent data languages. About two thirds of the backplane

functions were implemented; this was su�cient to evaluate SQL and Quel queries

in all statements of both languages.

We found that Rosetta simpli�es specifying data languages and generating

compilers for them by providing high-level, easy-to-use, powerful constructs. The

statements of a data language are logically divided into clause-sized speci�cation

elements. The Rosetta speci�cation re
ects this logical division as each clause spec-

i�cation includes both the syntax and semantics of the clause, clearly delimited.

The high-level speci�cation eliminates concern with minutiae, yielding a further

advantage: clarity, readability, and (we claim) maintainability.

Furthermore, as discussed in Section 4.5, Rosetta speeds the development of

compilers by encouraging reuse of backplane functions, directive functions, and com-

piler utilities. The savings in time and e�ort which can be realized by speci�cation

and code reuse makes this a potentially viable development approach.

Overall, we feel that Rosetta was successful. The �rst phase of our work

de�ned a backplane and speci�cation language; the validation phase utilized them

to demonstrate that compilers for �ve diverse data languages could be built using

this approach. Thus, the prototype satisfactorily demonstrates proof of concept.

133

Appendix A

A Database Backplane

This appendix lists the de�nitions of the backplane and directive functions used in

our data language models. Many backplane functions are multiply de�ned, e.g.,

the comparison function equal() is de�ned as equal(x:Int,y:Int):Boolean, equal(x:Int,

y:Real):Boolean, etc. De�nitions of multiply de�ned functions are listed together

with a single function description.

Currently, thirteen types are known to Rosetta. The �rst ten are primitive:

Attribute, Boolean, Date, Event, Int, Interval, Real, Span, String, and Void. There

is one composite type: Relation. The remaining two are built-in generic types, List

and Stream. The List[�] type is a convenience for modeling languages which avoids

the tedious repetition of list structure de�nition, while the Stream type imposes

structure on a group of records. The Stream type is a stream of tuples. Stream

is a generic type, and the attributes of its constituent tuples are not known until

compile-time.

Each function is listed in a �xed format:

function name (parameter list) : type

parameter0 description of parameter0

: : : : : :

parametern description of parametern

function description

where elements of the parameter list are de�ned as \� :�", indicating parameter �

is of type � .

134

A.1 Backplane Function De�nitions

abs (x:Int) : Int

abs (x:Real) : Real

abs (x:Span) : Span

x : numeric or temporal expression

abs() computes and returns the absolute value of its operand.

add (x:Int, y:Int) : Int

add (x:Int, y:Real) : Real

add (x:Real, y:Int) : Real

add (x:Real, y:Real) : Real

add (x:Event, y:Span) : Event

add (x:Span, y:Event) : Event

add (x:Span, y:Span) : Span

x : �rst addend

y : second addend

add() computes and returns the sum of x and y.

aggregate (a:List, s:Stream) : Stream

a : list of expressions

s : stream of tuples

The �rst parameter is a list of expressions to evaluate; the expressions are either

aggregations or simple references to stream attributes. aggregate() evaluates each

aggregation operation in a (e.g. count, max, min, : : :) over the entire stream s.

Other elements of a are references to stream attributes and are simply passed on.

Note that s may be grouped; if so, aggregate() evaluates the list of expressions over

each group independently.

and (x:Boolean, y:Boolean) : Boolean

x : Boolean

y : Boolean

and() computes the logical AND of its inputs and returns the result.

asof (x:Event, y:Void) : Boolean asof (x:Event, y:Event) : Boolean

asof (x:Interval, y:Void) : Boolean

x : event or interval expression

y : event or Void

asof() is applied by retrieve() to the current tuple to determine that its transaction-

time timestamp is after the speci�ed event or within the speci�ed interval. If the

�rst parameter is an Event and the second parameter is Void, the second parameter

135

defaults to ``now'', so that the interval becomes x through ``now''.

assign (x:Attribute, y:Int) : Void

assign (x:Attribute, y:Real) : Void

assign (x:Attribute, y:String) : Void

assign (x:Attribute, y:Boolean) : Void

x : attribute name

y : new attribute value

assign() is an operator applied to a stream by a function (such as compute(). The

attribute named in x is assigned the value of y.

attribute (x:List, y:String) : Attribute

x : unit list of relation

y : attribute name

attribute() veri�es that the name y is actually an attribute of relation x.

avg (x:Int, y:Stream) : Int

avg (x:Real, y:Stream) : Real

x : numeric expression

y : stream of tuples

avg() computes the average value of the expression x over the stream of tuples y.

beginof (x:Interval) : Event

x : temporal interval

beginof() returns the start event of the interval x.

boolean2int (x:Boolean) : Int

x : Boolean

boolean2int() converts a boolean value to an integer. TRUE is converted to 1; FALSE

is converted to 0.

coalesce (x:Stream, y:List, z:String) : Stream

x : stream of tuples

y : list of attributes

z : string

The coalesce() function coalesces the stream x on the attributes named in y. The

input stream x is grouped on the attributes named in y. In each group, the tuples

whose valid-time timestamps can be merged into a single temporal element are

merged into one tuple with the composite valid-time timestamp. The parameter z

directs how the time-stamps should be merged, as Intervals or Elements.

compute (e:List, s:Stream) : Stream

e : list of expressions

136

s : stream of tuples

The �rst parameter, e, is a list of expressions to be evaluated over the second pa-

rameter, s, a stream of tuples. compute() does not handle aggregations; all elements

of e are either arithmetic expressions or stream attribute references. A new tuple is

produced for each of the tuples in the input stream; these new tuples are returned

as a Stream.

contains (x:Stream, y:Stream) : Boolean

x : stream of tuples

y : stream of tuples

contains() compares stream x with stream y; if every tuple of x occurs in y, contains()

returns TRUE; otherwise, contains() returns FALSE.

count (x:Int, y:Stream) : Int

count (x:Real, y:Stream) : Real

x : numeric expression

y : stream of tuples

count() counts the number of tuples in the stream of tuples y.

create (n:Relation, t:Stream) : Void

n : relation identi�er

t : stream of tuples

create() creates a new relation and populates it with the tuples listed in t. The new

relation is given the name speci�ed in n; the names and types of its attributes are

as speci�ed in the header of the stream t.

delete (r:List, s:Stream) : Void

r : a unit list of relation

s : stream of tuples

delete() deletes the tuples of s from the relation r.

di�erence (x:Stream, y:Stream) : Stream

x : stream of tuples

y : stream of tuples

di�erence() compares stream x with stream y; it returns a stream comprised of the

tuples of x that do not occur in y.

div (x:Int, y:Int) : Real

div (x:Int, y:Real) : Real

div (x:Real, y:Int) : Real

div (x:Real, y:Real) : Real

div (x:Span, y:Span) : Real

137

div (x:Span, y:Int) : Span

div (x:Span, y:Real) : Span

x : dividend

y : divisor

div() computes and returns the quotient of x and y.

earliest (x:Event, y:Event) : Event

x : event expression

y : event expression

event() determines which event, x or y, occurred earlier and returns it.

endof (x:Interval) : Event

x : interval

endof() returns the terminating event of the interval x.

eq (x:Int, y:Int) : Boolean

eq (x:Int, y:Real) : Boolean

eq (x:Real, y:Int) : Boolean

eq (x:Real, y:Real) : Boolean

eq (x:String, y:String) : Boolean

eq (x:Attribute, y:Stream) : Stream

eq (x:Int, y:Stream) : Stream

eq (x:Real, y:Stream) : Stream

eq (x:String, y:Stream) : Stream

eq (x:� , y:Stream) : Stream

x : �rst item to be compared

y : second item to be compared

eq() tests the equality of x and y, returning TRUE if they are equal and FALSE if

not. In the last de�nition of eq(), the �rst parameter, x, and the elements of the

second parameter, y, must be comparable by some de�nition of eq(). If x is a tuple,

then each of its attributes must be comparable by some de�nition of eq() to the

corresponding attribute in the tuples of y. The returned Stream is a stream of

Boolean, with one value for each input tuple of y.

event (x:Date) : Event

x : a date

event() converts a date into an Event.

exists (s:Stream) : Boolean

s : stream of tuples

exists() tests existential quanti�cation, returning TRUE if s is non-empty and FALSE

138

otherwise.

extend (x:Interval, y:Interval) : Interval

extend (x:Event, y:Interval) : Interval

extend (x:Interval, y:Event) : Interval

extend (x:Event, y:Event) : Interval

x : event or interval expression

y : event or interval expression

extend() creates an interval which begins with the earlier of the starting points of

its interval parameters x and y and ends with the later of the terminating points of

its parameters. If either parameter is an event, it is �rst coerced into an interval

with itself as starting and ending events. If there is no overlap between the two

parameters, the returned interval is empty.

�lter (x:Boolean, y:Stream) : Stream

x : boolean expression (predicate)

y : stream of tuples

�lter() evaluates the predicate x over the tuples of y, returning only those which

satisfy x.

forall (s:Stream) : Boolean

s : stream of tuples

forall() tests universal quanti�cation. Each tuple in stream s is a tuple with one

Boolean attribute. If the attribute values are all TRUE, forall() returns TRUE; other-

wise, forall() returns FALSE.

forany (s:Stream) : Boolean

s : stream of tuples

forany() tests universal quanti�cation. Each tuple in stream s is a tuple with one

Boolean attribute. If any of the attributes is TRUE, forany() returns TRUE; otherwise,

forany() returns FALSE.

grgrndate (x:Int, y:Int, z:Int) : Date

x : integer (month)

y : integer (day)

z : integer (year)

grgrndate() converts its arguments into a Gregorian date.

groupby (a:List, s:Stream) : Stream

a : list of attributes

s : stream of tuples

groupby() takes as input a stream s and separates the tuples into groups having iden-

139

tical attribute values over the attributes listed in a. groupby() returns the grouped

tuples in a stream augmented with markers delimiting the groups. Note that the

attributes listed in a must be included in the attributes of s.

gt (x:Int, y:Int) : Boolean

gt (x:Int, y:Real) : Boolean

gt (x:Real, y:Int) : Boolean

gt (x:Real, y:Real) : Boolean

gt (x:String, y:String) : Boolean

gt (x:Attribute, y:Stream) : Stream

gt (x:Int, y:Stream) : Stream

gt (x:Real, y:Stream) : Stream

gt (x:String, y:Stream) : Stream

gt (x:� , y:Stream) : Stream

x : �rst item to be compared

y : second item to be compared

gt() compares x to y, returning TRUE if x greater than y, FALSE if not. In the last

de�nition of gt(), the �rst parameter, x, and the elements of the second parameter,

y, must be comparable by some de�nition of gt(). If x is a tuple, then each of

its attributes must be comparable by some de�nition of gt() to the corresponding

attribute in the tuples of y. The returned Stream is a stream of Boolean, with one

value for each input.

gteq (x:Int, y:Int) : Boolean

gteq (x:Int, y:Real) : Boolean

gteq (x:Real, y:Int) : Boolean

gteq (x:Real, y:Real) : Boolean

gteq (x:String, y:String) : Boolean

gteq (x:Attribute, y:Stream) : Stream

gteq (x:Int, y:Stream) : Stream

gteq (x:Real, y:Stream) : Stream

gteq (x:String, y:Stream) : Stream

gteq (x:� , y:Stream) : Stream

x : �rst item to be compared

y : second item to be compared

gteq() compares x to y, returning TRUE if x is greater than or equal to y and FALSE

if not. In the last de�nition of gteq(), the �rst parameter, x, and the elements of

the second parameter, y, must be comparable by some de�nition of gteq(). If x is a

tuple, then each of its attributes must be comparable by some de�nition of gteq()

to the corresponding attribute in the tuples of y. The returned Stream is a stream

140

of Boolean, with one value for each input tuple of y.

having (p:Boolean, s:Stream) : Stream

p : boolean expression

s : stream of tuples

having() evaluates the boolean expression p over each group in the stream s. If

p is satis�ed, the unmodi�ed stream is returned; otherwise, the empty stream is

returned. An input stream with no group markers is treated as one group. Often p

includes aggregations; when it does, aggregations are computed separately for each

group and not over the stream as a whole. Furthermore, a restriction on an attribute

must be satis�ed by each tuple in the group, e.g. if p requires \R.A > 5", then each

tuple of the group must have R.A > 5.

insert (r:Relation, l:List, s:Stream) : Void

r : relation identi�er

l : list of attribute

s : stream of tuples

insert() adds the tuples of stream s to the named relation r. If necessary, insert()

rearranges the attributes of the s according to the list of attributes in l.

intersect (x:Stream, y:Stream) : Stream

x : stream of tuples

y : stream of tuples

intersect() compares stream x with stream y; it returns a stream comprised of the

tuples that occur in both x and y.

intervalc (x:Event, y:Event) : Interval

invervalc (x:Date, y:Void) : Interval

x : event or date

y : event or NULL

intervalc() computes the closed interval having starting and ending events x and y,

respectively. If x is a date and y is NULL, then the date is converted to a closed

interval having as its starting and ending events the �rst and last chronons of the

date, respectively.

intervalo (x:Event, y:Event) : Interval

invervalo (x:Date, y:Void) : Interval

x : event or date

y : event or NULL

intervalo() computes the open interval having starting and ending events x and the

last chronon before y, respectively. If x is a date and y is NULL, then the date is

converted to a closed interval having as its starting and ending events the �rst and

141

last but one chronons of the date, respectively.

iselement (x:Tuple, y:Stream) : Boolean

iselement (x:Int, y:Stream) : Boolean

iselement (x:Real, y:Stream) : Boolean

x : tuple

y : stream of tuples

iselement() determines if tuple x occurs in the stream of tuples y. If the �rst pa-

rameter x is not a tuple, then the tuples of the stream parameter must have only

one attribute.

isunique (x:Stream) : Boolean

x : stream of tuples

isunique() returns TRUE if stream x contains no duplicates and FALSE otherwise.

latest (x:Event, y:Event) : Event

x : event

y : event

latest() returns the later of the events, x or y.

lt (x:Int, y:Int) : Boolean

lt (x:Int, y:Real) : Boolean

lt (x:Real, y:Int) : Boolean

lt (x:Real, y:Real) : Boolean

lt (x:String, y:String) : Boolean

lt (x:� , y:Stream) : Stream

x : �rst item to be compared

y : second item to be compared

lt() compares x to y, returning TRUE if x is less than y and FALSE if not. In the last

de�nition of lt(), the �rst parameter, x, and the elements of the second parameter,

y, must be comparable by some de�nition of lt(). If x is a tuple, then each of

its attributes must be comparable by some de�nition of lt() to the corresponding

attribute in the tuples of y. The returned Stream is a stream of Boolean, with one

value for each input tuple of y.

lteq (x:Int, y:Int) : Boolean

lteq (x:Int, y:Real) : Boolean

lteq (x:Real, y:Int) : Boolean

lteq (x:Real, y:Real) : Boolean

lteq (x:String, y:String) : Boolean

lteq (x:� , y:Stream) : Stream

142

x : �rst item to be compared

y : second item to be compared

lteq() compares x to y, returning TRUE if x is less than or equal to y and FALSE

if not. In the last de�nition of lteq(), the �rst parameter, x, and the elements of

the second parameter, y, must be comparable by some de�nition of lteq(). If x is a

tuple, then each of its attributes must be comparable by some de�nition of lteq() to

the corresponding attribute in the tuples of y. The returned Stream is a stream of

Boolean, with one value for each input tuple of y.

max (x:Int, y:Stream) : Int

max (x:Real, y:Stream) : Real

max (x:String, y:Stream) : String

x : numeric expression

y : stream of tuples

max() determines the maximum value of the expression x over the stream of tuples

y.

min (x:Int, y:Stream) : Int

min (x:Real, y:Stream) : Real

min (x:String, y:Stream) : String

x : numeric expression

y : stream of tuples

min() determines the minimum value of the expression x over the stream of tuples

y.

mul (x:Int, y:Int) : Int

mul (x:Int, y:Real) : Real

mul (x:Real, y:Int) : Real

mul (x:Real, y:Real) : Real

x : multiplicand

y : multiplicand

mul() computes and returns the product of x and y.

neq (x:Int, y:Int) : Boolean

neq (x:Int, y:Real) : Boolean

neq (x:Real, y:Int) : Boolean

neq (x:Real, y:Real) : Boolean

neq (x:String, y:String) : Boolean

neq (x:Attribute, y:Stream) : Stream

neq (x:Int, y:Stream) : Stream

neq (x:Real, y:Stream) : Stream

143

neq (x:String, y:Stream) : Stream

neq (x:� , y:Stream) : Stream

x : �rst item to be compared

y : second item to be compared

neq() tests the inequality of x and y, returning FALSE if they are equal and TRUE

if not. In the last de�nition of neq(), the �rst parameter, x, and the elements of

the second parameter, y, must be comparable by some de�nition of neq(). If x is a

tuple, then each of its attributes must be comparable by some de�nition of neq() to

the corresponding attribute in the tuples of y. The returned Stream is a stream of

Boolean, with one value for each input tuple of y.

nest (x:Stream, y:List, z:String) : Stream

x : stream of tuples

y : list of attributes

z : string

nest() converts the stream x into a more deeply nested stream, nesting its input

stream on the attributes named in y. If z is not NULL, the nested relation, which

is comprised of the nested attributes, is named z.

noop (x:Attribute) : Attribute

noop (x:Boolean) : Boolean

noop (x:Int) : Int

noop (x:Real) : Real

noop (x:String) : String

noop (x:List) : List

noop (x:Stream) : Stream

x : parameter

noop() returns the value of its parameter.

not (x:Boolean) : Boolean

x : Boolean

not() returns the logical negation of its input.

or (x:Boolean, y:Boolean) : Boolean

x : Boolean

y : Boolean

or() returns the logical OR of its inputs.

overlapb (x:Interval, y:Interval) : Boolean

x : interval

y : interval

144

overlapb() returns TRUE if its input intervals x and y have some non-empty subin-

terval in common and FALSE otherwise.

overlapt (x:Interval, y:Interval) : Interval

x : interval

y : interval

overlapt() returns NULL if its input intervals x and y have no non-empty subinterval

in common and returns the subinterval otherwise.

precede (x:Interval, y:Interval) : Boolean

x : interval

y : interval

precede() returns TRUE if the starting event of x occurs before the terminating event

of y; it returns FALSE otherwise.

printstream (s:Stream) : Void

s : stream of tuples

printstream() takes as input a stream of tuples and displays them.

rename (a:List, s:Stream) : Stream

a : list of attribute identi�ers

s : stream of tuples

The tuple attribute names of the stream s are renamed with the names speci�ed in a

and the (otherwise unmodi�ed) stream is returned. rename() modi�es the stream's

header.

retrelation (x:Stream, y:String) : Stream

x : stream of tuples

y : string

retrelation () associates with the input stream of tuples x the correlation name y,

returning the stream.

retrieve (r:List, a:List, p:Boolean, l:List) : Stream

r : list of relations

a : list of attributes

p : boolean expression

l : list of attribute identi�ers for outer join

retrieve() fetches a stream of tuples from the relations speci�ed in the relation list r.

The tuples which do not satisfy the Boolean expression p are discarded. retrieve()

projects the accepted tuples on the attributes listed in a and returns them. If a

is empty, all tuples are returned. In addition, all timestamps are returned. Note

that as multiple relations can be speci�ed in r, retrieve() implements join and cross

145

product.

sametime (x:Interval, y:Interval) : Boolean

x : interval

y : interval

sametime() returns TRUE if the two intervals are identical and FALSE otherwise.

sort (a:List, s:Stream) : Stream

a : list of attributes

s : stream of tuples

sort() sorts the input stream s over the speci�ed attributes and returns the sorted

stream.

span (x:Int, y:Span) : Span

span (x:Date, y:Void) : Span

span (x:Relation, y:Void) : Span

span (x:Interval, y:Void) : Span

x : integer or date or relation or interval expression

y : span or Void

span() converts its inputs into a span. Its inputs may be an integer and a span, in

which case the length of the returned span is x times as long as the span y. If x is a

date, the returned span is its length. For example, the length of a day is \24 hours."

If x is a relation (or correlation), the returned span is the length of the valid-time

timestamp of the current tuple. Finally, if x is an interval, the returned span is the

length of that interval.

str2Boolean (x:String) : Boolean

x : string

str2Boolean() converts a string to a boolean constant.

str2attr (x:String) : Attribute

x : string

str2attr() converts a string to an attribute reference.

str2event (x:String) : Event

x : string

str2event() converts a string to an event constant.

str2int (x:String) : Int

x : string

str2int() converts a string to an integer constant.

str2mon (x:String) : Int

146

x : string

str2mon() converts a string to an integer representation of a month.

str2real (x:String) : Real

x : string

str2real() converts a string to a Real constant.

str2rel (x:String) : Relation

x : string

str2rel() converts a string to a relation reference.

str2span (x:String) : Span

x : string

str2span() converts a string to a span constant.

str2str (x:String) : String

x : string

str2str() converts a string to a string (in internal representation).

str2wild (x:String) : String

x : string

str2wild() converts a string constant to an internal representation of a \wild card"

value.

sub (x:Int, y:Int) : Int

sub (x:Int, y:Real) : Real

sub (x:Real, y:Int) : Real

sub (x:Real, y:Real) : Real

sub (x:Event, y:Span) : Event

sub (x:Event, y:Event) : Span

sub (x:Span, y:Span) : Span

sub (x:Span, y:Int) : Span

sub (x:Span, y:Real) : Span

sub (x:Int, y:Span) : Span

sub (x:Real, y:Span) : Span

x : minuend

y : subtrahend

sub() computes and returns the di�erence of x and y.

subsume (x:Stream) : Stream

x : stream of tuples

subsume() removes subsumed tuples from the stream of tuples x and returns the

147

stream. (Given two tuples, if all non-null attributes of the �rst tuple agree with

their counterparts in the second tuple, the second tuple is said to subsume the �rst.)

sum (x:Int, y:Stream) : Int

sum (x:Real, y:Stream) : Real

x : numeric expression

y : stream of tuples

sum() computes the sum of the expression x over the stream of tuples y.

tmdelete (x:List, y:Stream) : Void

x : unit list of relation

y : stream of tuples

tmdelete() implements temporal deletion, deleting the tuples of stream y from the

relation x. Deleted temporal tuples are not expunged from the database; they

are merely marked invalid. Furthermore, the semantics of temporal deletion are

somewhat trickier than the semantics of non-temporal deletion. tmdelete()must not

invalidate portions of existing tuples which are not covered by some tuple speci�ed

in the input stream.

tminsert (x:Relation, y:List, z:Stream) : Void

x : unit list of relation

y : list of attributes

z : stream of tuples

tminsert() adds the tuples of stream s to the named relation r. If necessary, insert()

rearranges the attributes of the s according to the list of attributes in z. However,

tminsert() implements temporal insertion, inserting the tuples of stream z into the

relation x. The semantics of temporal insertion are somewhat trickier than the

semantics of non-temporal insertion. tminsert() must not duplicate portions of

existing tuples which are covered by some tuple speci�ed in the input stream.

tmupdate (x:Relation, y:List, z:Stream) : Void

x : unit list of relation

y : list of update expressions

z : stream of tuples

tmupdate() implements temporal update, updating the relation x with the tuples of

z. If the list of update expressions y is non-empty, they are applied to the tuples

of stream z before the relation is updated. Temporal update shares elements with

both temporal deletion and temporal insertion, as once again the timestamps of

the tuples of the incoming stream z may not completely cover the timestamps of

the existing tuples. Only the temporal portions included in the timestamps of the

incoming stream of tuples z should be updated.

148

uminus (x:Int) : Int

uminus (x:Real) : Real

uminus (x:Span) : Span

x : numeric value

uminus() computes unary minus.

union (x:Stream, y:Stream) : Stream

x : stream of tuples

y : stream of tuples

union() computes the union of the two input streams and returns it. Duplicates

are not removed. union() does not print its result; it must be composed with

printstream() to print the union. The two input streams must agree on type, that

is, they must have the same number of attributes with the same types.

unique (s:Stream) : Stream

s : stream of tuples

unique() removes duplicates from a stream of tuples s and returns the (duplicate-

free) stream. The input stream of tuples need not be sorted; however, if it is not,

unique() will sort it (invoking sort(s)) before duplicate elimination.

unnest (x:Stream, y:List) : Stream

x : stream of tuples

y : list of attributes

unnest() removes one level of nesting from a nested (:1NF) relation. The relation

is unnested on the named nested relation attributes y.

update (x:Relation, y:List, z:Stream) : Void

x : unit list of relation

y : list of expressions

z : stream of tuples

update() rewrites each tuple from stream z into relation x. If the list of expressions

y is not empty, the expressions are applied to the tuples of z before updating the

relation x.

uspan (x:Int, y:Int, w:String, z:String) : Span

uspan (x:Int, y:Void, w:String, z:String) : Span

x : integer representing year or month

y : integer representing month or day

w : string representing span unit

z : string representing span unit

uspan() converts an SQL2-style span literal (an INTERVAL to a span in our internal

representation. The integers x and y represent numbers of years, months, or days

149

while the strings w and z specify the units of x and y. The units must be speci�ed

in decreasing value, e.g., w as YEAR and z as MONTH or DAY. uspan() converts x and

y to spans, and then subtracts the span of y from the span of x.

valid (x:Interval, y:Void, z:Stream) : Stream

valid (x:Event, y:Event, z:Stream) : Stream

x : temporal expression, event or interval

y : temporal expression, event or interval

z : stream of tuples

From the temporal expressions x and y, valid() computes a valid-time timestamp for

the tuples of stream z. The timestamp is either an interval or an event. Incoming

timestamps are projected out and replaced by the new timestamp. If both x and

y are NULL, no valid-time timestamp is computed but the temporal attributes are

still projected out, producing a non-temporal relation.

validat (x:Relation) : Event

x : relation name or correlation

validat() returns the event valid-time timestamp of the current tuple of the relation

x.

validfrom (x:Relation) : Event

x : relation name or correlation

validfrom() returns the starting event of the interval valid-time timestamp of the

current tuple of the relation x.

validto (x:Relation) : Event

x : relation name or correlation

validto() returns the terminating event of the interval valid-time timestamp of the

current tuple of the relation x.

values (v:List) : Stream

v : list of values

values() takes as input a list of values and constructs from them a single tuple which

it returns as a stream of length 1.

when (x:Void) : Boolean

xactionstart (x:Relation) : Interval

x : relation name or correlation

xactionstart() returns the starting event of the transaction-time timestamp of the

current tuple of relation x.

xactionstop (x:Relation) : Interval

150

x : relation name or correlation

xactionstop() returns the terminating event of the transaction-time timestamp of

the current tuple of relation x.

A.2 Directive Function De�nitions

all but attr (x:List, y:List, z:List) : Void

x : list of relation

y : list of attribute

z : list of attribute

all but attr() lists in its output parameter z all attributes of the relations in x except

for those listed in y.

dfnCORR (x:List, y:Relation) : Void

x : list of identi�ers

y : relation name

dfnCORR() de�nes the identi�ers listed in x to be correlations of the relation named

in y.

dropCNTXT () dropCNTXT() removes the topmost context from the context

stack.

enforcescope (x:String, y:List):Void

x : string

y : relation name list

enforcescope() renames, internally to an operator tree, relation correlations in order

to enforce the scoping of relation references in subqueries.

extattr (x:Int, y:List) : Void

extattr (x:Real, y:List) : Void

extattr (x:Boolean, y:List) : Void

x : expression

y : list of attribute

extattr() extracts the attributes referenced in the input expression and returns them

in the list y.

extrels (x:Int, y:List) : Void

extrels (x:Real, y:List) : Void

extrels (x:Boolean, y:List) : Void

x : expression

y : list of relations

151

extrels() extracts the relations referenced in the input expression and returns them

in the list y.

gen expr (x:List, y:String, z:String) : Interval

gen expr (x:List, y:String, z:String) : Span

gen expr (x:List, y:String, z:String) : Int

gen expr (x:List, y:String, z:String) : Boolean

gen expr (x:List, y:String, z:String) : Real

gen expr (x:List, y:String, z:String) : String

x : list of operands

y : operator

z : string (associativity)

The gen expr() directive function generates an expression from its inputs, which

are a list of operands (expressions), a binary operator, and an associativity. The

generated expression applies the operator to the expressions in the list, observing

the given associativity. For example, the call gen expr([1,2,3],\+",\left") would

produce the expression ((1 + 2) + 3).

get all attr (x:List, y:List) : Void

x : list of relation

y : list of attribute

get all attr() lists in its output parameter y all attributes of the relations in x.

is attr list (x:List) : Boolean

x : list of expressions

is attr list() determines if all elements in its input list x are attributes. The value

TRUE is returned if they are; otherwise FALSE is returned.

is literal list (x:List) : Boolean

x : list of expressions

is literal list() determines if all elements in its input list x are literals. The value

TRUE is returned if they are; otherwise FALSE is returned.

is relation (x:String, y:String) : Relation

x : string

y : string

is relation() determines if its �rst parameter x is a relation; access information for it

is returned if it is, and NULL otherwise. The second parameter, if present, de�nes

a correlation for the relation. Otherwise, the default correlation, the relation name

x, is used.

linkcopy (x:List, y:<node>) : Void

152

x : list of nodes

y : an operator tree node

linkcopy() duplicates the node y and links it to the list x.

linknode (x:List, y:List) : Void

x : list of nodes

y : an operator tree node

linknode() links the node y to the list x.

map coalesce depnds (x:List, y:Boolean) : Void

x : list of relations

y : predicate

map coalesce depnds()maps coalesce dependencies, e.g., it pushes through attribute

lists when we detect a reference to an earlier de�nition. Also, map coalesce depnds()

creates and adds conjuncts to force equivalence of inherited coalesce attributes. The

created conjuncts are and'ed with the predicate y.

mergeattr (x:List, y:List) : Void

x : list of attributes

y : list of attributes

mergeattr() adds the attributes in the input attribute list, x, to those in the output

list, y. Duplicates are not added.

mergerelation (x:List, y:List) : Void

x : list of relations

y : list of relations

mergerelation() adds relations in the list x to the relation list y. Duplicates are not

added.

newCNTXT (x:String) : Void

x : string

newCNTXT() allocates space on the context stack for the new context named in x.

regATTR (x:Attribute, y:String) : Void

x : attribute reference node

y : string

regATTR() registers the correlation name y for the attribute x. (As SQL/NF has

nested relations, it allows correlations for attributes.)

revise dummy (x:List, y:List) : Void

x : list of attributes

y : list of operator trees

revise dummy() revises the attribute references in the aggregate BY clause for Quel

153

and TQuel to accommodate the semantics of Quel and TQuel aggregates in the

WHERE clause, where the BY attributes are bound to values of the outer query but

other attribute references are not.

rewrite (x:List, y:List, z:List) : Boolean

x : list of operator trees

y : list of tags

z : list of operator trees

rewrite() divides each operator tree in its input list x into a cluster and subtrees.

The subtrees remain in the input node, x, while the clusters are placed in an output

list, z. For a more complete explanation, see Section 2.4.4.

skip () : Void skip() is a no-op.

154

Appendix B

SQL: Speci�cation

BEGIN CONTEXT X

rel list : relation list;

proj list : attr list;

xpr : expr list;

END CONTEXT X

SQL = f newCNTXT(X); g

delete[\ DELETE x ", rel list, x:d ret]

j f newCNTXT(X); g

insert[\ INSERT INTO x y ",x:unit rel list,NULL,y:insrtstrm]

f mergerelation(x,rel list); g

j f newCNTXT(X); g

printstream[\ x ", x:display]

j f newCNTXT(X); g

update[\ UPDATE x a u ",x:unit rel list,a:u expr,u:u ret]

f mergerelation(x,rel list); g

;

d ret = retrieve[\FROM x w",x:unit rel list,proj list,w:where,NULL]

f mergerelation(x,rel list); g

;

f ret = retrieve[\ FROM r w ", rel list, xpr, w:where,NULL]

f r:relation list;

mergerelation(r,rel list);

g

;

155

group = groupby[\ y GROUP BY x ", x:attr list, y:f ret]

j f ret

;

having = having[\ y HAVING x ", x:predicate, y:group]

j group

;

insrtstrm = rename[\ (x) y ", x:strng list, y:lit tuple]

j rename[\ (x) y ", x:strng list, y:select]

j lit tuple

j select

;

strng list = list[, , \,", String, NE]

;

lit tuple = values[\ VALUES x ", x:valuelist]

;

select = f newCNTXT(X); g

noop[\ SELECT x ", x:order]

;

order = sort[\ y ORDER BY x ", x:attr list, y:distinct]

j distinct

;

distinct = unique[\ DISTINCT x ", x:compattr]

j compattr

;

compattr = noop[\ xpr s ", s:proc stream]

;

proc stream = compute[rewrite(xpr,[add,sub,div,mul,assign,str2int,str2real],x),

x:expr list, proc stream]

j aggregate[rewrite(xpr, [count,min,max,avg,sum], x),

x:expr list, proc stream]

j noop[is attr list(xpr), having]

;

display = union[\ x UNION y ", x:display, y:display2]

j union[\ x UNION y ", x:display, y:select]

j intersect[\ x INTERSECT y ", x:select, y:select]

j di�erence[\ x EXCEPT y ", x:select, y:select]

j display2

j select

156

;

display2 = noop[\ (x) ", x:display]

;

u expr = noop[\ SET y ", y:assgn list]

;

u ret = retrieve[\ w ", rel list, NULL, w:where, NULL]

;

where = noop[\ WHERE x ", x:predicate]

j epsilon

;

assgn list = list[, , \,", assgn, NE]

;

assgn = assign[\ x = y ", x:attribute, y:expr]

f z:attr list;

extattr(y,z);

mergeattr(z, proj list);

extattr(x,z);

mergeattr(z, proj list);

g

;

attribute = attr name

j attribute[\ r. a ", r:unit rel list, a:attr name]

;

attr name = str2attr[` [a-z][a-zA-Z0-9]* ']

;

attr list = list[, , \,", attribute, NE]

;

expr list = list[, , \,", expr, NE]

;

literal = String

j Integer

j Real

;

String = str2str[` \\[a-zA-Z0-9 .]+\" ']

;

relation = str2rel[` [A-Z][a-zA-Z0-9]* ']

;

relationref = is relation[\ r ", r:relation, NULL]

157

j is relation[\ r a ", r:relation, a:relation]

;

relation list = list[, , \," , relationref, NE]

;

unit rel list = list[, , \," , relation, unit]

;

Boolean = str2Boolean[`true']

j str2Boolean[`false']

;

valuelist = list[\(", \)", \,", literal, NE]

;

compare = lteq[\ x <= y ", x:expr, y:expr]

j gteq[\ x >= y ", x:expr, y:expr]

j neq[\ x != y ", x:expr, y:expr]

j lt[\ x < y ", x:expr, y:expr]

j gt[\ x > y ", x:expr, y:expr]

j eq[\ x = y ", x:expr, y:expr]

j and[\ v BETWEEN l AND h ",gteq(v:expr,l:expr),

lteq(v,h:expr)]

j or[\ v NOTxBETWEEN l AND h ",lt(v:expr,l:expr),

gt(v,h:expr)]

;

predicate = not[\ NOT x ", x:predicate]

j and[\ x AND y ", x:predicate, y:predicate]

j or[\ x OR y ", x:predicate, y:predicate]

j noop[\ (x) ", x:predicate]

j compare

j sqe

j Boolean

;

sqe = iselement[\ x IN y ", x:smexpr, y:subquery]

j not[\ x NOT IN y ", iselement(x:smexpr, y:subquery)]

j exists[\ EXISTS y ", y:subquery]

j forany[\ x =ANY y ", eq(x:expr, y:subquery)]

j forany[\ x <>ANY y ", neq(x:expr, y:subquery)]

j forany[\ x <ANY y ", lt(x:expr, y:subquery)]

j forany[\ x >ANY y ", gt(x:expr, y:subquery)]

j forany[\ x <=ANY y ", lteq(x:expr, y:subquery)]

158

j forany[\ x >=ANY y ", gteq(x:expr, y:subquery)]

j forany[\ x =SOME y ", eq(x:expr, y:subquery)]

j forany[\ x <>SOME y ", neq(x:expr, y:subquery)]

j forany[\ x <OME y ", lt(x:expr, y:subquery)]

j forany[\ x >OME y ", gt(x:expr, y:subquery)]

j forany[\ x <=SOME y ", lteq(x:expr, y:subquery)]

j forany[\ x >=SOME y ", gteq(x:expr, y:subquery)]

j forall[\ x =ALL y ", eq(x:expr, y:subquery)]

j forall[\ x <>ALL y ", neq(x:expr, y:subquery)]

j forall[\ x <ALL y ", lt(x:expr, y:subquery)]

j forall[\ x >ALL y ", gt(x:expr, y:subquery)]

j forall[\ x <=ALL y ", lteq(x:expr, y:subquery)]

j forall[\ x >=ALL y ", gteq(x:expr, y:subquery)]

;

sqlaggr = count[\ count (*) ", NULL, NULL]

j count[\ count (x) ", x:smexpr, NULL]

j max[\ max (x) ", x:smexpr, NULL]

j min[\ min (x) ", x:smexpr, NULL]

j avg[\ avg (x) ", x:smexpr, NULL]

j sum[\ sum (x) ", x:smexpr, NULL]

;

expr = add[\ x + y ", x:expr, y:expr]

j sub[\ x - y ", x:expr, y:expr]

j mul[\ x * y ", x:expr, y:expr]

j div[\ x / y ", x:expr, y:expr]

j uminus[\ - x ", x:expr]

j noop[\ (x) ", x:expr]

j attribute

j Numeric

j String

;

smexpr = expr

f is arith expr(); g

;

subquery = noop[\ (x) ", x:select]

;

Numeric = Integer

j Real

159

j sqlaggr

;

Integer = str2int[`-[1-9]+[0-9]*']

j str2int[`[1-9]+[0-9]*']

;

Real = str2real[` [0-9]*.[0-9]+ ']

j str2real[` [0-9]+.[0-9]* ']

;

%left `+' `-'

%left `*' `/'

%left OR

%left AND

%right NOT

160

Appendix C

SQL/NF: Speci�cation

BEGIN CONTEXT X

rel list : relation list;

urel list : unit rel list;

outer list : relation list;

assgnmnts : assgn list;

proj list : attr list;

xpr : sel list2;

slst: select list;

END CONTEXT X

sql nf = printstream[\ x ", x:display]

j update stmt

;

update stmt = f newCNTXT(X); g

delete[\ ERASE x ", rel list, x:d ret]

j f newCNTXT(X); g

update[\ MODIFY x ", urel list, assgnmnts, x:u ret]

j insert[\ STORE x y ", x:unit rel list, NULL, y:insrtstrm]

;

display = function stmt

j union[\ x UNION y ", x:display, y:display]

j intersect[\ x INTERSECT y ", x:display, y:display]

j di�erence[\ x DIFFERENCE y ", x:display, y:display]

j operator stmt

j select

161

;

select = retrieve[\ r w ",rel list,xpr,w:where,outer list]

f r:unit rel list;

newCNTXT(X);

mergerelation(r,rel list);

get all attr(rel list,xpr);

g

j f newCNTXT(X); g

noop[\ SELECT slst p ", p:proc stream]

;

select list = noop[\ ALL ", xpr]

f get all attr(rel list,xpr); g

j noop[\ ALL BUT a ",xpr]

f a:attr list;

all but attr(rel list,xpr,a);

g

j noop[\ xpr ", xpr]

;

sel list2 = list[, , \,", select item, NE]

;

select item = expr

j noop[\ x AS a ", a:attr name]

f x:expr;

regATTR(x,a);

g

j noop[\ r ALL ", r:dot ref list]

f mergerelation(r,rel list);

get all attr(r,xpr);

g

;

proc stream = compute[rewrite(xpr,[add,assign,div,mul,sub,distinct,subsume],x),

x:sel list2, proc stream]

j aggregate[rewrite(xpr,[avg,count,max,min,sum],x),

x:sel list2, proc stream]

j noop[is attr list(xpr), f ret]

;

f ret = retrieve[\ FROM r w ",rel list,xpr,w:where,outer list]

f r:relation list;

162

mergerelation(r,rel list);

g

;

preserve = noop[\ PRESERVE outer list ", outer list]

j epsilon

;

where = noop[\ WHERE x p ", x:predicate]

f p:preserve;

skip();

g

j epsilon

;

function stmt = max[\ MAX (x) ", x:display, NULL]

j min[\ MIN (x) ", x:display, NULL]

j avg[\ AVG (x) ", x:display, NULL]

j sum[\ SUM (x) ", x:display, NULL]

j count[\ COUNT (x) ", x:display, NULL]

j unique[\ DISTINCT (x) ", x:display]

j subsume[\ SUBSUME (x) ", x:display]

;

operator stmt = nest[\ NEST x ON c AS a ", x:nested query, c:attr list,

a:relation]

j nest[\ NEST x ON c ", x:nested query, c:attr list, NULL]

j unnest[\ UNNEST x ON c ", x:nested query, c:attr list]

j f newCNTXT(X); g

sort[\ ORDER x BY s ", x:nested query, s:attr list]

;

nested query = nqe1

j nqe2

;

nqe1 = noop[\ (d) ", d:display]

;

nqe2 = retrieve[\ r ", rel list, xpr, NULL, NULL]

f r:unit rel list;

newCNTXT(X);

mergerelation(r,rel list);

get all attr(r,xpr);

g

163

;

unit rel list = list[, , \," , relation, unit]

;

relation = str2rel[` [A-Z][a-zA-Z0-9]* ']

;

relation list = list[, , \," , relationref, NE]

;

relationref = is relation[\ r ",r:relation, NULL]

j is relation[\ n AS a ",n:relation,a:relation]

j retrelation[\ n ", n:nqe1,NULL]

j retrelation[\ n AS a ",n:nqe1,a:relation]

;

attr list = list[, , \,", attribute, NE]

;

attribute = attr name

j attribute[\ r a ", r:dot ref list, a:attr name]

;

attr name = str2attr[` [a-z][a-zA-Z0-9]* ']

;

dot ref list = list[, \.", \.", relation, NE]

;

compare = lteq[\ x <= y ", x:expr, y:expr]

j gteq[\ x >= y ", x:expr, y:expr]

j neq[\ x <> y ", x:expr, y:expr]

j gt[\ x > y ", x:expr, y:expr]

j lt[\ x < y ", x:expr, y:expr]

j eq[\ x = y ", x:expr, y:expr]

j iselement[\ x ELEMENT OF y ",x:expr,y:expr]

j not[\ x NOT ELEMENT OF y ",iselement(x:expr,y:expr)]

j contains[\ x CONTAINS y ",x:expr,y:expr]

j not[\ x NOT CONTAINS y ",contains(x:expr,y:expr)]

j contains[\ x SUBSET OF y ",y:expr,x:expr]

j not[\ x NOT SUBSET OF y ",contains(y:expr,x:expr)]

j and[\ v BETWEEN l AND h ",gteq(v:expr,l:expr),

lteq(v,h:expr)]

j or[\ v NOT BETWEEN l AND h ",lt(v:expr,l:expr),

gt(v,h:expr)]

j eq[\ x IS NULL ", x:attribute,NULL]

164

j not[\ x IS NOT NULL ", eq(x:attribute,NULL)]

j exists [\ EXISTS y ", y:nested query]

j iselement[\ x IN y ", x:tuple expr, y:nested query]

;

predicate = not[\ NOT x ", x:predicate]

j and[\ x AND y ", x:predicate, y:predicate]

j or[\ x OR y ", x:predicate, y:predicate]

j noop[\ (x) ", x:predicate]

j compare

;

expr = add[\ x + y ", x:expr, y:expr]

j sub[\ x - y ", x:expr, y:expr]

j mul[\ x * y ", x:expr, y:expr]

j div[\ x / y ", x:expr, y:expr]

j uminus[\ - x ", x:expr]

j noop[\ (x) ", x:expr2]

j value

;

expr2 = add[\ x + y ", x:expr, y:expr]

j sub[\ x - y ", x:expr, y:expr]

j mul[\ x * y ", x:expr, y:expr]

j div[\ x / y ", x:expr, y:expr]

j uminus[\ - x ", x:expr]

;

literal = Boolean

j Numeric

j String

j tuple literal

j dont care

;

value = attribute

j literal

j nested query

;

tuple seq = list[, , ,tuple literal,NE]

;

tuple literal = list[\f",\g",\,",literal,NE]

;

165

tuple expr = list[\<",\>",\,",expr,NE]

;

dont care = str2wild[` ? ']

;

Boolean = str2Boolean[`true']

j str2Boolean[`false']

;

Numeric = Integer

j Real

;

Integer = str2int[`-[1-9]+[0-9]*']

j str2int[`[1-9]+[0-9]*']

;

Real = str2real[` [0-9]*.[0-9]+ ']

j str2real[` [0-9]+.[0-9]* ']

;

String = str2str[` \\[a-zA-Z0-9 .]-\" ']

;

d ret = retrieve[\ x w ",x:unit rel list,proj list,w:where,NULL]

f mergerelation(x,rel list); g

;

insrtstrm = rename[\ (x) VALUES y ",x:attr list,values(y:tuple seq)]

j rename[\ (x) y ", x:attr list, y:select]

j values[\ VALUES t ",t:tuple seq]

j select

;

u ret = compute[\ urel list SET y z ", y:assgn list,

retrieve(rel list, a, z:where,NULL)]

f a:attr list;

mergerelation(urel list,rel list);

get all attr(urel list,a);

g

;

assgn list = list[, , \,", assgn, NE]

;

assgn = assign[\ x = y ", x:attribute, y:uvalue]

;

uvalue = noop[\ e ", e:expr]

166

f z:attr list;

extattr(e,z);

mergeattr(z, proj list);

g

j noop[\ (u) ",u:update stmt]

;

%left `+' `-'

%left `*' `/'

%left OR

%left AND

%right NOT

%left UNION

%left DIFFERENCE

%left INTERSECT

167

Appendix D

TSQL2: Speci�cation

BEGIN CONTEXT X

unrel list : unit rel list;

rel list : relation list;

proj list : attr list;

xpr : expr list;

val : element;

END CONTEXT X

TSQL2 = f newCNTXT(X); g

tmdelete[\ DELETE x ", unrel list, x:d valid]

j f newCNTXT(X); g

tminsert[\ INSERT INTO x y ",x:unit rel list,NULL,y:insrtstrm]

f mergerelation(x,unrel list); g

j f newCNTXT(X); g

printstream[\ x ", x:display]

j f newCNTXT(X); g

tmupdate[\ UPDATE x a u ",x:unit rel list,a:u expr,u:u valid]

f mergerelation(x,unrel list); g

;

d ret = retrieve[\FROM x w",x:unit rel list,proj list,w:where,NULL]

f mergerelation(x,unrel list); g

;

d valid = valid[\ d VALID v ", v:element, NULL, d:d ret]

;

f ret = retrieve[\ FROM r w ", rel list, xpr, w:where,NULL]

168

f r:relation list;

mergerelation(r,rel list);

map coalesce depnds(r,w);

g

;

group = groupby[\ y GROUP BY x ", x:attr list, y:f ret]

j f ret

;

having = having[\ y HAVING x ", x:predicate, y:group]

j group

;

insrtstrm = rename[\ (x) y ", x:strng list, y:i valid]

j rename[\ (x) y ", x:strng list, y:select]

j valid[\ l ", NULL, NULL, l:litrelation]

j select

;

i valid = valid[\ l VALID e ", e:element, NULL, l:litrelation]

;

strng list = list[, , \,", String, NE]

;

litrelation = values[\ VALUES x ", x:littuples]

;

select = f newCNTXT(X); g

noop[\ SELECT x ", x:order]

;

order = sort[\ y ORDER BY x ", x:attr list, y:distinct]

j distinct

;

distinct = unique[\ DISTINCT x ", x:validtime]

j validtime

;

validtime = valid[\ t ", a, NULL, t:compattr]

f a:element;

gen expr(rel list,\overlapt",\left",a);

g

j valid[\ SNAPSHOT t ", NULL, NULL, t:compattr]

j valid[\ xpr VALIDINTERSECT t ",overlapt(val,a),NULL,

t:compattr2]

169

f a:element;

gen expr(rel list,\overlapt",\left",a);

g

j valid[\ xpr VALID t ", val, NULL, t:compattr2]

;

compattr2 = noop[\ val s ", s:proc stream]

;

compattr = noop[\ xpr s ", s:proc stream]

;

proc stream = compute[rewrite(xpr,[add,sub,div,mul,assign,str2int,

str2real,intervalc,span],x),x:expr list, proc stream]

j aggregate[rewrite(xpr, [count,min,max,avg,sum,unique], x),

x:expr list, proc stream]

j noop[is attr list(xpr), having]

;

display = union[\ x UNION y ", x:display, y:display2]

j intersect[\ x INTERSECT y ", x:display2, y:display2]

j di�erence[\ x EXCEPT y ", x:display, y:display2]

j display2

;

display2 = noop[\ (x) ", x:display]

j select

;

u expr = noop[\ SET y ", y:assgn list]

;

u valid = valid[\ VALID v u ", v:element, NULL, u:u ret]

;

u ret = retrieve[\ w ", unrel list, NULL, w:where, NULL]

;

where = noop[\ WHERE x ", x:predicate]

j epsilon

;

assgn list = list[, , \,", assgn, NE]

;

assgn = assign[\ x = y ", x:attribute, y:expr]

f z:attr list;

extattr(y,z);

mergeattr(z, proj list);

170

extattr(x,z);

mergeattr(z, proj list);

g

;

attribute = attr name

j attribute[\ r. a ", r:unit rel list, a:attr name]

;

attr name = str2attr[` [a-z][a-zA-Z0-9]* ']

;

attr list = list[, , \,", attribute, NE]

;

expr list = list[, , \,", expr, NE]

;

literal = String

j Integer

j Real

;

String = str2str[` \\[a-zA-Z0-9 .]+\" ']

;

relation = str2rel[` [A-Z][a-zA-Z0-9]* ']

;

relationref = is relation[\ r ", r:relation, NULL]

j is relation[\ r a ", r:relation, a:relation]

j is relation[\ r AS a ", r:relation, a:relation]

j retrelation[\ n AS a ",n:coalescrel, a:relation]

j retrelation[\ n AS a ",n:subquery, a:relation]

;

coalescrel = coalesce[\ r a (i) ", retrieve(r:relation,NULL,NULL,NULL),

a:clscattrlst,i:clscintrvl]

j coalesce[\ r a ", retrieve(r:relation,NULL,NULL,NULL),

a:clscattrlst, NULL]

j coalesce[\ r (i) ", retrieve(r:relation,NULL,NULL,NULL),

NULL, i:clscintrvl]

;

clscattrlst = list[\(", \)", \,", attribute, NE]

;

clscintrvl = str2str[` Interval ']

j str2str[` Element ']

171

;

relation list = list[, , \," , relationref, NE]

;

unit rel list = list[, , \," , relation, unit]

;

Boolean = str2Boolean[`true']

j str2Boolean[`false']

;

littuples = list[, , \,", valuelist, NE]

;

valuelist = list[\(", \)", \,", literal, NE]

;

compare = lteq[\ x <= y ", x:expr, y:expr]

j gteq[\ x >= y ", x:expr, y:expr]

j neq[\ x != y ", x:expr, y:expr]

j gt[\ x > y ", x:expr, y:expr]

j lt[\ x < y ", x:expr, y:expr]

j eq[\ x = y ", x:expr, y:expr]

j timecompare

;

predicate = not[\ NOT x ", x:predicate]

j and[\ x AND y ", x:predicate, y:predicate]

j or[\ x OR y ", x:predicate, y:predicate]

j noop[\ (x) ", x:predicate]

j compare

j sqe

j Boolean

;

sqe = iselement[\ x IN y ", x:smexpr, y:subquery]

j not[\ x NOT IN y ", iselement(x:smexpr, y:subquery)]

j exists[\ EXISTS y ", y:subquery]

j isunique[\ UNIQUE y ", y:subquery]

j forany[\ x =ANY y ", eq(x:expr, y:subquery)]

j forany[\ x <>ANY y ", neq(x:expr, y:subquery)]

j forany[\ x <ANY y ", lt(x:expr, y:subquery)]

j forany[\ x >ANY y ", gt(x:expr, y:subquery)]

j forany[\ x <=ANY y ", lteq(x:expr, y:subquery)]

j forany[\ x >=ANY y ", gteq(x:expr, y:subquery)]

172

j forany[\ x =SOME y ", eq(x:expr, y:subquery)]

j forany[\ x <>SOME y ", neq(x:expr, y:subquery)]

j forany[\ x <SOME y ", lt(x:expr, y:subquery)]

j forany[\ x >SOME y ", gt(x:expr, y:subquery)]

j forany[\ x <=SOME y ", lteq(x:expr, y:subquery)]

j forany[\ x >=SOME y ", gteq(x:expr, y:subquery)]

j forall[\ x =ALL y ", eq(x:expr, y:subquery)]

j forall[\ x <>ALL y ", neq(x:expr, y:subquery)]

j forall[\ x <ALL y ", lt(x:expr, y:subquery)]

j forall[\ x >ALL y ", gt(x:expr, y:subquery)]

j forall[\ x <=ALL y ", lteq(x:expr, y:subquery)]

j forall[\ x >=ALL y ", gteq(x:expr, y:subquery)]

;

tsql2aggr = count[\ count s (*) ", NULL, s:aggrstrm]

j count[\ count s (x) ", x:smexpr, s:aggrstrm]

j max[\ max s (x) ", x:smexpr, s:aggrstrm]

j min[\ min s (x) ", x:smexpr, s:aggrstrm]

j avg[\ avg s (x) ", x:smexpr, s:aggrstrm]

j sum[\ sum s (x) ", x:smexpr, s:aggrstrm]

j count[\ count s (e) ", e:eventexpr, s:aggrstrm]

j count[\ count s (i) ", i:intrvlexpr, s:aggrstrm]

j count[\ count s (sx) ", sx:spanexpr, s:aggrstrm]

j max[\ max s (e) ", e:eventexpr, s:aggrstrm]

j min[\ min s (e) ", e:eventexpr, s:aggrstrm]

j avg[\ avg s (e) ", e:eventexpr, s:aggrstrm]

j max[\ max s (sx) ", sx:spanexpr, s:aggrstrm]

j min[\ min s (sx) ", sx:spanexpr, s:aggrstrm]

j avg[\ avg s (sx) ", sx:spanexpr, s:aggrstrm]

j sum[\ sum s (sx) ", sx:spanexpr, s:aggrstrm]

;

aggrstrm = unique[\ DISTINCT ", NULL]

j noop[\ ALL ", NULL]

j epsilon

;

expr = add[\ x + y ", x:expr, y:expr]

j sub[\ x - y ", x:expr, y:expr]

j mul[\ x * y ", x:expr, y:expr]

j div[\ x / y ", x:expr, y:expr]

173

j div[\ s0 / s1 ", s0:spanexpr, s1:spanexpr]

j uminus[\ - x ", x:expr]

j noop[\ (x) ", x:expr]

j attribute

j Numeric

j String

;

smexpr = expr

f is arith expr(); g

;

subquery = noop[\ (x) ", x:select]

;

Numeric = Integer

j Real

j tsql2aggr

;

Integer = sgndint

j unsgndint

;

sgndint = str2int[`-[1-9]+[0-9]*']

;

unsgndint = str2int[`[1-9]+[0-9]*']

;

Real = str2real[` [0-9]*.[0-9]+ ']

j str2real[` [0-9]+.[0-9]* ']

;

timecompare = lt[\ s0 < s1 ", s0:spanexpr, s1:spanexpr]

j lteq[\ s0 <= s1 ", s0:spanexpr, s1:spanexpr]

j gt[\ s0 > s1 ", s0:spanexpr, s1:spanexpr]

j gteq[\ s0 >= s1 ", s0:spanexpr, s1:spanexpr]

j eq[\ s0 = s1 ", s0:spanexpr, s1:spanexpr]

j sametime[\ t0 = t1 ", t0:element, t1:element]

j sametime[\ a0 MEETS a1 ", endof(a0:element),

beginof(a1:element)]

j precede[\ a0 PRECEDES a1 ", a0:element, a1:element]

j overlapb[\ a0 OVERLAPS a1 ", a0:element, a1:element]

j and[\ a0 CONTAINS a1 ",

lteq(beginof(a0:element),beginof(a1:element)),

174

gteq(endof(a0:element),endof(a1:element))]

;

element = eventexpr

j intrvlexpr

j overlapt[\ INTERSECT (e0 , e1) ", e0:element, e1:element]

;

eventexpr = sub[\ e - s ", e:eventexpr, s:spanexpr]

j add[\ e + s ", e:eventexpr, s:spanexpr]

j add[\ s + e ", s:spanexpr, e:eventexpr]

j earliest[\ FIRST (e0 , e1) ", e0:eventexpr, e1:eventexpr]

j latest[\ LAST (e0 , e1) ", e0:eventexpr, e1:eventexpr]

j beginof[\ BEGIN (e) ", e:element]

j endof[\ END (e) ", e:element]

j Event

;

Event = event[\ j d j ", d:fulldate]

j event[\ j e j ", e:eventconv]

j event[\ j r j ", r:relation]

j event[\ j a j ", a:attribute]

j sql2date

j sql2tmstmp

;

eventconv = str2event[` beginning ']

j str2event[` forever ']

j str2event[` present ']

j str2event[` current date ']

j str2event[` current timestamp ']

;

intrvlexpr = extend[\ i - s ", i:intrvlexpr, s:spanexpr]

j extend[\ s + i ", s:spanexpr, i:intrvlexpr]

j extend[\ i + s ", i:intrvlexpr, s:spanexpr]

j earliest[\ FIRST (i0 , i1) ",i0:intrvlexpr,i1:intrvlexpr]

j latest[\ LAST (i0 , i1) ", i0:intrvlexpr, i1:intrvlexpr]

j Interval

;

Interval = intervalc[\ [p] ", p:partdate, NULL]

j intervalo[\ [p) ", p:partdate, NULL]

j intervalc[\ [e0 , e1] ", e0:eventexpr, e1:eventexpr]

175

j intervalo[\ [e0 , e1) ", e0:eventexpr, e1:eventexpr]

j intervalc[\ [e0 TO e1] ", e0:eventexpr, e1:eventexpr]

j intervalo[\ [e0 TO e1) ", e0:eventexpr, e1:eventexpr]

j intervalc[\ [r] ", r:relation, NULL]

j intervalc[\ [a] ", a:attribute, NULL]

;

spanexpr = add[\ s0 + s1 ", s0:spanexpr, s1:spanexpr]

j div[\ spx / sqx ", spx:spanexpr, sqx:expr]

j sub[\ s0 - s1 ", s0:spanexpr, s1:spanexpr]

j sub[\ e0 - e1 ", e0:eventexpr, e1:eventexpr]

j sub[\ spx - sqx ", spx:spanexpr, sqx:expr]

j sub[\ sqx - spx ", sqx:expr, spx:spanexpr]

j mul[\ spx * sqx ", spx:spanexpr, sqx:expr]

j mul[\ sqx * spx ", sqx:expr, spx:spanexpr]

j span[\ SPAN (i) ", i:intrvlexpr,NULL]

j abs[\ ABSOLUTE (s) ", s:spanexpr]

j noop[\ (s) ", s:spanexpr]

j uminus[\ - s ", s:spanexpr]

j Span

;

Span = noop[\ % s % ", s:spanconv]

j span[\ % i s % ", i:Integer, s:spanconv]

j span[\ % d % ", d:grgrndate, NULL]

j span[\ % r % ", r:relation, NULL]

j span[\ % a % ", a:attribute, NULL]

j sql2span

;

spanconv = str2span[` day ']

j str2span[` week ']

j str2span[` month ']

j str2span[` year ']

;

grgrndate = fulldate

j partdate

;

fulldate = grgrndate[\ m / d / y ",m:unsgndint,d:unsgndint,y:unsgndint]

j grgrndate[\ m d , y ", str2mon(m:String), d:unsgndint,

y:unsgndint]

176

;

partdate = grgrndate[\ m , y ", str2mon(m:String), NULL, y:unsgndint]

;

sql2span = uspan[\ INTERVAL ` y - m ' u0 TO u1 ",

y:unsgndint, m:unsgndint, u0:spanunit, u1:spanunit]

j uspan[\ INTERVAL ` y - m ' u ", y:unsgndint,

m:unsgndint, u:spanunit, u:spanunit]

j uspan[\ INTERVAL ` mdy ' u ", mdy:unsgndint, NULL,

u:spanunit, u:spanunit]

;

spanunit = str2str[` YEAR ']

j str2str[` MONTH ']

j str2str[` DAY ']

;

sql2date = event[\ DATE ` yy - mm - dd ' ",

grgrndate(mm:unsgndint, yy:unsgndint, dd:unsgndint)]

;

sql2tmstmp = event[\ TIMESTAMP ` yy - mm - dd ' ",

grgrndate(mm:unsgndint, yy:unsgndint, dd:unsgndint)]

;

%left UNION EXCEPT

%left INTERSECT

%left `+' `-'

%left `*' `/'

%left OR

%left AND

%right NOT

177

Appendix E

Quel: Speci�cation

BEGIN CONTEXT X

agcol : whereaggrcol;

attrlst : attr list;

bylist : attr list;

proj list: attr list;

rel list : relation list;

updlist : assgnlst;

xpr : expr list;

END CONTEXT X

Quel = f newCNTXT(X); g

delete[\ DELETE r x ", r:unit rel list, x:delstrm]

f mergerelation(r,rel list); g

j f newCNTXT(X); g

insert[\ APPEND TO r y ",r:unit rel list,attrlst,y:insertstrm]

j f newCNTXT(X); g

update[\REPLACE r y",r:unit rel list,updlist,y:updatestrm]

f mergerelation(r,rel list); g

j dfnCORR[\ RANGE OF v IS r ", v:relation list, r:relation]

j f newCNTXT(X); g

noop[\ RETRIEVE x ",x:retstmt]

;

retstmt = create[\ INTO x y ", x:relation, y:insertstrm]

j printstream[\ x ", x:display]

;

178

display = unique[\ UNIQUE r ", r:rename]

j rename

;

rename = rename[\ (p c ", p:renamelst,c:process1]

;

process1 = noop[\) c ",c:proc cycl1]

;

proc cycl1 = compute[rewrite(xpr,[add,sub,div,mul,uminus,str2int,str2real],x),

x:expr list, proc cycl1]

j aggregate[rewrite(xpr,[count,min,max,avg,sum,�lter,aggregate,

groupby,gt,ge,lt,le,eq,str2int,str2real],x), x:expr list, proc cycl1]

j noop[is attr list(xpr), retstrm1]

;

renamelst = list[, , \,", retcolumn, NE]

;

retcolumn = noop[\ x = y ", x:String]

f y:quelexpr;

linknode(xpr,y);

g

j noop[\ x = y ", x:String]

f y:String;

linknode(xpr,y);

g

j noop[\ y ", NULL]

f y:quelexpr;

linknode(xpr,y);

g

;

retstrm1 = retrieve[\ w ", rel list, xpr, w:where, NULL]

;

where = noop[\ WHERE x ", x:wpredicate]

j epsilon

;

delstrm = retrieve[\ w ",rel list,NULL,w:where,NULL]

;

insertstrm = noop[\ (p j ", j:process2]

f p:insertlst;

skip();

179

g

;

insertlst = list[, , \,", insertcol, NE]

;

insertcol = noop[\ x = y ", x:iattr]

f y:String;

z:attr list;

linknode(xpr,y);

extattr(x,z);

mergeattr(z, attrlst);

g

j noop[\ x = y ", x:iattr]

f y:quelexpr;

z:attr list;

linknode(xpr,y);

extattr(y,z);

mergeattr(z, proj list);

extattr(x,z);

mergeattr(z, attrlst);

g

;

process2 = noop[\) c ",c:proc cycl2]

;

proc cycl2 = compute[rewrite(xpr,[add,sub,div,mul,uminus,str2int,str2real,

str2str],x),x:expr list, proc cycl2]

j aggregate[rewrite(xpr,[count,min,max,avg,sum,�lter,groupby,

gt,ge,lt,le,eq,str2int,str2real,str2str],x), x:expr list, proc cycl2]

j noop[is attr list(xpr), retstrm2]

;

retstrm2 = retrieve[\ WHERE w ", rel list, xpr, w:wpredicate, NULL]

j epsilon

;

compare = lteq[\ x <= y ", x:quelval, y:quelval]

j gteq[\ x >= y ", x:quelval, y:quelval]

j neq[\ x != y ", x:quelval, y:quelval]

j gt[\ x > y ", x:quelval, y:quelval]

j lt[\ x < y ", x:quelval, y:quelval]

j eq[\ x = y ", x:quelval, y:quelval]

180

;

quelval = quelexpr

j String

;

predicate = not[\ NOT x ", x:predicate]

j and[\ x AND y ", x:predicate, y:predicate]

j or[\ x OR y ", x:predicate, y:predicate]

j noop[\ (x) ", x:predicate]

j compare

j Boolean

;

expr list = list[, , \,", quelexpr, NE]

;

smexpr = add[\ x + y ", x:smexpr, y:smexpr]

j sub[\ x - y ", x:smexpr, y:smexpr]

j mul[\ x * y ", x:smexpr, y:smexpr]

j div[\ x / y ", x:smexpr, y:smexpr]

j uminus[\ - x ", x:smexpr]

j noop[\ (x) ", x:smexpr]

j LitNumeric

j attribute

;

quelexpr = add[\ x + y ", x:quelexpr, y:quelexpr]

j sub[\ x - y ", x:quelexpr, y:quelexpr]

j mul[\ x * y ", x:quelexpr, y:quelexpr]

j div[\ x / y ", x:quelexpr, y:quelexpr]

j uminus[\ - x ", x:quelexpr]

j noop[\ (x) ", x:quelexpr]

j Numeric

j attribute

;

subquery = groupby[\ xpr BY g w",g:attr list, w:substream]

j retrieve[\ xpr w ",rel list,xpr,w:where,NULL]

;

substream = retrieve[\ w ",rel list,xpr,w:where,NULL]

;

quelaggr = avg[\ AVG (e b) ", e:aggrexpr, b:aggrgrp]

j count[\ COUNT (e b) ", e:aggrexpr, b:aggrgrp]

181

j max[\ MAX (e b) ", e:aggrexpr, b:aggrgrp]

j min[\ MIN (e b) ", e:aggrexpr, b:aggrgrp]

j sum[\ SUM (e b) ", e:aggrexpr, b:aggrgrp]

j avg[\ AVGU (e b) ", e:aggrexpr, unique(b:aggrgrp)]

j count[\ COUNTU (e b) ", e:aggrexpr, unique(b:aggrgrp)]

j sum[\ SUMU (e b) ", e:aggrexpr, unique(b:aggrgrp)]

;

aggrgrp = groupby[\ BY a w ", a:attr list, w:select]

j select

j quelaggr

;

aggrexpr = smexpr

j epsilon

;

select = �lter[\ WHERE x ", x:predicate, NULL]

j epsilon

;

attr list = list[, , \,", attribute, NE]

;

iattr = attr name

j attribute[\ r. a ", r:unit rel list, a:attr name]

;

attribute = attribute[\ r. a ", r:unit rel list, a:attr name]

f mergerelation(r,rel list); g

;

updatestrm = retrieve[\(updlist) w",rel list,NULL,w:where,NULL]

;

assgnlst = list[, , \,", assgn, NE]

;

assgn = assign[\ x = y ", x:attribute, y:quelval]

f z:attr list;

extattr(y,z);

mergeattr(z, proj list);

linknode(xpr,y);

g

;

String = str2str[` \\[a-zA-Z0-9 ;.,-]+\" ']

;

182

attr name = str2attr[` [a-z][a-zA-Z0-9]* ']

;

relation list = list[, , \," , relation, NE]

;

unit rel list = list[, , \," , relation, unit]

;

relation = str2rel[` [A-Z][a-zA-Z0-9]* ']

;

Boolean = str2Boolean[`true']

j str2Boolean[`false']

;

LitNumeric = Int

j Real

;

Numeric = LitNumeric

j quelaggr

;

Int = str2int[`[0-9]+']

j str2int[`-[1-9]+[0-9]*']

;

Real = str2real[` [0-9]*.[0-9]+ ']

j str2real[` [0-9]+.[0-9]* ']

;

wpredicate = not[\ NOT x ", x:wpredicate]

j and[\ x AND y ", x:wpredicate, y:wpredicate]

j or[\ x OR y ", x:wpredicate, y:wpredicate]

j noop[\ (x) ", x:wpredicate]

j wcompare

j Boolean

;

wcompare = lteq[\ x <= y ", x:wquelval, y:wquelval]

j gteq[\ x >= y ", x:wquelval, y:wquelval]

j neq[\ x != y ", x:wquelval, y:wquelval]

j gt[\ x > y ", x:wquelval, y:wquelval]

j lt[\ x < y ", x:wquelval, y:wquelval]

j eq[\ x = y ", x:wquelval, y:wquelval]

;

wquelval = wquelexpr

183

j String

;

wquelexpr = add[\ x + y ", x:wquelexpr, y:wquelexpr]

j sub[\ x - y ", x:wquelexpr, y:wquelexpr]

j mul[\ x * y ", x:wquelexpr, y:wquelexpr]

j div[\ x / y ", x:wquelexpr, y:wquelexpr]

j uminus[\ - x ", x:wquelexpr]

j f newCNTXT(X); g

boolean2int[\ ANY (x) ", exists(x:subquery)]

f enforcescope(\X",\rel list"); g

j noop[\ (x) ", x:wquelexpr]

j wNumeric

j attribute

;

wNumeric = LitNumeric

j f newCNTXT(X); g

aggregate[\ w s ",w:whereaggrlst,s:subqret]

f revise dummy(bylist,s); g

;

whereaggrlst = list[, , \," , whereaggr, unit]

;

whereaggr = avg[\ AVG ", agcol, NULL]

j count[\ COUNT ", agcol, NULL]

j max[\ MAX ", agcol, NULL]

j min[\ MIN ", agcol, NULL]

j sum[\ SUM ", agcol, NULL]

j avg[\ AVGU ", agcol, unique(NULL)]

j count[\ COUNTU ", agcol, unique(NULL)]

j sum[\ SUMU ", agcol, unique(NULL)]

;

subqret = retrieve[\(agcol BY bylist w)",rel list,aggr lst,w:where,NULL]

f aggr lst:attr list;

extattr(agcol,aggr lst);

g

j whereaggr

j retrieve[\ (agcol) ",rel list,aggr lst,NULL,NULL]

f aggr lst:attr list;

extattr(agcol,aggr lst);

184

extrels(agcol,rel list);

g

;

whereaggrcol = attribute[\ r. a ", r:unit rel list, a:attr name]

j epsilon

;

%right NOT

%left AND

%left OR

%left `*' `/'

%left `+' `-'

185

Appendix F

TQuel: Speci�cation

BEGIN CONTEXT X

rtt : rettuple;

urel list : unit rel list;

rel list : relation list;

all attr : attr list;

proj list : attr list;

xpr : expr list;

END CONTEXT X

TQuel = f newCNTXT(X); g

tmdelete[\ DELETE urel list x ", urel list, x:valid3]

f a:attr list;

get all attr(urel list,all attr);

g

j f newCNTXT(X); g

tminsert[\ APPEND TO urel list y ",urel list, NULL,

y:insertstrm]

f a:attr list;

get all attr(urel list,all attr);

g

j f newCNTXT(X); g

tmupdate[\ REPLACE urel list y ",urel list, NULL,

y:updatestrm]

f a:attr list;

get all attr(urel list,all attr);

186

g

j f newCNTXT(X); g

noop[\ RETRIEVE x ",x:retstmt]

j dfnCORR[\ RANGE OF v IS r ", v:relation list, r:relation]

;

retstmt = create[\ INTO x y ", x:relation, y:rename]

j printstream[\ x ", x:display]

;

display = unique[\ UNIQUE r ", coalesce(r:rename,NULL,NULL)]

j sort[\ r SORT BY a ", a:attr list, r:rename]

j rename

;

rename = rename[\ (p c ", p:rettuple,c:process1]

;

process1 = noop[\) c ",c:proc cycl1]

;

proc cycl1 = compute[rewrite(xpr,[add,sub,div,mul,uminus,str2int,str2rel,

validat,validfrom,validto,xactionstart,xactionstop],x),

x:expr list, proc cycl1]

j aggregate[rewrite(xpr,[count,min,max,avg,sum,�lter,groupby,

gt,ge,lt,le,eq,str2int],x),x:expr list,proc cycl1]

j noop[is attr list(xpr), valid1]

;

rettuple = list[, , \,", retcolumn, NE]

;

retcolumn = noop[\ x = y ", x:String]

f y:tquelval;

linknode(xpr,y);

linkcopy(proj list,x);

g

j noop[\ x = y ", x:iattr]

f y:tquelval;

linknode(xpr,y);

linkcopy(proj list,x);

g

j noop[\ a ", NULL]

f a:attribute;

linknode(xpr,a);

187

linkcopy(proj list,a);

g

;

iattr = attr name

j attribute[\ r. a ", r:unit rel list, a:attr name]

;

retstrm1 = retrieve[\ c ", rel list, xpr, c:retcond,NULL]

;

retcond = and[\ w n a ", a:asof, and(n:when, w:where)]

;

delstrm = retrieve[\ y ",rel list,all attr,y:modcond,NULL]

;

insertstrm = rename[\ (j ", proj list, j:valid2]

;

process2 = noop[\ rtt) c ",c:proc cycl2]

;

proc cycl2 = compute[rewrite(xpr,[add,sub,div,mul,uminus,str2int,str2real,

str2str],x),x:expr list, proc cycl2]

j aggregate[rewrite(xpr,[count,min,max,avg,sum,�lter,groupby,

gt,ge,lt,le,eq,str2int],x), x:expr list, proc cycl2]

j noop[is attr list(xpr), retstrm2]

;

retstrm2 = retrieve[\ w ", rel list, all attr, w:modcond, NULL]

j epsilon

;

modcond = and[\ w n ", asof(\now",NULL), and(n:modwhen, w:where)]

;

where = noop[\ WHERE x ", x:predicate]

j epsilon

;

predicate = not[\ NOT x ", x:predicate]

j and[\ x AND y ", x:predicate, y:predicate]

j or[\ x OR y ", x:predicate, y:predicate]

j noop[\ (x) ", x:predicate]

j compare

j Boolean

;

compare = lteq[\ x <= y ", x:tquelval, y:tquelval]

188

j gteq[\ x >= y ", x:tquelval, y:tquelval]

j neq[\ x ! = y ", x:tquelval, y:tquelval]

j gt[\ x > y ", x:tquelval, y:tquelval]

j lt[\ x < y ", x:tquelval, y:tquelval]

j eq[\ x = y ", x:tquelval, y:tquelval]

;

tquelval = tquelexpr

j temporalfn

j String

;

tquelexpr = add[\ x + y ", x:tquelexpr, y:tquelexpr]

j sub[\ x - y ", x:tquelexpr, y:tquelexpr]

j mul[\ x * y ", x:tquelexpr, y:tquelexpr]

j div[\ x / y ", x:tquelexpr, y:tquelexpr]

j uminus[\ - x ", x:tquelexpr]

j noop[\ (x) ", x:tquelexpr]

j exists[\ ANY (x) ", x:tquelexpr]

j Numeric

j attribute

;

temporalfn = xactionstart[\ transactionstart (r) ", r:relation]

j xactionstop[\ transactionstop (r) ", r:relation]

j validat[\ validat (r) ", r:relation]

j validfrom[\ validfrom (r) ", r:relation]

j validto[\ validto (r) ", r:relation]

;

tquelaggr = count[\ COUNT (e b) ", e:tquelexpr, b:aggrgrp]

j avg[\ AVG (e b) ", e:tquelexpr, b:aggrgrp]

j sum[\ SUM (e b) ", e:tquelexpr, b:aggrgrp]

j max[\ MAX (e b) ", e:tquelexpr, b:aggrgrp]

j min[\ MIN (e b) ", e:tquelexpr, b:aggrgrp]

j count[\ COUNTU (e b) ", e:tquelexpr, unique(b:aggrgrp)]

j avg[\ AVGU (e b) ", e:tquelexpr, unique(b:aggrgrp)]

j sum[\ SUMU (e b) ", e:tquelexpr, unique(b:aggrgrp)]

;

aggrgrp = groupby[\ BY a w ", a:attr list, w:select]

j select

;

189

select = �lter[\ WHERE x ", x:predicate, NULL]

j epsilon

;

attr list = list[, , \,", attribute, NE]

;

attribute = attr name

j attribute[\ r. a ", r:unit rel list, a:attr name]

f mergerelation(r,rel list); g

;

attr name = str2attr[` [a-z][a-zA-Z0-9]* ']

;

relation list = list[, , \," , relation, NE]

;

unit rel list = list[, , \," , relation, unit]

;

relation = str2rel[` [A-Z][a-zA-Z0-9]* ']

;

String = str2str[` \\[a-zA-Z0-9 ;.,-]+\" ']

;

Boolean = str2Boolean[`true']

j str2Boolean[`false']

;

Numeric = LitNumeric

j tquelaggr

;

LitNumeric = Int

j Real

;

Int = str2int[`[1-9]+[0-9]*']

;

Real = str2real[` [0-9]*.[0-9]+ ']

j str2real[` [0-9]+.[0-9]* ']

;

expr list = list[, , \,", tquelexpr, NE]

;

updatestrm = rename[\ (a p ", a:assgnlst,p:process3]

;

process3 = noop[\) p ",p:proc cycl3]

190

;

proc cycl3 = compute[rewrite(xpr,[add,sub,div,mul,uminus,str2int,str2str,

str2real],x),x:expr list, proc cycl3]

j aggregate[rewrite(xpr,[count,min,max,avg,sum,�lter,groupby,

gt,ge,lt,le,eq],x), x:expr list, proc cycl3]

j noop[is attr list(xpr), valid4]

;

assgnlst = list[, , \,", assgn, NE]

;

assgn = noop[\ x = y ", x:String]

f y:tquelval;

linknode(xpr,y);

linkcopy(proj list,x);

g

;

when = when[\ WHEN tp ",tp:tpred]

j when[\ e ", overlapt(i,\now")]

f e:epsilon;

i:i expr;

gen expr(rel list,\overlapt",\left",i);

g

;

modwhen = when[\ WHEN tp ",tp:tpred]

j when[\ e ", overlapt(i,\now")]

f e:epsilon;

i:i expr;

mergerelation(urel list,rel list);

gen expr(rel list,\overlapt",\left",i);

g

;

valid1 = valid[\ VALID AT e r ",e:e expr,NULL,r:retstrm1]

j valid[\ VALID FROM i TO k r ",i:e expr,k:e expr,r:retstrm1]

j valid[\ r ", i, NULL, r:retstrm1]

f i:i expr;

gen expr(rel list,\overlapt",\left",i);

g

;

valid2 = valid[\ VALID AT e r ",e:e expr,NULL,r:process2]

191

j valid[\ VALID FROM i TO k r ",i:e expr,k:e expr,r:retstrm2]

j valid[\ r ", \now", \forever", r:process2]

;

valid3 = valid[\ VALID AT e r ",e:e expr,NULL,r:delstrm]

j valid[\ VALID FROM i TO k r ",i:e expr,k:e expr,r:delstrm]

j valid[\ r ", \now", endof(urel list), r:delstrm]

;

valid4 = valid[\ VALID AT e r ",e:e expr,NULL,r:retstrm2]

j valid[\ VALID FROM i TO k r ",i:e expr,k:e expr,r:retstrm2]

j valid[\ r ", \now", endof(urel list), r:retstrm2]

;

asof = asof[\ AS OF a ",a:e expr,NULL]

j asof[\ AS OF a ",a:interval,NULL]

j asof[\ AS OF a THROUGH b ",a:e expr,b:e expr]

j asof[\ e ", \now", NULL]

f e:epsilon; skip(); g

;

tpred = precede[\ a PRECEDE b ", a:evnt intrvl,b:evnt intrvl]

j overlapb[\ a OVERLAPB b ",a:evnt intrvl, b:evnt intrvl]

j sametime[\ a EQUAL b ", a:evnt intrvl,b:evnt intrvl]

j and[\ x AND y ", x:tpred, y:tpred]

j or[\ x OR y ", x:tpred, y:tpred]

j not[\ NOT x ", x:tpred]

j noop[\ (x) ", x:tpred]

;

i expr = overlapt[\ a OVERLAPI b ", a:evnt intrvl,b:evnt intrvl]

j extend[\ a EXTEND b ", a:evnt intrvl,b:evnt intrvl]

j noop[\ (i) ", i:i expr]

j interval

;

e expr = beginof[\ BEGIN OF e ", e:evnt intrvl]

j endof[\ END OF e ", e:evnt intrvl]

j noop[\ (e) ", e:e expr]

;

evnt intrvl = i expr

j e expr

;

interval = tconst1

192

j relation

j String

;

tconst1 = str2str[` NOW ']

j str2str[` FOREVER ']

j str2str[` BEGINNING ']

;

%right NOT BEGIN END OF

%left OVERLAPB OVERLAPI EXTEND

%left PRECEDE EQUAL

%left AND OR

%left `*' `/'

%left `+' `-'

193

Bibliography

[Ara88] G. Arango. Domain Engineering for Software Reuse. PhD thesis, Uni-

versity of California Irvine, 1988.

[Ara89] G. Arango. Domain analysis - from art form to engineering discipline.

Software Engineering Notes, pages 152{159, May 1989.

[ASU86] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques,

and Tools. Addison Wesley Publishing Company, Inc., 1986.

[Bat87a] D. Batory. Extensible cost models and query optimization in Genesis.

Database Engineering, pages 206{212, November 1987.

[Bat87b] D. Batory. Principles of database management system extensibility.

Database Engineering, pages 100{106, June 1987.

[Bat88] D. Batory. Building blocks of database management systems. Technical

Report TR-87-23, The University of Texas at Austin, February 1988.

[BBG+90] D. Batory, J. Barnett, J. Garza, K. Smith, K. Tsukuda, B. Twichell,

and T. Wise. Genesis: An extensible database management system. In

S. Zdonik and D. Maier, editors, Readings in Object Oriented Database

Systems, chapter 7.4. Morgan Kaufman, 1990.

[BG89] L. Becker and R. G�uting. Rule-based optimization and query process-

ing in an extensible geometric database system. Technical Report CS

Technical Report 312, Universit�at Dortmund, August 1989.

[BLW88] D. Batory, T. Leung, and T. Wise. Implementation concepts for an ex-

tensible data model and data language. ACM Transactions on Database

Systems, 13(3):231{262, September 1988.

[Car87] M. Carey, editor. IEEE Database Engineering Special Issue on Extensi-

ble Database Systems. IEEE Computer Society, June 1987.

194

[CDG+90] M. Carey, D. DeWitt, G. Graefe, D. Haight, J. Richardson, D. Schuh,

E. Shekita, and S. Vandenberg. The EXODUS extensible DBMS project:

An overview. In S. Zdonik and D. Maier, editors, Readings in Object

Oriented Database Systems, chapter 7.3. Morgan Kaufman, 1990.

[CDV87] M. Carey, D. DeWitt, and S. Vandenberg. A data model and query

language for EXODUS. Technical Report CS Technical Report 734,

University of Wisconsin, December 1987.

[CHHP91] J. Cordy, C. Halpern-Hamu, and E. Promislow. TXL: A rapid proto-

typing system for programming language dialects. Computer Languages,

pages 97{107, January 1991.

[Dat84] C. J. Date. A critique of the SQL database language. SIGMOD Record,

pages 8{54, September 1984.

[Dat87] C. J. Date. A Guide to Ingres, chapter 4. Addison Wesley Publishing

Company, Inc., 1987.

[Dev92] P. Devanbu. Genoa|a customizable, language- and front-end indepen-

dent code analyzer. In Proceedings of the Fourteenth International Con-

ference on Software Engineering, pages 307{319, 1992.

[DRW94] P. Devanbu, D. Rosenblum, and A. Wolf. Automated construction of

testing and analysis tools. In Proceedings of the Sixteenth International

Conference on Software Engineering, 1994.

[DS86] U. Dayal and J. Smith. PROBE: A knowledge-oriented database man-

agement system. In M. Brodie and J. Mylopoulos, editors, On Knowl-

edge Base Management Systems, chapter 19. Springer-Verlag, 1986.

[DS91] C. Donnelly and R. Stallman. BISON The YACC-Compatible Parser

Generator, December 1991. on-line documentation for Bison Version

1.16.

[Gar90] D. Garlan. The role of formal reusable frameworks. In Proceedings

of the ACM SIGSOFT International Workshop on Formal Methods in

Software Development, pages 42{44, May 1990.

[GCK+89] G. Gardarin, J-P. Cheiney, G. Kiernan, D. Pastre, and H. Stora. Man-

aging complex objects in an extensible relational DBMS. In Proceedings

of the Fifteenth International Conference on Very Large Data Bases,

pages 55{65, 1989.

195

[GD87] G. Graefe and D. DeWitt. The EXODUS optimizer generator. In ACM

SIGMOD, pages 160{172, 1987.

[GG86] R. Griswold and M. Griswold. The Implementation of the Icon Pro-

gramming Language. Princeton University Press, 1986.

[GHL+92] R. Gray, V. Heuring, S. Levi, A. Sloane, and W. Waite. Eli: A complete,

exible compiler construction system. Communications of the ACM,

pages 121{131, February 1992.

[Gog89] J. Goguen. Principles of parameterized programming. In T. Biggersta�

and A. Perlis, editors, Software Reusability, vol. 1, chapter 7. Addison

Wesley Publishing Company, Inc., 1989. ACM Press Frontier Series;

NY, NY.

[Gut89] R. Guting. Gral: An extensible relational database system for geometric

applications. In Proceedings of the Fifteenth International Conference

on Very Large Data Bases, pages 33{44, 1989.

[HCF+88] L.M. Haas, W.F. Cody, J.C. Freytag, G. Lapis, B.G. Lindsay, G.M.

Lohman, K. Ono, and H. Pirahesh. An extensible processor for an

extended relational query language. Technical Report RJ 6182 (60892),

IBM Almaden Research Center, April 1988.

[Hen77a] G. Hendrix. Human engineering for applied natural language processing.

In International Joint Conference on Arti�cial Intelligence, pages 183{

191, 1977.

[Hen77b] G. Hendrix. LIFER: A natural language interface facility. SIGART

Newsletter, pages 25{26, February 1977.

[Hen77c] G. Hendrix. The LIFER manual|a guide to building practical natural

language interfaces. Technical Report Technical Note 138, SRI Interna-

tional, Menlo Park, CA, 1977.

[HFLP89] L. Haas, J. Freytag, G. Lohman, and H. Pirahesh. Extensible query

processing in Starburst. In ACM SIGMOD, pages 377{388, May 1989.

also, IBM Almaden Tech Report RJ 6610 (63921) 12/21/88.

[HSSS78] G. Hendrix, E. Sacerdoti, D. Sagalowicz, and J. Slocum. Developing

a natural language interface to complex data. ACM Transactions on

Database Systems, pages 105{147, June 1978.

196

[HSW75] G. Held, M. Stonebraker, and E. Wong. Ingres|a relational database

system. In National Computer Conference, pages 409{416, 1975.

[ISO72] ISO. ISO Recommendation R1538, Programming Language ALGOL,

�rst edition, March 1972.

[Jen94] C. Jensen. A consensus glossary of temporal database concepts. SIG-

MOD Record, pages 52{64, March 1994.

[Joh86] S. Johnson. Yacc: Yet another compiler compiler. In UNIX Program-

mer's Manual: Supplementary Documents 1. University of California,

Berkeley, 1986.

[JW78] K. Jensen and N. Wirth. Pascal: User Manual and Report. Springer-

Verlag, second edition, 1978.

[KBB+87] W. Kim, N. Ballou, J. Banerjee, H. Chou, J. Garza, and D. Woelk. Fea-

tures of the ORION object-oriented database system. Technical Report

ACA-ST-308-87, Microelectronics and Computer Technology Corpora-

tion, September 1987.

[KR78] B. Kernighan and D. Ritchie. The C Programming Language. Prentice-

Hall Inc., 1978.

[KS86] H. Korth and A. Silberschatz. Database System Concepts. McGraw-Hill

Book Company, 1986.

[LLPS91] G. Lohman, B. Lindsay, H. Pirahesh, and K. Schiefer. Extensions to

Starburst: Objects, types, functions, and rules. Communications of the

ACM, pages 94{109, October 1991.

[LMP87] B. Lindsay, J. McPherson, and H. Pirahesh. A data management exten-

sion architecture. In ACM SIGMOD, pages 220{226, May 1987.

[LR89] J. Lingat and C. Rolland. PROQUEL: a PROgramming QUEry Lan-

guage. In Proceedings of the Second International Workshop on Database

Programming Languages, pages 281{295, 1989.

[LS86] M. Lesk and E. Schmidt. Lex|a lexical analyzer generator. In UNIX

Programmer's Manual: Supplementary Documents 1. University of Cal-

ifornia, Berkeley, 1986.

197

[Man88] N. Mano. Modeling of data-processing software for generating and

reusing their programs. In Proceedings of the Tenth International Con-

ference on Software Engineering, pages 231{240, April 1988.

[MD90] F. Manola and U. Dayal. PDM: An object-oriented data model. In

S. Zdonik and D. Maier, editors, Readings in Object Oriented Database

Systems, chapter 3.4. Morgan Kaufman, 1990.

[Nei84] J. Neighbors. The Draco approach to constructing software from

reusable components. IEEE Transactions on Software Engineering,

pages 564{574, September 1984.

[PDA91] R. Prieto-Diaz and G. Arango. Domain Analysis and Software Systems

Modeling. IEEE Computer Society Press, 1991.

[RKB88] M. Roth, H. Korth, and D. Batory. SQL/NF: A query language for

:1NF relational databases. Information Systems, 12(1):99{114, 1988.

[RKS85] M. Roth, H. Korth, and A. Silberschatz. Null values in :1NF rela-

tional databases. Technical Report TR-85-32, The University of Texas

at Austin, December 1985.

[RKS88] M. Roth, H. Korth, and A. Silberschatz. Extended algebra and cal-

culus for nested relational databases. ACM Transactions on Database

Systems, 13(4):389{417, December 1988.

[RKS89] M. A. Roth, H. F. Korth, and A. Silberschatz. Null values in nested

relational databases. Acta Informatica, 26(7):615{642, September 1989.

[RS87] L. Rowe and M. Stonebraker. The Postgres data model. In Proceedings

of the Thirteenth International Conference on Very Large Data Bases,

pages 83{96, 1987.

[Ser86] Servio Logic Development Corporation, Beaverton, Oregon. Program-

ming in OPAL, 1986.

[SHP88] M. Stonebraker, E. Hanson, and S. Potamianos. The Postgres rule man-

ager. IEEE Transactions on Software Engineering, 14(7):897{907, July

1988.

[SK91] M. Stonebraker and G. Kemnitz. The Postgres next-generation database

management system. Communications of the ACM, pages 78{93, Octo-

ber 1991.

198

[Sno87] R. Snodgrass. The temporal query language TQuel. ACM Transactions

on Database Systems, 12(2):247{298, June 1987.

[Sno94] R. Snodgrass. TSQL2 language speci�cation. SIGMOD Record, pages

65{86, March 1994.

[SR86] M. Stonebraker and L. Rowe. The design of Postgres. In ACM SIGMOD,

pages 340{355, 1986.

[SS87] A. Segev and A. Shoshani. Logical modeling of temporal data. In ACM

SIGMOD, pages 454{466, May 1987.

[Sto86a] M. Stonebraker. Inclusion of new types in relational database systems. In

Proceedings Second International Conference on Database Engineering,

February 1986.

[Sto86b] M. Stonebraker. Object management in Postgres using procedures.

In Proceedings of the 1986 International Workshop on Object-Oriented

Database Systems, September 1986.

[Sto87] M. Stonebraker. The design of the Postgres storage system. In Pro-

ceedings of the Thirteenth International Conference on Very Large Data

Bases, pages 289{300, 1987.

[SWKH76] M. Stonebraker, E. Wong, P. Kreps, and G. Held. The design and

implementation of Ingres. ACM Transactions on Database Systems,

1(3):189{222, September 1976.

[Ull82] J. Ullman. Principles of Database Systems, chapter 8. Computer Sci-

ence Press, Inc., second edition, 1982. chapter 6 on Relational Query

Languages.

[Ull88] J. Ullman. Principles of Database and Knowledge-Base Systems, pages

271{288. Computer Science Press, Inc., 1988. subchapters 2.7 on Object-

Oriented Data Model and 5.6-5.7 on OPAL.

[vdL89] R. van der Lans. The SQL Standard. Prentice Hall International, 1989.

[Zan83] C. Zaniolo. The database language GEM. In ACM SIGMOD, pages

207{218, 1983.

199

Vita

Emilia Elizabeth Villarreal was born in Aransas Pass, Texas, the daughter of Es-

peranza Villarreal and Francisco Villarreal. After graduation from McAllen High

School, she enrolled in the Massachusetts Institute of Technology, in Boston, Mas-

sachusetts, where she received the Bachelor of Science degree in February, 1980.

During the following years, she was employed at Technology + Economics in Cam-

bridge, Massachusetts and the Boston Consulting Group in Boston, Massachusetts.

In May, 1987 she received the Master of Science degree from The University of Texas

at Austin. Subsequently, she was employed at the Microelectronics and Computer

Technology Corporation, in Austin, Texas, and at International Business Machines

in Austin, Texas. She completed her doctoral work in August, 1994.

Permanent Address: 10120 Huer Huero Rd.

Creston, CA 93432

This dissertation was typeset with LATEX2
"

1 by the author.

1LATEX2
"
is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark of

the American Mathematical Society. The macros used in formatting this dissertation were written

by Dinesh Das, Department of Computer Sciences, The University of Texas at Austin.

200

