
How a Domain-Specific Language Enables the

Automation of Optimized Code for Dense Linear Algebra

Bryan Marker ∗ Don Batory ∗ Jack Poulson †

Robert van de Geijn ∗†

Ideally, a domain-specific language (DSL) allows one to code at the same level of ab-
straction as one reasons about a domain problem. For dense linear algebra (DLA), we
demonstrate how an appropriately chosen DSL can automate that reasoning. Elemental is
a modern DLA C++ API for distributed-memory architectures that is a successor of ScaLA-
PACK. It embodies a DSL for the DLA domain and is representative of the FLAME API,
which can be viewed as a more general DSL for DLA. We use Elemental to demonstrate the
power of a well-structured DSL.

When an expert approaches a DLA algorithm to implement in code, she (implicitly
or explicitly) chooses an initial sequential algorithm then, step-by-step, parallelizes and
optimizes the algorithm and corresponding code to reach a final, optimized version. This
process is very systematic and is repeated for most algorithms in the domain. In fact the
process is now sufficiently well-understood that it can be (and has been) automated.

With Elemental, we demonstrate automated reasoning by embracing ideas from model-
driven engineering (MDE). With MDE we encode knowledge about the operations and
algorithms in the DSL and the target architecture. With that knowledge we automate the
transformation from algorithm to highly-optimized code.

We report on a prototype that takes a high-level DLA algorithm, applies transformations
to it, and outputs optimized code for that algorithm in the Elemental DSL. We show that
modularity and abstraction afforded by Elemental enabled us to encode knowledge about
the language’s constructs (e.g. computation operations). We also encode knowledge about
the target architecture and the common parallelization methods for it. Together, knowl-
edge about the architecture and the DSL operations enable our system to generate many
(sometimes thousands) implementations for an input algorithm. The system then uses cost
predictions of the operations to choose the most efficient implementations. Early results for
a handful of case studies are output codes that are the same as those hand-produced by
an expert. Sometimes, the resulting code is better because the human expert is limited by
time, effort, and complexity.

We present the DSL used for this project, the prototype system we developed, and how
Elemental’s layering enabled our success. We also explain that our work is an example of
an approach that extends to the more general FLAME DSL for DLA.

Our work also illustrates next-generation libraries: they should not be developed as
instantiations in code. Rather, they should exist as an encoding of algorithms, knowledge
about algorithms, and knowledge about target architectures. Optimizing transformations
are then applied at a higher-level of abstraction than compilers, so more information about
the algorithm is used. Instantiations are a final step that produces executable code. Other
examples of this approach can be found in the Spiral and FENICS projects.

∗Department of Computer Science, The University of Texas at Austin
†Institute for Computational Engineering and Sciences, The University of Texas at Austin

1

Don
Text Box
accepted in WOLFHPC 2011 : First International Workshop on Domain-Specific Languages and High-Level Frameworks for High Performance Computing




