
A Scalable Approach to Software Libraries�

Je� Thomas, Don Batory, and Vivek Singhal

Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712
Tel: (512) 471-9711/9713

Email: fjthomas,batory,singhalg@cs.utexas.edu

Marty Sirkin
Department of Computer Sciences and Engineering

University of Washington
Seattle, Washington 98195

Email: marty@cs.utexas.edu

Abstract

Software libraries o�er a convenient and accessible means to achieve the bene�ts of reuse. The
components of these libraries are written by hand, and each represents a unique combination of
features that distinguishes it from other components. Unfortunately, as the number of features
grows, the size of these libraries grows exponentially, making them unscalable.

Predator is a research project to develop abstractions and tools to provide the bene�ts of
software libraries without incurring the scalability disadvantages just mentioned. Our approach
relies on a careful analysis of an application domain to arrive at appropriate high-level abstrac-
tions, standardized (i.e., plug-compatible) interfaces, and layered decompositions. Predator de-
�nes language extensions for implementing components, and compilers to automatically convert
component compositions into e�cient programs.

Keywords: Predator, GenVoca, domain analysis, containers, software libraries, software reuse,
compositional reuse, generative reuse, feature combinatorics.

Workshop Goals: feedback on our work; exposure to other important work in software reuse.

Working Groups: reuse process models; reuse terminology standards; domain analysis /
engineering; design guidelines for reuse{general, Ada, and C++; reuse and OO methods; tools
and environments.

�Appeared in Proceedings of the Sixth Annual Workshop on Software Reuse, Owego, New York, November 1993.

dsb
Text Box
6th Annual Workshop on Software Reuse (Owego, New York), November 1993.

1 Introduction

Domain-speci�c software libraries are becoming an increasingly common means of rapidly building

software systems. Such libraries o�er numerous software components that implement di�erent

algorithms from a given problem domain. For example, consider the domain of data structure

algorithms (i.e., containers of objects); examples include linked lists, arrays, trees, and hash tables.

Because each of these structures could be implemented using a variety of algorithms, the domain of

data structures is clearly quite large. The FSF's libg++ class library [Lea88] and the C++ Booch

Components [Boo87] are examples of data structure software libraries.

Although software libraries o�er a simple and e�ective means of attaining the bene�ts of reuse,

they also expose a basic obstacle that limits the long-term success of software libraries as a reuse

paradigm. The Booch Components o�ers multiple implementations for each basic data structure;

for example, it provides twenty-four varieties of deques (double-ended queues)! A developer can

choose a deque's algorithm for concurrency control (sequential, guarded, synchronized), space man-

agement (bounded vs. unbounded), ordering (priority vs. non-priority), and semantics (balking

vs. non-balking). Each of these feature selections is mutually independent; consequently, the

implementor of the component library must laboriously enumerate every permutation of feature

selections.

As the number of available features increases, the size of component libraries grows exponentially.

For example, suppose a new feature were added which let a library user choose if the elements

of a deque should be stored in persistent memory or transient memory; the number of deque

components would double from twenty-four to forty-eight. It is apparent that as domain-speci�c

software libraries achieve broader use, they will need to support an even broader range of features,

thus aggravate this problem of feature combinatorics.

Feature combinatorics is a serious problem. Consider the following disadvantages for the library

implementor:

� Library growth can be explosive.

� Library maintenance is complicated by the large number of components.

� Code repetition is a nightmare that inheritance alone cannot solve.

And the following disadvantages for the library user:

� If the library implementor is unable/unwilling to supply components that enumerate every

permutation of features, then it is likely that some application will eventually need a particular

combination of features which isn't implemented by any component.

� Searching for the appropriate component is di�cult when the size of the library is large.

This problem of feature combinatorics is not unique to data structures. Twenty-�ve years ago,

McIlroy [McI69] postulated that a well-stocked library of sine routines would have to contain

as many as 300 components, supporting di�erent degrees of precision, granularity, range, and

robustness. Still others have recognized that the problem of feature combinatorics is, unfortunately,

inherent to all libraries [Kru92]. Clearly, we must �nd a means of populating libraries of software

components which is scalable with respect to the number of features o�ered by the library.

2 Predator

The Predator system is based on the idea that data structures should be mechanically generated

from libraries of primitive components, where each component implements precisely one feature.

Users specify the set of features that they want, and Predator synthesizes the target data structure.

This approach eliminates the implementation and maintenance problems of feature combinatorics,

and is scalable by just adding new primitives to the Predator library.

In program generation systems like Predator, careful design and implementation of components is

critical. The interfaces of components should re
ect the basic abstractions of the domain. Such

interfaces might be identi�ed using domain modeling techniques. In Predator, component interfaces

actually were deliberately designed to ensure that they would be suitable for building complex

data structures. Good component designs result from interfaces that possess the following three

properties [BSS92, BO92]:

1. High-level abstractions. It is well-known that using high-level abstractions makes pro-

grams easier to write and debug. It is essential for component interfaces to hide the complex

details of their encapsulated data structures; not doing so would make components di�cult

to use and virtually impossible to combine.

2. Standardized interfaces. A key feature of software component/software generator tech-

nologies is the ability to interchange di�erent data structure implementations to address ap-

plication performance requirements. Note that plug-compatible interfaces are already present

to some extent in existing component libraries (such as Booch Components and libg++). In

fact, all basic data structures (lists, trees, arrays, etc.) could even be viewed as di�erent

implementations of the same container abstraction (that is, all of these data structures serve

as containers for collections of objects).

3. Layered designs. Experience has shown that many software systems have hierarchical

designs. The layering of abstractions (and their implementations) provides a powerful way

to design, build, and understand complex software. Layering is an important technique for

managing complexity. By partitioning a system into layers, system design can be greatly

simpli�ed.

High-level abstractions, standardized interfaces, and layered designs characterized our implemen-

tation of Predator. Each data structure feature was encapsulated in a separate component. This

collection of components|which is inherently open-ended|de�nes the Predator library. Target

data structures|those that would be requested by Predator users|are speci�ed as hierarchical

compositions of library components.

Predator provides language extensions to support the speci�cation and composition of primitive

components, and compilers to convert them into e�cient executable code. The Predator compil-

ers use advanced optimizations such as inlining and partial evaluation. Currently, there are two

compilers (P1 [SBS93] and P2 [BSST93]), both providing language extensions to ANSI C.1

P1 demonstrated that our approach was promising. It was used to generate the data structures

for the OPS5/LEAPS compiler, a compiler for OPS5 rules [BM93]. OPS5/LEAPS was chosen

1We are also developing a third Predator compiler (P++ [SB93]) that will provide domain-independent language

extensions to C++. We envision that P++ will be the ultimate platform on which to base future Predator research.

Unordered Unordered Sorted Binary

Component library linked list array array tree

Booch Components 2.0-beta 320 360 398 481

libg++ 2.4 336 386 474 336

P1 281 281 287 285

P2 308 310 316 310

Figure 1: Code size (in words) of dictionary benchmark programs.

Unordered Unordered Sorted Binary

Component library linked list array array tree

Booch Components 2.0-beta 70.9 54.6 11.1 15.4

libg++ 2.4 41.9 34.3 5.4 4.1

P1 40.2 33.3 6.3 3.0

P2 40.3 33.3 6.2 3.2

Figure 2: Execution time (in seconds) of dictionary benchmark programs.

because it demands high-performance and complex data structures. Preliminary experiments have

shown that P1 has consistently generated data structure code with superior execution performance

than the hand-written OPS5/LEAPS code. In the largest example attempted so far, P1 generated

almost 7000 lines of C code whose performance was 20-30% better than that of OPS5/LEAPS.

Reports on these experiments are forthcoming.

P2 is a follow-on project to P1. It supports domain-speci�c extensions to ANSI C and provides a

more modular and maintainable architecture than P1. P2 is a system that we plan to distribute.

In order to further verify the productivity and executable code performance advantages of our

approach, we used a simple benchmark2 to test programs using the Booch Components and libg++

container classes against P1 and P2 generated container code. In all cases, the P1 and P2 programs

were smaller (see Figure 1) than the programs using the libraries, and the generated executable

code was at least as fast (see Figure 2).

2Since we know of no commonly-used benchmark suites that can evaluate container libraries in terms of program-

mer productivity and performance, we we devised our own benchmark. Our benchmark spell-checks a document

(the 1600 word Declaration of Independence) against a dictionary of 25,000 words. The main activities involved
are inserting randomly ordered words of the dictionary into one container, inserting words of the target document

into another container while eliminating duplicates, and printing those words of the document container that do not

appear in the dictionary container.

We used the Booch Components, libg++, P1, and P2 to implement this benchmark using four di�erent container

implementations: unordered linked lists, unordered arrays, sorted arrays, and binary trees. The benchmarks were
executed on a SPARCstation 1+ with 24 MB of memory, running SunOS 4.1.2. The Booch Components code was

compiled with Sun C++ 3.0.1 -O4, libg++ with G++ 2.4.5 -O2, and P1 and P2 with GCC 2.4.5 -O2.

3 Conclusion

Software libraries have been a successful means of achieving component reuse. The paradigm

of populating a library with components, however, is potentially very brittle. When libraries

contain components that each encapsulate several features, this is a symptom of a library that is

unscalable|the number of combinations of features (and hence components) is exponential. This

is the case for libraries of data structures.

We believe a practical alternative to unscalable libraries is to rebuild these libraries to contain

components that encapsulate individual features. The library should be accompanied by a generator

(or compiler) that will take a simple user-written speci�cation of the features of the target software

that he/she needs, and will assemble that software automatically. We are showing that performance

and productivity need not be sacri�ced by taking a generative approach. We believe software

generators will be important tools in the advancement of software reuse.

References

[BM93] D. A. Brant and D. P. Miranker. Index support for rule activation. In Proceedings of

1993 ACM SIGMOD, May 1993.

[BO92] D. Batory and S. O'Malley. The design and implementation of hierarchical software

system with reusable components. ACM Transactions on Software Engineering and

Methodology, October 1992.

[Boo87] G. Booch. Software Components with Ada. Benjamin/Cummings, 1987.

[BSS92] D. Batory, V. Singhal, and M. Sirkin. Implementing a domain model for data structures.

International Journal of Software Engineering and Knowledge Engineering, 2(3):375{

402, September 1992.

[BSST93] D. Batory, V. Singhal, M. Sirkin, and J. Thomas. Scalable software libraries. In Proceed-

ings of the ACM SIGSOFT '93: Symposium on the Foundations of Software Engineering,

Los Angeles, California, December 7-10 1993.

[Kru92] C. W. Krueger. Software reuse. ACM Computing Surveys, June 1992.

[Lea88] Doug Lea. libg++, the GNU C++ library. In Proceedings of the USENIX C++ Con-

ference, 1988.

[McI69] M.D. McIlroy. Mass produced software components. In Proceedings of NATO Conference

on Software Engineering, pages 88{98, 1969.

[SB93] V. Singhal and D. Batory. P++: a language for software system generators. Technical

Report TR-93-16, Department of Computer Sciences, The University of Texas at Austin,

1993.

[SBS93] M. Sirkin, D. Batory, and V. Singhal. Software components in a data structure precom-

piler. In Proceedings of the 15th International Conference on Software Engineering, May

1993.

4 Biography

Je� Thomas is a graduate student in the Department of Computer Sciences at the University

of Texas, Austin. He received his B.S. and M.Eng. from Cornell University in 1989 and 1992

respectively. His research interests include software engineering, databases, operating systems, and

arti�cial intelligence.

Don Batory is an Associate Professor in the Department of Computer Sciences at The University

of Texas, Austin. He received his Ph.D. from the University of Toronto in 1980, he was Associate

Editor of the IEEE Database Engineering Newsletter from 1981-84 and was Associate Editor of

ACM Transactions on Database Systems from 1986-1991. He is currently a member of the ACM

Software Systems Award Committee, and his research interests are in extensible and object-oriented

database management systems and large scale reuse.

Vivek Singhal is a doctoral candidate in the Department of Computer Sciences at the Univer-

sity of Texas, Austin. He received his S.B. from the Massachusetts Institute of Technology in

1990. His research interests include reuse systems, domain modeling, and object-oriented database

management systems.

Marty Sirkin is a sta� programmer at IBM Austin and a doctoral candidate at the University of

Washington. He received his M.S. from the University of Washington in 1988, and his B.S. from the

California Institute of Technology in 1984. His research interests include reuse systems, distributed

database management algorithms, and ease-of-use issues in user interface design.

