
Copyright

by

Vivek P. Singhal

1996

A Programming Language for Writing Domain-Specific

 Software System Generators

by

Vivek P. Singhal, S.B.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August 1996

A Programming Language for Writing Domain-Specific

 Software System Generators

Approved by
Dissertation Committee:

iv

Acknowledgments

This dissertation was possible only with the guidance, wisdom, encouragement,

and patience shown to me by Don Batory. He acted not only as advisor and mentor,

but also as a good friend. His hospitality and generosity will always be remem-

bered.

Thanks to the members of the Predator research group, for their insightful

criticisms and engaging debate: Dinesh Das, Marty Sirkin, and Jeff Thomas. I also

thank Sheetal Kakkad and Mark Johnstone, who always offered me assistance

whenever I needed it.

I greatly appreciate the steady stream of support and encouragement my

family gave to me over the years.

And finally, I could not have completed this work without the love and

devotion shown to me by Aparna, my future wife. Her unfailing patience gave me

the energy to finish what I started.

v

A Programming Language for Writing Domain-Specific

 Software System Generators

Publication No.

Vivek P. Singhal, Ph.D.

The University of Texas at Austin, 1996

Supervisor: Don S. Batory

Automating routine programming tasks is an effective way to increase the

productivity of software development. Software system generators have the poten-

tial to achieve this goal: customized software systems can be quickly and easily

assembled from component libraries. Our research demonstrates that for genera-

tors to be successful, component libraries must be scalable. Scalability enables

libraries to be small, because the components of the library implement distinct and

largely orthogonal features. These components can be combined to yield an enor-

mous family of software systems and subsystems. Generators thus become tools

for combining components to manufacture these systems and subsystems.

In GenVoca, the programming model that forms the foundation of our

research, components act as large-scale refinements which simultaneously trans-

form multiple classes from one abstraction to another. Because GenVoca advocates

a novel style of program organization, there is little language or tool support for

vi

this paradigm. We have developed a programming language called P++, which

extends C++ with specialized constructs to support the GenVoca model. It permits

components to be treated as transformations which can simultaneously refine sev-

eral classes in a consistent manner. To validate the utility of this language, we

solved a “challenge problem” in software reuse: we reimplemented the Booch C++

Components data structures library as a scalable P++ library. We were able to

reduce the volume of code and number of components by approximately a factor

of four, without compromising the performance of generated systems.

vii

Table of Contents

Chapter 1 Introduction 1

Chapter 2 Background 4

2.1 Building large software systems 5
2.2 Scalable software libraries 7
2.3 Software system generators 9
2.4 The GenVoca programming model 12
2.5 The domain of data structures 17
2.6 Language support for GenVoca 18

Chapter 3 The P++ language 20

3.1 Motivation 20
3.2 Abstraction 22
3.3 Encapsulation 24
3.4 Parameterization 26
3.5 Comparison of P++ with C++ 37

Chapter 4 The implementation of P++ 40

4.1 Designing the compiler 40
4.2 Developing the compiler 44
4.3 Translating P++ into C++ 50

viii

Chapter 5 Results 55

5.1 The Booch C++ Component Library 56
5.2 The P++ Data Structures library 60
5.3 P++ makes SSG development easier 77
5.4 Conclusion 79

Chapter 6 Related work 80

6.1 Frameworks 80
6.2 Parameterized programming 83
6.3 Software architectures 87
6.4 Transformation systems 88

Chapter 7 Conclusions and future directions 91

7.1 Conclusions 91
7.2 Lessons learned 93
7.3 Future directions 94

Appendix: the P++ grammar 99

Bibliography 129

Vita 135

1

Chapter 1

Introduction

Large software systems are becoming increasingly more complex, expensive, and

time-consuming to build. Researchers at the 1968 NATO Software Engineering

Conference coined the term “software crisis” to describe this situation [Nau68].

Twenty-eight years later, software practitioners still face the same problems.

Although advances in object-oriented design, high-level programming languages,

and reuse libraries offer some relief, large software system development still poses

a formidable challenge.

Of the many software engineering and reuse strategies that we have stud-

ied, one approach seems very promising. Software system generators, a kind of

software development tool, are domain-specific systems which can rapidly con-

struct entire system implementations out of prefabricated components. The goal of

such systems is to “industrialize” the software industry — i.e. to introduce ideas

like modularity, interchangeability, and standardization to software development

so that high-performance software may be mass-produced [McI68].

We believe that software system generators will emerge as popular tools for

large system development, because they offer a significant advance over existing

tools. There are already numerous examples of generators in a wide range of

domains, such as databases [Bat88], file systems [Hei90, Hei91], network proto-

cols [Hut91, OMa92], and data structures [Sir93]. Our study reveals that even

2

though the systems produced by these generators are radically different in func-

tionality, the organizations of the generators themselves are remarkably similar.

The goal of our research is to understand existing software system generators and

employ this knowledge to simplify the design, implementation, and use of future

generators.

Early research uncovered basic ideas which underlie the design of software

system generators. These ideas have been captured in a programming model called

GenVoca [Bat92a] (whose name was inspired by the Genesis generator for data-

bases and Avoca generator for network protocols). GenVoca offers a simple model

and clear notation for representing the systems produced by generators.

The primary barrier to the widespread use of GenVoca generators is the dif-

ficulty of their development. The problem is two-fold: (1) creating a building-

blocks model of a domain (called domain analysis [Pri91]) requires considerable

domain expertise, and (2) implementing this model (called a generator) involves

developing a sophisticated infrastructure for defining and using software compo-

nents. Our research strives to make the second task easier: we have created a pro-

gramming language which offers specialized capabilities to support the GenVoca

model. This language, called P++, offers linguistic features for declaring, defining,

and combining software components — the building blocks of large software sys-

tems.

The following chapters of this dissertation explore this important software

engineering problem, explain our proposed solution, and analyze our experimental

results.

In Chapter 2 we describe the difficulty of building large systems and the

problems with current software libraries. We explain why software system genera-

tors are promising, yet require an enormous effort to construct manually.

3

We describe the P++ programming language in Chapter 3. It offers features

for specifying abstract component interfaces, defining component implementa-

tions, composing components to form systems, and modelling components as pro-

gram transformations. We review these linguistic features and demonstrate how

they might be used to support GenVoca programming.

In Chapter 4, we motivate and explain our implementation of the P++ com-

piler. This chapter includes detailed examples which illustrate the compilation pro-

cess.

To test the P++ compiler, we applied the principles of the GenVoca model

to design a library of P++ components for the data structures domain. Chapter 5

describes this library and compares it to an existing C++ data structures library.

Our experiments demonstrate that P++ provides significant advantages over con-

ventional object-oriented languages, when used to build a GenVoca software sys-

tem generator.

We put the results of P++ in context with other areas of software engineer-

ing research in Chapter 6. We describe the relationship between P++ and frame-

works, parameterized programming, software architectures, and transformation

systems.

Finally, in Chapter 7 we summarize the results of the P++ project and list

areas of future research.

4

Chapter 2

Background

Large software system development is difficult and time-consuming. Software

libraries appear to offer a promising approach to solving this problem: rather than

constructing large systems from scratch, it is far easier to piece together large sys-

tems from existing software modules [Gar95]. Unfortunately, current software

libraries are often inadequate for this task. For example, if each module of a soft-

ware library implements only a simple functional unit, then it will take hundreds or

thousands of library modules to construct a large system (assuming that the requi-

site modules are actually available). Conversely, if modules offer sophisticated

functionality, then those modules will be applicable to only a few systems; many

systems will be unable to exploit the benefits of that library. Thus, researchers face

a dilemma where the productivity gained by module reuse increases with the size

of the module, but the specificity of the module (and the likelihood of reuse)

decreases with the size of the module. This problem appears to be an inherent bar-

rier to high productivity via module reuse [Big94].

Software systems generators have a solution to this problem. A generator is

a tool which can rapidly generate many different implementations of systems for a

particular problem domain. A model of software construction, called GenVoca,

captures the basic design properties of these generators [Bat92a]. In this chapter,

we motivate and describe GenVoca, list some of the difficulties in building Gen-

5

Voca-style generators, and explain why programming languages should directly

support GenVoca ideas.

2.1 Building large software systems

Software libraries are one of the most widespread and successful techniques for

speeding software development [Big89]. A library is a collection of code modules

that can be used without modification to build new applications. The goal of librar-

ies is to promote software reuse, which lowers the cost of software development by

leveraging on the work of prewritten code.

Function and class libraries are the most common kinds of software librar-

ies. Consisting of collections of subroutines or object-oriented classes, these librar-

ies provide features which are useful for a wide range of applications. Usually,

each library module is relatively simple, implementing a primitive algorithm or

data structure; it is uncommon to find library modules which correspond to com-

plex program subsystems. Examples of function and class libraries include the

standard C library [Ker90], X window system [Sch90], NIHCL [Gor90], GNU

libg++ [Lea88], the Booch Components [Boo87, Boo90], and the C++ Standard

Template Library [Pla95].

Experience has shown that large software systems do not benefit much

from function or class libraries. Because the goal of such libraries is to provide

only a general purpose set of basic abstractions, the programmer is responsible for

selecting, customizing, and combining these simple abstractions to form new soft-

ware modules that implement sophisticated domain-specific abstractions. Two

problems are evident with this approach. First, the task of creating large-scale

abstractions by manually implementing them in terms of low-level small-scale

abstractions is complex and time-consuming. Second, the implementation of a sin-

6

gle large system may ultimately consist of hundreds or thousands of individual

functions and classes — correctly combining all of those software modules is diffi-

cult and error-prone.

A more effective approach is to assemble large systems out of larger units

of program construction, namely program subsystems (also called object-oriented

frameworks [Cam92]). The purpose of a subsystem is to define a high-level pro-

gramming abstraction which hides the implementation details of a single feature

(or algorithm) of an application. For example, in the domain of database systems, a

feature can be a particular data language, a join algorithm, a file structure, a

method of concurrency control or recovery, etc. In the domain of data structures, a

feature could be a specific data structure, a method for encrypting stored elements,

a method for garbage collection, or a method for the persistent storage of data.

Depending on the domain, a subsystem’s implementation might consist of

just one function or class. Typically, however, a subsystem consists of several

classes that cooperate to implement a domain-specific feature. A subsystem is not

a stand-alone program; rather, it is designed to be combined with several other sub-

systems to form an application program.

Building a large system from prewritten subsystems is much easier than

using function or class libraries, simply because fewer subsystems need to be

selected and combined. A library of subsystems corresponds to a collection of

sophisticated software modules that implement large-scale abstractions. The impli-

cation, however, is that such a library is useful in fewer contexts, because special-

ized modules are relevant to fewer applications. Consequently, a library of

subsystems is usually targeted for applications in a particular problem domain; a

programmer developing an application in that domain can exploit the library to

rapidly construct major portions of his target system [Big89].

7

2.2 Scalable software libraries

Why have existing domain-specific software libraries not already solved the prob-

lem of large system development? Our research has revealed that a successful

domain-specific library must be scalable. That is, it must be possible to add new

features to an existing library without expending progressively more effort: intro-

ducing a new feature should not require duplicating or modifying the modules

already in the library. We found that most contemporary libraries are not scalable,

which means that it will be progressively more difficult for such libraries to repre-

sent the systems found in their respective problem domains.

We uncovered the library scalability problem during our study of libg++

[Lea88] and the Booch C++ Components [Boo87], two popular data structure

libraries. These libraries contain numerous modules which implement different

data structures; often, the only difference between two modules is the algorithm

used to implement a single data structure feature. Therefore, even though these

libraries offer many data structures, each data structure really just represents a

unique permutation of several features.

This design style is problematic because it makes library enhancements

prohibitively expensive to implement [Bat93]. If one wants to introduce a new data

structure feature to a library which already contains n modules, the resulting

library would contain 2n modules: n modules which incorporate the new feature

and n modules which do not. For example, most data structure libraries are popu-

lated with different modules that represent different structures in transient memory.

To add the feature of persistence (i.e., so that data elements reside in persistent

storage) would effectively double the size of the library. For each transient mem-

ory data structure module, there would be a virtually identical counterpart for per-

sistent memory. To generalize, a library of up to 2k modules would be needed to

8

implement all combinations of k features (provided, of course, that all combina-

tions of features are meaningful). The problem becomes more acute when several

implementations of each feature are available, because the corresponding library

would be much larger. Implementing and maintaining such a library would be

utterly impractical.

Figure 2.1 depicts the relationship between the number of modules and the

number of features in scalable and unscalable libraries. As the number of features

increases in an unscalable library, the requisite number of modules grows expo-

nentially. In scalable libraries, however, the number of modules grows only lin-

early as more features are added.

In hindsight, the solution to this dilemma seems obvious: each module in a

library should encapsulate only one feature. Furthermore, a software system with

multiple features should be constructed from the set of modules that collectively

implement those features. In this way, we make explicit the feature combinatorics

of software systems. The size of the library grows linearly as new features are

Figure 2.1 Growth comparison of scalable and unscalable libraries.

number
of modules

number of features

scalable library

unscalable
library

9

added, but the number of combinations of those modules (to form systems) grows

exponentially.

Unfortunately, it is quite difficult to design a library such that its modules

are independent of one another. A domain expert must carefully devise module

abstractions such that distinct features can be represented as independent software

modules. Such a design greatly increases the value of a domain-specific library of

software modules, because the library can be subsequently extended with new fea-

tures without excessive effort.

2.3 Software system generators

An emerging class of software system generators (SSGs) are successfully using

scalable subsystem libraries to construct large systems quickly. An SSG is a

domain-specific tool which consists of a library of components and a generator for

combining those components.1 An SSG can construct many related systems in a

particular problem domain by combining different components from its library.

Each component implements a basic feature offered by some systems in the

domain. Selecting different component combinations corresponds to building sys-

tems with different sets of features.

We have studied several SSGs, including Genesis (domain of databases)

[Bat88], Avoca (network protocols) [Hut91, Oma92], Ficus (file systems) [Hei90,

Hei91], Brale (host-at-sea buoy systems) [Wei90], Adage (avionics) [Cog93], and

Predator (data structures) [Sir93]. We observed that several key design properties

underlie their organizations:

1. For the purposes of this discussion, the term component is defined to be a suite of interrelated
functions and data types which work together to implement some feature of a large software sys-
tem. Although “component” is a term which is commonly used in object-oriented programming
literature, we will use this definition throughout.

10

• Software systems are built from combinations of components. In these

SSGs, a generator produces system implementations by combining compo-

nents from a software library. Little or no hand-coding is necessary, making

the task of assembling a system quick and easy. Goguen’s research on LIL

(library interconnection language) shows that the key to effective software

system construction is to use the techniques of parameterized programming

[Gog86]. When a parameter is used to “factor out” a common design element

of a component (like a constant value or a primitive data type), this scenario

is called horizontal parameterization. Typically, a horizontal parameter

makes only simple adjustments to the behavior of a component. Vertical

parameterization corresponds to layering progressively more sophisticated

programming abstractions in order to implement certain functionality. A ver-

tical parameter is used by a component to relegate part of its algorithm’s

implementation to a separate component (intuitively, vertical parameteriza-

tion is used to connect the components in a system). Parameterized program-

ming languages like LIL (and SSGs) simultaneously use horizontal and

vertical parameterization to promote the construction of systems from com-

ponent compositions.

• Every component from an SSG library has an interface which reflects

the fundamental abstractions of the problem domain. The interface of a

component specifies the externally accessible programming entry points

which are used to interact with the component. This interface must be care-

fully designed if the component is to be reusable (i.e. composable, inter-

changeable, etc.). One must examine many systems from the problem

domain, recognize the common architectural traits of those systems, and

define standard interfaces which correspond to the basic programming

11

abstractions. Components designed in this manner will probably be reusable

and sufficiently versatile to represent most features found in systems from

that problem domain.

• Several components often have identical (standardized) programming

interfaces, even though each component implements a different algorithm or

behavior. This situation arises when several components represent alternate

implementations of a system feature. By giving these components the same

interface, each component can be interchanged with another without requir-

ing modification of the program code that uses the component. The conclu-

sion is that components must be designed for use in software system

generators; dissecting existing software systems to populate a component

library is unlikely to be successful.

Although SSGs substantially simplify the task of building large software

systems, SSGs themselves are quite difficult to design and build. Considerable

expertise and discipline is necessary to craft a scalable library of components and

implement a generator for combining those components.

For example, a scalable component library has a small number of compo-

nents which can be combined in various ways to produce a large number of system

implementations. There is little code replication in such a library, because each

component represents only one basic feature of systems in the problem domain.

Thus, a library of k components can be used to generate 2k different systems; con-

trast this with the unscalable data structure libraries we described earlier, which

exhaustively implemented all 2k data structure modules. The components of a scal-

able library are relatively independent of one another, which means that there are

few hidden interdependencies between the library’s components. (Two compo-

nents are “independent” if the presence of one component in a system does not

prevent or require the inclusion of the other component in the system.) Without a

12

well-established methodology for designing and building libraries which meet

these criteria, writing libraries of components is more difficult than it should be.

Another obstacle to implementing an SSG is devising a mechanism for

combining components. It is necessary to create not only a notation for specifying

component interfaces and component combinations, but also a tool which gener-

ates system implementations out of component descriptions. Experience has

shown this task to be non-trivial: fully three-fourths of the programming effort of

the Predator data structures SSG involved the development of a tool for combining

components.

In summary, SSGs offer a promising approach to rapidly building large

software systems. Using libraries of domain-specific components, an SSG can

assemble significant portions of software systems, with little or no hand-coding

required. The challenge, however, is that component libraries are difficult to design

and generators are tedious to implement. Additional help is needed.

2.4 The GenVoca programming model

GenVoca is a model of software construction using components [Bat92a]. It identi-

fies the similarities in component design and organization that are present in all of

those SSGs, even though they are targeted to different problem domains. The hope

is that understanding the design of existing SSGs will simplify the implementation

of future SSGs.

In GenVoca, software components are the building blocks of large software

systems. A component is a basic unit of program construction. It supplies an exter-

nal interface that defines how other components can be connected to it. It can also

offer adjustment parameters which are used to customize the behavior of a compo-

nent. The details of a component’s implementation are private — no external pro-

13

gram can directly access these hidden details, thus constraining component

interaction to its public interface (see Figure 2.2).

The term realm refers to a set of components that all possess a specific

interface. Each component belongs to one realm, and that realm interface specifies

the external “appearance” of the component. Often, several components belong to

the same realm, which means that all of those components export the same pro-

gramming interface. Because their interfaces are identical, at a first approximation

all components in a realm are interchangeable (see Figure 2.3).

In GenVoca, a component represents a forward refinement program trans-

formation. This transformation consists of a set of simultaneous data and function

Figure 2.2 Anatomy of a component.

Figure 2.3 Members of a realm are interchangeable.

optional imported interface(s)

implementation
details (hidden)

exported interface

Members of a realm export the same interface,
but each implements the interface differently

a b c

14

refinements, the purpose of which is to convert an abstract interface into a concrete

implementation. The application of these refinements is controlled by certain

domain-specific rules, which dictate under what circumstances the refinements are

legal, whether optimizations of the refinements are possible, etc.

An abstract interface of a component corresponds to a suite of function and

data type declarations; the role of a component is to map each function declaration

to a specific algorithm and each data type declaration to a specific representation.

If several components combine to form a system, that system can also be modeled

as a transformation — a composite transformation corresponding to a sequence of

individual component transformations.

To better explain this unusual interpretation of components as transforma-

tions, GenVoca offers a simple notation for representing realms, components, and

systems. A realm is denoted by a set of elements, where each element represents a

component belonging to the realm. The example below lists the components from

three realms, R, S, and T:

Realm R has three components (a, b, c), realm S has three (d, e, f), and realm T has

one (g). If a component imports another component’s interface, it is designated as

a parameter; i.e., the name of the imported realm interface is listed in brackets

beside the name of the component. Thus, b imports realm R and c imports realm S.

Component f of realm S imports two realm interfaces (S and R), because it has two

parameters. In essence, this notation treats a realm as a type signature. A compo-

nent from a realm simply exports a type signature, and a component which imports

an interface has a parameter corresponding to some type signature. So in the above

example, d is an object of type S, where d has a parameter of type T.2

R a b R[] c S[],,{ }=

S d T[] e f S T,[], ,{ }=

T g{ }=

15

When component is modelled as a transformation, that means the compo-

nent simultaneously refines a set of classes and functions (which it imports). This

transformation preserves the semantic consistency of the classes and functions:

that is, if the classes and functions imported by a component are semantically

valid, then the application of a component transformation will yield a (potentially)

different set of classes and functions that are also semantically valid.

Using this notation, a software system can be compactly specified as an

equation (i.e. a combination of components). For example, here is a system sys

built from c, d, and g:

Notice that component compatibility is easily checked by verifying that each

parameter’s type matches the corresponding component’s type. Therefore,

is a syntactically valid system because c’s parameter type matches d’s type, and d’s

parameter type matches g’s type.3

Consider the meaning of when components are viewed as transfor-

mations. The GenVoca notation appears to suggest that components are combined

much like mathematical functions. This, however, is not the case: GenVoca com-

ponents are relatively sophisticated, which makes a transformational model more

appropriate for understanding component combinations. When two components

(like c and d) are interconnected, they each exchange function, data type, and cus-

tomization information with one another. The semantics of this exchange are more

2. Formal parameter names have been omitted because these examples are so simple.

3. Note that some combinations of components are syntactically legal but not semantically correct.
That is, each pair of components in the system imports and exports compatible interfaces, but
the resulting algorithms are invalid for some reason. To verify the semantic correctness of a sys-
tem, each component must supply domain-specific information that describes the assumptions
and restrictions on the use of the component. Details of this process are given in [Bat96].

sys c d g[][]=

c d g[][]

c d g[][]

16

complicated than functional composition; Figure 2.4 illustrates the exchanges that

occur in the system .

A functional interpretation of sys would have an innermost-to-outermost

evaluation semantics; i.e., component g would be evaluated first, then d, then c.

This is not a correct interpretation in GenVoca, where evaluation is outermost to

innermost. Thus, the transformations of sys start at the top component, c, which

provides data type information to d. In turn, d provides its own data types to g,

which then supplies implemented data types and functions back to d, and so on.

Figure 2.4 The component combination .

c d g[][]

functions,
data types

functions,
data types

types/
constants

c

d

g

c exports R

c imports S

d exports S

d imports T

g exports T

functions,
data types

types/
constants

types/
constants

types/
constants

types/
constants

types/
constants

c d g[][]

17

Notice that the transformations start at the top component, work their way down to

the bottom component, and then back up to the top component. This style of trans-

formation (which we will fully explain in Chapter 3) is certainly different from

standard function compositions; consequently, we believe that this transformation

mechanism distinguishes GenVoca from traditional programming models.

2.5 The domain of data structures

Throughout the remaining chapters, concepts and results will be explained using

examples from the domain of data structures. We will focus on data structures

which implement containers of objects — examples include bags, sets, lists, and

queues. Why choose this domain? Data structures is a simple, easy-to-understand

problem domain. The basic ideas and algorithms are already familiar to most pro-

grammers, making data structures an ideal framework for testing and explaining

our results. This domain consists of many enumerable data structure “systems”.

Moreover, we found that data structures poses the same challenges as the domains

of large software systems. The specifications of realms, components, and compo-

nent compositions for data structures, database systems, communications software,

distributed file systems, and avionics software are the same — only the complexity

of the algorithms differs.

Three classes participate in this problem domain. A container is a collec-

tion of elements, and all of a container’s elements are of a single type. Elements

enclosed by a container can be referenced and modified only through runtime

objects called cursors (also called iterators) [Mus96]. Cursors and contains are

well-established concepts in databases; earlier work on Genesis and contemporary

work on object-oriented databases strongly influenced our choice of these abstrac-

18

tions. Figure 2.5 shows a container with four elements and a cursor which refer-

ences one of them.

2.6 Language support for GenVoca

A programming language is often a useful vehicle for supporting a programming

paradigm. For example, modular programming and object-oriented programming

have benefited substantially from language support [Boo87, Boo90]. Although lan-

guage support offers no guarantee that programs will be well-designed, it does

make the application of a programming paradigm much easier.

Because current generators are hand-coded from scratch, each generator’s

implementation and component combination mechanism is unique. We believe

that these problems can be attributed to inadequate language support for GenVoca.

It is our contention that such support would make SSGs much easier to build. Spe-

cifically, it would be helpful if programming languages provided syntactic con-

structs for specifying component interfaces and implementations. Without such

support, it is the programmer’s burden to properly organize his algorithms and data

structures into realms and components. In the past, programming languages have

served as a catalyst for increasing the scale of programming; for example, proce-

dural languages promoted the use of functional encapsulation, and object-oriented

languages made class abstractions easier to use. Therefore, it is logical to use pro-

Figure 2.5 Data structure abstractions.

cursor

elements

container

19

gramming languages to promote the next step in encapsulation — software com-

ponents.

Component combination is another basic trait of GenVoca systems. Com-

ponents represent abstract to concrete transformations which may be combined in

series. As shown in Figure 2.4, a combination of two components involves the

mutual exchange of function and data type information. In Chapter 3, we explain

why this two-way exchange is more sophisticated than the one-way exchange of

information that occurs in traditional function or type parameterization. Conse-

quently, current programming languages are hard-pressed to handle the parameter-

ization constructs needed by the GenVoca model.

As we will see in the next chapter, we modified a programming language’s

syntax for parameterized types so that it could be used to both customize the

behavior of components and combine components. Although in hindsight it

appears natural to represent component combinations as instantiations of a param-

eterized type, this result was not at all obvious. Rather, using parameterized types

to uniformly represent Goguen’s notions of horizontal and vertical parameteriza-

tion was actually a key insight. We extended the GenVoca model to incorporate

this idea, so that the model could explain not only how to fit components together,

but also how to tailor their behaviors.

In summary, SSGs would greatly benefit from the spread of GenVoca ideas

into programming languages. Language support for component interfaces, compo-

nent implementations, and component combinations would reduce the burden of

developing GenVoca generators. If SSGs are to become a practical means of build-

ing large software systems, this issue must be addressed.

20

Chapter 3

The P++ language

We have designed a programming language called P++, which offers features that

specifically support the GenVoca model. P++ extends the C++ language by provid-

ing syntactic constructs for defining and combining realms and components. Each

feature extends the capabilities of C++ by increasing the scale of abstraction,

encapsulation, or parameterization. Although P++ may appear to provide only

incremental enhancements over C++, P++ actually offers powerful features which

substantially strengthen the C++ language, making it a suitable framework for

building domain-specific software system generators.

We demonstrate how to use these features by giving examples from the

domain of data structures. These running examples come from a P++ data struc-

tures library which we fully describe in Chapter 5. In this chapter, our focus is to

explain the usage and significance of each language feature.

3.1 Motivation

P++ is a superset of C++ [Ell90, Str94]; it supports all existing C++ constructs, as

well as certain constructs for defining and using components. Why define P++ in

terms of C++? C++ is the most widely-used object-oriented language; its features

already are well-defined and understood by many programmers. Moreover, we

21

believe it is important to present GenVoca ideas using a syntax that is familiar to

system developers. The choice of a mainstream language ensures that our ideas

will be more accessible to them; in contrast, creating a new experimental or proto-

type language would make system developers reluctant to use such a language.

Finally, as we will show in Chapter 4, basing P++ on an existing language happens

to greatly simplify the implementation of the P++ compiler.

P++ offers services that would otherwise have to be developed separately

for each generator. These features represent a substantial benefit because they dras-

tically reduce the effort required to build a generator, thus permitting a system

developer to concentrate on testing and tuning generated systems.

For example, P++ defines a notation for component combinations, which

lets a programmer select, customize, and combine a group of components. The

P++ compiler can verify the syntactic validity of this combination by checking the

compatibility of each pair of imported and exported interfaces. P++ then converts

the specification into an actual implementation by combining the appropriate com-

ponent definitions. In contrast, a hand-coded generator must provide its own syn-

tax for combining components, its own tool for verifying component compatibility,

and its own compiler for generating system implementations from component def-

initions.

The P++ language directly supports GenVoca concepts in order to facilitate

the translation of a domain model into a software system generator. Starting with a

domain model which defines a suite of realms and components, a system developer

can use P++ to write code to represent them. The developer avoids the cumber-

some task of emulating realms and components using C++ classes or some other

language construct. Instead, he uses special P++ realm and component constructs

to directly implement the domain model.

22

Of course, not all domain models can be easily implemented using P++. If

the domain model is not organized along the lines advocated by GenVoca, then

P++ will probably offer little benefit. Moreover, even though P++ is useful for

writing GenVoca-style componentry, there are certain tasks which the language

does not perform. As we will see later in this chapter, not all syntactically legal

component combinations are semantically correct; consequently, a software sys-

tem generator should provide a separate mechanism for analyzing the validity of a

system by consulting domain-specific component combination rules. P++ serves as

a basic domain-independent development tool for generators, which should be

combined with other domain-specific tools to yield a complete software system

generator.

3.2 Abstraction

Complexity is the primary obstacle to developing large software systems [Boo91].

To help manage complexity, programming languages offer features to support the

design techniques of abstraction and encapsulation.

Abstraction is the technique of hiding implementation details of a module

and only revealing its external behavior. Separating behavior from implementation

reduces the effort required to understand and use a program fragment. Existing

language support for abstraction takes the form of function declarations (function

prototypes) and access specifiers for class methods (e.g. public, private,

protected). The GenVoca model demonstrates the need for the next step, namely

realms.

A realm declaration specifies the programming interface of a component. It

lists the functions, enumerated values, classes, and class methods that constitute

the entry points of a component. This information describes how a program inter-

23

acts with a component, without revealing any of the component’s implementation

details. (Thus, variables and class data members are not part of the realm declara-

tion, because they reveal the memory layout of objects.) Figure 3.1 shows a por-

tion of the P++ grammar which describes the syntax of realm declarations.

The realm construct plays an important role in the design of component

libraries. It not only supports a larger scale of abstraction, but it also encourages

the use of virtual machines and standardized programming interfaces.

Virtual machines. The software systems produced by a GenVoca genera-

tor typically have a layered organization. An implementation of this kind of system

consists of a hierarchy of subsystems that are layered upon one another. Associated

with each layer is a pair of virtual machine interfaces, which specify the abstrac-

tions that are imported and exported by that layer. By introducing the realm con-

struct, P++ provides a linguistic mechanism for describing and naming these

interfaces. Later in this chapter, we show how to associate particular realm names

with component implementations.

realm_declaration : opt_tmpl_parameter_header REALM realm_name
 ’{’ realm_element_list ’}’ ’;’

opt_tmpl_parameter_header : TEMPLATE ’<’ tmpl_parameter_list
’>’

| /* nothing */

tmpl_parameter_list : tmpl_parameter_list ’,’ tmpl_parameter
| tmpl_parameter

realm_element_list : realm_element_list realm_element
| realm_element

realm_element : abstract_class_declaration
| abstract_function_declaration

Figure 3.1 The grammar for P++ realm declarations.

24

Standardized programming interfaces. If the components in a GenVoca

generator library all have unique interfaces, then that library will have little gener-

ative power. There would be only a few ways to combine those components, mean-

ing that each component could potentially be used in only a few generated

systems. The overall library would be capable of generating relatively few unique

system implementations. One way to avoid this problem is to introduce standard-

ized programming interfaces for functionally similar components. That is, if

several components provide a different implementations of a basic system feature,

then those components should belong to the same realm. These components could

then be interchanged for one another in a system’s implementation. The realm con-

struct encourages standardization because several components can share a single

interface declaration, which in turn increases the generative power of the library.

Figure 3.2 shows the declaration of a sample realm called ds. This realm

declares two classes, container and cursor, and the methods which comprise the

public interface of each class. The first line of the declaration, template <class T>,

indicates that ds is parameterized. The significance of this statement will be

explained later in Section 3.4. For now, observe that a realm contains no execut-

able code — only interface specifications.

3.3 Encapsulation

Encapsulation is the technique of grouping related code and data into larger units

of program construction [Mey88]. The goal is to increase the scale of program-

ming by creating bigger program building blocks. Existing languages already sup-

port functions and classes; however, the GenVoca model scales encapsulation to

subsystems (i.e. suites of interrelated components).

25

The component declaration is the counterpart to the realm declaration.

Whereas a realm specifies only an interface, a component supplies an implementa-

tion for that interface. In object-oriented terms, a component inherits its interface

from a realm, much like a C++ class can inherit an interface from an abstract class;

the component overloads the realm’s abstract functions and methods with its own

template <class T>
realm ds
{
class container
{
container (); // methods for the container class
container (container &);
int number_of_objects ();
void clear ();
T *member (const T&, int (*compare) (const T&, const T&));
...

};

class cursor
{
cursor (container *); // methods for the cursor class

void insert_before (const T&);
void insert_after (const T&);

void previous ();
void next ();

void goto_first ();
void goto_last ();
void goto_nth (unsigned int);

T *value ();
...

};

...
};

Figure 3.2 Declaration of the ds realm.

26

concrete implementations for those functions and methods. To implement a

realm’s interface, a component may augment the declarations supplied by the

realm: it may add methods and data members to the classes already declared, and it

may introduce new functions, classes, and enumerated values.

Figure 3.3 shows the declaration of the bounded component. This compo-

nent belongs to the ds<T> realm, which means that bounded is required to imple-

ment each method of ds. To accomplish this, bounded introduces a few private data

members and methods to the abstract declarations of container and cursor. As a

result, the complete definition of container has parts from several different declara-

tions: the abstract methods declared by ds (e.g. number_of_objects, clear, …); data

members defined by bounded (e.g. objs, first, count); new methods introduced by

bounded (e.g. copy_objs); and method implementations provided by bounded.

As with C++ classes, the implementation of component methods can

appear embedded within the component declaration, or separately after the compo-

nent declaration. For example, number_of_objects is defined within the component

declaration and clear is defined separately. Therefore, the full specification of a

component consists of a component construct and all of its separately defined

method implementations. The portion of the P++ grammar in Figure 3.4 describes

the syntax of component declarations (the full P++ grammar is given in the Appen-

dix).

3.4 Parameterization

Parameterization is a key feature of P++ — it is used to express component cus-

tomization and combination. P++ customization parameters are declared using a

syntax similar to that of C++ templates. A C++ template is really just a mechanism

for generating classes. The template specifies only a skeleton for a class declara-

27

template <class T, int size>
component bounded : ds<T>
{
class cursor;
class container
{
friend class cursor;
T objs[size]; // private data members
int first;
int count;

// inline definitions for methods declared by ds
container () { first = 0; count = 0; }
int number_of_objects () { return count; }

// private method which is used internally by bounded
static void copy_objs (T *dest, T *src, int n);
...

};

class cursor
{
container *const cont; // private data members
int index;

// inline definitions for methods declared by ds
cursor (container *c) : cont (c) { index = -1; }
void next () { if (index >= 0) ++index; }
void previous () { if (index < cont->count) --index; }
void goto_first () { index = 0; }
void goto_nth (unsigned int n) { index = n; }
void goto_last () { index = cont->count - 1; }
...

};
...

};

// separate definition of a method declared by ds
template <class T, int size>
void bounded<T,size>::container::clear ()
{
count = 0;
first = 0;

}

Figure 3.3 Declaration of the bounded component.

28

tion — to complete the declaration, a programmer must supply a concrete value for

each of the template’s parameters. This process of generating a customized class

from a template is known as instantiation. Similarly, parameterized realms and

components are just mechanisms for generating nonparameterized realms and

components; the conversion is accomplished by instantiating the realm or compo-

nent.

In P++, a realm or component can be customized by constant or type

parameters. Thus, a component with an integer constant parameter could be instan-

tiated with the values 2 or 256. Similarly, a realm with a type parameter could be

instantiated with types such as integer or character string. For a concrete example,

consider the ds realm of Figure 3.2, which has a type parameter called T. This

parameter lets a programmer generate many different interfaces from one declara-

tion, each corresponding to a different instantiation of T. In other words, parame-

component_declaration : opt_tmpl_parameter_header COMPONENT
component_name ’:’ realm_instantiation
’{’ component_element_list ’}’ ’;’

realm_instantiation : realm_name opt_tmpl_value_list

opt_tmpl_value_list : ’<’ tmpl_value_list ’>’
| /* nothing */

tmpl_value_list : tmpl_value_list ’,’ tmpl_value
| tmpl_value

component_element_list : component_element_list
component_element

| component_element

component_element : forward_class_declaration
| concrete_class_declaration
| concrete_function_declaration

Figure 3.4 The grammar for P++ component declarations.

29

terization provides a compact notation for expressing families of realms or families

of components.

Figure 3.3 shows a slightly more complicated example of customization

parameters. This case shows the declaration of a parameterized component

(bounded) which happens to be defined in terms of a parameterized realm (ds). The

bounded component has a type parameter T and an integer constant parameter size.

Both parameters appear in the body of the code for bounded; for example, the data

member objs is defined as an array of objects of type T, where the length of the

array equals size. When bounded is instantiated, the values for these parameters

will be inserted into the appropriate locations in the code, thus completing the

component declaration.

The header of bounded specifies that the component belongs to the ds<T>

realm (not ds). This notation means that when a programmer instantiates the

bounded component, the ds realm is also instantiated with the parameter value T.

Recall that ds really just acts as a realm declaration generator, which must be

instantiated before it can be used. The result of instantiating ds<T> is a realm

which is customized to match the interface that bounded exports.

3.4.1 Composition

Component combination is the other use for parameterization in P++. In the Gen-

Voca model, two components may be combined if one component imports the

interface of the other. P++ uses the syntax of C++ templates to represent imported

interfaces as parameters. We found that this syntax yields an intuitive notation that

makes component combination simple and easy to understand.

To denote that a component imports an interface, P++ uses a new kind of

template parameter called a realm parameter. A realm parameter provides a com-

ponent with a linguistic mechanism for accessing the interface defined by a realm.

30

The declaration of a realm parameter consists of a realm name (which indicates the

interface being imported) and a symbolic identifier (which serves as a formal

parameter name). When the parameterized component is instantiated, a component

“value” will be supplied for the realm parameter. The component used as the

parameter value must belong to the same realm as the parameter declaration indi-

cates.

The size_cache component of Figure 3.5 demonstrates how realm parame-

ters work. This component has two parameters: a type parameter T and a realm

parameter rep. Because rep belongs to the ds<T> realm, rep corresponds to an

interface which declares the container and cursor classes. The code for size_cache

uses rep to access these classes and their methods. For example, the cursor class

template <class T, ds<T> rep>
component size_cache : ds<T>
{
class cursor;
class container : public rep::container
{
friend class cursor;
int obj_count;

container () { obj_count = 0; }
container (container &cn) { obj_count = cn.obj_count; }
int number_of_objects () { return obj_count; }

};

class cursor : public rep::cursor
{
container *sc;

cursor (container *c) : rep::cursor (c) { sc = c; }
...

};
};

Figure 3.5 Declaration of the size_cache component.

31

inherits from rep::cursor — the cursor class declared by rep’s interface. This syn-

tax for accessing a realm parameter’s declarations (i.e. using ‘::’) is the same syn-

tax used for accessing nested classes in C++.

To construct a system implementation from a group of components, a pro-

grammer must define a component composition (also known as a type equation

[Bat92]). A composition specifies a value for each constant, type, and realm

parameter for every component in a system. As we will see, some of these values

are explicitly specified by the programmer, and others are implicitly derived from

component definitions.

Consider the following component composition:

typedef size_cache <float, bounded <100> > floatsys;

This composition defines a system implementation called floatsys, which consists

of the components size_cache and bounded. The size_cache component takes two

values, float (for its type parameter) and bounded (for its realm parameter).

Because the number of parameters equals the number of values, this portion of the

composition is legal. The second component, bounded, takes two values. However,

the composition only provides one value, 100 (for its constant parameter). Where

is the value for its type parameter?

As Figure 3.6 shows, the value for bounded’s type parameter comes from

the definition of size_cache. To understand why, consider the relationship between

components and parameterized realms. A parameterized realm must be instanti-

ated before it is used. In particular, a component that imports a parameterized

realm must instantiate that realm. By doing so, the component fully constrains the

interface that it imports. Moreover, if another component is supplied as a value for

that realm parameter, that component must also satisfy the same constraints. In

other words, when one component imports a realm, an imported component must

provide the same interface as the imported realm.

32

To ensure that this invariant is maintained, P++ mandates a design conven-

tion for parameterized realms and components: if a parameterized component

belongs to a parameterized realm, the component should have at least the same

parameters as the realm. For example, the bounded and size_cache components

both have a type parameter T, just like their realm, ds. If this design convention is

observed, then the values that are used to instantiate the realm can also be used to

instantiate the imported component.

To properly use implicitly specified and explicitly listed parameter values,

there is a simple rule to follow. Explicit values must be supplied for each parame-

ter of the outermost component of a system composition. For the remaining com-

ponents, if a component is defined in terms of a parameterized realm, then the

initial parameter values of the component will be supplied by the instantiation of

its realm; the remaining values will explicitly come from the system composition.

There is fundamental reason for specifying some parameter values explic-

itly and others implicitly: a component with a realm parameter must be given the

opportunity to dictate the interface it will import. This ensures that the component

value supplied for that parameter will export a compatible interface. The parame-

ters of a component fall into two categories: interface parameters — which define

how a component’s interface is customized or specialized, and implementation

parameters — which define how a component’s implementation is to be custom-

Figure 3.6 Parameter propagation in a component composition.

size_cache <float, bounded <100> >

template <class T, ds<T> rep>
component size_cache : ds<T> { ... };

template <class T, int size>
component bounded : ds<T> { ... };

33

ized or specialized. Values for the initial set of parameters may be explicitly speci-

fied (if the component is outermost in the composition) or implicitly computed (in

which case the values are obtained from the realm parameter specification). Values

for the component-specific parameters must always be explicitly specified.

Therefore, to summarize the example of Figure 3.6, the size_cache compo-

nent is instantiated with float for type parameter T; this constrains the rep parame-

ter to the ds<float> interface. For bounded to satisfy that requirement, its type

parameter T must also be instantiated with float. The automatic propagation of

float ensures that bounded exports an interface that is compatible with size_cache.

3.4.2 Forward declaration

Until now, we have always considered examples where parameter values are

passed unchanged to lower layer components. For example, the size_cache compo-

nent of Figure 3.5 (reproduced below) demonstrates a technique which is fre-

quently used in GenVoca definitions. For the declaration of rep, the ds realm is

instantiated with the value T. Notice that T is actually a type parameter which is

declared immediately before rep.

template <class T, ds<T> rep>
component size_cache : ds<T>
{
...

};

When a component has a parameter which is a parameterized realm, the

instantiation values for the realm are based on the other parameters of the compo-

nent. In this case, the value T used to instantiate ds is the same as the T parameter

of the size_cache component. However, it is possible for a component to define a

new type, based on a type parameter, which is used to instantiate a realm. The P++

construct which supports this capability is called a forward declaration.

34

A forward declaration allows a component to use a data type before the

component has defined it. The initial reference is preceded by the keyword for-

ward. The subsequent definition may use any of the type parameters which are

declared by the enclosing component definition. Figure 3.7 shows an example of

this new construct. The unbounded component has a type parameter T and a realm

parameter rep (which belongs to a new realm called memory). This declaration

instantiates memory with a data type called object. This instantiation requires a for-

ward declaration because object is being used before it has been defined. The sub-

sequent definition of object (inside the unbounded component definition) is also

tagged with the forward keyword; this informs the compiler that object’s definition

is available for use by unbounded’s parameters.

Why is the forward declaration construct useful? Figure 3.8 depicts the

organization of the size_cache component. This component inputs a type parame-

ter called T, and it outputs this same type as a parameter value for the next compo-

nent in the composition. In contrast, the unbounded component inputs a type

parameter T, but it outputs a new type called object as the parameter value for the

template <class T, memory<forward object> rep>
component unbounded : ds <T>
{
...
forward class object
{
T data;
object *next;

};

class container { ... };
class cursor { ... };

};

Figure 3.7 Declaration of the unbounded component.

35

next component. The significance is that unbounded has transformed its input type

into a different output type. In essence, by using a forward declaration, a P++ com-

ponent acts as a transformation which maps input types to output types.

The intuition intended to be conveyed by Figure 3.8 is that GenVoca com-

ponents can model both “top-down” and “bottom-up” transformations. The outer-

most component of a composition corresponds to the top layer and the innermost

component is the bottom layer. In our model of the data structures domain, the

downward flow represents element transformations, and the upward flow repre-

sents container and cursor transformations (similar to standard C++ templates).

The use of the forward declaration construct makes it possible to elegantly capture

this complex group of type transformations.

It is substantially more complicated (or perhaps even impractical) to emu-

late this behavior using only C++ templates. For example, to emulate the compo-

nent composition floatsys (reproduced below) using C++ templates, the

declarations of Figure 3.9 would be needed.

typedef size_cache <float, bounded <100> > floatsys;

Figure 3.8 Organization of the size_cache and unbounded components.

T

size_cache

T

container,
cursor

T

unbounded

object

container,
cursor

36

The first group of declarations separately specifies the implementations for the

classes of size_cache. The second group is for bounded. The third group defines

the implementation for the sys_element type, then uses that type as an input param-

eter to define sys_container and sys_cursor.1 Not only are these C++ declarations

confusing to read and error-prone to write, but they lack the type-checking and

encapsulation properties of P++ components.

1. Technically, sys_element can be supplied as a parameter value to both the size_cache_container
and bounded_container only because the type transformations of size_cache_element and
bounded_element are “compatible”. If not, then the above code would be even more complex.

// templates to emulate the size_cache component
template <class element_rep> class size_cache_element { ... };
template <class T, class container_rep>
class size_cache_container { ... };

template <class T, class container_type, class cursor_rep>
class size_cache_cursor { ... };

// templates to emulate the bounded component
template <class T> class bounded_element { ... };
template <class T, int size> class bounded_container { ... };
template <class T, class container_type>
class bounded_cursor { ... };

// instantiations to emulate the floatsys composition
typedef size_cache_element <bounded_element <float> >
sys_element;

typedef size_cache_container <sys_element,
bounded_container <sys_element, 100> > sys_container;

typedef size_cache_cursor <sys_element, sys_container
bounded_cursor <sys_element, sys_container> > sys_cursor;

Figure 3.9 Attempting to emulate the floatsys composition using C++ templates.

37

3.5 Comparison of P++ with C++

Because the new language features of P++ resemble the existing constructs of

C++, it is natural to wonder what makes P++ unique. What are the contributions of

P++ to programming languages? Why not just emulate these features in existing

languages? To our knowledge, no existing language provides the same set of fea-

tures as P++. For example, Ada packages provide encapsulation capabilities simi-

lar to that of P++ components [Bar93] and functional languages like ML have

sophisticated parameterization features [Tof90], but none of those languages offer

everything that P++ does. This particular combination of features is important,

because they are necessary to implement GenVoca component libraries and gener-

ators.

To demonstrate that P++ supports language features which are not already

available in C++, we highlight the differences between the constructs of both lan-

guages. Although it is possible to emulate some P++ features in C++, this effort

would be difficult and cumbersome. Moreover, as explained in Section 3.1, P++

automates certain aspects of GenVoca generator development that would otherwise

be reimplemented by hand for each generator.

1. There is no concise way to emulate the P++ forward declaration construct in

C++. A forward declaration allows a program to use a type before it has been

defined. In C++, a program may create only pointers to a forward declared

type; it cannot create objects of such a type. More importantly, a C++ pro-

gram cannot provide a forward declared type as a parameter value for a tem-

plate. As we have explained, however, this very capability is essential for a

component to behave as a forward refinement program transformation.

38

2. There are some similarities between P++ parameterized components and

C++ templates — both allow constant and type parameters. The principle

difference is that P++ also allows realm parameters. Recall that a realm

declares the external interface of one or more components; this means that a

realm parameter imposes certain restrictions on what components can satisfy

that parameter. Furthermore, this restriction on parameter value means that

the compiler can statically validate a component composition just by verify-

ing the compatibility of each realm parameter and its value. In contrast, there

is no provision for C++ templates to impose restrictions on its type parame-

ters. For example, a C++ template that implements a sorting algorithm might

require that its type parameter define comparison and equality operators (to

be used during sorting). However, there is no C++ syntax for expressing this

restriction. This makes it more difficult to determine the validity of template

instantiations, and makes it inconvenient to specify complex requirements on

parameter values. (It is possible to envision an alternate system which veri-

fies the validity of each pair of components at runtime, but such a system

would naturally suffer a runtime performance penalty.)

3. C++ nested classes are quite similar to P++ components. In terms of expres-

siveness, both constructs are roughly equivalent. However, the basic differ-

ence arises from their intended usage. Nested classes do not arise in popular

object-oriented design methodologies (e.g., [Boo91, Rum91]); their intended

use in C++ is to facilitate the implementation of the enclosing class. In con-

trast, a basic tenet of GenVoca is to identify groups of interrelated classes and

encapsulate them within component constructs. In short, P++ components

encapsulate subsystems (i.e., multiple classes) as atomic units of program

construction, whereas C++ nested classes are used for data hiding (i.e.

39

abstraction) within a single class. Since encapsulation and abstraction are

semantically distinct ideas, they should be expressed using distinct language

constructs.

40

Chapter 4

The implementation of P++

The P++ compiler translates a P++ program into an equivalent C++ program. This

C++ output can be converted into executable code using any standard C++ com-

piler. The three sections of this chapter provide successively more detailed descrip-

tions of the P++ compiler’s implementation. The first motivates the design of the

compiler; the second describes its organization, internal data structures, and algo-

rithms; and the third explains details of the P++ to C++ translation process.

4.1 Designing the compiler

Our goals in designing the P++ compiler were to make it portable across machine

architectures and operating systems, easy to use, and straightforward to imple-

ment. These features would help popularize the use of P++ because the compiler

would be easy to install, use, and maintain.

4.1.1 A P++ to C++ translator

Our first task was to determine what output the compiler would produce. A tradi-

tional compiler translates program source code into assembler code. Thus, we con-

sidered writing a compiler that translated P++ to assembler. To evaluate this

approach, we examined the GNU C Compiler [Sta94]. This compiler is split into

41

two subsystems: a “front-end” which translates program source code into an inter-

mediate representation called RTL (register transfer language), and a “back-end”

which converts the RTL code into assembler. We eventually dismissed this

approach because converting P++ code into RTL — a relatively primitive code

representation — seemed too complicated.

An alternative approach was suggested by the AT&T Cfront Compiler.

Cfront is a popular C++ compiler, which translates C++ code into C; the C code is

then translated by a C compiler into assembler. The benefit of this approach is that

any standard C compiler can be used for the assembler code generation phase.

Therefore, we could modify Cfront by inserting the P++ syntax into the existing

C++ grammar, and adding the corresponding code to translate that syntax into C

statements. We ultimately discarded this approach because Cfront was difficult to

modify and converting P++ code into C was too complicated.

We finally settled on a different approach, to translate from P++ to C++.

The primary advantage is that because P++ and C++ are so similar, the translation

effort is relatively small. Most statements in a P++ program would remain

unchanged during translation; the real translation effort would involve only the

P++-specific constructs. In addition, because the P++ compiler outputs C++ code,

any standard C++ compiler can be used to produce the executable. The wide avail-

ability of C++ compilers makes the P++ compiler largely independent of machine

architectures and operating systems.

4.1.2 Leveraging off an existing C++ parser

The next step was to determine how to implement this translator. We initially con-

sidered modifying the GNU C++ Compiler (G++). This would involve isolating

and modifying the parsing portion of the compiler, and retargeting the compiler’s

front-end to produce C++ instead of RTL. Again, this task proved formidable: G++

42

consists of 600,000 lines of code, much of which manipulates RTL. Because this

code is not cleanly separated from the C++ grammar code, a lot of work would

have been necessary to adapt G++ to our task.

Instead we found an alternative system to use as a starting point. CPPP is a

C++ parser developed at Brown University [Rei94]. This tool defines only a por-

tion of a normal C++ compiler. It implements only a token scanner, parser, and

semantic analyzer for C++ and performs no code generation nor optimization. The

goal of CPPP is to provide a development framework for tools which analyze and

manipulate C++ source code. Because CPPP provides only the functionality we

sought, it served our needs well.

When the CPPP program is executed, it performs three tasks on the input

C++ source code. First, it filters the source code through the standard C preproces-

sor. This step expands all preprocessor directives (e.g. #include, #define) and pro-

duces a new C++ source file. Second, CPPP scans and parses the source file. This

produces an internal tree data structure which represents the entire source program.

Third, CPPP performs semantic processing on the tree data structure. The result of

this processing is a new tree where the type and scope of every identifier have been

resolved.

CPPP is a complex program which has a very intricate flow of control. This

is not the result of a poor design or implementation, but actually reflects the com-

plexity of the C++ language. For example, the scanner and parser of CPPP are

quite complicated because the C++ language has a context-sensitive grammar. A

scanner reads the source code of a program character by character. When a com-

plete word is read, the scanner determines if it corresponds to a reserved word of

the language or a user-specified identifier name. If it is a reserved word, the scan-

ner returns a special token which corresponds to the particular word; otherwise, it

returns a generic token which denotes an identifier.

43

Usually, when a context-sensitive language is translated into a collection of

formal grammar rules (for a compiler generator like yacc), the grammar rules have

parsing ambiguities (e.g. shift/reduce or reduce/reduce conflicts). The problem is

that such ambiguities result in grammars that behave unpredictably. For example,

in a program with nested “if” statements, it is not easy to tell to which statement an

“else” clause belongs (i.e. the “dangling else” problem); if the grammar is not cor-

rected to resolve this ambiguity, the compiler generator arbitrarily chooses an

interpretation for that code. Consequently, parsing ambiguities make compiler

development difficult and error-prone.

To avoid this problem, the CPPP scanner inserts extra symbolic tokens into

the token stream that it sends to the parser. These tokens provide hints to the

parser; they convey extra semantic information that makes it possible to eliminate

all ambiguous rules from the CPPP grammar. For example, when the scanner

notices the start of a function definition, it inserts an extra token to help the parser

distinguish a function definition from a function declaration. In effect, embedded

within the scanner is a simplified version of the C++ parser, which is used to select

the symbolic tokens to insert.

In practice, it is impossible to correctly insert these extra symbolic tokens

without scanning far ahead in the token stream to see what follows. Consequently,

CPPP implements a buffering mechanism which allows the scanner to look ahead

several tokens before returning a single token to the parser. In addition, it is some-

times necessary to try various interpretations of the token stream before settling on

which symbolic tokens to insert. Therefore, CPPP also implements a backtracking

mechanism which can undo modifications to the token stream as various interpre-

tations are examined and discarded.

44

4.2 Developing the compiler

The P++ compiler represents a major development effort. Implementing this sys-

tem took six months; it entailed understanding and debugging a 34,000 line C++

parser (CPPP), removing 9,000 lines of unnecessary code and comments, and add-

ing 10,000 lines of code to perform P++ to C++ translation. This section summa-

rizes the major development tasks that we performed.

We quickly found that CPPP was not immediately ready to use. The source

code files of CPPP were difficult to understand and were somewhat tangled. In

addition, CPPP had several C++ parsing bugs, which caused it to reject simple

C++ test programs. Consequently, the first weeks of development were spent in

debugging CPPP, reorganizing the source code files, and commenting code.

The next step was to modify the C++ grammar to include P++ constructs.

This involved adding new grammar rules which correspond to realm declarations,

component declarations, constant and type parameters, forward declarations, etc.

In addition, for each new grammar rule, we wrote code actions which add repre-

sentations of P++ constructs to the internal tree data structure of the compiler.

Thus, as the P++ compiler parses the input source code, it incrementally builds a

tree data structure which represents the entire program.

In CPPP, the scanner and parser are tightly interdependent modules. As

described in Section 4.1, the scanner has a backtracking mechanism which tries

various interpretations of the token stream as it inserts extra symbolic tokens (as

parsing hints). Each interpretation corresponds to a different set of grammar rules.

In essence, the scanner predicts which grammar rules will successfully parse the

token stream by successively emulating each of these rules. Because the scanner

and parser are closely related, adding P++ syntax to the CPPP grammar also

45

entailed modifying the scanner to emulate these new grammar rules. This task con-

stituted the next phase of implementing the P++ compiler.

Once these modifications were complete, we proceeded to update the inter-

nal data structures of CPPP to properly support P++ code. When CPPP parses a

program, it incrementally constructs a data structure called a syntax tree. This data

structure provides CPPP with a convenient representation for analyzing and

manipulating the program’s source code. The syntax tree consists of a collection of

nodes, which are organized as a directed acyclic graph. The edges of the graph rep-

resent relationships between the nodes, where a source vertex corresponds to a

“parent node” and a sink vertex corresponds to a “child node”. All nodes except

for the “root node” have a parent, and every node has zero or more children.

Each node of the syntax tree corresponds to a code element from the source

program. For example, Figure 4.1 shows the portion of a syntax tree that corre-

sponds to the square_root function declaration. Associated with each node is a

type and optional type-specific information. A node’s type indicates the kind of

code element represented by the node. As shown in the figure, the FunctionArgs

node represents the function’s arguments and the Name node corresponds to a

user-specified identifier. Notice that a Name node contains additional information:

the value of the string identifier being declared (e.g. square_root, num). The figure

also shows that the syntax tree captures the contents of the input source code in

sufficient detail to subsequently reconstruct that code. This is what makes the syn-

tax tree a convenient data structure for storing and managing source code.

Our next task, therefore, was to modify the CPPP syntax tree to support the

representation of P++ code. To do so, we introduced several new node types,

which correspond to new P++ constructs like realm declarations, component dec-

larations, etc. The goal was to precisely capture the information conveyed by P++

46

declarations so the compiler could subsequently analyze and translate those decla-

rations.

After the input source code has been parsed and the syntax tree con-

structed, the next compilation step is to transform the syntax tree into a semantic

tree. A semantic tree is a data structure similar to a syntax tree: it also consists of

nodes organized in a directed acyclic graph. The basic difference is that a semantic

tree captures the actual meaning of the program source, whereas the syntax tree

only conveys the textual structure of the program. For example, a syntax tree repre-

sents several kinds of declarations using the same type of node, a Declaration

node. In contrast, a semantic tree represents a variable declaration with a Variable-

Decl node, a function declaration with a FunctionDecl node, and a typedef declara-

tion with a TypedefDecl node. By using different node types to represent different

kinds of declarations, a semantic tree is able to record additional information that

is specific to the particular kind of declaration being processed. Moreover, the

semantic tree uses a uniform (canonical) representation for each kind of declara-

tion, which makes it is easier to analyze and manipulate the nodes for a declara-

tion.

Figure 4.1 Translation of a function declaration into a syntax tree.

float square_root (int num);

Declaration

DeclList

Float Name FunctionArgs

DeclList

Integer Name

(square_root)

(num)

47

Figure 4.2 shows a fragment of the semantic tree which corresponds to the

syntax tree of Figure 4.1. As this example demonstrates, the semantic tree offers a

more detailed representation of a code fragment. From a FunctionDecl node, we

can easily determine a function’s scope, return type, or inline status. Because the

semantic tree organizes all this information in a consistent format, the semantic

tree is a convenient representation for reasoning about a program. In contrast, the

Figure 4.2 Translation of a syntax tree into a semantic tree.

Declaration

DeclList

Float Name FunctionArgs

DeclList

Integer Name

(square_root)

(num)

FunctionDecl Object_Function

Ctor_Init_List

Outer_Scope

Enclosed_Scope

Outer_Scope

Type_Function

Protection_Specification

Linkage_Specification

Storage_Specification

FunctionDecl

Expression_List

Inline_Specification

Virtual_Specification

Exception_Specification

(square_root)

(public)

(C++)

(global function)

(square_root)

(no)

(no)

(none)

(top scope)

(top scope)

(not applicable)

(function scope)

48

syntax tree is unable to convey this information because its node types just capture

the textual organization of the function declaration.

While constructing the semantic tree, the compiler performs several code

simplification tasks too. For example, if the source code contains an expression

involving only constant values, the compiler replaces the corresponding portion of

the semantic tree with a subtree containing the equivalent computed value.

To support P++, we added another code simplification task to the compiler:

the expansion of parameterized declarations. We found that certain P++ constructs

cannot be translated directly to C++. In particular, parameterized realms and com-

ponents cannot be expressed as C++ templates, because C++ instantiates templates

in a different manner than P++ expands realms and components (e.g., a P++ com-

ponent may include forward declarations or implicit parameters). To solve this

problem, the P++ compiler finds all expressions involving parameterized declara-

tions. It replaces the corresponding portions of the semantic tree with equivalent

subtrees that represent expanded versions of the declarations. In this way, P++ pro-

vides the mechanism necessary to instantiate parameterized declarations. (An

example of this procedure is given in the next section.)

The final task involved C++ code generation. The original CPPP system

produced no output; instead, the semantic tree was the only result of parsing. In the

P++ compiler, we added code to scan the semantic tree and output the correspond-

ing C++ program. The compiler recursively traverses the tree and generates a C++

representation of each node. Because each node’s type identifies the kind of code

element to be output, this code generation module was relatively easy to imple-

ment. Figure 4.3 depicts the intermediate compilation steps which transform P++

code into C++ code.

To summarize, the P++ compiler produces C++ code after making three

passes of the input program. The first pass transforms the input source code into a

49

syntax tree. The second pass scans the syntax tree and produces a semantic tree;

this process also translates all P++ constructs into C++, simplifies expressions

involving only constant values, and converts parameterized declarations into unpa-

rameterized declarations. The third pass scans the semantic tree and outputs the

correspond C++ code.

As a performance optimization, it would be possible to precompile source

files which are frequently encountered. For example, if P++ were able to save in an

efficient file format the syntax trees for realms and components, then these trees

could be reloaded by P++ during subsequent compilations. This optimization

would reduce compilation time because it would avoid the cost of repeatedly scan-

ning and parsing the source files. Ultimately, we might need to implement this fea-

ture so that P++ could scale to efficiently compile large systems.

Figure 4.3 Compilation steps of the P++ compiler.

P++
source
code

C++
output
code

Processed
source
code

Preprocessor

Parser

Stream of
tokens

Syntax
tree

Semantic
tree

Code

Scanner

generation
Semantic
analyzer

50

4.3 Translating P++ into C++

When the compiler creates the semantic tree, it eliminates all P++ code from the

syntax tree and replaces it with equivalent C++ code. This procedure is noteworthy

because the compiler must often perform extensive analysis and code modification

to accomplish this translation. We believe that the study of this process will help to

explain the relationship between P++ and C++.

A realm declaration describes only the interface of a component. It corre-

sponds to no executable code; therefore, the P++ compiler generates no C++ out-

put for this construct. Nevertheless, a realm declaration still plays an important

role in compiler error checking. In subsequent component declarations, the com-

piler can check whether a component actually implements all functions, classes,

and methods declared by its realm. In addition, if a program declares a realm

parameter, the compiler can verify that the parameter accesses only the interface

described by the realm. Thus, a realm serves as a formal interface description

which is used extensively during compilation.

The P++ compiler processes a parameterized realm declaration in a differ-

ent manner than an unparameterized declaration. When it first encounters a param-

eterized realm, the P++ compiler simply records the syntax tree for the declaration

in an internal symbol table. If the parameterized realm is subsequently instantiated,

the compiler recalls the original declaration and performs several steps to create an

unparameterized replica of the realm declaration. First, the compiler creates a copy

of the syntax tree that corresponds to the parameterized realm. Next, it replaces

within the copy all instances of parameter names with the corresponding parameter

values. Finally, the compiler creates a new name for the copied realm declaration;

this name uniquely identifies this particular instantiation of the realm with these

parameter values. The result of all this work is a new realm declaration which can

51

be processed in the same manner as any other unparameterized realm. To summa-

rize, the P++ compiler instantiates a parameterized realm by creating a new syntax

tree which corresponds to the equivalent unparameterized realm.

A component construct supplies the implementation details of a compo-

nent. Perhaps surprisingly, the compiler generates no C++ output when this con-

struct is seen. Instead, the compiler simply records the definition of the component

within its symbol table. If the component is subsequently used within a system

implementation, only then will the component’s definition be recalled and trans-

lated into C++.

How is a P++ system implementation converted to C++? A system imple-

mentation consists of the composition of one or more components. Simultaneously

instantiating several components to generate C++ code would be difficult; instead,

the P++ compiler handles a parameterized component similar to the way it handles

a parameterized realm. Recall that P++ converts a parameterized realm into an

equivalent unparameterized realm. This allows the compiler to process both kinds

of realms in the same manner. Likewise, P++ converts a parameterized component

into an unparameterized component. If a component has only type and constant

parameters, then the compiler simply creates a copy of the component’s syntax tree

and substitutes parameter names with parameter values in the new tree. However,

if the component has a realm parameter, then the compiler creates a nested class

declaration and it instantiates the component value for that parameter within the

nested class.

For a concrete example of this translation process, consider the code of

Figure 4.4. The left column shows the declarations for a parameterized realm, two

parameterized components, and a component composition; the right column lists

the equivalent C++ code. The P++ compiler would perform the following steps to

generate this code:

52

Figure 4.4 Translation of P++ code (left column) to C++ code (right column).

template <class T>
realm ds
{ ...
};

class sys
template <class T, int size> {
component bounded : ds<T> class _$1
{ {
... ...
class container class container
{ {
T objs[size]; float objs[100];
int first; int first;
int count; int count;
... ...

}; };
class cursor class cursor
{ {
container *const cont; container *const cont;
int index; int index;
... ...

}; };
}; };

template <class T, ds<T> rep>
component size_cache : ds<T>
{
class container class container
: public rep::container : public _$1::container

{ {
int obj_count; int obj_count;
... ...

}; };
class cursor class cursor
: public rep::cursor : public _$1::cursor

{ {
container *sc; container *sc;
cursor (container *c) cursor (container *c)
: rep::cursor (c) {...} : _$1::cursor (c) {...}

... ...
}; }

}; };

typedef size_cache
<float, bounded <100> > sys;

53

1. The compiler parses the entire program and constructs a syntax tree. In this

case, the syntax tree contains the declarations for ds, bounded, size_cache,

and sys.

2. The syntax tree is converted into a semantic tree by performing a depth-first

traversal and recursively processing each subtree. When the compiler

traverses the subtrees for the ds, bounded, or size_cache declarations, it cop-

ies the declaration into the symbol table (but outputs no code).

When the subtree for sys is traversed, the compiler converts each

parameterized declaration of the composition into an equivalent unparame-

terized declaration. Thus, the next step is to generate an unparameterized

version of size_cache. In doing so, the compiler discovers that size_cache

actually belongs to the parameterized realm ds; consequently, the compiler

first instantiates ds with the parameter value float. The compiler then evalu-

ates all of the parameter values of size_cache. One of these values is actually

the parameterized component bounded, which must be instantiated next. In

turn, bounded belongs to a parameterized realm (ds), which must be instanti-

ated too. The compiler is then able to generate an unparameterized replica of

bounded, which it calls _$1 (which is just a globally unique identifier name).

Finally, the compiler generates an unparameterized replica of

size_cache, which it calls sys. Subtrees for these replicas are inserted into the

semantic tree in place of the component composition sys. (This entire pro-

cess is summarized in Figure 4.5.)

In Figure 4.4, note that the replica for bounded is nested within the

replica for size_cache; this nesting reflects the fact bounded is a component

value for one of size_cache’s parameters. Therefore, if the components

within a system implementation are nested n levels deep, then the corre-

sponding generated code will contain classes that are nested n levels deep.

54

3. The compiler performs a depth-first traversal of the semantic tree, outputting

the C++ representation of each node it encounters. At this point, the declara-

tions for the _$1 and sys classes are output.

In summary, the compiler replaces each P++ construct with equivalent C++

code when it converts the syntax tree into the semantic tree. If a parameterized

declaration or definition is seen, the compiler replaces it with an equivalent unpa-

rameterized version. If the declaration / definition has constant or type parameters,

the corresponding value is substituted in place of each parameter name. If it has

component parameters, they are recursively instantiated and transformed into

nested class declarations.

• Process size_cache<float, bounded<100> >
• Lookup size_cache ... it belongs to a parameterized realm
• Instantiate ds<float>
• Examine parameters for size_cache ... one is a component parameter
• Process bounded<100>

• Lookup bounded ... it belongs to a parameterized realm
• Instantiate ds<float>
• Examine parameters for bounded ... all are constants or types
• Instantiate bounded<100> and call it _$1

• Instantiate size_cache<float, _$1> and call it sys

Figure 4.5 The instantiation steps for the system sys.

55

Chapter 5

Results

To evaluate the benefits provided by P++ in implementing scalable domain-spe-

cific component libraries, we created a library of components for the domain of

data structures and compared these components with an existing data structures

class library, the Booch C++ Components.

The Booch library is a meaningful basis of comparison because it is a

widely-used library whose design and organization has been refined over time.

Originally an Ada library consisting of 150,000 lines of code, it evolved into a

30,000 line C++ library. In [Big94], Biggerstaff suggests that the Booch library

serves as “challenge problem” for measuring the benefits offered by programming

languages in writing scalable software libraries:

“I believe that Booch’s library is a benchmark that approximates the limits

to which today’s languages can be pushed in creating reuse libraries that

emphasize reduced library growth while providing an acceptable perfor-

mance level. The degree to which new, proposed language constructs

improve on this benchmark will indicate their contribution to the solution

of the scaling problem.”

This chapter reviews our experiment’s design and explain the results.

56

5.1 The Booch C++ Component Library

Our experiment compared two implementations of a component library,

one written in C++ and the other written in P++. The two versions of the library

implemented identical algorithms and interfaces; the differences arose from the

particular way that each library organizes and combines its components. Our goal

was to quantify the differences in code size and performance between the two

libraries.

We selected the Booch C++ Components1 as the basis for comparison. The

Booch library is unique because it is specifically designed to implement many dif-

ferent versions of algorithms for certain data structures. In contrast, libraries like

the C++ Standard Template Library [Pla95] and the GNU libg++ library [Lea88]

only provide a few implementations of a broad variety of data structures. We chose

the Booch C++ Components because it uses inheritance and parameterized types

to reduce code replication and reuse code. This library offered an excellent oppor-

tunity to study issues like scalability and inheritance in library design.

The data structures domain consists of algorithms and data types which

implement containers of objects — examples include bags, sets, lists, and queues.

Why choose this domain? Data structures is a simple, easy-to-understand problem

domain. The basic ideas and algorithms are already familiar to most programmers,

making data structures an ideal framework for testing and explaining our results.

This domain consists of many enumerable data structure “systems”. Moreover, in

our experience with this domain, we found that data structures pose the same tech-

1. We used version 1.47 of the Booch C++ Component Library for our experiments. We also had
access to a “beta” copy of version 2 of this library, but because it was still undergoing develop-
ment and testing, it was not suitable for our use. Nevertheless, based on a preliminary examina-
tion of this library, we believe that our overall results would be the same; even though the new
library uses different algorithms, it still possesses the same limitations that we will describe in
this chapter.

57

nical challenges and operate in the same manner as more complicated domains like

databases and network protocols.

The primary goal of the Booch library “is to provide a carefully designed

collection of useful data structures” [Boo90]. To do so, the library offers a wide

selection of data structure classes in the hope that these classes will be relevant to

many user applications. The library is organized as a suite of data structure fami-

lies, where a family corresponds to a basic algorithm like bag or set (see Figure 5.1

for a complete list). A family implements several variations of an algorithm; vari-

ants may have different performance characteristics, memory requirements, or

concurrency control mechanisms.

The organization of the Booch library is the result of a careful object-ori-

ented analysis and design effort [Boo87]. Techniques such as parameterization and

inheritance have been employed to minimize code replication between the library’s

classes. For example, the Booch library defines a hierarchy of classes to implement

several varieties of bags (see Figure 5.2). The superclass of this hierarchy (i.e.

Bag) is responsible for declaring the interface which is common to all bag data

structures. The superclass also implements some simple bag methods, which the

other classes in the hierarchy inherit. The subclasses of the hierarchy correspond to

bags which implement various permutations of data structure features. Thus, the

Guarded_Bounded_Bag class combines algorithms for three distinct features: the

bag algorithm implements an unordered container of elements where duplicates

are permitted; the guarded algorithm provides lock / unlock operations so that the

user can explicitly implement a concurrency control policy; and the bounded algo-

rithm preallocates a fixed number of elements in the container. The Item and Size

parameters of Guarded_Bounded_Bag are used to customize the behavior of this

data structure. The Item parameter specifies the type of element stored by the con-

58

* We did not reimplement this data structure family in the P++ Data Structures library.

Data structure families in the Booch library

Bag unordered collection of objects, which may contain duplicates

Deque ordered sequence of objects, where objects may be inserted or removed at
either end

List* a linked list of objects, which are automatically garbage collected

Map* a tabular data structure which associates instances of one kind of object
with instances of some other kind of object

Queue ordered sequence of objects, with “first-in first-out” semantics

Ring list ordered sequence of objects, organized in a loop

Set unordered collection of objects, which contains no duplicates

Stack ordered sequence of objects, with “last-in first-out” semantics

String ordered sequence of objects, where any object may be accessed directly

Tree* a binary tree of objects, which are automatically garbage collected

Data structure features which are available to every family

Bounded static memory allocation algorithm (upper bound on total number of
objects)

Unbounded dynamic memory allocation algorithm (no upper bound on total number of
objects)

Managed freed objects are stored on a list for subsequent reuse

Controlled a version of managed which operates correctly ina multi-threaded environ-
ment

Sequential assumes a single-threaded environment

Guarded assumes a multi-threaded environment, where mutual exclusion is explicitly
performed by the user

Concurrent assumes a multi-threaded environment, where the object ensures that all
read and write accesses are serialized

Multiple assumes a multi-threaded environment, where the object permits multiple
simultaneous read accesses, but serializes write accesses

Data structure features which are available to deques and queues only

Balking objects may be removed from the middle of a sequence

Priority objects are sorted based on some priority function

Figure 5.1 A glossary of Booch data structure terminology.

59

tainer, and the Size parameter tells the bounded algorithm how many elements it

should preallocate.

Figure 5.2 Organization of the Booch library.

Bag
<Item>

Bounded_Bag
<Item, Size>

Guarded_Bounded_Bag
<Item, Size>

Synch_Bounded_Bag
<Item, Size, Monitor>

Guarded_Unbounded_Bag
<Item, Container>

Synch_Unbounded_Bag
<Item, Container, Monitor>

Unbounded_Bag
<Item, Container>

bag

ring list

stack

list

set

string

deque

Data structure families
of the Booch C++

map

queue

tree
Component library

60

Parameterization can also be used to customize the behavior of generic data

structure algorithms. The example of Figure 5.2 shows that one parameter of

Synchronized_Bounded_Bag class is Monitor. Depending on the value specified

for this parameter, this class can generate a “concurrent bounded bag” (which has

exclusive-lock semantics) or a “multiple bounded bag” (which has read-lock /

write-lock semantics). This example demonstrates that a single parameterized

class may correspond to several permutations of features. Consequently, a library

which uses parameterization in this manner can avoid exhaustively enumerating all

permutations of similar data structure features.

5.2 The P++ Data Structures library

Our experiment was to create a library of P++ realms and components for

the data structures domain, and to compare the size and performance of this library

with the Booch library. To measure performance, we devised several benchmark

programs which heavily exercised the operations provided by the generated con-

tainer data structures. These programs verified that both libraries implemented

functionally identical components and that the generated systems had similar runt-

ime speeds.

5.2.1 Library organization

Figure 5.3 lists the realms and components which comprise the P++

library. Some of these realms directly correspond to abstract classes from the

Booch library. In other cases, a single P++ realm replaces several Booch abstract

classes. One of the challenges in designing the P++ data structures library was

identifying opportunities for consolidating similar interfaces into a single realm.

Even more difficult was recognizing the need for new realms to represent funda-

61

mental concepts that are not explicitly represented as components in the Booch

library. The basic strategy behind our domain decomposition was to identify and

represent the fundamental abstractions that occur in the Booch data structures

domain.

Notice that the organization of features in the Booch library is very differ-

ent from the organization of realms in the P++ library. The features of the Booch

Realm Components

ds<T> bounded<T, int>
concurrent<T, ds>
guarded<T, ds>
multiple<T, ds>
size_cache<T, ds>
unbounded<T, memory>
unbounded_double<T, memory>

memory<T> controlled<T, memory>
heap<T>
managed<T, memory>

collection<T> bag<T, ds>
bag_noref<T, ds>
cset<T, ds>

ring<T> ring_list<T, ds>

balking_sequence<T> balking_queue<T, ds>
priority_balking_queue<T, ds>

nonbalking_deque_sequence<T> deque<T, balking_sequence>

balking_queue_sequence<T> balking_queue<T, balking_sequence>

nonbalking_queue_sequence<T> nonbalking_queue<T,balking_sequence>

balking_stack_sequence<T> balking_stack<T, balking_sequence>

nonbalking_stack_sequence<T> nonbalking_stack<T, balking_sequence>

variable_string<T> string_list<T, ds>

Figure 5.3 Organization of the P++ data structures library.

62

library are loosely grouped according to their semantics (i.e. bags, deques, and sets

are all data structures which store collections of elements, even though their inter-

faces are substantially different). In the P++ library, however, components are

grouped into realms because of their interfaces (i.e. the components in a realm

share the same interface). This means that there is not necessarily a one-to-one cor-

respondence between Booch features and P++ realms.

The key insight in our design of the P++ library was to recognize how to

factor out several algorithms that repeatedly occurred in numerous Booch data

structures. These algorithms provided generic data structure capabilities such as

concurrency control and memory allocation, yet they were available in data struc-

tures as varied as strings and priority queues. After much trial and error, we finally

settled on the interface for ds, a realm which represents generic data structure algo-

rithms. The design of ds was partly driven by the lessons learned from the Genesis

generator, which demonstrated how to model database algorithms as type transfor-

mations [Bat88]. By applying similar techniques to the Booch data structures, we

were able to define this realm and its components, to implement all of the common

algorithms of the Booch library.

The following overview lists the realms in the P++ library. We start with

the simplest abstractions of the library and progress to more complex abstractions

which build upon the earlier ones. For each realm, we indicate the corresponding

Booch abstract classes.

• ds — This realm describes the interface of a primitive data structure collec-

tion. It offers operations and data types to manipulate a collection of objects.

The ds realm specifies few details about the semantics of this container.

Rather, the purpose of ds is to permit the representation of generic data struc-

63

ture algorithms which are not concerned about specific order rules, memory

allocation schemes, or concurrency control mechanisms. There is no Booch

abstract class which is analogous to this realm.

• memory — This realm describes an abstraction which does not directly cor-

respond to any Booch abstract class. The purpose of this realm is to capture

the various memory allocation algorithms that occur in the Booch library;

memory declares classes which perform memory management.

• collection — This realm provides operations and data types for manipulating

an unordered container of objects. collection does not specify the behavior of

the container if a duplicate object is inserted. By omitting this aspect of the

container’s operational semantics, collection is functionally equivalent to

two Booch abstract classes, Bag and Set. A Bag represents containers which

allow duplicate copies of objects, and a Set represents containers which pro-

hibit duplicates (i.e. an exception is thrown if duplicate objects are inserted).

• ring — This realm describes a container data structure which stores its ele-

ments in a circularly linked list. One element is marked as the “start” of the

ring. Element insertions and deletions typically occur at this marker position.

This realm corresponds to the Ring abstract class.

• sequence — The P++ library contains realms which describes several kinds

of sequences. Each realm corresponds to a different combination of insertion

semantics and access semantics. The stack realms have first-in last-out

semantics, whereas the queue realms have first-in first-out semantics, and the

deque realms permit insertions and removals at either end of the sequence.

The balking realms permit the removal of intermediate elements in the

sequence, while the nonbalking realms only allow removal of the end ele-

ments of the sequence. The result is six varieties of sequence realms, each

64

with slightly different interfaces and semantics. These realms correspond to

several abstract classes from the Booch library, such as Balking_Deque,

Nonbalking_Queue, etc.

• variable_string — This realm represents a container data structure which

organizes its elements linearly. The semantics are equivalent to those of a

resizable array: elements may be accessed by an index value, and new ele-

ments can be prepended or appended to the array. This realm corresponds to

the String abstract class.

For each realm in the P++ library (see Figure 5.3), there are one or more

components which provide a concrete implementation of that realm’s interface.

The ds realm has the most components, because this realm corresponds to general-

purpose algorithms that are relevant to many data structures. For example, the

size_cache component defines data types and operations which count the number

of elements in a container; the bounded component preallocates a fixed-size mem-

ory region to store the elements of a container; and the concurrent component

implements a concurrency-control monitor to serialize all read and write opera-

tions in a multi-threaded environment.

Within a given realm, most components generally have the same realm

parameters. This observation is not surprising, because a component can be mod-

elled as a layered software abstraction. Figure 5.4 shows the hierarchy of abstrac-

tions in the P++ component library. A node corresponds to a realm, and an edge

indicates how components in a realm are typically parameterized (components cor-

responding to the realm at the source node of an edge usually possess a realm

parameter which corresponds to the destination node of the edge).

In conclusion, using the ds realm as the cornerstone for the P++ library, it

was fairly straightforward to design the remaining realms and components. All

Booch data structure families implemented different variations of a simple con-

65

tainer abstraction. That is, realms like collection, ring, and variable_string bear a

strong resemblance to ds, except that methods and classes have been renamed.

Consequently, the components belonging to these realms were quite simple; they

just translated operations from one interface into ds operations.

5.2.2 Comparing library sizes

One basic goal of our experiment was to compare the sizes of the P++ and Booch

libraries. The size of a library is proportional to the time and effort required to

develop and maintain the library — it is therefore advantageous to make libraries

smaller. Because there is no single metric for determining a library’s size, we eval-

uated both libraries on several criteria: the number of abstract interfaces, the num-

ber of concrete components, and the number of lines of code.

The overall Booch library defines a total of ten data structure families; for

this research project, we selected seven families to reimplement in P++ (see the top

portion of Figure 5.1). We omitted three of the Booch families because we found

them to be very similar to data structure families already represented by the P++

library. The goal of our work was not to simply reimplement the Booch library, but

to explore issues of scalable library design; the seven families that we selected

Figure 5.4 Hierarchy of realm abstractions.

memory

ds

ring variable_string sequence collection

66

were sufficient for this task. Nevertheless, we still performed a careful analysis of

the remaining three families to understand what realms and components would be

needed, without actually implementing them. We combined these results with

measurements of the size of the P++ library, to predict the overall size of a com-

plete reimplementation of the Booch C++ Components. Because of this analysis,

our partial reimplementation of the Booch library was almost as instructive as a

full reimplementation would have been.

Figures 5.5 and 5.6 summarize the size differences of the two libraries. The

first figure shows the measurements obtained from the seven Booch data structure

families and from our current P++ library implementation. The second figure

shows results for all ten Booch data structure families and extrapolated results for a

complete P++ library implementation.

Our first measurement was to compare the number of abstractions defined

by both libraries. It was no surprise to learn that there are a few more realms in the

P++ library than abstract classes in the Booch library: as we described before, the

P++ library introduces new interfaces to represent primitive abstractions which do

not explicitly appear in the Booch library. Specifically, in the first figure we see

that the Booch library has 7 abstract classes (corresponding to 7 data structure

families), whereas the P++ library has 11 realms (which were listed in Figure 5.3).

The next measurement was to compare the number of Booch concrete

classes with the number of P++ components. The first figure shows that the Booch

library was four times larger than the P++ library (82 concrete classes versus 21

components). In the second figure, we predict that the entire Booch library would

be three times larger than a complete implementation of the P++ library (100 con-

crete classes versus 29 components). In either case, the P++ library is substantially

smaller.

67

What accounts for this difference? Looking back to Figure 5.2, we observe

that several data structure algorithms repeatedly occur in the Booch class hierar-

chy. For example, the guarded algorithm is separately reimplemented in the

Guarded_Bounded_Bag and Guarded_Unbounded_Bag components. Similarly,

the synchronized algorithm appears in Synch_Bounded_Bag and

Synch_Unbounded_Bag. The Booch library contains numerous examples of this

replication, whereas the P++ library avoids it.

The final measurement compared the number of lines of code in each

library (ignoring blank lines and comments). For this measurement, we could

obtain data only for the current P++ library, which emulates seven data structure

Booch C++
Components

P++ Data Structures
Library

No. of abstract classes / realms 7 11

No. of concrete classes /
components

82 22

Lines of code 11067 2760

No. of generated data structures 169 208

Figure 5.5 A comparison of the sizes of the Booch and P++ libraries
(for seven data structure families).

Booch C++
Components

P++ Data Structures
Library

No. of abstract classes / realms 10 18

No. of concrete classes /
components

100 30

No. of generated data structures 206 308

Figure 5.6 A comparison of the sizes of the Booch and P++ libraries
(for all ten data structure families).

68

families. This data shows that the Booch library is again four times larger than the

P++ library (11067 versus 2760 lines of code). Because it is impossible to accu-

rately predict the size of a P++ library which reimplements all ten Booch data

structure families, we have omitted that data from Figure 5.6. Nevertheless, we

believe that a full reimplementation of the Booch library using P++ would show a

similar reduction in code size (which would be consistent with the other data

reported in the figure).

5.2.3 Scalability and generative power

As we discussed in Chapter 2, scalability is an important factor in evaluating the

quality and utility of a reuse library. A library which is not scalable will be difficult

to extend — adding a new primitive feature to the library could entail doubling the

number of components. Clearly, this would be a maintenance nightmare. Con-

versely, if a library is scalable, then the library can easily accommodate new fea-

tures. Moreover, a useful library will have generative power: the library’s

components can be used to generate a large number of unique systems. If a scal-

able library has generative power, then the small effort required to add a new com-

ponent to a scalable library will eventually yield a tremendous productivity payoff,

because the library will now be able to generate an even larger number of systems.

The data of Figure 5.5 indicate that the P++ library is more scalable than

the Booch library, because there is less replication of algorithms in the P++ library.

Most classes of the Booch library were written using C++ templates. By instantiat-

ing those templates with different values, different data structures can be gener-

ated. Our calculations show that the 82 classes belonging to the seven Booch data

structure families could generate 169 unique data structure systems. In compari-

son, the 21 components of the P++ library can be combined to produce 208 system

implementations.

69

Figure 5.6 reveals similar results for the full Booch library and the corre-

sponding P++ library. The 100 Booch classes can generate 206 systems, whereas

the 30 P++ components would generate 308 systems. In this case, we found that

adding a few (8) more components to the P++ library ultimately yields many (100)

more systems that can be generated.2 This result is a clear example of generative

power in action — adding components to the P++ library had a multiplicative

effect on the number of generated systems.

Why can the P++ library generate more systems? A careful examination of

the Booch library reveals that it fails to implement certain combinations of data

structure features. For example, it includes balking deques, balking queues, prior-

ity deques, and priority queues, but it omits balking stacks and priority stacks. (The

LEAPS production system compiler actually uses balking stacks extensively

[Mir90].) All six data structures are semantically valid, but because it is so tedious

to exhaustively enumerate all permutations of data structure features, the Booch

library only includes those data structures judged to be most common. In contrast,

P++ can easily enumerate almost any data structure implementation, by selecting

and combining the appropriate components from its library. (The non-reference

counting bounded bag example to be discussed in Section 5.2.4 demonstrates the

scalability of the P++ library.)

5.2.4 Performance

Though the P++ library is substantially smaller than the Booch library, this benefit

has little value if the P++ library performs poorly. Our next measurements com-

pared the execution times of simple benchmark programs which used the P++ and

2. The eight components (along with the corresponding realms) are: directed_graph (dgraph),
undirected_graph (ugraph), single_list (slist), double_list (dlist), binary_tree (btree),
arbitrary_tree (atree), hash_map (map), and shared (ds).

70

Booch libraries. The goal of these programs was to exercise the operations pro-

vided by various generated data structures. Some of these benchmarks performed

redundant operations or computed results in a simplistic manner. Our intent was

not to find the fastest absolute solutions for these computational problems; rather,

we just wanted to compare the performance of corresponding data structures from

each library.

We implemented two versions of each benchmark program, one using the

Booch library and the other using the P++ library. Because both libraries provided

almost identical programming interfaces, both versions of the benchmark pro-

grams were very similar. The only differences involved renamed header files, class

names, and method names. The close similarity of the two libraries’ interfaces per-

mitted us to verify that these libraries were functionally equivalent. That is, by sub-

stituting one library for another in a benchmark program, we could verify that the

operations implemented by the two libraries were equivalent; if not, the benchmark

program would behave differently.

Our first benchmark computed prime numbers using a version of the Sieve

of Eratosthenes algorithm. This program first created a bag or set container and

inserted numbers from 2 to n (where n = 5000, 10000, or 12000). Next, the pro-

gram searched the container to find the smallest number, which always would be

prime. It created a second container, which contained all multiples of the prime

number just printed that are less than n. Finally, the program computed the differ-

ence of the first container and the second, thereby removing all multiples of the

prime number from the first container. The program repeated this process of

removing multiples of the smallest prime in the container until the container was

empty.

Figure 5.7 and Figure 5.8 show the source code for both implementations

of this benchmark using bounded bags. Notice that the programs are identical

71

#include “bag.c”
#include “svector.c”
#include “bag_b.c”

#ifndef MAX_NUMBER
#define MAX_NUMBER 10000
#endif

typedef Bounded_Bag<int, MAX_NUMBER> Number_Collection;
typedef Bag_Active_Iterator<int> Number_Cursor;

#include <stream.h>

int get_smallest (Number_Collection &coll)
{
int smallest = MAX_NUMBER;
for (Number_Cursor c (coll); !c.is_done (); c.next ())
if (*c.item () < smallest)
smallest = *c.item ();

return smallest;
}

main ()
{
Number_Collection numbers;

// Populate bag with numbers from 2 to n
for (int i = 2; i < MAX_NUMBER; ++i)
numbers.add (i);

// Print primes and remove its multiples from bag
while (!numbers.is_empty ())
{
int prime = get_smallest (numbers);
cout << prime << ‘ ‘;

Number_Collection multiples;
for (int i = prime; i < MAX_NUMBER; i += prime)
multiples.add (i);

numbers.difference (multiples);
}
cout << endl;

}

Figure 5.7 Source code for Sieve of Eratosthenes using Booch bounded bags.

72

#include “memory-heap.hh”
#include “ds-bounded.hh”
#include “collection-bag.hh”

#ifndef MAX_NUMBER
#define MAX_NUMBER 10000
#endif

typedef bag<int, bounded<MAX_NUMBER> > system;
typedef system::collection Number_Collection;
typedef system::iterator Number_Cursor;

#include <stream.h>

int get_smallest (Number_Collection &coll)
{
int smallest = MAX_NUMBER;
for (Number_Cursor c (coll); !c.is_done (); c.next ())
if (*c.item () < smallest)
smallest = *c.item ();

return smallest;
}

main ()
{
Number_Collection numbers;

// Populate bag with numbers from 2 to n
for (int i = 2; i < MAX_NUMBER; ++i)
numbers.add (i);

// Print primes and remove its multiples from bag
while (!numbers.is_empty ())
{
int prime = get_smallest (numbers);
cout << prime << ‘ ‘;

Number_Collection multiples;
for (int i = prime; i < MAX_NUMBER; i += prime)
multiples.add (i);

numbers.difference (multiples);
}
cout << endl;

}

Figure 5.8 Source code for Sieve of Eratosthenes using P++ bounded bags.

73

except for the initial declarations of the Number_Collection and Number_Iterator

classes. The other benchmarks were also implemented in this manner: the Booch

and P++ data structure algorithms had very similar interfaces and semantics, so

switching from one library to another was trivial. Figure 5.9 shows the execution

times of the Sieve of Eratosthenes benchmark for n = 10000. This graph indicates

that the P++ versions consistently ran faster than the corresponding Booch ver-

sions. (We omitted the graphs for n = 5000 and n = 12000 because they revealed

the same performance characteristics.)

Figure 5.9 The prime number benchmark, for n = 10000.

Execution time (seconds)

0 40 80 120 160 200

Booch bounded bag

P++ bounded bag

Booch unbounded bag

P++ unbounded bag

Booch bounded set

P++ bounded set

Booch unbounded set

P++ unbounded set

74

What accounts for this difference? As we described earlier, the Booch

library makes extensive use of inheritance when it implements the classes of a data

structure family. In C++, this often entails the use of virtual methods. A virtual

method invocation requires a runtime lookup in a dispatch table and an indirect

function call. We found that most methods in the Booch library were virtual, but

not in the P++ library. Consequently, the Booch versions of the benchmark spent a

lot of time performing virtual method lookups, whereas the P++ versions avoided

that cost altogether. In addition, because a virtual method call involves a computed

jump to a function, most compilers cannot perform inline code optimization of vir-

tual methods. Therefore, by avoiding virtual methods, the P++ library increases the

opportunities for the compiler to perform inlining and code rescheduling optimiza-

tions, which in turn leads to better performance [Pla95].

The next benchmark program also implemented the Sieve of Eratosthenes

algorithm, but this time using ring list containers. The program first inserted num-

bers from 2 to n (where n = 5000, 8000, or 10000) into the ring. Next, the program

removed the first element in the ring (which always would be the smallest prime)

and printed it. It then proceeded to scan the list and remove all multiples of the

smallest prime, until it reached the beginning of the list. The process was repeated

until the ring was empty. In the bounded ring benchmark, the P++ version was

slightly slower than the Booch version. However, in the unbounded ring bench-

mark, the P++ version was substantially faster.

To understand these performance results (shown in Figure 5.10), we care-

fully examined the various ring list data structures. We found slight differences in

the implementations of these data structures which had significant performance

ramifications. In the case of the bounded ring list, we found that the P++ version

performed some redundant error checking that the Booch version avoided. The

P++ ring_list component is parameterized by the ds realm; consequently, ring_list

75

imports the operations of bounded to implement the bounded ring list algorithm.

Buried within the operations of bounded was boundary-case error checking code

which necessary only when bounded was used in certain component combinations.

Consequently, the P++ bounded ring list suffered a slight performance penalty

because the bounded component included error checking which was not actually

needed when it was combined with the ring_list component.

This minor performance discrepancy does not reveal a flaw in P++; rather,

it illustrates how crucial it is to design the semantics of realms and components

carefully. In this case, the error checking semantics of an operation were overly

strict, which resulted in redundant computations. If the operations of ds and ring

had initially been designed slightly differently to anticipate this problem, it might

have been avoided.

The Booch version of the unbounded ring list has a different problem

which made it much slower than the P++ version. Because a ring list provides

Figure 5.10 The ring list benchmark, for n = 8000.

Execution time (seconds)

0 10 20 30 40

Booch bounded ring

P++ bounded ring

Booch unbounded ring

P++ unbounded ring

76

operations to traverse its elements in both directions, this data structure must be

able to quickly find the previous and next neighbors of any element. However, the

Booch library implements the unbounded algorithm using a singly linked list. As a

result, the Booch unbounded ring list is able to quickly move to the next element in

the ring, but it is very slow in moving to the previous element. The unbounded

component of the P++ library uses doubly linked lists to avoid this problem, thus

making it much faster.

The final benchmark was a spelling checker program. This program created

two bag containers; it loaded one container with 25000 dictionary words and the

other container with words from the document to be checked. The program com-

puted the difference of the two container to identify the misspelled words; that is,

the program found all words that appeared in the document container but not the

dictionary container. The results of Figure 5.11 correspond to spell checking the

Figure 5.11 The dictionary benchmark, on U.S. Constitution document.

Execution time (seconds)

0 100 200 300 400 500 600 700 800

Booch unbounded
bag

P++ unbounded bag

P++ unbounded bag
noref

Booch unbounded
set

P++ unbounded set

77

U.S. Constitution document; we omitted the graphs for some other documents

because those results were essentially identical.

By avoiding virtual dispatch overhead, the graph shows that the P++

bounded bag and unbounded bag were slightly faster than the corresponding

Booch data structures. We obtained an interesting result when we tested an extra

P++ data structure, called non-reference counting bounded bag. In the normal

implementation of bags, both the P++ and Booch libraries use reference counting

to eliminate duplicates from the bag container. Thus, when an element is inserted

into one of these bags, the bag must check if that element already exists; if so, the

reference count is incremented, otherwise the element is added to the bag. This

algorithm is obviously very inefficient, especially when there are few duplicate

elements in a bag. Consequently, we devised a different version of bag which does

not perform reference counting. This version is far more efficient for some opera-

tions (like insert), but less efficient for other operations (like difference).

The graph shows the tremendous speedup gained from this optimized ver-

sion of bag. Implementing this feature was easy, because only one component

needed to be added to the P++ library. In contrast, implementing this feature for

the Booch library would entail writing many new components. Thus, this bench-

mark demonstrates the enormous benefit of a scalable library design.

5.3 P++ makes SSG development easier

In existing GenVoca generators (such as Genesis or Avoca), the machinery for rep-

resenting and combining components constituted a critical portion of the genera-

tor’s implementation. Because no tool was available to automatically build this

infrastructure, each generator had to separately reimplement it. Often, the resulting

generator would possess functional limitations because various design compro-

78

mises were made to expedite the implementation. For example, some generators

had an awkward notation to describe a component’s implementation; others pro-

duced inefficient code for component compositions. These problems would have

been avoided if the infrastructure had been automatically created by P++, taking

advantage of its succinct notation and automated code generation.

Consider some of the limitations of Genesis. Because Genesis was written

in C, there was no built-in language support for GenVoca concepts like realms,

components, or parameterization. Instead, each of these features had to be manu-

ally emulated in C. The resulting implementation of Genesis was complex to

understand and cumbersome to modify. The code for emulating realms, compo-

nents, etc. was intertwined with the implementations of various database algo-

rithms. Adding a component was tricky, because it involved comprehending and

modifying the GenVoca emulation infrastructure. Adding a realm was almost

impossible, because the abstractions Genesis used for component interfaces were

embedded in the design of the overall system; changing them would be tantamount

to rewriting Genesis. If P++ had been used, the design and implementation of Gen-

esis would have been considerably simpler, more extensible, and more maintain-

able.

Genesis faced other obstacles too. It has a simple but unoptimized mecha-

nism for combining components. It recorded interconnections between compo-

nents as entries in a dispatch table; the entries of this table consist of pointers to the

functions exported by each component. Thus, when a component calls a function

defined by some imported component, Genesis translates that function call into a

dispatch table lookup and indirect function invocation. The drawback of this

approach is that it imposes a runtime overhead cost whenever two components

communicate. P++ avoids this overhead by replacing each abstract function call to

79

an imported component with a concrete function invocation, thereby avoiding the

cost of a table lookup.

Because P++ offers linguistic support for components, type transforma-

tions, and forward type declarations, P++ provides a powerful infrastructure for

developing generators. It is difficult to precisely quantify this contribution: the

most convincing experiment would be to reimplement several existing generators

using P++, to compare the size and performance of the different versions. How-

ever, because a typical generator represents tens of thousands of lines of code, such

an experiment would be beyond the scope of our work. Instead, we selected an

alternate experiment which involved less effort but still provides a solid framework

for evaluating the contributions of P++.

5.4 Conclusion

The results presented in this chapter demonstrate that a well-designed software

library (which is scalable and has generative power), coupled with P++ language

constructs, yields a compact yet versatile library. Not only is the volume of code

much smaller in the P++ library, but that library can generate far more systems that

the Booch library. At the same time, the systems generated by a properly designed

P++ library need not sacrifice performance, as compared to hand-coded C++ data

structures.

The conclusion is that P++ successfully responds to the challenge problem

posed by Biggerstaff. Language support for GenVoca concepts is a good idea,

because it facilitates scalable library implementation and substantially simplifies

the task of writing a GenVoca-style software system generator.

80

Chapter 6

Related work

The P++ language was not only motivated by experiences of building software sys-

tem generators for various problem domains, but it was also driven by develop-

ments in the object-oriented research community. P++ combines ideas from

diverse areas of software engineering and programming language research. In this

chapter, we discuss several noteworthy areas of research which are relevant to P++.

Frameworks is an object-oriented software development technique which strives to

increase the efficiency of system construction by increasing the scale of encapsula-

tion to subsystems. Parameterized programming languages offer special features

for writing reusable software modules. Parameterized programming libraries strive

to improve the versatility of a software module by using parameters to represent

imported algorithms and classes. Software architectures addresses the problems

inherent in building large systems from components. Transformation systems con-

vert high-level specifications into executable programs.

6.1 Frameworks

Frameworks are a popular technique for capturing recurring object-oriented

designs in software systems [Deu89, Joh88]. A framework consists of a set of

interrelated abstract classes and concrete implementations of those classes (see

81

Figure 6.1). The abstract classes A1, ..., An define the framework’s interface —

they are essentially equivalent to a GenVoca realm. For each abstract class, there

are one or more concrete classes which inherit from it. To use a framework, a sys-

tem designer must select a concrete implementation of each abstract class; for

example, one possible implementation of the framework of Figure 6.1 would be

C11, C12, ..., C1n. In GenVoca terms, a component corresponds to a semantically

valid tuple of concrete classes from the framework.

Frameworks are concerned with the reuse of software designs. The con-

crete classes of a framework form the basic architecture of an application. To com-

plete the application, the system designer provides customized subclasses which

implement the desired functionality. There are two benefits to using a framework.

First, because the framework captures architectural design decisions for a particu-

lar problem domain, the system designer can simply reuse that design and concen-

trate on the specifics of the application. Second, if frameworks are well-

documented and omit implementation-specific details, applications which use a

framework may be easy to understand and maintain [Gam95].

Despite the similarities between frameworks and GenVoca realms and

components, there are significant differences too. A framework (or a collection of

frameworks) does not form a complete system implementation. Instead, the system

Figure 6.1 Organization of the classes in a framework.

A1

C11 Cm1...

A2

C12 Cm2...

An

C1n Cmn...

...
abstract
classes

concrete
classes

82

designer must integrate the framework(s) together with hand-written code to

implement the full system. Programming with frameworks still entails compre-

hending low-level coding details; consequently, the primary benefit of frameworks

is the reuse of designs, not the reuse of code. In contrast, GenVoca generators pro-

vide large-scale programming constructs which can be easily combined to produce

complete system implementations; thus, generators facilitate both design reuse and

code reuse.

Frameworks do not provide a modelling notation for specifying which

combinations of concrete classes are semantically valid. Instead, the system

designer must consult the documentation accompanying the frameworks to deter-

mine which permutations of concrete classes are legal. In contrast, a GenVoca

component encapsulates a tuple of classes which are designed to work together.

There is no standard mechanism for combining several frameworks in a

single application. It is left to the system designer to determine whether the frame-

works are compatible, and to supply the “glue” code (if needed) to interconnect the

classes of the frameworks. Component combination is much easier in GenVoca

because realm parameters provide clear and concise composition model. Frame-

works lack the formal structure of realm parameters, which means that combining

frameworks is a manual process. (The Choices system is a notable exception; this

software system generator represents components as composable frameworks, i.e.

frameworks which are designed to be combined. Operating systems can be gener-

ated out of framework combinations, with little hand-coding [Cam92]. Unfortu-

nately, frameworks do not offer guidance in the construction of software system

generators; instead, typical frameworks focus on building subsystems, not full sys-

tem implementations.)

Our conclusion is that frameworks impose less structure and formality on

the design process. Although a domain-specific framework would certainly aid in

83

the construction of certain software systems, a system designer who chooses to

deviate from the anticipated usage of a framework will be forced to write signifi-

cant portions of the system by hand. We therefore believe that frameworks are

impractical for rapidly building large system implementations, for two reasons.

First, a typical framework is not intended to provide a full system implementation

but only the architectural skeleton, which means that the remainder of the system

must be written by hand. Second, without a formal mechanism for combining

frameworks, large systems (which might embody several frameworks) will be dif-

ficult to develop and maintain. Both limitations imply that frameworks is not pres-

ently a design technique which is scalable to large systems.

6.2 Parameterized programming

Parameterized programming is an emerging style of design for writing generic

software modules. Some researchers have proposed specialized programming lan-

guages which include advanced features to declare and combine parameterized

software modules. Other researchers continue to use standard object-oriented lan-

guages, but advocate a certain layered software design style for generic modules.

6.2.1 Parameterized programming languages

Parameterized programming languages offer sophisticated module composition

features to promote the reuse of designs, specifications, and code. These features

can appear as enhancements to conventional languages (as in LIL, the library inter-

connection language [Gog86]) or object-oriented languages (such as FOOPS

[Gog93]). Not only do these languages use the concepts of horizontal and vertical

84

parameterization to facilitate module composition, they also employ special tech-

niques for remapping module interfaces to permit the interconnection of incompat-

ible modules [Tra93].

In the terminology of parameterized programming, a theory is a module

interface. It places syntactic and semantic restrictions on the values supplied for a

module’s parameters. A view corresponds to the parametric instantiation of a

theory — that is, it specifies the binding of values to a module’s parameters. In

order for a view to be valid, the values must satisfy the restrictions imposed by the

theory. A module expression represents the composition of several modules; the

result may correspond to an executable system (because the parameters of all mod-

ules have been bound to legal values) or a parameterized system (which has been

partially instantiated but still requires additional values to complete the system).

For example, the GLISP system can produce a specialized version of a

generic numerical algorithm by compiling it relative to a particular view [Nov95].

The view specifies the mapping between the abstract data types and parameters

used by the algorithm and the concrete data types and values which are available as

input.

There are numerous similarities between GenVoca concepts and parameter-

ized programming. In both models, the interfaces of modules are explicitly

declared; the building blocks of systems are modules; and vertical and horizontal

parameterization is used to support module combination and customization,

respectively.

However, the two models differ in significant ways too. The primary dis-

tinction arises from the manner in which the language facilities of the two pro-

gramming models are used. In the case of P++, not only does the language support

component abstraction, encapsulation, and parameterization, but it is also accom-

panied by a GenVoca design methodology [Bat93], which advocates the use of

85

domain-specific, interchangeable, and scalable components. In contrast, parame-

terized programming languages do not offer guidance in the use of their language

constructs, which means that the application developer is wholly responsible for

the design and structure of module libraries. For example, suppose the modules in

a library do not have standardized interfaces (theories). In that case, the developer

will be responsible for remapping module interfaces so that each view satisfies the

restrictions of the corresponding theory. Connecting modules in this way can be

time-consuming and inefficient

6.2.2 Parameterized programming libraries

The Standard Template Library (STL) is a C++ library which offers several imple-

mentations of common container data structures and iterators, such as vectors,

deques, lists, sets, maps, and stacks [Mus96]. Also provided are a suite of utility

functions which operate upon containers; these functions can be used to compare,

search, sort, permute, and merge containers.

What distinguishes STL from other data structures libraries is the applica-

tion of parameterized programming techniques in the design of the library. Just as

type parameters can be used to make a C++ class type independent, parameterized

programming makes careful use of template parameters so that a class or function

is algorithm independent. Essentially, STL is designed in terms of layered algo-

rithms — each layer is parameterized in terms of its lower layer, and the choice of

lower layer determines the behavior and performance characteristics of the upper

layer. For example, STL provides sorting functions which are not dependent upon

a container’s implementation. Instead, the sorting function simply imposes certain

restrictions on the interface provided by the container; the overall execution time

of the sort function is determined by the kind of container selected and the sort

algorithm.

86

The designers of STL claim that parameterized programming yields several

benefits. First, the run-time performance of data structure algorithms is not com-

promised, even though the algorithms are represented in a generic fashion.

Because C++ template parameters are resolved at compile-time, there is no run-

time penalty when parameter values are accessed. Second, parameterized program-

ming does not preclude library extensions. The type hierarchy of STL is designed

to allow library users to easily integrate their own container classes, iterator

classes, and utility functions. User-supplied container classes can be used with

existing utility functions, and user-supplied functions can operate upon existing

STL containers. Third, the syntactic validity of compositions can be verified at

compile-time, using the normal C++ type-checking of templates.

Although parameterized programming offers promise as an effective tech-

nique for implementing reusable algorithms with C++ templates, by itself this

technique is not a panacea. The authors of STL still had to carefully design the

library in order to achieve the previously listed benefits. Ultimately, the success of

the library was the result of a good design, not just the application of parameter-

ized programming.

For example, it is difficult to write a fully generic implementation of a sort

function. In designing the function, great care must be given to the specific opera-

tions that will be used from the container class. A comparison operation and a

function for swapping container elements must be selected: these routines must

work for all element types, regardless of whether they are user-defined or built-in

types. In addition, because some varieties of containers support just a few iterator

operations, the sort algorithm must be carefully written to use only the commonly

available operations. Further complicating the design task is the lack of an explicit

specification syntax for the interfaces imported by a generic function. That is, C++

provides no mechanism for a generic function to declare the interface or semantics

87

that it expects from the imported container class or element type. Consequently,

when new container classes or element types are written, there is no specification

which indicates the routines that must be available for the sort function to work

with those classes or types. In GenVoca, these problems are avoided because a

realm parameter explicitly indicates the interface that a component imports;

incompatible interfaces are immediately detected, instead of being reported as

obscure compile errors.

6.3 Software architectures

Research on software architectures focuses on the problems of building large sys-

tems from prefabricated components [Gar95, Sha96]. Issues that must be

addressed include the overall organization of the constructed system, intercompo-

nent communication protocols, synchronization policies, module composition

techniques, and scalability. The approach taken by this research is to identify com-

mon software structure paradigms. This facilitates the construction of new systems

which reuse the same architecture or structure.

Software architectures typically are domain-independent. They are repre-

sented as a graph of interconnected nodes, where each node corresponds to a com-

ponent and each edge corresponds to a connector (e.g. procedural invocation,

event broadcast, pipe). The idea is to abstract the details of specific component

algorithms and interconnection mechanisms, in order to recognize the underlying

structure of a system (or class of systems).

In the GenVoca model and in software architectures, components are the

building blocks of systems. However, no particular design methodology is advo-

cated by software architectures, which means that components are not necessarily

interchangeable nor interoperable. Instead, component interfaces are ad hoc, which

88

makes it difficult to combine components and check the validity of system compo-

sitions.

Thus, the primary contribution of software architectures research is to pro-

vide a vocabulary and framework for understanding common software system

organization patterns. By itself, this research does not aid in the rapid construction

of new systems, because substantial effort is still necessary to interconnect a group

of components into a working system.

6.4 Transformation systems

Transformation systems are tools for converting abstract program specifications

into concrete program implementations by applying semantics-preserving substi-

tutions [Bax94]. A variety of such systems exist; each has a different suite of avail-

able transforms, and a different representation for the input specification and the

output implementation.

Draco [Nei89] is a noteworthy transformation system which employs a net-

work of related languages to represent the successive transformations from

abstract specification into concrete implementation. The Draco system employs

three categories of languages: languages for representing concepts from the prob-

lem domain; languages for modelling relevant algorithms and program sub-

systems; and languages for writing executable programs. The purpose of all these

languages is to permit concise specification of a system’s requirements using a

notation which is convenient for the given problem. Starting from the problem

specification, which is written in the application domain language, the system

designer applies a series of transformations which successively converts the speci-

fication into a concrete implementation in an executable programming language.

89

What is the benefit of using Draco? The payoff occurs when the high-level

abstractions of the application domain languages and modelling languages are

reused [Lei94]. Two challenges must be overcome, however. First, a relevant lan-

guage for a given application domain may not exist. In this case, the system

designer must create the language before any specification can be written. Second,

the transformation of programs from one language to another is only partly auto-

mated. The system designer must guide Draco in the choice of transformation.

Microsoft’s Intentional Programming (IP) system takes a different

approach to transformations [Sim95]. Programs are represented in a canonical for-

mat called the “IP source tree”. Programs can be directly written in the IP format

using a special IP editor; alternatively, a “parser” tool can be used to automatically

translate code from conventional programming languages (like C++) or special-

ized domain-specific languages into the canonical IP format. “Unparser” tools per-

form the reverse transformation, converting the canonical representation into a

language-specific view of the program.

The goal of IP is to avoid the limitations imposed by developing a system

in any particular language. By permitting a developer to switch from one language

to another as the system is written, the notational limitations of a language can be

avoided; moreover, the developer can take advantage of a language’s relevance to

the problem domain. The canonical representation captures the “intent” of a pro-

gram, without constraining the representation language for the program.

P++ and the transformation systems described here employ a common

approach: the use of program transformations to convert high level abstractions

into concrete implementations. The difference is that P++ uses a fixed language for

representing the specification and implementation, whereas Draco and IP use

whatever language happens to be most convenient. The trade-off are the costs of

designing domain-specific languages (in Draco), writing tools for converting

90

domain-specific languages to/from the canonical format (in IP), and defining trans-

formations which have domain-specific optimizations (in both).

91

Chapter 7

Conclusions and future directions

This chapter summarizes the primary contributions of our research and reviews the

central results of our experimental work. We conclude by discussing a few areas of

future research and enhancement to P++: design rule checking, subjective inter-

faces, dynamic compositions of components, and subsystem aliases.

7.1 Conclusions

Following are the primary contributions of P++ to the design of domain-specific

software system generators:

Scalable libraries. Developers will create component libraries and soft-

ware system generators only if these tools offer substantial leverage in increasing

programmer productivity. If a component library is not designed with scalability in

mind, then its utility will be limited because it will be capable of generating rela-

tively few systems. Thus the keys to successful domain-specific component librar-

ies is scalability and generative power. P++ offer language features such as realm

interfaces and realm parameters, to encourage the use of standardized interfaces

and layered abstractions. These in turn promote the development of scalable librar-

ies with generative power.

92

Forward declarations. In GenVoca, the components of a system are mod-

elled as layered abstractions. Each layer transforms a set of abstract types, func-

tions, and methods into concrete implementations. What distinguishes P++

components from standard C++ parameterized classes is the order in which trans-

formations occur: P++ transformations are both “top-down” and “bottom-up”,

whereas C++ templates are only bottom-up. The P++ forward construct, used in

conjunction with realm parameters, makes it possible to represent top-down trans-

formations.

Realm parameters. For any software system generator to be successful, it

must be easy to combine components. In P++, component combination is mod-

elled as realm parameters, using a syntax similar to that of C++ templates. The

result is a representation that is concise and easily understood.

Component encapsulation. The efficient development of large software

systems depends on large units of program construction. Reuse libraries should not

simply consist of functions or classes, but components which correspond to suites

of functions and classes. The P++ component construct increases the scale of

encapsulation to subsystems, where each component represents a domain-specific

feature.

Experimental results. Our experimental work also yielded several results.

The primary focus was to verify that P++ could indeed be used to develop a scal-

able software library with generative power. Using the challenge problem posed by

Biggerstaff, we redesigned the Booch library with a different set of abstractions

and components, which collectively implemented the same functionality as the

original library. We then performed tests to verify the runtime execution speed of

generated systems. We observed that the P++ library was substantially smaller

(one-fourth the lines of code of the Booch library), yet actually possessed greater

generative power (we could generate a larger family of data structures with one-

93

fourth as many components) and faster (performance was generally better than the

Booch library).

7.2 Lessons learned

We learned several valuable lessons in the course of our research. Although each

of these ideas has been previously discussed in detail, it is still useful to summarize

some of our insights and observations.

In the early stages of our research, it was not obvious that language support

was an essential ingredient for the acceptance of the GenVoca model and the cre-

ation of GenVoca generators. Only after attempting to write such a generator in

C++ did we truly appreciate the difficulty in developing GenVoca generators.

Later, we tried to reverse-engineer a P++ component composition using C++. It

took several attempts to correctly emulate the complex interactions of a P++ com-

ponent composition which employed forward declarations. The resulting C++

code was difficult to comprehend and explain, which clearly demonstrated the ben-

efit offered by the concise notation of P++.

The development of the P++ data structures library showed that language

support is not sufficient to ensure that component libraries are scalable and effi-

cient. A thorough knowledge of the problem domain was necessary to correctly

design realms and components: a minor change to the ds realm interface had tre-

mendous ramifications on the performance of generated systems. Even after ds and

its components was satisfactorily designed, the remaining realms and components

still had to be written carefully.

Finally, the implementation of P++ was substantially harder than expected

because no usable C++ grammar was readily available. It took a substantial effort

to locate and upgrade an existing grammar to make it a suitable foundation for the

94

P++ compiler. Moreover, because C++ is a large language with a complicated syn-

tax and numerous features, it was a major effort to support all of the existing lan-

guage features and still implement the P++ features too.

7.3 Future directions

7.3.1 Design rule checking

A basic challenge for component-based generator systems is ensuring the validity

of a particular combination of components. Certain component combinations may

be syntactically legal (i.e. the interface provided by one component is the same as

the interface expected by another), but are semantically invalid. To remedy this

problem, a generator should have a mechanism for verifying the semantic compat-

ibility of all components in a generated system.

The semantics of a component determine the situations in which the com-

ponent may be used. One representation for component semantics is to place logi-

cal constraints on the values supplied for component parameters, the presence or

absence of other components in a system, or the overall ordering of components in

the system. Based on these definitions, a system would be semantically invalid if

two components had conflicting constraints.

In the GenVoca model, component compatibility is verified only at the syn-

tactic level. That is, a generator only checks that each pair of components in a sys-

tem import and export matching interfaces, without determining if those

components make the same assumptions about one another. Consider an analogous

situation from arithmetic: the division function takes two numeric arguments; if its

imported values satisfy that condition, then the function invocation is syntactically

legal. However, if the second value happens to be zero, then the function’s seman-

tic behavior is undefined. The semantics of the division function dictate that the

95

second value should be non-zero, but this precondition is not conveyed by type

restrictions alone.

The GenVoca model and P++ should be extended to expose the semantic

properties of components too. Design rule extensions to GenVoca have already

been proposed in [Bat96a]. In this extended model, components can impose pre-

conditions and prerestrictions on their use. Preconditions are constraints on higher-

level components in a system. Prerestrictions are constraints on lower-level com-

ponents. Stated another way, preconditions specify the situations where a compo-

nent can be used; prerestrictions define conditions under which component

parameters can be legally instantiated.

P++ should be enhanced to permit the representation of conditions and

restrictions. This would facilitate the task of design rule checking (DRC). DRC

involves two phases: first, starting from the top of the component-hierarchy, post-

conditions are propagated to lower-level components and compared against com-

ponent preconditions. Second, starting at the bottom of the component hierarchy,

postrestrictions are propagated to higher-level components and compared against

component parameter prerestrictions [Bat96a].

There are several challenges to supporting DRC in the P++ compiler. First,

a representation for conditions and restrictions must be devised. Then, some con-

straints must be imposed on that representation so that arbitrary logical assertions

cannot be written; otherwise, the task of resolving conditions and restrictions

would be too difficult, and there would be no concise or consistent notation for

representing component properties. To perform the actual DRC, efficient algo-

rithms must be used to propagate conditions and restrictions. If there are too few

constraints on the representation of logical properties, then DRC will take too long

and it will not scale to large systems. Specific propagation algorithms must also be

investigated.

96

7.3.2 Subjective interfaces

Standardized component interfaces are an important aspect of the GenVoca model.

Such interfaces make it possible to define families of interchangeable components,

which in turn increases the number of syntactically legal combinations of a soft-

ware library’s components. Thus, standardized interfaces are key to libraries with

generative power.

However, despite the desire for interchangeable components, one often

finds that some components of a library deviate slightly from the standard inter-

faces. In order to effectively represent a system feature, a component designer may

extend a standard interface by introducing new methods, functions, or types. The

purpose is to preserve the semantics of the standard interface, but also supply spe-

cial functionality which cannot be easily represented by using just the standard

interface.

The study of subjective interfaces is relevant to this problem: if a system is

composed of several components and one or more of these components have

extended interfaces, then what should be the interface of the resulting system? A

component interface is subjective if it is dependent on the values supplied for its

realm parameters.

The principles of subjective interfaces should be applied to GenVoca and

P++. Ossher and Harrison [Oss92] have proposed formal semantics for determin-

ing the interface of a system which contains components with extended interfaces.

They provide a notation for representing interface extensions, along with rules for

computing the interface resulting from the combination of two or more interfaces.

Using these ideas, GenVoca and P++ could be enhanced to accommodate

interface extensions in generated systems. The components of a system are mod-

elled as layers, where each layer can introduce new methods, functions, and types.

The extensions of a given layer are propagated to the layer above, such that the

97

extensions appear as part of the upper layer’s interface too. This technique is itera-

tively applied to all layers from bottom to top. The resulting system has an inter-

face corresponding to the outermost component’s original interface, along with the

extensions contributed by the other components in the system [Bat96b].

7.3.3 Dynamic composition of components

A typical P++ program declares a static component composition which the P++

compiler converts into a generated system. Suppose that the system designer wants

to defer the choice of components in the system until run-time. In that case, com-

ponents would have to be composed dynamically; that is, type and function trans-

formations would be computed when the system is instantiated, rather than when it

is declared.

Support for this capability would require substantial changes P++. The

basic approach would be generate an abstract class declaration for each realm dec-

laration; furthermore, a concrete subclass of this abstract class would be generated

for each component in the given realm. A realm parameter would be resolved at

compile-time: the parameter would be represented by a pointer to the appropriate

generated abstract class, and the parameter value would refer to an instance of the

component’s concrete subclass.

To instantiate a dynamic system, each component would be individually

instantiated (in bottom-up order) and the resulting instance pointer would be sup-

plied as the value for the upper layer’s realm parameter. The most difficult problem

would be to efficiently represent type transformations. Because the values of type

parameters would not be known at compile-time, C++ templates could not be used

in the generated code; instead, each component would represent object instances as

generic (void) pointers. The primary drawbacks of this approach would be the loss

98

of static type checking of parameter values and the cost of traversing extra pointer

indirections.

7.3.4 Subsystem aliases

Several component compositions might repeatedly instantiate a group of compo-

nents in particular way. For example, suppose the following declarations appeared

in a P++ program:

typedef r <a <b <c> > > sys1;

typedef s <a <b <c> > > sys2;

typedef t <a <b <c> > > sys3;

All three compositions use a similar group of components. A useful extension to

P++ would be to support the definition of subsystem aliases; that is, a mechanism

for naming common groups of components in a system. Subsystem aliases would

offer a convenient shorthand for referring to logical portions of a component com-

position. This feature might work like this:

typedef a <b <c> > > subsys;

typedef r <subsys> sys1;

typedef s <subsys> sys2;

typedef t <subsys> sys3;

Notice that the new syntax makes explicit the reuse of the a, b, and c components.

Supporting this enhancement would be fairly simple in P++. The caveat is

that a subsystem alias captures the values supplied for all component parameters.

Thus, if the only difference between two groups of components is the value of a

single constant parameter, a subsystem alias could not be used to represent both

groups of components.

99

Appendix: the P++ grammar

Following is a conflict-free BNF grammar for the P++ language (which is suitable

for use with the “yacc” parser generator). This grammar is based on the C++ gram-

mar that comes with the CPPP tool [Rei94]. It relies on the context-sensitive scan-

ner that was described in Chapter 4. Most of the P++-specific enhancements

appear near the end of the listing.

%token <locval> LX_ASM LX_AUTO LX_BREAK LX_CASE
%token <locval> LX_CATCH LX_CHAR LX_CLASS LX_COMPONENT
 LX_CONST
%token <locval> LX_CONTINUE LX_DEFAULT LX_DELETE LX_DO
%token <locval> LX_DOUBLE LX_ENUM LX_EXTERN
%token <locval> LX_FLOAT LX_FOR LX_FORWARD LX_FRIEND
 LX_GOTO
%token <locval> LX_INLINE LX_INT LX_LONG
%token <locval> LX_NEW LX_OPERATOR LX_PRIVATE LX_PROTECTED
%token <locval> LX_PUBLIC LX_REALM LX_REGISTER LX_RETURN
 LX_SHORT
%token <locval> LX_SIGNED LX_STATIC LX_STRUCT
%token <locval> LX_SWITCH LX_TEMPLATE LX_THIS LX_THROW
%token <locval> LX_TRY LX_TYPEDEF LX_UNION LX_UNSIGNED
%token <locval> LX_VIRTUAL LX_VOID LX_VOLATILE LX_WHILE

%token <locval> LX_NEW0

%left <locval> ‘,’
%right <locval> ‘=’ LX_MUL_EQ LX_DIV_EQ LX_MOD_EQ
 LX_ADD_EQ
 LX_SUB_EQ LX_LSH_EQ LX_RSH_EQ LX_AND_EQ
 LX_XOR_EQ LX_IOR_EQ

100

%right <locval> ‘?’
%left <locval> LX_OR_OR
%left <locval> LX_AND_AND
%left <locval> ‘|’
%left <locval> ‘^’
%left <locval> ‘&’
%left <locval> LX_EQL LX_NEQ
%left <locval> ‘<‘ ‘>’ LX_LEQ LX_GEQ
%left <locval> LX_LSH LX_RSH
%left <locval> ‘+’ ‘-’
%left <locval> ‘*’ ‘/’ ‘%’
%left <locval> LX_DOT_STAR LX_PTS_STAR
%left <locval> LX_INCR LX_DECR LX_SIZEOF PREC_UNARY
%left <locval> PREC_POSTFIX

%token <locval> LX_PTS
%token <locval> LX_COLON_COLON
%token <locval> LX_ELLIPSES

%token <astval> LX_ID_TYPE_NAME LX_ID_ENUM_NAME
 LX_ID_TEMPLATE_NAME
%token <astval> LX_ID_REALM_NAME LX_ID_COMPONENT_NAME
 LX_ID_CONSTRUCTOR
%token <strval> LX_EXTERN_LINKAGE

%token <locval> LX_END_TEMPLATE LX_QUAL_COLON
 LX_ABST_LEFTP
%token <locval> LX_INIT_LEFTP

%token IN_QUAL_TYPE IN_QUAL_CLASS IN_QUAL_PTR
 IN_QUAL_ID
%token IN_DECLARATOR IN_CLASS_SPEC IN_ABST_DECL
%token IN_PLACEMENT IN_FCT_DEF

%token <astval> LX_ID LX_INT_VAL LX_ZERO_VAL LX_FLT_VAL
 LX_STRING_VAL
%token <astval> LX_CHAR_VAL

%left <locval> LX_IF
%left <locval> LX_ELSE

%token <astval> LX_ID0
%token <locval> LX_CLASS0 LX_STRUCT0 LX_UNION0
 LX_COMPONENT0

%start program

101

%type <astval> prog_decls
%type <astval> class_name enum_name template_name
%type <astval> opt_expression expression assignment_expression
%type <astval> conditional_expression
%type <astval> std_expr cast_expression unary_expression
 allocation_expression
%type <astval> new_operator opt_placement new_type_name
 opt_new_declarator
%type <astval> new_declarator new_declarator1 new_declarator2
%type <astval> opt_new_initializer new_initializer_list
 deallocation_expression
%type <astval> delete_operator postfix_expression
 opt_expression_list
%type <astval> expression_list
%type <astval> primary_expression expr_name name simple_name
 simple_expr_name
%type <astval> qualified_name qualified_expr_name literal
%type <astval> declaration decl_specifier opt_decl_specifiers
 decl_specifiers
%type <astval> storage_class_specifier fct_specifier
 type_specifier
%type <astval> simple_type_name elaborated_type_specifier
%type <astval> qualified_type_name qualified_type_name1
%type <astval> complete_class_name qualified_class_name
 qualified_class_name1
%type <astval> pointer_class_prefix
%type <astval> qualified_class_prefix enum_specifier
 opt_identifier
%type <astval> opt_enum_list enum_list enumerator
%type <astval> constant_expression linkage_specification
%type <astval> opt_link_declaration_list
%type <astval> link_declaration_list asm_declaration
%type <astval> opt_declarator_list declarator_list init_declarator
%type <astval> opt_initializer declarator declarator1
 opt_ptr_operator
%type <astval> ptr_operator opt_cv_qualifier_list cv_qualifier
%type <astval> opt_cvt_qualifier_list dname
%type <astval> type_name type_specifier_list
 opt_abstract_declarator
%type <astval> abstract_declarator opt_abst_declarator
 abst_declarator
%type <astval> abst_declarator1 abst_declarator3 abst_declarator2
%type <astval> argument_declaration_set argument_declaration_list
%type <astval> opt_arg_declaration_list arg_declaration_list
%type <astval> argument_declaration function_definition fct_body
%type <astval> initializer

102

%type <astval> initializer_list initializer_elt
%type <astval> class_specifier class_head opt_member_list
%type <astval> member_list member_list_elt member_declaration
%type <astval> opt_member_declarator_list
%type <astval> member_declarator_list member_declarator
%type <astval> opt_base_spec base_list base_specifier
%type <astval> virtual_specifier access_specifier
 conversion_function_name
%type <astval> conversion_type_name opt_ctor_initializer
 mem_initializer_list
%type <astval> mem_initializer operator_function_name operator
%type <astval> statement labeled_statement exprdecl_statement
 exprdecl
%type <astval> compound_statement opt_statement_list
 statement_list
%type <astval> selection_statement iteration_statement
 for_init_statement
%type <astval> jump_statement
%type <astval> template_declaration template_argument_list
 template_argument
%type <astval> template_class_name template_arg_list template_arg
%type <astval> try_block handler_list handler
 exception_declaration
%type <astval> throw_expression exception_specification
 opt_type_list
%type <astval> type_list
%type <astval> realm_declaration realm_head realm_name
 opt_realm_base_list
%type <astval> realm_base_list realm_base_specifier
 opt_realm_member_list
%type <astval> realm_member_list realm_member_elt
%type <astval> component_declaration component_head component_name
%type <astval> opt_component_base_list component_base_list
%type <astval> component_base_specifier opt_component_member_list
%type <astval> component_member_list component_member_elt
%type <astval> template_component_name
%type <astval> system_declaration system_decl_specifier
 system_decl
%type <astval> system_arg_list system_arg system_name

%type <locval> opt_comma

%token <locval> ‘;’ ‘{‘ ‘}’ ‘(‘ ‘)’ ‘:’ ‘~’ ‘!’

%%

program : prog_decls

103

 ;

prog_decls : /* empty */
 | prog_decls declaration
 | prog_decls error
 ;

/**/
/* r.17.1 Keywords */
/**/

class_name : LX_ID_TYPE_NAME
 | template_class_name
 ;

enum_name : LX_ID_ENUM_NAME
 ;

template_name : LX_ID_TEMPLATE_NAME
 ;

/**/
/* r.17.2 Expressions */
/**/

opt_expression :
 /* empty */
 | expression
 ;

expression : assignment_expression
 | expression ‘,’ assignment_expression
 ;

assignment_expression :
 conditional_expression
 | conditional_expression ‘=’ assignment_expression
 | conditional_expression LX_MUL_EQ

104

 assignment_expression
 | conditional_expression LX_DIV_EQ
 assignment_expression
 | conditional_expression LX_MOD_EQ
 assignment_expression
 | conditional_expression LX_ADD_EQ
 assignment_expression
 | conditional_expression LX_SUB_EQ
 assignment_expression
 | conditional_expression LX_RSH_EQ
 assignment_expression
 | conditional_expression LX_LSH_EQ
 assignment_expression
 | conditional_expression LX_AND_EQ
 assignment_expression
 | conditional_expression LX_XOR_EQ
 assignment_expression
 | conditional_expression LX_IOR_EQ
 assignment_expression
 ;

conditional_expression :
 std_expr
 | std_expr ‘?’ expression ‘:’ conditional_expression
 ;

std_expr : std_expr LX_OR_OR std_expr
 | std_expr LX_AND_AND std_expr
 | std_expr ‘|’ std_expr
 | std_expr ‘^’ std_expr
 | std_expr ‘&’ std_expr
 | std_expr LX_EQL std_expr
 | std_expr LX_NEQ std_expr
 | std_expr ‘<‘ std_expr
 | std_expr ‘>’ std_expr
 | std_expr LX_LEQ std_expr
 | std_expr LX_GEQ std_expr
 | std_expr LX_LSH std_expr
 | std_expr LX_RSH std_expr
 | std_expr ‘+’ std_expr
 | std_expr ‘-’ std_expr
 | std_expr ‘*’ std_expr
 | std_expr ‘/’ std_expr
 | std_expr ‘%’ std_expr
 | std_expr LX_DOT_STAR std_expr

105

 | std_expr LX_PTS_STAR std_expr
 | cast_expression
 ;

cast_expression :
 unary_expression
 | ‘(‘ type_name ‘)’ cast_expression
 ;

unary_expression :
 postfix_expression
 | LX_INCR unary_expression
 | LX_DECR unary_expression
 | ‘*’ cast_expression %prec PREC_UNARY
 | ‘&’ cast_expression %prec PREC_UNARY
 | ‘+’ cast_expression %prec PREC_UNARY
 | ‘-’ cast_expression %prec PREC_UNARY
 | ‘!’ cast_expression %prec PREC_UNARY
 | ‘~’ cast_expression %prec PREC_UNARY
 | LX_SIZEOF unary_expression
 | LX_SIZEOF ‘(‘ type_name ‘)’
 | allocation_expression
 | deallocation_expression
 | throw_expression
 ;

allocation_expression :
 new_operator opt_placement new_type_name
 opt_new_initializer %prec PREC_UNARY
 ;

new_operator : LX_NEW
 | LX_COLON_COLON LX_NEW
 ;

opt_placement : /* empty */
 | IN_PLACEMENT ‘(‘ expression_list ‘)’
 ;

new_type_name : type_specifier_list opt_new_declarator
 | ‘(‘ type_name ‘)’

106

 ;

opt_new_declarator :
 /* empty */ %prec PREC_UNARY
 | new_declarator %prec PREC_UNARY
 ;

new_declarator :
 ‘*’ opt_cv_qualifier_list opt_new_declarator
 | IN_QUAL_PTR pointer_class_prefix
 opt_cv_qualifier_list opt_new_declarator
 | new_declarator1
 ;

new_declarator1 :
 new_declarator2
 | new_declarator1 ‘[‘ constant_expression ‘]’
 ;

new_declarator2 :
 ‘[‘ expression ‘]’
 ;

opt_new_initializer :
 /* empty */
 | ‘(‘ ‘)’
 | ‘(‘ new_initializer_list ‘)’
 ;

new_initializer_list :
 assignment_expression
 | new_initializer_list ‘,’ assignment_expression
 | new_initializer_list error
 ;

deallocation_expression :
 delete_operator cast_expression
 %prec PREC_UNARY
 | delete_operator ‘[‘ ‘]’ cast_expression

107

 %prec PREC_UNARY
 ;

delete_operator :
 LX_DELETE
 | LX_COLON_COLON LX_DELETE
 ;

postfix_expression :
 primary_expression
 | postfix_expression ‘[‘ expression ‘]’
 %prec PREC_POSTFIX
 | postfix_expression ‘(‘ opt_expression_list ‘)’
 %prec PREC_POSTFIX
 | simple_type_name ‘(‘ opt_expression_list ‘)’
 %prec PREC_POSTFIX
 | postfix_expression ‘.’ expr_name
 %prec PREC_POSTFIX
 | postfix_expression LX_PTS expr_name
 %prec PREC_POSTFIX
 | postfix_expression LX_INCR
 %prec PREC_POSTFIX
 | postfix_expression LX_DECR
 %prec PREC_POSTFIX
 ;

opt_expression_list :
 /* empty */
 | expression_list
 ;

expression_list :
 assignment_expression
 | expression_list ‘,’ assignment_expression
 ;

primary_expression :
 literal
 | LX_THIS
 | LX_COLON_COLON LX_ID
 | LX_COLON_COLON operator_function_name
 | LX_COLON_COLON qualified_expr_name

108

 | ‘(‘ expression ‘)’
 | expr_name
 ;

expr_name : qualified_expr_name
 | simple_expr_name
 ;

name : simple_name
 | qualified_name
 ;

simple_name : LX_ID
 | operator_function_name
 | conversion_function_name
 | ‘~’ class_name
 | LX_ID_CONSTRUCTOR
 ;

simple_expr_name :
 LX_ID
 | operator_function_name
 ;

qualified_name :
 IN_QUAL_ID qualified_class_prefix simple_name
 ;

qualified_expr_name :
 IN_QUAL_ID qualified_class_prefix simple_expr_name
 | IN_QUAL_ID qualified_class_prefix ‘~’ class_name
 ;

literal : LX_INT_VAL
 | LX_ZERO_VAL
 | LX_CHAR_VAL
 | LX_FLT_VAL
 | LX_STRING_VAL
 ;

109

/**/
/* r.17.3 Declarations */
/**/

declaration : opt_decl_specifiers opt_declarator_list ‘;’
 | asm_declaration
 | function_definition
 | template_declaration
 | linkage_specification
 | realm_declaration
 | component_declaration
 | system_declaration
 ;

decl_specifier :
 storage_class_specifier
 | type_specifier
 | fct_specifier
 | LX_FRIEND
 | LX_TYPEDEF
 ;

opt_decl_specifiers :
 /* empty */
 | decl_specifiers
 ;

decl_specifiers :
 decl_specifier
 | decl_specifiers decl_specifier
 ;

storage_class_specifier :
 LX_AUTO
 | LX_REGISTER
 | LX_STATIC
 | LX_EXTERN
 ;

fct_specifier : LX_INLINE

110

 | LX_VIRTUAL
 ;

type_specifier :
 simple_type_name
 | class_specifier
 | enum_specifier
 | elaborated_type_specifier
 | cv_qualifier
 ;

simple_type_name :
 complete_class_name
 | qualified_type_name
 | LX_CHAR
 | LX_SHORT
 | LX_INT
 | LX_LONG
 | LX_SIGNED
 | LX_UNSIGNED
 | LX_FLOAT
 | LX_DOUBLE
 | LX_VOID
 ;

elaborated_type_specifier :
 LX_CLASS LX_ID
 | LX_CLASS class_name
 | LX_STRUCT LX_ID
 | LX_STRUCT class_name
 | LX_UNION LX_ID
 | LX_UNION class_name
 | LX_ENUM enum_name
 ;

qualified_type_name :
 enum_name
 | IN_QUAL_TYPE class_name LX_QUAL_COLON
 qualified_type_name1
 ;

qualified_type_name1 :

111

 enum_name
 | class_name LX_QUAL_COLON qualified_type_name1
 ;

complete_class_name :
 qualified_class_name
 | LX_COLON_COLON qualified_class_name
 ;

qualified_class_name :
 class_name
 | IN_QUAL_CLASS class_name LX_QUAL_COLON
 qualified_class_name1
 | IN_QUAL_CLASS LX_ID_COMPONENT_NAME LX_QUAL_COLON
 qualified_class_name1
 | IN_QUAL_CLASS template_component_name
 LX_QUAL_COLON
 qualified_class_name1
 | LX_CLASS IN_QUAL_CLASS class_name LX_QUAL_COLON
 qualified_class_name1
 | LX_STRUCT IN_QUAL_CLASS class_name LX_QUAL_COLON
 qualified_class_name1
 ;

qualified_class_name1 :
 class_name
 | class_name LX_QUAL_COLON qualified_class_name1
 ;

pointer_class_prefix :
 IN_QUAL_PTR qualified_class_prefix ‘*’
 | LX_COLON_COLON IN_QUAL_PTR qualified_class_prefix
 ‘*’
 ;

qualified_class_prefix :
 class_name LX_QUAL_COLON
 | LX_ID_COMPONENT_NAME LX_QUAL_COLON
 | template_component_name LX_QUAL_COLON
 | qualified_class_prefix class_name LX_QUAL_COLON
 ;

112

enum_specifier :
 LX_ENUM opt_identifier
 ;

opt_identifier :
 /* empty */
 | LX_ID
 ;

opt_enum_list :
 /* empty */
 | enum_list opt_comma
 ;

enum_list : enumerator
 | enum_list ‘,’ enumerator
 ;

enumerator : LX_ID
 | LX_ID ‘=’ constant_expression
 ;

constant_expression :
 conditional_expression
 ;

linkage_specification :
 LX_EXTERN_LINKAGE LX_STRING_VAL ‘{‘
 opt_link_declaration_list ‘}’
 | LX_EXTERN_LINKAGE LX_STRING_VAL declaration
 ;

opt_link_declaration_list :
 /* empty */
 | link_declaration_list
 ;

113

link_declaration_list :
 declaration
 | link_declaration_list declaration
 | link_declaration_list error
 ;

asm_declaration :
 LX_ASM ‘(‘ LX_STRING_VAL ‘)’ ‘;’
 ;

/**/
/* r.17.4 Declarators */
/**/

opt_declarator_list :
 /* empty */
 | IN_DECLARATOR declarator_list
 ;

declarator_list :
 init_declarator
 | declarator_list ‘,’ init_declarator
 ;

init_declarator :
 declarator opt_initializer
 ;

opt_initializer :
 /* empty */
 | initializer
 ;

declarator : ‘*’ opt_cv_qualifier_list declarator
 | ‘&’ opt_cv_qualifier_list declarator
 | pointer_class_prefix opt_cv_qualifier_list
 declarator
 | declarator1
 ;

114

declarator1 : declarator1 argument_declaration_set
 opt_cvt_qualifier_list
 | declarator1 ‘[‘ constant_expression ‘]’
 | declarator1 ‘[‘ ‘]’
 | ‘(‘ declarator ‘)’
 | dname
 ;

opt_cv_qualifier_list :
 /* empty */
 | opt_cv_qualifier_list cv_qualifier
 ;

cv_qualifier : LX_CONST
 | LX_VOLATILE
 ;

opt_cvt_qualifier_list :
 /* empty */
 | opt_cvt_qualifier_list cv_qualifier
 | opt_cvt_qualifier_list exception_specification
 ;

dname : name
 | qualified_class_name
 ;

type_name : type_specifier_list opt_abstract_declarator
 ;

type_specifier_list :
 type_specifier
 | type_specifier_list type_specifier
 ;

opt_abstract_declarator :
 /* empty */
 | abstract_declarator

115

 ;

abstract_declarator :
 IN_ABST_DECL abst_declarator
 ;

opt_abst_declarator :
 /* empty */
 | abst_declarator
 ;

abst_declarator :
 ‘*’ opt_cv_qualifier_list opt_abst_declarator
 | ‘&’ opt_cv_qualifier_list opt_abst_declarator
 | pointer_class_prefix opt_cv_qualifier_list
 opt_abst_declarator
 | abst_declarator1
 ;

abst_declarator1 :
 abst_declarator2 argument_declaration_set
 opt_cv_qualifier_list
 | abst_declarator3
 ;

abst_declarator3 :
 abst_declarator2 ‘[‘ constant_expression ‘]’
 | abst_declarator2 ‘[‘ ‘]’
 | abst_declarator3 ‘[‘ constant_expression ‘]’
 ;

abst_declarator2 :
 /* empty */
 | LX_ABST_LEFTP abst_declarator ‘)’
 ;

argument_declaration_set :
 ‘(‘ argument_declaration_list ‘)’
 ;

116

argument_declaration_list :
 opt_arg_declaration_list
 | opt_arg_declaration_list LX_ELLIPSES
 | arg_declaration_list ‘,’ LX_ELLIPSES
 ;

opt_arg_declaration_list :
 /* empty */
 | arg_declaration_list
 ;

arg_declaration_list :
 argument_declaration
 | arg_declaration_list ‘,’ argument_declaration
 ;

argument_declaration :
 decl_specifiers IN_DECLARATOR declarator
 | decl_specifiers IN_DECLARATOR declarator ‘=’
 expression
 | decl_specifiers opt_abstract_declarator
 | decl_specifiers opt_abstract_declarator ‘=’
 expression
 ;

function_definition :
 IN_FCT_DEF opt_decl_specifiers IN_DECLARATOR
 declarator opt_ctor_initializer fct_body
 ;

fct_body : ‘{‘ opt_statement_list ‘}’
 ;

initializer : ‘=’ assignment_expression
 | ‘=’ ‘{‘ initializer_list opt_comma ‘}’
 | LX_INIT_LEFTP expression_list ‘)’
 ;

opt_comma : /* empty */

117

 | ‘,’
 ;

initializer_list :
 initializer_elt
 | initializer_list ‘,’ initializer_elt
 | initializer_list error
 ;

initializer_elt :
 assignment_expression
 | ‘{‘ initializer_list opt_comma ‘}’
 ;

/**/
/* r.17.5 Class Declarations */
/**/

class_specifier :
 IN_CLASS_SPEC class_head ‘{‘ opt_member_list ‘}’
 ;

class_head : LX_CLASS opt_identifier opt_base_spec
 | LX_CLASS class_name opt_base_spec
 | LX_STRUCT opt_identifier opt_base_spec
 | LX_STRUCT class_name opt_base_spec
 | LX_UNION opt_identifier opt_base_spec
 | LX_UNION class_name opt_base_spec
 ;

opt_member_list :
 /* empty */
 | member_list
 | error
 ;

member_list : member_list_elt
 | member_list member_list_elt
 | member_list error
 ;

118

member_list_elt :
 member_declaration
 | LX_PRIVATE ‘:’
 | LX_PROTECTED ‘:’
 | LX_PUBLIC ‘:’
 ;

member_declaration :
 opt_decl_specifiers opt_member_declarator_list ‘;’
 | function_definition
 | qualified_name ‘;’
 ;

opt_member_declarator_list :
 /* empty */
 | IN_DECLARATOR member_declarator_list
 ;

member_declarator_list :
 member_declarator
 | member_declarator_list ‘,’ member_declarator
 ;

member_declarator :
 declarator
 | declarator ‘=’ LX_ZERO_VAL
 | ‘:’ constant_expression
 | LX_ID ‘:’ constant_expression
 ;

opt_base_spec :
 /* empty */
 | ‘:’ base_list
 ;

base_list : base_specifier
 | base_list ‘,’ base_specifier
 ;

119

base_specifier :
 complete_class_name
 | virtual_specifier complete_class_name
 | virtual_specifier access_specifier
 complete_class_name
 | access_specifier complete_class_name
 | access_specifier virtual_specifier
 complete_class_name
 ;

virtual_specifier :
 LX_VIRTUAL
 ;

access_specifier :
 LX_PRIVATE
 | LX_PROTECTED
 | LX_PUBLIC
 ;

conversion_function_name :
 LX_OPERATOR conversion_type_name
 ;

conversion_type_name :
 type_specifier_list opt_ptr_operator
 ;

opt_ptr_operator :
 /* empty */
 | ptr_operator
 ;

ptr_operator : ‘*’ opt_cv_qualifier_list
 | ‘&’ opt_cv_qualifier_list
 | pointer_class_prefix opt_cv_qualifier_list
 ;

opt_ctor_initializer :

120

 /* empty */
 | ‘:’ mem_initializer_list
 | ‘:’ error
 ;

mem_initializer_list :
 mem_initializer
 | mem_initializer_list ‘,’ mem_initializer
 ;

mem_initializer :
 complete_class_name ‘(‘ opt_expression_list ‘)’
 | LX_ID ‘(‘ opt_expression_list ‘)’
 ;

operator_function_name :
 LX_OPERATOR operator
 ;

operator : LX_NEW0
 | LX_DELETE
 | ‘+’
 | ‘-’
 | ‘*’
 | ‘/’
 | ‘%’
 | ‘^’
 | ‘&’
 | ‘|’
 | ‘~’
 | ‘!’
 | ‘=’
 | ‘<‘
 | ‘>’
 | LX_ADD_EQ
 | LX_SUB_EQ
 | LX_MUL_EQ
 | LX_DIV_EQ
 | LX_MOD_EQ
 | LX_XOR_EQ
 | LX_AND_EQ
 | LX_IOR_EQ
 | LX_LSH

121

 | LX_RSH
 | LX_LSH_EQ
 | LX_RSH_EQ
 | LX_EQL
 | LX_NEQ
 | LX_LEQ
 | LX_GEQ
 | LX_AND_AND
 | LX_OR_OR
 | LX_INCR
 | LX_DECR
 | ‘,’
 | LX_PTS_STAR
 | LX_PTS
 | ‘(‘ ‘)’
 | ‘[‘ ‘]’
 | LX_DOT_STAR
 ;

/**/
/* r.17.6 Statements */
/**/

statement : labeled_statement
 | exprdecl_statement
 | compound_statement
 | selection_statement
 | iteration_statement
 | jump_statement
 | try_block
 | error
 ;

labeled_statement :
 LX_ID ‘:’ statement
 | LX_CASE constant_expression ‘:’ statement
 | LX_DEFAULT ‘:’ statement
 ;

exprdecl_statement :
 exprdecl
 ;

122

exprdecl : expression ‘;’
 | declaration
 ;

compound_statement :
 ‘{‘ opt_statement_list ‘}’
 ;

opt_statement_list :
 /* empty */
 | statement_list
 ;

statement_list :
 statement
 | statement_list statement
 ;

selection_statement :
 LX_IF ‘(‘ expression ‘)’ statement
 %prec LX_IF
 | LX_IF ‘(‘ expression ‘)’ statement LX_ELSE
 statement %prec LX_ELSE
 | LX_SWITCH ‘(‘ expression ‘)’ statement
 ;

iteration_statement :
 LX_WHILE ‘(‘ expression ‘)’ statement
 | LX_DO statement LX_WHILE ‘(‘ expression ‘)’ ‘;’
 | LX_FOR ‘(‘ for_init_statement opt_expression ‘;’
 opt_expression ‘)’ statement
 ;

for_init_statement :
 exprdecl_statement
 ;

jump_statement :
 LX_BREAK ‘;’

123

 | LX_CONTINUE ‘;’
 | LX_RETURN ‘;’
 | LX_RETURN expression ‘;’
 | LX_GOTO LX_ID ‘;’
 ;

/**/
/* r.17.8 Templates */
/**/

template_declaration :
 LX_TEMPLATE ‘<‘ template_argument_list
 LX_END_TEMPLATE declaration
 ;

template_argument_list :
 template_argument
 | template_argument_list ‘,’ template_argument
 | error
 ;

template_argument :
 argument_declaration
 | LX_ID_REALM_NAME LX_ID
 | LX_ID_REALM_NAME ‘<‘ template_arg_list
 LX_END_TEMPLATE LX_ID
 ;

template_class_name :
 template_name ‘<‘ template_arg_list
 LX_END_TEMPLATE
 ;

template_arg_list :
 template_arg
 | template_arg_list ‘,’ template_arg
 ;

template_arg : assignment_expression
 | type_name

124

 | LX_ID_COMPONENT_NAME
 | LX_FORWARD LX_ID
 | LX_FORWARD type_name
 ;

/**/
/* r.17.9 Exception Handling */
/**/

try_block : LX_TRY compound_statement handler_list
 ;

handler_list : handler
 | handler_list handler
 ;

handler : LX_CATCH ‘(‘ exception_declaration ‘)’
 compound_statement
 ;

exception_declaration :
 type_specifier_list IN_DECLARATOR declarator
 | type_specifier_list abstract_declarator
 | type_specifier_list
 | LX_ELLIPSES
 ;

throw_expression :
 LX_THROW %prec PREC_UNARY
 | LX_THROW cast_expression %prec PREC_UNARY
 ;

exception_specification :
 LX_THROW ‘(‘ opt_type_list ‘)’
 ;

opt_type_list : /* empty */
 | type_list
 ;

125

type_list : type_name
 | type_list ‘,’ type_name
 ;

/**/
/* Realms */
/**/

realm_declaration :
 realm_head ‘{‘ opt_realm_member_list ‘}’ ‘;’
 ;

realm_head : LX_REALM realm_name opt_realm_base_list
 ;

realm_name : LX_ID
 | LX_ID_REALM_NAME
 /* invalid (just for error handling) */
 ;

opt_realm_base_list :
 /* empty */
 | ‘:’ realm_base_list
 ;

realm_base_list :
 realm_base_specifier
 | realm_base_list ‘,’ realm_base_specifier
 ;

realm_base_specifier :
 LX_ID_REALM_NAME
 | LX_ID
 /* invalid (just for error handling) */
 | LX_ID_TYPE_NAME
 /* invalid (just for error handling) */
 | LX_ID_ENUM_NAME
 /* invalid (just for error handling) */
 ;

opt_realm_member_list :
 /* empty */
 | realm_member_list

126

 ;

realm_member_list :
 realm_member_elt
 | realm_member_list realm_member_elt
 | realm_member_list error
 ;

realm_member_elt :
 opt_decl_specifiers opt_member_declarator_list ‘;’
 ;

/**/
/* Components */
/**/

component_declaration :
 IN_CLASS_SPEC component_head
 ‘{‘ opt_component_member_list ‘}’ ‘;’
 ;

component_head :
 LX_COMPONENT component_name
 opt_component_base_list
 ;

component_name :
 LX_ID
 | LX_ID_COMPONENT_NAME
 /* invalid (just for error handling) */
 ;

opt_component_base_list :
 /* empty */
 /* invalid (just for error handling) */
 | ‘:’ component_base_list
 ;

component_base_list :
 component_base_specifier
 | component_base_list ‘,’ component_base_specifier
 /* invalid */
 ;

component_base_specifier :

127

 LX_ID_REALM_NAME
 | LX_ID_REALM_NAME ‘<‘ template_arg_list
 LX_END_TEMPLATE
 | LX_ID
 /* invalid (just for error handling) */
 | LX_ID_TYPE_NAME
 /* invalid (just for error handling) */
 | LX_ID_ENUM_NAME
 /* invalid (just for error handling) */
 ;

opt_component_member_list :
 /* empty */
 | component_member_list
 ;

component_member_list :
 component_member_elt
 | component_member_list component_member_elt
 | component_member_list error
 ;

component_member_elt :
 member_declaration
 | LX_FORWARD member_declaration
 ;

template_component_name :
 LX_ID_COMPONENT_NAME ‘<‘ template_arg_list
 LX_END_TEMPLATE
 ;

/**/
/* Systems */
/**/

system_declaration :
 system_decl_specifier system_name ‘;’
 ;

system_decl_specifier :
 LX_TYPEDEF system_decl
 ;

system_decl : LX_ID_COMPONENT_NAME

128

 | LX_ID_COMPONENT_NAME ‘<‘ system_arg_list
 LX_END_TEMPLATE
 ;

system_arg_list :
 system_arg
 | system_arg_list ‘,’ system_arg
 ;

system_arg : assignment_expression
 | type_name
 | system_decl
 ;

system_name : LX_ID
 ;

129

Bibliography

[Bar93] John Barnes. Introducting Ada 9X. Technical Report, Intermetrics,

Inc., February 1993.

[Bat88] Don Batory. Concepts for a DBMS synthesizer. In Proceedings of ACM

Principles of Database Systems Conference, 1988. Also in Rubén

Prieto-Díaz and Guillermo Arango, editors, Domain Analysis and

Software Systems Modeling. IEEE Computer Society Press, 1991.

[Bat92a] Don Batory and Sean O’Malley. The design and implementation of

hierarchical software systems with reusable components. ACM

Transactions on Software Engineering and Methodology, 1(4):355-398,

October 1992.

[Bat93] Don Batory and Lou Coglianese. Techniques for software system

synthesis in ADAGE, Technical Report ADAGE-UT-93-05, IBM

Owego, New York, August 1993.

[Bat96] Don Batory and Bart Geraci. Validating component compositions in

software system generators. In International Conference on Software

Reuse, 1996.

130

[Bax94] Ira Baxter. Design (not code!) maintenance. In Proceedings of

Brazilian Software Engineering Conference VIII, October 1994.

[Big89] Ted Biggerstaff and Alan Perlis, editors, Software Reusability, Volume

I. ACM Press, 1989.

[Big94] Ted Biggerstaff. The library scaling problem and the limits of

component reuse. In Proceeding of the Third International Conference

on Reuse, November 1994.

[Boo87] Grady Booch. Software components with Ada, Benjamin / Cummings,

Menlo Park, CA, 1987.

[Boo90] Grady Booch and Michael Vilot. The design of the C++ Booch

Components. In ECOOP / OOPSLA Conference Proceedings, 1990.

[Cam92] R. H. Campbell, N. Islam, and P. Madany. Choices, frameworks and

refinement. Computing Systems, 5(3), 1992.

[Cog93] L. Coglianese and R. Szymanski. DSSA-ADAGE: an environment for

architecture-based avionics development. In AGARD Conference

Proceedings, 1993. Also in Technical Report ADAGE-IBM-93-04,

IBM Owego, New York, May 1993.

[Deu89] L. Peter Deutsch. Design reuse and frameworks in the Smalltalk-80

system. In Ted Biggerstaff and Alan Perls, editors, Software

Reusability, Volume II. Addison-Wesley, Reading, MA, 1989.

[Ell90] Margaret Ellis and Bjarne Stroustrup. The Annotated C++ Reference

Manual, Addison-Wesley, Reading, MA, 1990.

[Gam95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.

Design Patterns, Addison-Wesley, Reading, MA, 1995.

131

[Gar95] David Garlan and Mary Shaw. An introduction to software architecture.

In Advances in Software Engineering and Knowledge Engineering,

Volume I, World Scientific Publishing, 1995.

[Gog86] Joseph Goguen. Reusing and interconnecting software components.

IEEE Computer, February 1986.

[Gog93] Joseph Goguen and Adolfo Socorro. Module composition for the object

paradigm. Technical report, Oxford University Computing Laboratory,

August 1993.

[Gor90] Keith Gorlen, Sanford Orlow, and Perry Plexico. Data Abstraction and

Object-Oriented Programming in C++, John Wiley, New York, 1990.

[Hei90] John S. Heidemann and Gerald J. Popek. An extensible, stackable

method of file system development. Technical Report CSD-9000044,

University of California, Los Angeles, December 1990.

[Hei91] John S. Heidemann and Gerald J. Popek. A layered approach to file

system development. Technical Report CSD-910007, University of

California, Los Angeles, March 1991.

[Hut91] Norman Hutchinson and Larry Peterson. The x-kernel: an architecture

for implementing network protocols. IEEE Transactions on Software

Engineering, 17(1):64-76, January 1991.

[Joh88] Ralph Johnson and Brian Foote. Designing reusable classes. Journal of

Object-Oriented Programming, 1(2):22-35, June 1988.

[Lea88] Doug Lea. libg++, the GNU C++ library. In Proceedings of the

USENIX C++ Conference, 1988.

132

[Lei94] Julio Leite, Marcelo Sant’Anna, and Felip de Freitas. Draco-PUC: a

technology assembly for domain oriented software development. In

Proceedings of the 3rd International Conference on Software Reuse,

Rio de Janeiro, November 1994,

[McI68] M. D. McIlroy. Mass produced software components. In P. Naur and B.

Randell, editors. Software Engineering: Report on a Conference by the

NATO Science Committee, October 1968.

[Mey88] Bertrand Meyer. Object-oriented software construction, Prentice-Hall,

1988.

[Mir90] D. Miranker, D. Brant, B. Lofaso, and D. Gadbois. On the performance

of lazy matching in production systems. In Proceedings of the National

Conference on Artificial Intelligence, 1990.

[Mus96] David Musser and Atul Saini. STL Tutorial and Reference Guide,

Addison-Wesley, Reading, MA, 1996.

[Nau68] P. Naur and B. Randell, editors. Software Engineering: Report on a

Conference by the NATO Science Committee, October 1968.

[Nei89] James Neighbors. Draco: a method for engineering reusable software

systems. In Ted Biggerstaff and Alan Perlis, editors, Software

Reusability, Volume I. ACM Press, 1989.

[Nov95] Gordon Novak. Creation of views for reuse of software with different

data representations. IEEE Transactions on Software Engineering,

21(12):993-1005, December 1995.

[OMa92] Sean O’Malley and Larry Peterson. A dynamic network architecture.

ACM Transactions on Computer Systems, 10(2):110-143, May 1992.

133

[Oss92] Harold Ossher and William Harrison. Combination of inheritance

hierarchies. In Proceedings of OOPSLA ’92, October 1992.

[Pla95] P. J. Plauger. The Draft Standard C++ Library, Prentice-Hall, 1995.

[Pri91] R. Prieto-Diaz and G. Arango. Domain Analysis and Software System

Modeling, IEEE Computer Science Press, 1991.

[Rei94] Steven P Reiss. CPPP 1.61 (software package), Brown University,

1994. Available via anonymous ftp from ftp.cs.brown.edu:/pub/

cppp.tar.Z.

[Sch90] Robert Scheifler and James Gettys. X Window System, Second Edition,

Digital Press, 1990.

[Sha96] Mary Shaw and David Garlan. Software Architecture, Prentice-Hall,

Upper Saddle River, NJ, 1996.

[Sim95] Charles Simonyi. The death of computer languages, the birth of

intentional programming. In Proceedings of the 28th Annual

International Seminar on the Teach of Computer Science at the

University Level, University of Newcastle upon Tyne, September 1995.

[Sir93] Marty Sirkin, Don Batory, and Vivek Singhal. Software components in

a data structure precompiler. In Proceedings of the 15th International

Conference on Software Engineering, May 1993.

[Sta94] Richard M. Stallman. Using and Porting GCC, Free Software

Foundation, September 1994.

[Str94] Bjarne Stroustrup. The Design and Evolution of C++, Addison-Wesley,

Reading, MA, 1994.

134

[Tof90] Mads Tofte, Robin Milner, Robert Harper. The Definition of Standard

ML. MIT Press, 1990.

[Tra93] W. Tracz. LILEANNA: a parameterized programming language. In

Proceedings of the 2nd International Workshop on Software Reuse,

IEEE Computer Science Press, March 1993.

[Wei90] David M. Weiss. Synthesis Operational Scenarios. Technical Report

90038-N, Version 1.00.01, Software Productivity Consortium,

Herndon, Virginia, August 1990.

135

Vita

Vivek Singhal was born in Detroit, Michigan, on October 26, 1968, the son of Dr.

Ram Singhal and Vidyut Singhal. After completing his work at Wichita Collegiate

School, Wichita, Kansas, in 1986, he entered the Massachusetts Institute of Tech-

nology in Cambridge, Massachusetts. He received the degree of Bachelors of Sci-

ence from MIT in June 1990. In August 1990 he entered the Graduate School of

The University of Texas.

A list of publications follows:

[Bat92a] Don Batory, Vivek Singhal, and Marty Sirkin. Implementing a domain

model for data structures. International Journal of Software

Engineering and Knowledge Engineering, 2(3):375-402, September

1992.

[Sin92] Vivek Singhal, Sheetal Kakkad, and Paul Wilson. Texas: an efficient,

portable persistent store. In Persistent Object Systems: Proceedings of

the Fifth International Workshop on Persistent Object Systems (San

Miniato, Italy), September 1992, pages 11-33.

[Bat92b] Don Batory, Vivek Singhal, and Jeff Thomas. Database challenge:

single schema database management systems. Technical Report TR-92-

136

47, Department of Computer Sciences, University of Texas at Austin,

December 1992.

[Sin93a] Vivek Singhal, Sheetal Kakkad, and Paul Wilson. Texas: good, fast,

cheap persistence for C++. In OOPSLA ’92 Addendum to the

Proceedings (Vancouver), OOPS Messenger, 4(2):145-147, April 1993.

[Sir93] Marty Sirkin, Don Batory, and Vivek Singhal. Software components in

a data structure precompiler. In Proceedings of the 15th International

Conference on Software Engineering (Baltimore, MD), May 1993,

pages 437-446.

[Sin93b] Vivek Singhal and Don Batory. P++: a language for large-scale

reusable software components. In Proceedings of the 6th Annual

Workshop on Software Reuse (Owego, New York), November 1993.

[Tho93] Jeff Thomas, Don Batory, Vivek Singhal, and Marty Sirkin. A scalable

approach to software libraries. In Proceedings of the 6th Annual

Workshop on Software Reuse (Owego, New York), November 1993.

[Sin93c] Vivek Singhal and Don Batory. P++: a language for software system

generators. Technical Report TR-93-16, Department of Computer

Sciences, University of Texas at Austin, November 1993.

[Bat93] Don Batory, Vivek Singhal, Jeff Thomas, and Marty Sirkin. Scalable

software libraries. In Proceedings of the ACM SIGSOFT ’93

Conference (Los Angeles), December 1993.

Permanent address: 2827 Tallgrass, Wichita, Kansas 67226.

This dissertation was typed by the author.

