
P++: A Language for Large-Scale Reusable Software Components�

Vivek Singhal and Don Batory

Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712

Tel: (512) 471-9711/9713
Email: fsinghal,batoryg@cs.utexas.edu

Abstract

P++ is a programming language that supports the GenVoca model [BO92], a particular

style of software design that is intended for building software system generators. P++ is an en-

hanced version of C++: it o�ers linguistic extensions for component encapsulation, abstraction,

parameterization, and inheritance, where a component is a subsystem, i.e., a suite of interrelated

classes and functions.

Keywords: open architectures, program families, large-scale reuse, software system synthesis,

GenVoca, software system generators.

Workshop Goals: feedback on our research; exposure to other work in software reuse.

Working Groups: reuse process models; domain analysis/engineering; design guidelines for

reuse; reuse and object-oriented methods; tools and environments.

�Appeared in Proceedings of the Sixth Annual Workshop on Software Reuse, Owego, New York, November 1993.

dsb
Text Box
6th Annual Workshop on Software Reuse(Owego, New York), November 1993



1 Background

Almost two decades ago, Parnas observed that software design was incorrectly taught as a technique

which sought a unique program/solution, because, over its lifetime, the program inevitably would

evolve into a family of similar programs [Par76]. When programs are not designed for extensibility,

the e�ort and expense needed to modify them is often out of proportion to the changes themselves.

A di�erent approach, one that achieves economies of scale, was needed. He argued that since

program families are inevitable, designing program families from the beginning is the most cost-

e�ective way to proceed.

Recent work on domain-speci�c software architectures [CS93, Sof90] has shown that software system

generators o�er a promising means of economically building families of large, complex software sys-

tems. These generators are domain-speci�c; they implement models (called domain models) which

show how to construct a family of similar software systems by composing reusable, prefabricated

components. The essential themes that Parnas espoused are present in contemporary software gen-

erators; generators formalize the design of software families as open architectures, where software

system synthesis and evolution can be quick and inexpensive.

Some examples of generators include Genesis (database systems) [Bat88], Avoca (network proto-

cols) [OP92], Ficus (�le systems) [HP93], Brale (host-at-sea buoy systems) [Wei90], and Predator

(data structures) [BSST93]. Although each of these generators was developed independently and

targeted for a di�erent problem domain, all were organized in basically the same way. The GenVoca

model captures their common design strategy [BO92]: it de�nes a particular style of designing and

organizing reusable components that enables families of software systems to be de�ned through

component composition. An implementation of a GenVoca model is a software system generator

for a particular domain.

Some of the important features of GenVoca are: (1) Components are the building blocks of hierar-

chical software systems (a component is a subsystem or module). (2) Components must import and

export standardized interfaces. (3) Component composition and customization should be achieved

through parameterization.

It is well-known that language support for a design paradigm can tremendously simplify the ap-

plication of that paradigm; object-oriented languages, for example, have been instrumental in

popularizing and realizing object-oriented designs. For the same reason, language support for Gen-

Voca is important. In the next section, we brie
y describe the P++ programming language, which

codi�es the GenVoca model. P++ o�ers several linguistic extensions to C++ to support com-

ponent encapsulation, abstraction, parameterization, and inheritance. From our experiences with

the Genesis and Predator projects, we believe that P++ would have considerably simpli�ed the

implementations of these generators.

2 The P++ Language

2.1 Encapsulation and Abstraction

Encapsulation and abstraction are two program design techniques often used to manage the com-

plexity of large software systems. Encapulation is the technique of consolidating related code and

data fragments into atomic units of program construction. The GenVoca model has demonstrated



realm collection<class T>

{

class container

{

container (); // container

};

class cursor

{

cursor (container *); // constructor

void first (); // container traversal

void next (); // container traversal

int eoc (); // beyond end of container?

void insert (T); // add item

void remove (); // delete item

T& get_value (); // get item

};

};

component linked_list : collection<class T>

{

class element

{

element (T); // constructor

T data; // the value of this node

element *next, *prev; // adjacent nodes on list

};

class container

{

element *head; // first node of list

};

class cursor

{

element *current_pos; // current position

container *cont; // container iterated upon

};

};

Figure 1: Sample realm and component declarations.

that the scales of encapsulation currently provided by programming languages, namely functions

and classes, are inappropriate for building large systems. Instead, GenVoca advocates the use of

components, which correspond to subsystems or modules. In P++, a component consists of a suite

of interrelated data members, functions, and classes.

Abstraction is a design technique which separates the interface of a component from its implementa-

tion. In P++, the realm construct speci�es the interface of a component: it declares the functions

and classes which comprise a component's interface, without revealing the implementation of those

functions and classes.

Figure 1 lists an example from the domain of data structures. First shown is the declaration of the

collection realm: this is a standardized abstract interface for interacting with data structures that

store collections of objects. collection declares two classes, container (which actually stores the

objects) and cursor (which provides methods for manipulating objects inside a container). Notice

that the realm reveals no implementation details about its classes, thus maintaining the proper

separation between a component's abstract interface and concrete implementation.

The next declaration in Figure 1 is that of linked list, a component from the collection realm.

Because linked list belongs to collection, it is obligated to implement (export) the methods

listed in collection's declaration. The body of linked list's declaration introduces a new class

called element, along with new data members for the container and cursor classes. This class



component linked_list <collection<element> next_layer> : collection<class T>

{

class element { ... };

class container { ... };

class cursor { ... };

};

component binary_tree <collection<element> next_layer> : collection<class T>

{

class element { ... };

class container { ... };

class cursor { ... };

};

component array : collection<class T>

{

class element { ... };

class container { ... };

class cursor { ... };

};

Figure 2: A parameterized component declaration.

and these data members are part of linked list's private implementation; they are not visible to

other components or programs.

A fundamental feature of component encapsulation is evident in this example: a component consists

of several data members, functions, and/or classes that are intimately intertwined. Because of

their interrelated algorithms, the element, cursor, and container classes cannot be designed,

implemented, or reused in isolation. P++ provides the programming language support to maintain

their cohesion as an atomic unit of system construction.

2.2 Parameterization

The use of components almost always entails some customization. Direct source code modi�cation

may be appropriate for functions or classes because of their (typically) small code volume; however,

this customization technique is rarely e�ective for components. Component parameterization,

which permits an easy and controlled form of modi�cation, is widely believed to be the prescription

for successful component customization [PDF93].

Contemporary programming languages already o�er constant and type parameterization of classes;

P++ extends these capabilities to components and realms. In addition, P++ uses the model of

parameterization to perform component composition: a component C may be parameterized by a

realm R, which means that C may be combined with any component that belongs to realm R.

The collection declaration of Figure 1 shows an example of type parameters. collection is

de�ned in terms of the type parameter T; this parameter determines the kind of objects stored by

the data structure. Furthermore, because the component linked list is de�ned to be a member

of the collection realm, linked list is also implicitly parameterized by the type T (notice that

the de�nition of element depends on the value of T).

Figure 2 shows three components of the collection realm, namely array, binary tree, and

linked list. Note that the declaration of linked list has been revised so that it is now param-

eterized in terms of the collection realm. This means that linked list imports the interface



de�ned by collection. Any component belonging to this realm would be a legal value for this

parameter (e.g. array, binary tree, or even linked list). Although not obvious, parameterizing

collection components by realms forms the basis for generating a vast family of data structures

[BSST93].

P++'s realm parameterization facility is a powerful language feature for designing and reusing

software components:

� It encourages the development of components with standardized abstract interfaces. Such

components are more likely to be reused because they can be easily interchanged with other

components of the same realm [BSST93].

� When interchangeable components are available, it is easy to tune the performance of a sys-

tem: di�erent components can be quickly substituted for one another, thus greatly facilitating

the process of �nding improved implementations for a system [BSST93].

� P++ integrates component de�nition and combination features in a single language. Other

researchers have used module interconnection languages to combine components [PDN86].

However, such languages typically are di�erent from the language in which components are

written.

2.3 Inheritance

Programming languages use inheritance to implement two kinds of hierarchies: implementation

hierarchies and type hierarchies [Lis87]. Current object-oriented languages usually support imple-

mentation hierarchies, where a subclass inherits both the interface and the implementation of the

superclass, unless explicitly overridden (overloaded) by the subclass. In contrast, when a language

implements type hierarchies, inheritance is being used to support data abstraction. In this context,

a subtype inherits only the interface of its supertype, but not its implementation.

To support type hierarchies, P++ allows new realm declarations to inherit from existing realm

declarations. For example, suppose realms R and S were de�ned as follows:

realm R { ... };

realm S : realm R { ... };

These declarations indicate that S inherits the interface of R; that is, the interface of S includes not

only its own functions and classes, but also those of R. Therefore, S's interface is a superset of R's,

which means that all components belonging to realm S also belong to realm R. Realm inheritance is

important because it provides a structured technique for evolving component interfaces. Since realm

inheritance is an instance of type hierarchies, this form of inheritance ensures interchangeability, a

property which enhances the likelihood of reuse.

3 Conclusions

There is growing recognition that existing software system design techniques are inadequate; they

are aimed at producing one-of-a-kind systems that are di�cult to modify and evolve. Software



system evolution is a critical requirement of future systems, to satisfy the ever-increasing demands

of new applications. Concomitantly, the need for software generators that can manufacture families

of related systems by composing reusable components is becoming progressively more important,

to meet the challenge of economical software system evolution.

Research in domain analysis and program families has identi�ed the system organization concepts

needed by software system generators. The scale of these programming concepts (i.e. components)

transcend those found in conventional programming languages (functions, classes). The P++

programming language extends the encapsulation, abstraction, parameterization, and inheritance

capabilities of C++ to components; we believe P++ is a prototype of future languages that support

the construction of families of systems and software system generators.

References

[Bat88] Don Batory. Concepts for a DBMS synthesizer. In Proceedings of ACM Principles of

Database Systems Conference, 1988.

[BO92] Don Batory and Sean O'Malley. The design and implementation of hierarchical software

systems with reusable components. ACM Transactions on Software Engineering and

Methodology, 1(4):355{398, October 1992.

[BSST93] Don Batory, Vivek Singhal, Marty Sirkin, and Je� Thomas. Scalable software libraries.

In Proceedings of ACM SIGSOFT '93: Symposium on the Foundations of Software En-

gineering, Los Angeles, California, December 1993.

[CS93] L. Coglianese and R. Szymanski. DSSA-ADAGE: An environment for architecture-based

avionics development. In Proceedings of AGARD, 1993.

[HP93] John Heidemann and Gerald Popek. File system development with stackable layers.

Technical Report CSD-930019, Department of Computer Science, University of Califor-

nia, Los Angeles, July 1993.

[Lis87] Barbara Liskov. Data abstraction and hierarchy. In Addendum to the OOPSLA '87

Conference Proceedings, pages 17{34, October 1987.

[OP92] Sean O'Malley and Larry Peterson. A dynamic network architecture. ACM Transactions

on Computer Systems, 10(2):110{143, May 1992.

[Par76] David Parnas. On the design and development of program families. IEEE Transactions

on Software Engineering, SE-2(1):1{9, March 1976.

[PDF93] Rub�en Prieto-D�iaz and William Frakes, editors. Advances in Software Reuse: Second

International Workshop on Software Reuse. IEEE Computer Society Press, 1993.

[PDN86] Rub�en Prieto-D�iaz and James Neighbors. Module interconnection languages. Journal of

Systems and Software, 6(4):307{334, November 1986.

[Sof90] Software Engineering Institute. Proceedings of the Workshop on Domain-Speci�c Soft-

ware Architectures, Hidden-Valley, Pennsylvania, 1990.

[Wei90] David M. Weiss. Synthesis operational scenarios. Technical Report 90038-N, Software

Productivity Consortium, Herndon, Virginia, August 1990.



4 Biography

Vivek Singhal is a doctoral candidate in the Department of Computer Sciences at the The Uni-

versity of Texas, Austin. He received his S.B. from the Massachusetts Institute of Technology in

1990. His research interests include reuse systems, domain modeling, and object-oriented database

management systems.

Don Batory is an Associate Professor in the Department of Computer Sciences at The University

of Texas, Austin. He received his Ph.D. from the University of Toronto in 1980, he was Associate

Editor of the IEEE Database Engineering Newsletter from 1981-84 and was Associate Editor of

ACM Transactions on Database Systems from 1986-1991. He is currently a member of the ACM

Software Systems Award Committee, and his research interests are in extensible and object-oriented

database management systems and large-scale reuse.




