
Page 1

A Comparison of Generative Approaches: XVCL and GenVoca

James Blair and Don Batory
Department of Computer Sciences

University of Texas at Austin
Austin, Texas, 78712 U.S.A.

{batory, jblair}@cs.utexas.edu

Abstract

We report one of the first comparative studies on two mature
approaches to generative programming: XVCL and Gen-
Voca. XVCL is the latest incarnation of Bassett’s frames;
GenVoca melds feature modularity with compositional pro-
gramming. Both approaches explicitly rest on a pair of ideas:
(1) parameterized functions return source code and (2) com-
posing such functions synthesizes applications. Although
their foundations are identical, XVCL and GenVoca have
very different design philosophies. These differences raise
an interesting debate on what design methodologies and pro-
gramming constructs should be used in writing generative
programs.

1  Introduction

The history of software design closely parallels the history of
modularity in programming languages. Structured program-
ming was the dominant software design technique in the
1970s and 80s; Pascal and C were common languages used
to express such designs. System architects conceived an
application’s structure in terms of functions and procedures.
Today, object-oriented (OO) designs and programming lan-
guages dominate. System architects express an application’s
structure using a richer vocabulary of objects, classes, and
relationships among classes (such as inheritance and part-of)
and use OO languages to implement their designs.

A characteristic that both structured languages (like C and
Pascal) and OO languages (like C++, Smalltalk, and Java)
share is their generality. It is hard to conceive of application
domains where these design techniques and programming
languages could not be used. However, there is a glaring
exception: applications that generate programs are not well
supported by either conventional structured programming
languages or by object-oriented languages. In fact, under-
standing what generative concepts should be supported in
programming languages remains the subject of current
research and debate. Meta-ML [12], AspectJ pointcut-advice
pairs [10], and C++ template meta-programming [6] are just
a few of the attempts to advance conventional programming
languages with generative programming constructs. 

Concomitantly, generative design methodologies (GDMs) —
or how to structure or design generative applications — are
also in their infancy. It is not obvious whether existing
GDMs relate to structured designs or OO design methodolo-
gies, or if they are something quite different.

In this paper, we compare two mature GDMs and the struc-
ture of an application that follows each one. XVCL is the
most recent incarnation of Bassett’s frames [2], a preproces-
sor technology that has been used successfully in synthesiz-
ing large COBOL (and now Java) business applications.
GenVoca is a general model of generative programming
based on feature modularity [5]. Both approaches explicitly
rest on a pair of ideas: (1) parameterized functions return
source code and (2) composing such functions synthesizes
applications. Obvious questions are: if both are based on the
same ideas, do both use the same design methodology? If
not, how are they different? And are these differences impor-
tant? What are their relationships to known design methodol-
ogies, like structured programming and OO?

The contribution of this paper is one of the first detailed
comparative studies of two mature approaches to generative
programming. We eschew methodology comparisons in the
abstract (e.g., [11]); we believe that the best way to under-
stand the relationships and distinctions among GDMs is to
compare implementations of the same application. To this
end, we use a notepad application, originally published by
Jarzabek as an exemplar of XVCL design [8], as a concrete
basis for comparison. We begin with an overview of XVCL
and a review of Jarzabek’s notepad.

2  XVCL

Bassett [2] observed that similar programs often differ by
small amounts of code; new programs are created manually
through an error-prone process of copying, pasting, and edit-
ing. Forgetting to change a variable name everywhere it
appears, or not realizing that a data structure needs to be
resized leads to inconsistent and, ultimately, “buggy” appli-
cations. 

Bassett realized that this process of customization could be
mechanized by text preprocessors. The core of his design
paradigm and language was the frame, a parameterized func-
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tion that returns a text string which is interpreted as source
code. Functions (frames) are themselves implemented by
the usual panoply of imperative programming constructs
such as variable declarations, assignment statements, if
statements, while-loops, and the ability to invoke other
frames/functions. To synthesize a customized program — a
text string — is a matter of assigning values to variables
and invoking one or more functions (frames).

Jarzabek refreshed these ideas in XML-based Variant Con-
figuration Language (XVCL) [14], which expresses frame
programming concepts as a markup language similar to
XML. Each frame definition, called an x-frame, is a sepa-
rate XML file. An x-frame can invoke other x-frames
through a process called adaptation, which is how program
customization is realized. One consequence of the ability of
x-frames to adapt other x-frames is that the frame hierarchy
(or call graph) of an XVCL program can be viewed as a
tree. Each frame adapts any or all of its descendants, and
each frame can be adapted by its parent frame.

An important concept in adaptation is a breakpoint.1 A
breakpoint is a named fragment of code that is defined
within a frame. An ancestor frame can assign (or more
accurately, override) the code fragment of a descendant
frame. Code can be deleted, for example, by simply speci-
fying an empty code fragment. More importantly, the code
of a breakpoint cannot be partially modified — replacement
is “all or none.”

The top-level x-frame (the root of the frame hierarchy) is
called a specification or .s file — and serves the purpose of
the “main” function in a C program. Invoking the XVCL
preprocessor on a .s file executes the sequence of XVCL
statements in the order they are listed; the resulting text
string is the file that is to be produced. This file can then be
fed into a compiler (such as javac) and eventually exe-
cuted. Since the XVCL preprocessor removes all XVCL
commands as it processes them, down-stream tools never
see XVCL statements.

Details. The specific details of XVCL and its syntax are not
relevant to our paper; what is important are its language
concepts. Although our following observations focus on
XVCL, they hold for prior frame languages as well.

XVCL is a primitive single-assignment imperative pro-
gramming language. It provides no support for user-defined
types (e.g., C “struct” or Java “class” constructs) other
than arrays and lists2. For example, to implement a C-lan-
guage struct with two fields X and Y, XVCL programmers

must create arrays X[] and Y[], where the contents of
struct instance i is represented by X[i] and Y[i]. The
lack of struct and user-defined types tend to obscure
XVCL programs.

Second, variables have unusual scoping rules in XVCL.
Any frame can create and set variables to be used by its
children (the frames that it calls) and its descendants. Once
a parent frame has set the value of a variable, no child
frame can change that value. (This is the single-assignment
aspect to frame languages.) Consequently, a common
design technique is for a frame to declare default values for
all of its variables. These values can be overridden by
ancestor frames, and such overriding is how customizations
(or adaptations) are accomplished.

Third, function names can be passed as parameters. A func-
tion (frame) can thus invoke another function (frame) that is
known to it only at XVCL processor run-time. This allows
frames to be “first-class” citizens and provides powerful
program synthesis capabilities. We will see an example
shortly.

Design Philosophy. Conceptually, XVCL and other frame
languages approximate the C programming language. The
mindset that frame designers bring to (or impose on) the
structure of generative programs is the same program
design or structured design techniques used in the 1970s
and 80s. (Because of the inability for users to define their
own data types, frame programs are more primitive.)
Although frame designs and languages are unquestionably
successful, frames do not express standard programming
abstractions (objects, classes) in modern languages and
software designs. This is an important point which we will
explore. 

2.1   Jarzabek’s Notepad
Jarzabek wrote a gen-
erator for notepad
applications in XVCL.
Figure 1 shows a GUI
of a synthesized note-
pad. We will restruc-
ture this generator in
later sections. 

Figure 2 shows the frame call graph in Jarzabek’s design.
The root is the Notepad.s file which initializes lists and
variables whose values are key to notepad customization.

1.   Actually, the name “breakpoint” is a bit of a misnomer in XVCL, as
each break can be comprised of many lines of code. It may be more clear
to think of them as “break sections.”

2.   Lists are multi-valued variables, and arrays are emulated using struc-
tured variable names such as A1, A2, A3. So to access element ‘4’ in array
‘A’, the name for variable A4 is produced by concatenating ‘A’ with ‘4’.

Figure 1. Notepad GUI
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The primary initializations are the two lists depicted in
Figure 3. Menubar is a list of named lists — ItemsFile,
ItemsEdit, and ItemsHelp. These lists contain the names
of actions that are to appear on the File, Edit, and Help
menus. The second list, Toolbar, is a list of names of the
actions (New, Open, etc.) that are to appear on the toolbar.

The design of this generative program follows the princi-
ples of top-down, step-wise program construction. The
Notepad.xvcl frame creates the shell of the notepad pro-
gram, which is simply a window with a title. Notepad.xvcl
then makes three hard-wired calls to frames that elaborate
the window: a text editor is added (Editor.xvcl), a menu
bar is added (Menubar.xvcl), and a toolbar is added (Tool-
bar.xvcl).

The lists that were initialized in the .s file are traversed
twice in Menubar.xvcl. In the first pass, code is produced
to populate items on the File, Edit, and Help menus. A
second pass is used to invoke the XVCL frames for each
action (e.g., New.xvcl, Open.xvcl).3 Each called frame
adds a method to the Notepad class to process an action. For
example, New.xvcl adds a method to create files,
Open.xvcl adds a method to open a file, Save.xvcl adds a
method to save a file, etc.4

Toolbar.xvcl traverses the Toolbar list, to include a but-
ton for each action listed, to display a particular image
(.gif) in the button, and to add code to invoke the action
method when the button is pressed. 

The notepad generator is easy to understand and the code to
customize the variables and lists is straightforward to write.
However, a more challenging task is to add a new action
that is not yet part of the notepad generator. The first thing a
designer of this generator (and more generally any genera-
tive program written in XVCL) will notice is that the
changes to add a new action are not localized. There indeed
will need to be a NewAction.xvcl frame to add an action
method, but there may need to be additional specifications,
such as a tool-tip string, an image, and possibly customized
code fragments for menubar and toolbar items. Further, a
more general design would allow a NewAction to be placed
on the toolbar, but not on the menubar. As currently written,
such a change would force a programmer to understand the
details of the affected x-frames and to make multiple modi-
fications to those frames, which is exactly the type of error-
prone program maintenance we wish to avoid. 

In principle, grouping related frames (methods) and vari-
ables (i.e., members such as tool-tip string and image file
name) of an action into a single class would provide a better
program organization. Our next step is to recast Jarzabek’s
program into an OO design with these improvements in
mind.

3  An Object-Oriented Design

While XVCL is not object-oriented, we can emulate class
modularity with directories. Each directory corresponds to
a class. Frames within a directory are methods of that class,
and files (e.g., .gif) correspond to data members. (Frames
can also serve as variable accessors.) Inheritance relation-
ships, such as child classes inheriting the methods of their
parent, are enforced manually.

A straightforward restructuring of Jarzabek’s program is to
create a pair of inheritance hierarchies that implement sub-
type polymorphism. One hierarchy roots all notepad
actions; another roots notepad components (see Figure 4).

The Actions class (or interface) defines a common set of
methods (frames) and variables that all actions should have.
Each action has three methods — addMenuBar(), addTool-
Bar(), and install() — and three variables — ToolTip,
Gif, and ActionName. The methods use ActionName to pro-
vide the name of the method that executes the given action. 3.   Note: this design illustrates the use of frame names being passed as a

parameter and then later dynamically invoked.
4.   We renamed Jarzabek’s frames (New.xvcl instead of New-
File.xvcl) to make our discussions clearer.

Figure 2. Notepad Call Graph

Notepad.s

Notepad.xvcl

Menubar.xvclEditor.xvcl Toolbar.xvcl
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Figure 3. List Initializations in Notepad.s

Actions

New Open Cut ... About

NotepadComponent

EditorToolbarMenubar

Figure 4. Inheritance Hierarchies in Notepad
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addMenuBar() adds an item to one of the (already con-
structed) File, Edit, or Help menus. addToolBar() builds
a toolbar button, using the Gif and ToolTip variables, and
adds the button to the toolbar. Of course, if an action adds
nothing to the menubar or toolbar, the corresponding
method/frame is a no-op. install() introduces the method
that executes the action, where the method name is stored in
ActionName. 

NotepadComponents also share an interface, albeit with
fewer members. There is only a single method, install(),
and no variables. install() introduces the code that con-
structs the component. In the case of Menubar and Toolbar,
this method calls the associated add***Bar() methods of
all desired Actions.

The .s file simplifies to the creation of a pair of lists, Com-
ponentList and ActionList. ComponentList is a list of
notepad components to install. ActionList is a list of
actions to install, in order of their appearance on a menu or
toolbar.

Given this input, our OO XVCL notepad generator works
in the following way. A notepad object creates the shell of
a notepad program. It iterates through the objects of the
ActionList and invokes the install() method. Further it
iterates through each object on the ComponentList, and
invokes its install() method. Each component, in turn,
iterates through the ActionList and invokes its
add***Bar() method.

Fundamentally, the logic by which a notepad application is
generated is the same as Jarzabek’s design. In our view, the
only significant change that an OO structure provides is that
the generator itself is easier to maintain. To extend the note-
pad generator by adding a new action (or component)
requires the addition of a single class, whose methods and
variables are defined by Actions (or NotepadComponent).
Thus, the structure of the program defines more precisely
what needs to be changed when a new action is added or
removed. For this reason, we assert that an OO design leads
to more maintainable and more extensible organization of a
generator program.

The ability to maintain generators and retain intellectual
control over their design is important. Generators are a
technological statement that the development of software in
a domain is understood well enough to be automated. How-
ever, we must make the same claim for generators them-
selves: the complexity of generators must also be controlled
and must remain low as application complexity scales, oth-
erwise generator technology will be unlikely to have wide-
spread adoption. OO designs of generator programs are a
step forward in this regard. A further improvement in main-
tainability and extensibility is to construct generators in a

compositional manner, our next step in evolving the note-
pad generator.

4  A Compositional Design

Compositional designs of programs, whether or not they are
generative, is a paradigm of step-wise construction. The
idea is to start with a simple program and to progressively
elaborate it with incremental units of program functionality
— called features — to construct a more complex, feature-
rich program.

GenVoca is a composition model of program development
that is based on two ideas: feature modularity and program
objectification. First, feature modularity is an outgrowth of
inheritance and a programming style called programming-
by-difference [9]. A programmer defines a new class by
picking a closely related class as its superclass and
describes the differences between the old and new classes.
Features generalize this concept by modularizing changes
to multiple classes.

Java programmers are familiar with elementary forms of
compositional programming. For example, an object that
reads a file line by line is created by dynamically compos-
ing a series of J2SDK decorators or adaptors that provide
the needed functionality:

LineNumberReader r = 
new LineNumberReader( 

new InputStreamReader( 
new FileInputStream("my.txt")));

Feature modules scale this idea beyond a single class to the
static “adaptation” or “extension” of multiple classes.

The second idea is that programs are objects (i.e., program
objectification). Feature modules are functions that map
programs from simple programs to more complex pro-
grams. In effect, features implement program deltas or pro-
gram extensions. That is, a feature encapsulates the changes
to an input program for adding the functionality of that par-
ticular feature. Compositions of feature modules is intu-
itively a summation: the desired application is the sum of
the changes made by its feature modules. Let •  denote func-
tion composition (or equivalently a summation operation).
If program P is defined by the composition of features A, B,
C, and D, written as:

P = A • B • C • D

Then P is synthesized by starting with feature D, applying
the changes by feature C, then the changes by B, then those
by A. That is, the accumulation of all these changes is P.
This is the essence of GenVoca.
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Subclassing is a standard implementation technique for
implementing program deltas and summations. If program
P was defined by a single Java class, we could approximate
the result of expression A • B • C • D as a subclassing hierar-
chy, where each feature is a “class” that encapsulates
changes it makes to its parent:

class D { /* base program */ }
class C extends D { /* add C’s changes */ }
class B extends C { /* add B’s changes */ }
class A extends B { /* add A’s changes */ }
class P extends A {}

In reality, subclassing hierarchies only approximate the
effects of program deltas. There is no way in Java to fully
emulate and encapsulate the effects of a program delta or
feature. Features can more closely be approximated as mix-
ins — classes whose superclass is specified as a parameter
[13]. But even mixins aren’t sufficient, as one would like to
be able to inherit constructors and have the mixin assume
the name of its parent class, neither of which even advanced
forms of mixins support [1][5]. Specialized programming
language support for features is needed [5]. Furthermore,
the inheritance or subclassing chains that are produced by
compositional designs are unnatural to OO designers. In
fact, OO experts explicitly discourage the use of “extending
extensions” and the use of class inheritance as is done
above [7]. 

The point here is that the GenVoca design paradigm, which
conceptualizes program construction as a summation of
program deltas, is really neither an object-oriented design
paradigm nor a structured programming design paradigm.
As discussed above, it requires special language constructs
that are not supported by mainstream OO languages, and
imposes a way of thinking (e.g., the extensive use of sub-
classing) that is definitely not mainstream OO design.

In the next section, we describe a compositional design for
the notepad generator.

4.1   Composing Notepad Generators
Jarzabek’s notepad application is a single Java class. This
means that each feature in a notepad generator can be repre-
sented by a single class, or a “subclass” or “mixin” as
described above. (We’ll show how features scale to larger
programs later). Rather than composing features statically
using an inheritance chain, we will emulate this concept by
composing features dynamically as a chain of features. 

The organization we use is actually the equivalent of a gen-
erator of notepad generators. All features implement the
NotepadFeature abstract class or interface, which has the
methods install(), addToolBar(), addMenuBar(), and

variables ActionName, ToolTip, and Gif, whose values are
subclass specific (Figure 5).

The order in which features are composed is defined by a
GenVoca grammar [6], where tokens are features and sen-
tences are compositions:

App : NotePad Editor 
OptComponents+ Actions+ Trampoline;

OptComponents : MenuBar | ToolBar ;
Actions : New | Open | Copy | ... | About ;

For example, a notepad application that supports a menubar
and the New, Open, and Copy features is the sentence:

NotePad Editor MenuBar New Open Copy Trampoline

All of the above features are obvious except Trampoline,
which serves as a marker or object that terminates a chain
of features. Its existence is an artifact of composing features
dynamically, which we now elaborate.

A .s file specifies the equivalent of a sentence in this gram-
mar as a composition of feature objects. The expression for
the above sentence in Java would be:

Application = new NotePad( new Editor( 
new MenuBar( new New( new Open( 

new Copy( new Trampoline() )))))); (1)

which creates a chain of features headed by a NotePad
object (Figure 6). We call this the Application List. This
restructuring collapses the two lists (ActionList and Com-
ponentList) in our OO design of Section 3 to a single list.
The reason for this follows the program delta semantics of
features. Each feature object (in Figure 6) encapsulates a set
of changes to a notepad program. As this chain is traversed,
each feature contributes its changes to a generated notepad
program.

A notepad application is synthesized in the following way.
The Notepad.s file defines the Application List. It invokes

NotePadFeature

NotePad Editor MenuBar ... Copy Trampoline

Figure 5. Inheritance Hierarchies in a Compositional Design

Notepad

MenuBar
Editor

New
Open

Copy
Trampoline

Figure 6. A Chain of Feature Objects
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the install() method on the first object of this list, which
is a Notepad object. This object generates the code for a
window, and then invokes the install() method on the
next object in the chain, an Editor object. This object adds
in the code for a text editor, and invokes the install()
method on the next object, a Menubar. The Menubar adds the
code to produce a menubar, and invokes the addMenuBar()
method on all features “downstream” to it. That is,
addMenuBar() is invoked on New, which adds its item to a
menu and invokes addMenuBar() on Open, etc. When the
Trampoline object is reached, it returns immediately (hence
Trampoline’s name). Only after all downstream features
have added their items to the menubar will Menubar invoke
the install() method on New, which adds its method. And
so on.

If a ToolBar object were added to a feature list, it would
first add the code for a toolbar, and then it would invoke the
addToolBar() method on all objects downstream from it to
add their toolbar functionality, if any. Once completed,
Toolbar would invoke install() on the next downstream
object. 

In general, if an object has nothing to contribute to a
menubar or toolbar, its add***Bar() method does nothing
except propagate the method call to the next object in the
chain. In all, an object on the Application List may be vis-
ited three times. The main traversal calls the install()
method, a second to call addMenuBar(), and a third for
addToolBar(). Figure 7 illustrates this control flow.

Compositional designs have the benefits of OO designs in
that changes made by features are encapsulated, but go fur-
ther in that they simplify the specification and maintenance
of customized generators. That is, a generator specification
is just a single expression, e.g., (1). Thus, reconfiguring the
generator (and hence the notepad application that it pro-
duces) is usually straightforward.

5  Compositional Design versus Frame Design

Let’s examine the benefits and drawbacks of each design to
learn more about GDMs.

First, it is clear that both frame and compositional designs
break programs into smaller pieces. These pieces tend to

correspond to application features, though this is not always
the case. What constitutes a feature is not completely obvi-
ous, admittedly, and the decision can sometimes turn into a
subjective preference. In any case, a compositional GDM
modularizes features into classes, while frame designs need
not embrace such modularity.

One benefit of XVCL that disappears in our compositional
design is that pure XVCL only defines the changes that
must be made. With the creation of a standard interface,
compositional designs require extra work to implement that
interface on all objects, regardless of how they behave.5 In
that sense, the compositional GDM has taken us a step
backward.

Another question is the use of design patterns. Traditional
OO programmers consider it poor style to use a long chain
of class adaptations to reach a final, specialized type. But in
compositional designs, this is just the pattern that seems
necessary and logical.

We speculate that the benefits of compositional designs out-
weigh the drawbacks. In particular, maintenance of a com-
positional GDM seems clearer than the maintenance of a
frame-based design. Since features are modularized, and
each feature is self-sufficient, changes are localized. A pro-
grammer who may normally look through thousands of
lines of code to maintain an application can focus on a
small subset of that code which is pertinent to the feature(s)
he or she wishes to modify. And since only a small slice of
the application must be maintained, the programmer will be
more confident that the changes were made consistently
and also will not affect other aspects of the application.6

6  Inversion Problem

Readers may have noticed an inconvenient difference in the
way the composition chains are depicted in the previous
sections. At the beginning of Section 4, when we first dis-
cussed composing program features, the specification was:

P = A • B • C • D

Notepad MenuBar Tramp

Figure 7. List Traversals During Synthesis

ToolBar

addMenuBar()

addToolBar()

install()

5.   A slight modification to the XVCL specification could eliminate this
problem, and is proposed below in section 9.
6.   Examples of compositional design and development are all around us
in the world, so programmers are used to working with them. When one
purchases a new car, there is a base car to which features and packages of
features can be added (for a price, of course). Something as simple as
ordering a hamburger is done compositionally: “I’ll have a number four
plus tomatoes, mustard instead of ketchup, with fries, and a lemonade.”
Compositional designs are common in our culture; just as OO sought to
model the world around us in a way that made sense, compositional
designs model the generation of something new intuitively.
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In the case above, D represents the basic application and is
listed on the right, while A, B, and C are extensions written
on the left.

Conversely, in Figure 6, the base application is listed at the
top of the chain and on the left, while extensions are to the
right. This inversion is not simply a difference in the way
the diagrams are drawn, but rather it highlights an impor-
tant difference between feature implementations using
inheritance chains and XVCL frame trees.

Consider class A and a delta represented by subclass B:

class A {
void foo() { /*1*/ }

}
class B extends A {

void foo() { super.foo(); /*2*/ }
void bar() { ... }

}

The class that is produced by “squashing” this inheritance
hierarchy (emulating the idea of applying a delta to A) is:

class A {
void foo() { /*1*/ /*2*/ }
void bar() { ... }

} (2)

Now let’s see how this design would be implemented in a
compositional XVCL setting. The Application List that we
would use to produce the above is new A( new B( new Tram-
poline())). That is, the base feature defines the “shell” of
class A. Within A, there are “holes” that must be filled with
code to be supplied by “downstream” features:

In particular, the A object has a single method/frame called
install() which generates the code in Figure 8. The
“holes” labeled moreFoo and moreMembers denote points
where the moreFoo() and moreMembers() methods/frames
are invoked on the object downstream from A. These frames
“fill in” the holes in Figure 8 with code.

Continuing, the B object would have two methods/frames.
The moreFoo() frame would produce “/*2*/”, and the
moreMembers() frame would return “void bar {...}”.
The way we described these methods is that they have no
“holes” to be filled by downstream objects (e.g., Trampo-
line), but in general they would. So after the install()
method of object A is executed, the class definition (2) is
produced. Thus by using inheritance or XVCL, we have

sketched how two functionally identical definitions for
class A are produced.

Embodied in these two approaches is a fundamental distinc-
tion between inheritance-based implementations represent-
ing program deltas and generative or XVCL-like
implementations. In an inheritance-based approach, the
base program can be thought of as a “constant” — it has no
explicit holes that need to be filled. A delta, represented by
a subclass, can be recognized as a function — it takes a pro-
gram or class as input, and at well-designated but implicit
points in this program or class, it injects its changes. So in
our example, program/class A is a constant and the program/
class delta B is a function. Their composition is B(A) or B•A.

Now consider this same problem from the perspective of
XVCL. The base program is definitely not a constant. There
are explicit parameters (e.g., moreFoo and moreMembers)
that must be supplied to A for it to produce its results. We
have simplified this parameterization so that a single object,
B, has methods whose return values can fill these parame-
ters. So in an XVCL design, “holes” or parameters in a base
program (and its deltas) are explicit. Base program/class A
is a function, program delta B is a function, and Trampoline
is a constant. Their composition is A(B(Trampoline)) or
A•B•Trampoline, which gives the inverted appearance to an
inheritance-based approach.

Although we did not encounter difficulties in Figure 8 and
notepad, to emulate inheritance chains in XVCL is not
always easy. Consider Figure 9a which shows a simple
chain, where program deltas wrap previously defined bod-
ies of method m(). The body of m() once the chain is
“squashed” is:

m() { /*4*/ /*2*/ /*1*/ /*3*/ /*5*/ }

To synthesize this body using XVCL requires considerable
work because code fragments must be filled in by down-
stream objects before and after a code fragment is inserted.
Figure 9b sketches an XVCL design that does this. Fortu-
nately for notepad, method deltas required code to be
appended to a method body, rather than around. If around or
wrapping methods arose, XVCL encoding of inheritance
chains would be harder.

7  Scalability

An important test of a software design is how it adapts to
incrementally larger problems. Let’s consider our XVCL
design first. 

The change is to add a Help capability to the notepad, so
that users can see documentation on its various features. We
must create a new list in the Notepad.S file that specifies

class A {
void foo() { /*1*/ moreFoo }

moreMembers
}

Figure 8. A Frame
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which actions will have Help information. Additionally, we
must add the text for each action somewhere, and but where
is not clear. It is not logical to place all of the Help text in
the Help.XVCL frame, and the structure of the application
prevents us from adding the information to each action’s
individual x-frame.

Let’s make the change even larger. Suppose we want to
combine older applications into one new application — per-
haps we are adding existing French and German spell-
checkers to the program. To include these new applications,
we must specify a completely new set of lists to customize
the new pieces of the application. These low-level details
will quickly accumulate, which makes a specification
harder as a program’s complexity grows. 

Let’s make the same changes to our compositional design.
To add a Help feature, we must add “Help” to our list of
NotepadFeatures, and then add the Help information for
each of the features. In the case of our compositional
design, it is obvious where the new text should go — in a
method of each class named addHelp(). And if we grow
the application to include the foreign language spell-
checker, we simply add those features to our list. The
beauty of compositional designs (and their feature building
blocks) is that they are highly structured. This means that
they are generally easier to modify or it is generally easier
to understand what needs to be modified. As a conse-
quence, compositional program specifications tend to be
simpler than in XVCL.

8  Conclusions

We have examined the benefits and drawbacks of two
important GDMs. We began with a frame-based design and
noticed that it was similar in programming style to the
structured programming languages of the 1970s and 80s.
Using XVCL encourages programmers to think in terms of
functions and actions but does not require those actions to
be organized into cohesive, consistent units. Following the

evolution of programming languages, we morphed the
frame-based, XVCL design of a notepad generator into an
object-oriented style similar to the C++ or Java program-
ming language. This change did not provide any benefit in
the logical operation of the generator, but perceptible gains
in the area of software maintenance were evident. Just as
modern OO languages offer better organization of code, our
OO design reorganized the notepad code into a more man-
ageable structure.

Taking our restructuring one step further, we modified the
OO design to create a compositional design based on the
idea that programs can be treated as objects and are compo-
sitions of modularized features. This provided us with addi-
tional advantages over both the frame-based and OO
designs with regard to long-term maintenance of the appli-
cation, and our compositional design created a structure
that made it clearer how the application could be extended.
By implementing a standard interface across features, we
simplified three aspects of the maintenance process: the
time required to make revisions, the level of understanding
needed to make those revisions, and the number of errors
introduced by those revisions. Since an application spends a
large percentage of its life-cycle in the “maintenance”
phase, streamlining that process decreases the overall cost
of producing software.7

It has become clear to us that the main advantage of a com-
positional approach to generative programming is the ease
of program modification and extension that comes with a
modularized, well-structured solution. The benefits of
object-orientation are not lost in the realm of generative
programming. Furthermore, just as the object-oriented pro-
gramming languages improved upon structured languages
and structured designs, compositional programming
extends object-orientation to further simplify software
maintenance. 
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10  Appendix

We briefly discuss some ideas that we were unable to com-
pletely explore.

In some industries, a high demand is placed on applications
that operate within strict performance boundaries. Can gen-
erative programming work in these sectors, where customi-
zability is paramount? Indeed, both of the GDMs we have
discussed can handle the challenges of high-performance
applications. The key to maintaining high performance lies
in choosing appropriately-sized features, so that no “extra
baggage” exists in any feature [3][4]. If the situation arises
in which no existing frames or features provide an accept-
able solution, one always has the ability to override sections
of code from a higher-level frame.

There are interesting extensions to our program designs.
The first two involve adding more flexibility to our OO and
compositional designs, and the third is a proposed addition
to the XVCL language.

One problem we see in our design is that features must
hard-wire which menu they would like to be placed on,
based only on the menu’s location in the menubar, rather
than the menu’s name. If we parameterized this choice, the
author of the generator could customize menus, rather than
being forced to live with the choices of the x-frame author.
As an example: instead of hard-wiring “Close” to be on the
left-most menu — which happens to be named “File” —
we could parameterize that value and place it on the “Help”
menu. While this particular change doesn’t make much log-
ical sense, it illustrates the concept. One could imagine a
menu option such as “Preferences” that could easily be
placed on one of many different menus.

Another option that we chose not to implement was that of
separators on a menubar or toolbar. These are the small,
gray lines that “group” menu items or toolbar buttons that
have similar functions. While they do not enhance function-
ality, they can enhance usability. Adding these separators to
our compositional design might be painless; one could cre-
ate another instance of a NotepadFeature whose
install() method was empty, and whose addMenubar()
and addToolbar() methods inserted the appropriate separa-
tors. The only difficulty that we know is that the order in
which menu items appear in a menu shouldn’t be dictated
by the order in which features are composed.

The final extension does not affect our designs at all, but
could impact future, large-scale generators that change over
time. Imagine a programmer wishes to add another “func-
tional bar” to an application, perhaps a “FooBar.” Cur-
rently, the XVCL processor requires the programmer to add
another method to every NotepadFeature contained in any
application with a FooBar. But perhaps only one or two fea-
tures modify the FooBar — the programmer must spend
time creating lots of extra, blank addFooBar() methods.
What would be ideal is for the XVCL processor to be able
to skip x-frames if they did not exist, perhaps issuing a
warning when such a skip was made. If that were the case,
no time would be wasted creating unnecessary blank x-
frames, and the programmer could concentrate on creating
only the x-frames that actually implement a modification to
the application.


