
1

Web-Advertised Generators and Design Wizards

Don Batory, Gang Chen, Eric Robertson, and Tao Wang
Department of Computer Sciences

University of Texas at Austin
Austin, Texas 78712

Domain-specific generators will increasingly rely on Web-based applets for declarative specifica-
tions of target applications. Applets will communicate with generators via servers to produce cus-
tomized code on demand. Critical to the success of this approach will be domain-specific design
wizards, tools that guide users in their selection of components for constructing particular applica-
tions. In this paper, we present the P3 ContainerStore applet, its generator, and design wizard.

1 Introduction

The World Wide Web offers the potential to revolutionize software libraries [Pou95, Bro97]. Instead of
purchasing static libraries of limited capabilities, down-loadable applets can provide graphics and text-
based domain-specific languages for declaratively specifying target applications [Nov95]. Specifications
may involve filling out forms or editing diagrams on one or more HTML pages. Once completed, the con-
tents of these pages can then be up-loaded to a generator (via a server) that automatically manufactures the
application source code. The code is then transmitted back to the user (possibly in exchange for billing
information). There are numerous advantages to this approach: an almost immediate response to clients
requesting customized code; a single copy of a generator can be shared remotely by many users; propri-
etary generator technologies can be kept safely in-house yet used remotely by customers; the usage and
results of generators can be monitored for later tuning and product improvement; and so on.

We are now exploring this approach using a Java-based generator called P3. P3 is a GenVoca (i.e., compo-
nent-based) generator for container data structures that is a successor to P2 [Bat93-94]. P3 is a modular
extension of the Java language that allows container data structures to be specified declaratively. That is,
P3 adds data-structure-specific statements to Java so that users can compactly specify the implementation
of a target data structure as a composition of reusable P3 components. The P3 generator, which is actually
a Java preprocessor, translates P3 programs directly into pure Java programs. Among the features that
makes P3 attractive is that it produces data structure code whose efficiency is comparable (or better than)
hand-coded Java class libraries that are currently available.

To advertise and disseminate P3, we have developed the ContainerStore applet as a visual programming
language for writing P3 programs. Clients fill in forms and edit diagrams, from which the ContainerStore
can infer the P3 data structure specifications. While the applet itself is not a major innovation, it is interest-
ing because it integrates a suite of tools and services that (we hope) will make P3 programming easier —
tools and services that P3 alone cannot provide. The ContainerStore offers the facilities for explaining
compositions of components (so that clients can verify that the data structure that they have defined is the
one that they want). If there are errors in component compositions (or in any other phase of specification),
the errors are caught immediately and explanations of how to repair the errors are offered. By far, the most
innovative aspect of the ContainerStore tool suite is a prototype technology for automatically critiquing
and optimizing container implementations (i.e., P3 component compositions) for a particular workload.
Given a set of components and rules that express knowledge of what combinations of components are best
suited for solving particular problems, a tool called a design wizard applies these rules automatically to cri-
tique and optimize a P3 specification. If the design wizard discovers a composition of components that is

dsb
Text Box
5th International Conference on Software Reuse (ICSR), Victoria, Canada, June 1998

2

likely to perform better than that specified by a user, this new composition is reported and reasons are
given to explain why this alternative composition should be an improvement. In this way, design wizards
can offer expert guidance so that design blunders can be avoided.

In this paper, we present the P3 ContainerStore applet, its generator, and its design wizard.

2 The P3 ContainerStore Applet

The ContainerStore is a visual domain-specific language for specifying container data structures. Specifi-
cations are distributed across five tabs, the most interesting of which are shown in Figure 1-2. The first tab
allows a user to specify the class of elements that are to be stored. In particular, the name of the element
class, and the name of each attribute, its type, and cardinality are entered.1 As a running example, suppose
elements of class emp are to be stored, where emp objects have name and age attributes.

The second tab — called the Type Equation Tab (Figure 1) — presents a visual interface for defining cus-
tomized container implementations as a composition of P3 components (also known as a P3 type equa-
tion). Compositions are actually stacks of components. Figure 1 shows two stacks: the “Equation” stack
has components rbtree on top of hash on top of malloc; the “Equation2” stack has dlist on top of
hashcmp and malloc. Stacks can be edited (e.g., components can be replaced and deleted) and annota-
tions can be added. An annotation is a configuration parameter that is specific to a component. In Figure 1,
annotations to the hash data structure component (called hash) are specified by clicking hash and enter-
ing the name of the key to hash (age) and the number of buckets (100) in Annotations fields.

Figure 1. The Type Equation Tab

Once a type equation (component stack) has been constructed, the Explain/View Type Equation button is
pressed. If the composition of components is valid, an explanation of its meaning is shown in the Explain
Window. In Figure 1, the meaning of the “Equation” stack is:

A container of elements of type emp where all elements are stored in ascending name order on a
red-black tree, and all elements are hashed on age and stored in 100 buckets that are insertion-
ordered doubly-linked lists in transient memory.

This explanation is generated using the same techniques that P3 uses to generate Java code; that is, instead
of composing code fragments, the explanation is composed from english phrases. In the case that an equa-

1. The cardinality of an attribute is the expected number of distinct values that the attribute will be assigned.

3

tion is incorrect — i.e., constraints for the correct usage of a component have been violated (see
[Bat97a])— the Explain Window lists the errors and suggests reparations. For example, “Equation2” is
incorrect:

Design Rule Error: move hashcmp above dlist;
Design Rule Error: no retrieval layer beneath hashcmp;

The first message suggests that the hashcmp and dlist layers be transposed (the actual reasons are rather
low-level and are not given — only that a correct composition has hashcmp above dlist). Applying this
rewrite (it turns out) satisfies the objections of the second error message, thus yielding a correct equation.
In this way, the ContainerStore gives invaluable guidance to software designers: it helps them repair incor-
rect compositions and it helps them verify that the specified data structure is indeed the one that they want.

The third tab is where a user specifies the names of the container classes that he/she wishes to build and the
type equation that defines its implementation. (Suppose container class named ec is defined). The fourth
tab specifies cursor classes (Figure 2). A cursor is a run-time object that is used to reference, update, and
delete elements in a container. In Figure 2, the cursor class few is defined. Its constructor has a single
parameter of type ec — meaning that every few instance will be bound to an instance of container ec. The
selection predicate is specified incrementally using the Predicate Builder, which allows clauses of the form
(attribute relation value) to be declared separately. The predicate for few selects ec elements where
attribute name is “Don” and age is greater than 20. In addition, elements will be retrieved in age order (as
specified by the OrderBy field) and the age attribute of selected elements will be updated.

Figure 2. The Cursor Tab

Finally, the Generate tab presents a scrollable window and four buttons. One button generates the P3 lan-
guage specification of a ContainerStore declaration; a second button sends this specification to a server,
where the P3 generator converts this specification into Java source. This source is returned and displayed in
the scrollable window. (Section 3 illustrates this source code). The third button generates a workload spec-
ification, which lists each cursor and container operation that is to be performed with its execution fre-
quency. (This information was collected in previous tabs). The last button sends this specification to
ContainerStore’s design wizard to be analyzed and critiqued for its efficiency. (Section 5 elaborates this
workload specification and analysis).

4

3 The P3 Generator

The Jakarta Tool Suite (JTS) is a set of domain-independent tools for building extensible domain-specific
languages and GenVoca (or component-based) generators [Bat97b]. JTS is written in Jak, an extensible
superset of the Java language. Jak minimally extends Java with the addition of metaprogramming features
(e.g., syntax tree constructors) so that Java programs can create and manipulate other Java programs. JTS
is itself a GenVoca generator, where variants of Jak are assembled from components. One component in
the JTS library encapsulates the P3 generator and the P3 component library.

Like its predecessor, P2, P3 offers a powerful relational interface to container data structures. In particular,
P3 adds cursor and container data structure declarations to Java. Examples of these declarations are listed
on the left-hand side of Figure 3; the generated Java code is shown on the right. When Jak parses each of
these declarations, it generates the appropriate Java interface or class definition and replaces the declara-
tion with the generated code.

Suppose instances of class emp are to be stored in a container. Lines (1) and (2) concisely declare Java
interfaces for containers (empcont) and cursors (empcurs) that are specialized for emp instances. Note
that the C++-like syntax for these declarations was chosen deliberately to indicate that container interfaces
are parameterized by the elements (emp) to be stored and cursor interfaces are parameterized by the con-
tainer (empcont) over which cursor instances will range.

Among the methods in the empcont interface (not shown in Figure 3) are emp instance insertion and a test
for container overflow. Among the methods in the empcursor interface are positioning a cursor on the
first emp instance of a container, advancing to the next emp instance, testing for end-of-container, and get
and set methods for each attribute of emp.

Each container class is declared separately. Statement (3) defines a container class ec that implements the
empcont interface by storing emp instances in an age-attribute-ordered doubly-linked list in transient
memory. odlist(age,malloc()) is its P3 type equation that defines both the stacking of components
(i.e., odlist sits atop of malloc) and annotations (i.e., age is the key of the odlist data structure).
Table 1 lists the library (realm) of components that P3 currently offers.

Each cursor class is also declared separately. Statement (4) declares a cursor class all whose instances
return every element of an ec container. The syntax of the statement defines the arguments of the construc-
tor of the generated class (i.e., each all instance is bound to a particular ec container instance). P3 infers

container< emp > empcont;

cursor< empcont > empcursor;

container ec implements empcont
using odlist(age, malloc());

cursor all(ec e);

cursor few(ec e)
where name() == “Don” && age() > 20
orderby age;

interface empcont { ... }

interface empcursor { ... }

class ec implements empcont { ... }

class all implements empcursor {
all(ec e) { ... }
 ... }

class few implements empcursor {
few(ec e) { ... }
... }

Figure 3. P3 Declarations and Generated Classes

(1)

(2)

(3)

(4)

(5)

5

that all implements the empcursor interface (because ec containers store emp instances, and cursors
over ec containers implement the empcursor interface).

Statement (5) declares another cursor class few whose instances return in attribute age order only those
elements of an ec container where name == “Don” and age > 20. Other features of P3 that are not shown
in Figure 3 include parameterized selections (i.e., city() == x, where x is specified at run-time) and dec-
larations of cursor usage (e.g., retrieval only, element modification/deletion, etc.) for optimizing generated
code.

4 Performance of P3-Generated Code

Generators, contrary to hand-written component libraries, offer a scalable way to produce customized soft-
ware [Bat93, Big94]. The declarative way in which P3 users specify container and cursor implementations
through component composition leads to scalable families of customized data structures. As shown in
[Bat97c], significant increases in productivity and major cost reductions both in maintenance and experi-
mentation with different container implementations can result from generators. While we have not yet used
P3 in a sophisticated Java application, we have performed preliminary benchmarks on P3-generated code
to assure us that P3 is on a trajectory that is comparable with its predecessors.

The Container and Algorithm Library (CAL) [X3M97] and the Java Generic Collection Library (JGL)
[Jer97] are two popular and publicly available Java data structure libraries. Both are based on STL [Ste94]
and are optimized for performance. Sun’s Java Development Kit (JDK) also provides some simple data
structures, so we also included it in our study. Presently, CAL and JGL support features (adaptors for
stacks, queues, etc.) that P3 does not yet offer. (Adaptors can be encapsulated as P3 components that will
be stacked on top of P3 containers to give them non-container interfaces; so there is no a priori reason why
such capabilities/componentry cannot eventually be added to P3).

We performed a number of experiments that benchmarked productivity and performance; the most reveal-
ing of which are presented here. The benchmark of [Bat93] was used to evaluate the performance of the
Booch Components, libg++, and the P1 and P2 generators. We used this same program for our studies. The
program spell-checks a document against a dictionary of 25,000 words. The main activities are inserting
randomly ordered words of the dictionary into a container, inserting words of the target document into a
second container and eliminating duplicates, and printing those words of the document container that do

DS Component Semantics
malloc elements are stored in transient memory
persistent elements are stored in persistent memory
odlist(key x, DS y) elements are stored on an x-ordered doubly-linked list#

dlist(DS y) elements are stored on an unordered doubly-linked list#

rbtree(key x, DS y) elements are stored on a red-black tree with key x#

predindex(predicate p, DS y) elements that satisfy predicate p are stored on a separate
doubly-ordered linked list#

hashcmp(key x, DS y) equality predicates on key x are hashed to improve performance#

hash(key x, int n, DS y) elements are hashed on x and stored in a hash table with n buckets#

bstree(key x, DS y) elements are stored on a binary tree with key x#

#Note: parameter y defines a stack of components that lie below that component.

Table 1. P3 Data Structure Components

6

not appear in the dictionary. The document that we used was the Declaration of Independence (~1600
words).

We used JDK, CAL, JGL, and P3 to implement this program using four different container implementa-
tions: doubly-linked lists, binary search trees, red-black trees, and hash tables. The benchmarks were exe-
cuted on a Pentium Pro 200 with 64 MB of memory, running Windows NT Workstation version 4.0. The
programs were compiled and executed using JDK version 1.1.3, with the -O optimization option. We also
recompiled the CAL beta 2 and JGL 2.0.2 libraries using JDK version 1.1.3 to ensure the validity of com-
parison.

Table 2 shows the program sizes for different libraries. (Sizes were obtained by removing comments and
using the Unix wc utility to count the words). P3 programs are slightly longer than the corresponding CAL,
JGL, and JDK programs because P3 declarative specifications are more verbose than class references in
Java packages. Such differences are not significant, because P3 can generate vast numbers of data struc-
tures that have no counterpart in the CAL, JGL, and JDK libraries. In such cases, these libraries would not
be of much help as the target data structure would have to be written by hand. The brevity of the corre-
sponding P3 programs and the speed at which their Java source is produced would be unchallenged. So too
would the ability to alter container implementations quickly and easily (by merely redefining the P3 type
equation and recompiling); significantly more work would be needed using CAL, JGL, and JDK.

Table 3 lists the execution times for each program. In general, P3 programs outperform their hand-coded
counterparts for two reasons. First, both CAL and JGL are based on STL, but since Java doesn’t support
templates, both have to rely extensively on inheritance. This introduces many virtual method lookups,
which slows execution. Second, there is inherent overhead in the JDK, CAL, and JGL designs. These

libraries are designed for generic applications, whereas the programs generated by P3 are produced for a
specific task. Consider element comparisons. P3 directly inlines comparison expressions, whereas CAL or
JGL programs have to use a “predicate” object that encapsulates a function to evaluate that predicate on a

dlist bstree rbtree hash

JDK 541 N/A N/A 506

CAL 540 561 561 562

JGL 534 N/A N/A 540

P3 568 568 568 568

Table 2. Code size of dictionary benchmark programs (in words)

dlist bstree rbtree hash

JDK 82.5* N/A N/A 8.2

CAL 117.4 19.4 17.3 13.5**

JGL 116.9 N/A N/A 8.1

P3 74.9 13.8 12.8 7.9

* The Vector data structure provided by JDK is used here.
** CAL does not have explicit support for hash tables; the Set container is used
instead. Internally, CAL implements Set by hash table.

Table 3. Execution times of dictionary benchmark programs (in secs)

7

given element. (This is a common way to work around the lack of function pointers in Java). Note that this
function can not be optimized by the compiler (i.e., there is no query optimization) nor inlined because it is
virtual. There are other inefficiencies that preclude significant optimizations that generators can provide.
Further analysis is given in [Che97].

The point of our experiments was to provide minimal confirmation that P3 generates code comparable to
that written by hand. Clearly, many more experiments are needed. We have no illusions that this simple
example is sufficient in any way; our goal at this stage of our research is to demonstrate that the perfor-
mance of P3-generated code conforms to that observed in earlier generators, which it does.

5 The P3 Design Wizard

A fundamental problem in all component-based generators is: given a workload specification and a set of
components, how should one select and assemble components to define an appropriate application? In the
case of P3, what type equation (data structure) would most efficiently process a given workload? This is a
difficult problem for two reasons.

First, software designers are rarely aware of the actual workload that an application will subject a data
structure. A designer will know the kinds of queries asked (e.g., since these queries will be specified as
cursor declarations), but the actual frequency with which particular cursor classes are instantiated and
elements are retrieved won’t be known until run-time. At best, only educated guesses can be made (and
often, these estimates are determined through gut instincts).

Second, even if a workload is known precisely, it can be a challenging problem to infer an efficient data
structure. When a workload is simple, the problem is easy. For example, if elements of a container are to be
accessed only via the predicate N == <value>, then a hash table with elements hashed on field N is likely
to be an optimal choice. However, if workloads become slightly more complicated, it is hard to tell what
data structure would be best. For example, if there are 20,000 elements, 3000 elements are inserted and
deleted per time period, fields S and N are updated 1000 times per period, elements are retrieved using
predicate N == <value> && A==“b” 2000 times per period, and all elements are retrieved in S order 50
times per period, what data structure would most efficiently support this workload? The answer isn’t obvi-
ous even to experienced programmers.

To solve the first problem, one can instrument generated code so that it collects workload statistics at run-
time. So initially, one fields an application knowing full well that its data structures are not optimal. After
a period of time, enough statistics will have been collected so that a more appropriate data structure can be
inferred. The application cursor and container classes are then regenerated and the old classes dis-
carded. A new cycle of collect-statistics-and-regenerate then begins. Normally, a programmer is in the
loop to close the cycle (i.e., a programmer decides how long to collect statistics, how to use these statistics
to infer a better data structure, and when to initiate the class regeneration and replacement). However, this
loop could be closed without programmer intervention. That is, the application determines when enough
statistics have been collected, a tool called a design wizard infers an optimal data structure given this work-
load, and if regeneration is warranted, class regeneration and replacement is performed automatically.
Such software is called self-adaptive [Lad97], and may be the penultimate way to minimize software
development and maintenance costs through component reuse.

The key to achieving self-adaptive software requires a solution to the second problem — deducing an effi-
cient type equation for given a workload. This requires a different kind of knowledge that is not present in
GenVoca domain models (and domain models in general). Knowledge of when and how to effectively use
a component to maximize performance or to meet a design objective is quite different than design rules

8

(i.e., requirements that define the correct usage of a component [Bat97a]). What form this knowledge will
take, what is a general model to express such knowledge, and how to optimize type equations remain open
problems. Short of proposing a general-purpose theory, it is possible to develop ad hoc techniques for
given domains, and in particular, for data structures. By abstracting from specific solutions in different
domains (i.e., performing a “domain analysis” on these solutions), a general theory may result.

We believe that parameterized programming [Gog86] (of which GenVoca is an example) offers a general
framework for modeling systems as equations (see also [Sre97]). Heuristics for improving equations (soft-
ware designs) may be understood as algebraic rewrites (i.e., replace the component composition a[b[…]]
with c[…] under specific conditions). We are working on a formal model that explores this approach, and
will report our results in future papers.

For now, however, we outline an approach that we have found effective to optimize and critique P3 type
equations automatically given a workload specification. While the solution itself is domain-specific, it does
constitute a valuable first step toward self-adaptive software and a general model of design wizards.

5.1 P3 Workload Specifications

Data structure optimization is a well-studied problem. Because P3 presents a relational-like interface to
data structures, relational database optimization models are an obvious starting point [Mit75]. A workload
on a database relation (or P3 container) is characterized by the type and cardinality of individual attributes
of an element, plus the frequency with which each container or cursor operation is performed. Figure 4
illustrates a workload specification file produced by the ContainerStore applet. (The information in
Figure 4 was collected in the various tabs that were filled out by a ContainerStore client). It states that there
are 5,000 elements in a container. Each element has two fields, one is a String called name that has 10,000
unique values, etc. 300 elements are inserted per time period, all elements are retrieved in name order 100
times per period, and so on. The type equation (which implements the container whose workload is defined
in Figure 4) that is to be critiqued is odlist(age, malloc()).

workload {
cardinality = 5000;

attributes {
#id type cardinality
#---------------------------------
name String 10000;
age int 60;

}

work {
#operation frequency
#-----------------------------
insertion 300;
deletion 300;
ret orderby name 100;
ret where name() == "Don" && age() > 20 orderby age 100;

}

Equation = odlist(age, malloc());
}

Figure 4. P3 Workload Specification

9

5.2 Cost Model

Given a workload W and a container implementation (type equation) T, we want to estimate the cost of pro-
cessing W using T. This is accomplished this using cost equations [Mit75]. The cost function we seek,
Cost(T,W), is the sum of the costs of processing each individual cursor and container operation times its
execution frequency. The cost of an individual operation is the sum of the costs contributed by individual
layers of T. For example, every layer performs some action when an element is inserted into a container.
Thus, the cost of an element insertion is equal to the sum of the costs of insertion actions that are per-
formed by each layer (see Figure 5). The same holds for attribute update and element deletion. Retrieval
costs are estimated a bit differently, as query optimization is involved. A retrieval predicate is processed by
traversing a single data structure. The data structure that is to be traversed is the one that returns the mini-
mum cost estimate for processing that predicate. This “polling” of layers/data structures to see which is to
be used is called query optimization. The general equations that define Cost(T,W) are summarized in .Spe-
cific equations for layer insertion, deletion, etc. are elementary. Table 4 samples some of the equations
used, where n denotes the number of elements in a container and c is a constant. Different equations have
different values for c, where particular values are determined by benchmarking P3 software on a specific
platform.2 .

Cost(T,W), again, is used to evaluate a particular design T for a workload W. A design wizard must walk the
space of all legal type equations and find the equation T that minimizes Cost(T,W). In the next section, we
explain how this space is defined, and later, how the wizard walks this space.

2. Equality retrieval are predicates that are of the form key == value; range retrieval predicates are of the form
low-value < key < high-value; scan retrievals do not qualify elements on key values.

Cost T W,() I T() InsFreq D T()+× DelFreq U T Fieldi,() UpdFreqi×() R T Reti,() RetFreqi×(
i T∈
∑+

i T∈
∑+×=

I T() insertion layeri()
i T∈
∑=

D T() deletion layeri()
i T∈
∑=

U T Fieldj,() update layeri Fieldj,()
i T∈
∑=

R T Retj,() Mini T∈ retrieval layeri Ret j,()()=

Figure 5. P3 Cost Model

Layers insertion deletion update
equality
retrieval

range
retrieval

scan
retrieval

dlist c c c c*n c*n c*n
rbtree c*log(c) c key: c*log(n)

non-key: c
key: c*log(n)
non-key: c*n

key: c*log(n)
non-key: c*n

c*n

hash c c key: c
non-key: c

key: c
non-key: c*n

c*n c*n

Table 4. Selected Individual Cost Equations

10

5.3 The Space of P3 Type Equations

P3 components are characterized by three kinds of attributes: properties, signatures, and design rules.
Together they define the space of all syntactically and semantically correct P3 type equations. A Layer
Declaration File (LDF) is a specification of this information, an example of which is shown in Figure 6.

Properties are attributes that classify components. In Figure 6, seven different properties are defined.
logical_key is the propositional symbol for the attribute that defines “a key-ordered component”, i.e., a
P3 component that implements a data structure that stores elements in key order. Red-black trees, ordered
doubly-linked lists, etc. are components that have this property. Similarly, hash_key is the propositional
symbol for the attribute that defines “a hash component”, i.e., a P3 component that implements a data
structure that stores elements via hashing. As we will see shortly, properties are used to express both
design rules and type equation rewrite rules (discussed in the next section).

Signatures define the export and import interfaces of a component; these properties are used to determine if
a component usage in a type equation is syntactically correct. In Figure 6, we circled the signature for red-
black trees . The syntax ds = { … } defines a realm (i.e., library) of components that implement the inter-
face ds. Component is rbtree exports the ds interface (because it is a member of realm ds). It has a
keyfield parameter and parameter ds (which means that rbtree can be composed with other ds com-
ponents). As another example, the malloc component exports the ds interface (because it belongs to
realm ds) and has no parameters.

Not all syntactically correct type equations are semantically correct. Domain-specific constraints called
design rules are needed to define the legal uses of a component. The algorithms that we use for design rule
checking are given in [Bat97a]. Design rules are expressed in two parts. First, properties that are asserted
or negated by a component are broadcast to all layers that lie above it and below it in a type equation.
These properties are declared by the asserted properties and negated properties statements. For
example, the malloc component broadcasts the asserted property transmem and the negated property

properties = {
logical_key "a logical-key-ordered component"
hash_key "a hash-key ordered component"
transmem "a transient memory component"
persmem "a persistent memory component"
inbetween "a component needed for element deletion"
retrieval "a retrieval component"
delete "a component that marks elements deleted"
...

}

ds = {
rbtree [keyfield ds] {

asserted properties = { retrieval, logical_key }
require above = { inbetween }

}
delflag [ds] {

properties = { delete }
forbid below = { delete }

}
malloc {

asserted properties = { transmem }
negated properties = { persmem }

}
...

}

Figure 6. A P3 Layer Declaration File

signatures

properties

broadcasted
properties

constraints

11

persmem when it is used in a type equation. Similarly, the rbtree component broadcasts the asserted
properties retrieval and logical_key.

Second, preconditions for component usage are expressed as conjunctive predicates. Asserted properties
are expressed with the require statement; negated properties with the forbid statement. Thus, if a com-
ponent X has the declarations:

require above = { A, B }
forbid above = { C }

they define the predicate A ∧ B ∧ ¬C which must be satisfied by layers that lie above X in a type equation.
By replacing “above” with “below”, this predicate must be satisfied by layers that lie below X in a type
equation. (Thus, different conditions can be imposed on layers above X and below X in an equation). As an
example that combines both property broadcasting with preconditions, the delflag layer in Figure 6
allows only one instance of itself in a type equation. That is, the first delflag instance will assert the
delete property, while the second delflag will detect its presence when its precondition
fails.

5.4 Automatic Optimization of Type Equations

The optimization of a P3 type equation is similar to an AI planning process [Eas73]. We use a best-first
(i.e., greedy) search to find a correct type equation with the lowest cost with regard to the given workload,
cost models, and layer declarations. The search can begin from scratch (i.e., an equation that has no com-
ponents). However, when used with the ContainerStore applet, the search begins with the type equation
that was specified in the workload.

The space of all P3 type equations is a graph G(T) = { V,E }, where V is the set of all correct type equa-
tions that can be composed using the given components and E is the set of edges. There is an edge between
type equation m and n, if and only if n can be obtained by inserting, deleting, or replacing a component
from m. The size of this space is enormous: if there are k components in the P3 library, the number of type
equations with c components is O(kc). So even for small k and c, an exhaustive search is infeasible. A rea-
sonable start is to use a best-first (greedy) search with the following heuristics:

• when an equation rewrite is attempted, we check that the resulting equation is syntactically correct,
that it satisfies design rules, and that its cost is unchanged or lowered.

• rewrites are considered in an order (we feel) will most likely lead to a new equation with lower cost.

The rewrite rules that we use are derived from heuristics that we have applied to produce efficient type
equations manually. Some of these rules deal with element attributes. Consider the following rewrite that is
expressed in two parts:

• (a) if an element attribute A is listed as an orderby key in the workload specification, then try to insert
a logical_key layer (such as a red-black tree or an ordered-list) with A as its key.

The idea of this rewrite is that it is cheaper to store elements in sorted order rather than sorting an unor-
dered set of elements on demand. This rewrite will fail if there already exists a logical_key layer with
that attribute as key. (The reason for failure is that the Cost(T,W) of the rewritten equation T will be higher
— the rationale is that a single data structure that maintains element order is always cheaper than two
structures maintaining the same order). This leads to the second part of the rewrite:

• (b) If (a) fails, then try to replace the logical_key layer with A as its key with a more efficient
logical_key layer.

delete¬

12

The idea of this rewrite is that if there already exists a data structure that maintains elements in key order,
there may be a more efficient data structure to accomplish the same task. This rewrite attempts to find a
such a replacement.

Readers may have observed the use of LDF properties in expressing rules. To apply the above rule, our
design wizard searches its library for components that assert the logical_key property. These compo-
nents are candidates for insertion or replacement in the above rule. Different rules will qualify components
on different properties. Consider a second rewrite:

• if element attribute A is used in an equality retrieval predicate (e.g., name == "Dan"), then try to insert
a hash_key component with A as its key; if there already exists such a layer, try to substitute it with a
more efficient hash_key layer.3

These and similar rules are growth rules — i.e., they add components to type equations. There are growth
rules that do not involve element attributes. There are also shrink rules — i.e., rules that remove compo-
nents from type equations. An example is:

• remove a component from a type equation if it increases Cost.

Overall, we have about 10 different rewrite rules. The basic algorithm that we use to apply these rewrites to
optimize type equations is:

for each element attribute A {
apply each “attribute growth” rewrite for A;

}
apply each “non-attribute growth” rewrite;
apply each “shrink” rewrite;

Optionally, the above algorithm can be run to a fixpoint (i.e., the algorithm is continually invoked until no
further rewriting is possible). Since our search algorithm is not exhaustive, there is no guarantee that the
generated equation has minimal cost. However, it does execute quickly (under a second of CPU time). As
we will see in the next section, the algorithm seems to work well.

5.5 Critique and Optimization

Given a workload specification, the P3 design wizard applies its rewrites to the input type equation. If there
is no substantial improvement, the wizard simply reports that no changes to the equation need to be made.
A more likely response is that it will have discovered an implementation/equation that has better perfor-
mance characteristics. Figure 7 shows the output of a critique using the workload of Figure 4. Both the
input and revised equations are presented, along with their cost (i.e., Cost(T,W)) estimates. An explanation
is also presented, which provides reasons why the generated equation is better. In this particular case, the
original data structure linked elements together onto an age-ordered list. The workload, on the other hand,
demands that all elements of the container be periodically retrieved in name order, and that individual ele-
ments (whose name is “Don”) be retrieved frequently. The original data structure doesn’t efficiently sup-
port this workload at all. The recommended data structure allows elements to be accessed quickly (via
hashing) on name and that elements be stored in order on name (via an ordered linked list). Furthermore, to
speed up the searching for elements on name, the hashcmp component is used. (This component trans-
forms equality predicates on strings (name == “Don”) to include integer comparisons (hash_of_name ==
hash(“Don”) && name == “Don”). The idea is that integer comparisons are much faster than string com-

3. At present, P3 has only one hash component. A component for dynamic hashing may be added later.

13

parisons). While most programmers would not think to add this enhancement (probably because it is
tedious for a programmer to add by hand), it is quite simple for P3 to do it. The performance enhancements
for altering the type equation are predicted by the design wizard to pay-off handsomely.

There are two general contributions we see that design wizards will make to automated software develop-
ment. First, not all users of a generator will be domain experts. Even if they have familiarity with a domain,
they may not know as much as an expert, or, in the case of design wizards, a host of domain experts.
Design wizards will help avoid blunders and will help users find more efficient implementations for their
target systems. Second, and possibly more significant, type equation synthesis is a prerequisite to building
adaptive software systems — systems that dynamically change their configuration as a function of current
workload. For most domains — including data structures — manual reconfigurations are rarely done
because of the costs involved. As a consequence, application users must suffer with degraded performance
and application developers must endure the costs of program maintenance. Design wizards have the poten-
tial to change this situation dramatically.

6 Related Work

It is widely believed that domain-specific languages (DSLs) will significantly impact future software
development. DSLs offer concise ways of expressing complex, domain-specific concepts and applications,
which in turn can offer substantially reduced maintenance costs, more evolvable software, and significant
increases in software productivity [Bat93, Kie96, Due97]. Generators are compilers for DSLs [Sma97].
Component-based generators, such as P2 and P3, show how reusable components form the basis of a pow-
erful technology for producing high-performance, customized applications in a DSL setting.

The importance of the World Wide Web to software reuse has been recognized for some time. Among the
more recent efforts are those that apply standards to library catalogs to foster the interoperability of differ-
ent software repositories [Pou95, Bro97]. The Web provides a convenient (and inexpensive) medium in
which to merge the contents of distributed libraries and present a uniform interface for searching and
selecting components. Our work is different. While there is nothing new or remarkable about using applets
as Web-based DSLs and for ordering/purchasing software via the Web, we believe that the ContainerStore
applet is among the first that tie DSLs, component-based software generators, and the web together in a
coherent and workable manner. To our knowledge, Novak was the first to have used this combination of

Equation: Original Type Equation is:
 odlist(age,
 malloc())
cost = 19593

Type Equation we recommend is :
 hashcmp(name,
 hash(name,5000,
 odlist(name,
 malloc())))
cost = 1606

Projected improvement: 1119%

Reasons why we choose this type equation:
hashcmp: field name is hashed because it will be faster to compare
 the values of two string fields when they are hashed.
hash: A hash data structure with hash key name is used because
 11% of the operations involve equality retrieval on name.
odlist: A doubly linked list ordered by name is used because
 many retrievals will be ordered by name.

Figure 7. Critique and Optimization of a Type Equation

14

technologies (with data structure generators, no less!) [Nov95]. His generation technology is quite differ-
ent from ours (e.g., there is no design wizard and the applet is really an X-windows application) [Nov97],
but the concept of web-based advertising of generators is the same.

The automatic selection of data structures is an example of automatic programming [Bal85]. SETL is a
set-oriented language where implementations of sets can be specified manually or determined automati-
cally [Sch81]. SETL offers very few set implementations (bit vector, indexed set, and hashing), and relies
on a static analysis of a SETL program using heuristics rather than using cost-based optimizations to
decide which set implementation to use. AP5 has comparable capabilities and takes a similar approach
[Coh93].

Deductive program synthesis is another way to achieve automatic programming [Bal85, Smi90, Man92,
Low94, Kan93]. The idea is to define a domain theory (typically in first order logic) that expresses funda-
mental relationships among basic domain entities. A domain theory together with a theorem prover and
theorem-proving tactics can find a constructive proof for a program specification and extract from this
proof computational methods from which a program can be synthesized. Finding a proof may be fully
automatic, but frequently requires guidance from users to help navigate through the space of possible
proofs. Our design wizard is very different. First, finding a “proof” (a P3 type equation) for a workload
specification is trivial — simply implement every container as a doubly-linked list. All container and cur-
sor operations will be processed, but not efficiently. The challenge is finding a P3 type equation that effi-
ciently processes that workload. Second, work on program synthesis has largely focussed on generating
algorithms (e.g., algorithms for solving PDEs [Kan93], algorithms for scheduling [Smi90], algorithms for
computing solar incidence angles [Low94], etc.); subroutine libraries are the components from which gen-
erated algorithms are built. In contrast, GenVoca components are subsystems — suites of interrelated OO
classes. (A P3 component for example encapsulates three classes: a cursor class, a container class, and an
element class). The scale of encapsulation of GenVoca components as well as the way in which domains
are modeled (i.e., as realms of plug-compatible components) are different than typical domain theories dis-
cussed in the program synthesis literature.

The techniques we used for optimizing type equations are similar to those of rule-based query optimization
[Das95, War97]. A query is represented by an expression where terms correspond to relational operators
(e.g., join, sort, select). Query optimization progressively rewrites a query expression according to a set of
rules, where the goal is to find the expression with the lowest cost. Since we model data structures as
expressions and our design wizard progressively rewrites expressions until no further rewriting produces a
more efficient expression, the problems seem identical. However, there are differences. First, constraints
among relational operators can be expressed simply by algebraic rewrite rules. In contrast, we do not yet
have an algebraic representation for our rules. Moreover, the correct usage of layers requires design rule
checking which we also have been unable to express as algebraic rewrites. Second, query optimization
deals with a rather small set of operators (e.g., join, sort, select), whereas type equation optimization poten-
tially may deal with a much larger set of operators (i.e., tens or hundreds of layers). For these reasons, type
equation optimization appears to be more difficult than query optimization.

7 Conclusions

P3 is a GenVoca generator for container data structures. Although its basic technology was developed ear-
lier [Bat93-94], P3’s novelty is that it has been implemented as a modular extension to the Java language
that introduces data-structure-specific statements. These statements enable P3 users to compactly and
declaratively specify a family of data structures whose size dwarfs that of hand-coded Java libraries (e.g.,
CAL, JGL, JDK). Besides offering broader coverage, P3 is additionally attractive because it generates effi-
cient code. The basic reason for its efficiency — beyond the fact that the generation techniques are power-

15

ful — is that P3 produces data structures for a specific application (where all sorts of optimizations can be
performed) whereas conventional libraries only offer generic data structures (where these optimizations
have not been applied).

The World Wide Web is a powerful and pervasive medium that can significantly alter the landscape of
how reuse technology — and generator technology in particular — is delivered to clients. As builders of
P3, we obviously want to advertise and disseminate P3 beyond the confines of academic uses. For this rea-
son, we have developed the ContainerStore applet as a visual domain-specific programming language for
writing P3 programs.4 This applet can (soon) be downloaded from our Web site, from which it will com-
municate (via a server) to the P3 generator and P3 design wizard. The novelty of the ContainerStore applet
is its integration of a suite of tools and services that P3 alone cannot provide. The particular services that
we discussed in this paper are: english-generated explanations of P3 component compositions, automatic
validation of compositions with messages suggesting how to repair errors (if errors are detected), auto-
matic generation of P3 code (so that users can study correct P3 specifications), automatic generation of
Java code given a P3 specification (i.e., the P3 generator is called), and the automatic critique and optimi-
zation of a user-defined P3 component composition given a workload specification (i.e., the P3 design wiz-
ard is called). In future papers, we hope to report on our experiences with the ContainerStore.

Finally, we note that our design wizard is merely a prototype of a much more general technology for auto-
matic component selection and composition. At present, we are using a very simple heuristic (i.e., a greedy
algorithm) to search the space of P3 type equations. More work is needed to evaluate whether this heuristic
is adequate or if much better designs can be inferred when more powerful search strategies are used. On
another front, it is important that design wizards for other (GenVoca-modeled) domains be explored. We
believe that analyzing design wizards for different domains may lead to a general model for expressing
type equation rewrite rules. Such a model would be very important, as it would offer a general-purpose
technology for achieving adaptive software — i.e., software that automatically reconfigures itself upon
noticing a change in its usage/workload. Adaptive software may be the penultimate way to minimize soft-
ware development and maintenance costs through component reuse.

Acknowledgments. We thank Rich Cardone and Yannis Smaragdakis for their comments on earlier drafts
of this paper. Our Web site is http://www.cs.utexas.edu/users/schwartz/.

8 References
[Bal85] R. Balzer, “A Fifteen-Year Perspective on Automatic Programming”, IEEE Transactions on Software

Engineering, November 1985.

[Bat93] D. Batory, V. Singhal, M. Sirkin, and J. Thomas, “Scalable Software Libraries”, ACM SIGSOFT 1993.

[Bat94] D. Batory, J. Thomas, and M. Sirkin, “Reengineering a Complex Application Using a Scalable Data
Structure Compiler”, ACM SIGSOFT 1994.

[Bat97a] D. Batory and B.J. Geraci, “Validating Component Compositions and Subjectivity in GenVoca
Generators”, IEEE Transactions on Software Engineering, February 1997, 67-82.

[Bat97b] D. Batory, B. Lofaso, and Y. Smaragdakis, “JTS: A Tool Suite for Building GenVoca Generators”,
submitted for publication, 1997.

[Bat97c] D. Batory, “Intelligent Components and Software Generators”, Software Quality Institute Symposium on
Software Reliability, Austin, Texas, April 1997.

[Bax92] I. Baxter, “Design Maintenance Systems”, CACM April 1992, 73-89.

4. The capabilities described in this paper were demonstrated at the DARPA EDCS Workshop in Seattle, July 1997.

16

[Big94] T. Biggerstaff, “The Library Scaling Problem and the Limits of Concrete Component Reuse”,
International Conference on Software Reuse, Rio de Janeiro, November 1-4, 1994, 102-110.

[Bro97] S.V. Browne and J.W. Moore, “Reuse Library Interoperability and the World Wide Web”, Int. Conference
on Software Engineering, May 1997, 684-691.

[Che97] G. Chen, P3 Performance Report, UTCS, University of Texas at Austin, September 1997.

[Coh93] D. Cohen and N. Campbell, “Automating Relational Operations on Data Structures”, IEEE Software, May
1993.

[Das95] D. Das and D. Batory, “Prairie: A Rule Specification Framework for Query Optimizers”. International
Conference on Data Engineering, Taipei, March 1995, 201-210.

[Due97] A. Van Duersen and P. Klint, “Little Languages: Little Maintenance?”, Proc. First ACM SIGPLAN
Workshop on Domain-Specific Languages, Paris 1997.

[Eas73] C.M. Eastman, “Automated Space Planning”, Artificial Intelligence 4(1973), 41-64.

[Gog86] J.A. Goguen, “Reusing and Interconnecting Software Components”, IEEE Computer, February 1986.

[Jen97] P. Jenkins, D. Whitmore, G. Glass, and M. Klobe, “JGL: the Generic Collection Library for Java”,
ObjectSpace Inc., URL: http://www.objectspace.com/jgl/ , 1997.

[Kan93] E. Kant, et al., “Synthesis of Mathematical Modeling Software”, IEEE Software, May 1993, 30-41.

[Kie96] R. Kieburtz, et al., “A Software Engineering Experiment in Software Component Generation”,
International Conference on Software Engineering, 1996.

[Lad97] R. Laddaga, Self-Adaptive Software Workshop, Kestrel Institute, July 1997.

[Low94] M. Lowry, A. Philpot, T. Pressburger, and I. Underwood, “AMPHION: Automatic Programming for
Scientific Subroutine Libraries”. Intl. Symp. on Methodologies for Intelligent Systems, Charlotte, North
Carolina, Oct. 16-19, 1994, 326-335.

[Man92] Z. Manna and R. Waldinger, “Fundamentals of Deductive Program Synthesis”, IEEE Trans. Software
Engineering, August 1992, 674-704.

[Mit75] M.F. Mitoma and K.B. Irani, “Automatic Database Schema Design and Optimization”, 1975 Very Large
Databases Conference, 286-321.

[Nov95] G. Novak, “Automatic Programmer Server”, http://www.cs.utexas.edu/novak, 1995.

[Nov97] G. Novak, “Software Reuse by Specialization of Generic Procedures through Views”, IEEE Trans.
Software Engineering, July 1997, 401-417.

[Sch81] E. Schonberg, J.T. Schwartz, and M. Sharir, “An Automatic Technique for Selection of Data
Representations in SETL Programs, ACM Trans. Prog. Languages and Systems, April 1981, 126-143.

[Sma97] Y. Smaragdakis and D. Batory, “DiSTiL: a Transformation Library for Data Structures”, USENIX Conf.
on Domain-Specific Languages, 1997.

[Smi90] D.R. Smith, “KIDS: A Semiautomatic Program Development System”, IEEE Trans. Software
Engineering, September 1990, 1024-1043.

[Sre97] S. Sreerama, D. Fleming, M. Sitaraman, “Graceful Object-Based Performance Evolution”, Software
Practice and Experience, January 1997.

[Ste94] A.A. Stepanov and M. Lee, “The Standard Template Library”, HP Laboratories, TR HPL-94-34, 1994.

[War97] L. Warshaw, D. Miranker, and T. Wang, “A General Purpose Rule Language as the Basis of a Query
Optimizer”, UTCS TR97-19, University of Texas at Austin, July 1997.

[Pou95] J.S. Poulin and K.J. Werkman, “Melding Structured Abstracts and the World Wide Web for Retrieval of
Reusable Components”, Symposium on Software Reusability (1995), 160-168.

[X3M97] X3M Solutions, “CAL: The Container and Algorithm Library for the Java Platform”, URL: http://
www.x3m.com/products/cal/, 1997.

