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Abstract

In graph-based learning models, entities are often represented as vertices in an undirected graph with weighted
edges describing the relationships between entities. In many real-world application, however, entities are often associ-
ated with relations of different types and/or from different sources, which can be well captured by multiple undirected
graphs over the same set of vertices. How to exploit such multiple sources of information to make better inferences
on entities remains an interesting open problem. In this paper, we focus on the problem of clustering the vertices
based on multiple graphs in both unsupervised and semi-supervised settings. As one of our contributions, we propose
Linked Matrix Factorization (LMF) as a novel way of fusing information from multiple graph sources. In LMF, each
graph is approximated by matrix factorization with a graph-specific factor and a factor common to all graphs, where
the common factor provides features for all vertices. Experiments on both synthetic and SIAM journal data show that
(1) we can improve the clustering accuracy through fusing multiple sources of information with several models, and
(2) LMF yields superior or competitive results compared to other graph-based clustering methods.

1 Introduction
Relational data are ubiquitous, and the associated modeling and inference tasks have become important topics in
both machine learning and data mining[7]. The common tools modeling relational data often represent them as an
undirected graph with vertices representing entities and (weighted or unweighted) edges describing the “relationships”
between entities. In many application domains, these relationships are of different types or are obtained from different
sources, which can be well represented by multiple undirected graphs over the same set of vertices with edges from
different graphs capturing the heterogeneous relations. As one example of such multiple graphs, let us consider the
proximity between researchers. Two researchers are considered to be similar if they have co-authored some papers,
while it is also reasonable to assume two authors to have similar interest (probably to a lower level) if they both cited
the same papers in their published work or they published in the same venues. These different type of relationships
between authors naturally form multiple undirected graphs over the same set of authors. How to exploit the multiple
sources of information to make better inferences about entities and relationships is an interesting open problem.

In this paper, we consider the particular graph mining task of clustering vertices into several groups in the pres-
ence of multiple types of proximity relations. We give an extensive comparison of several graph-based clustering
algorithms, as well as their semi-supervised extensions. One major contribution of this paper is a novel method for
extracting common factors from multiple graphs, called Linked Matrix Factorization (LMF), based on which various
clustering methods can naturally apply. Experiments on both synthetic and real-world data show the efficacy of the
proposed methods in combining the information from multiple sources. In particular, LMF yields superior results
compared to other graph-based clustering methods in both unsupervised and semi-supervised settings.



Figure 1: Example spy plots of similarity graphs between documents based on their abstracts (upper panel) and co-
authorship (lower panel) .

Road Map The remainder of this paper is organized as follows. Section 2 discusses the characteristics of the data and
the inadequate clustering performance on individual graphs. In Section 3, we discuss the extension of unsupervised
clustering methods to multiple graphs. Section 4 is devoted to the formulation and optimization of Linked Matrix
Factorization, and its connection to third order tensor decomposition [15, 6] and the stochastic block model [7]. In
Section 5 we extend the unsupervised model in Section 3 to semi-supervised scenarios where constraints on the cluster
assignments are known. Section 6 reports the experimental results in both unsupervised and semi-supervised scenarios,
while Section 7 briefly discusses related work. Finally Section 8 summarizes the paper and discusses future work.

2 Data Characteristics
We first motivate our work by discussing the clustering problem on some real-world data. In many scientific publica-
tion domains such as CiteSeer or arXiv, the relationships between documents can often be described as multiple graphs
with different link types. For example, there is information from the text by exploring document-abstract, document-
title, and document-keyword matrices; information on co-authorship by exploring the document-author matrix; and
information on citations. Information from different sources show very different characteristics. For example, the
co-authorship graph is usually much sparser than the proximity based on abstracts, but intuitively each co-authorship
edge is more informative. Figure 1 gives example of two such graphs on the same set of documents, where we plot the
document-by-document matrix showing the presence of (non-zero) edges (called spy plot) with documents listed ac-
cording to the intended clusters. Due to the extreme sparsity, some graphs alone do not contain complete information
of the structure. Indeed, the co-author relationship shown in Figure 1 (lower panel) contains over 100 disconnected
components, and is therefore unable to reveal the 3-cluster structure inherent in the data. It is useful but challenging
to combine the distinct characteristics of different graphs–for example, in this data there are sparse but informative
relations as well as abundant but less informative ones.

2.1 SIAM Journal Data Set
In this paper, we consider the data from eleven journals and proceedings for the period 1999-2004 published by the
Society for Industrial and Applied Mathematics (SIAM). There are a total of 5022 articles in the data set, from which
we generated two subsets:

• SIAM-different: containing 1260 articles published in SIAM J DISCRETE MATH, SIAM J OPTIMIZ and SIAM J
SCI COMPUT;



• SIAM-similar: containing 1690 articles published in SIAM J MATRIX ANAL A, SIAM J NUMER ANAL and SIAM
J SCI COMPUT.

Our task is to discover the natural cluster structure of journals based on the document similarities extracted from
different sources. Note that SIAM-different is composed of three journals from different research areas and hence is
easier to cluster, whereas SIAM-similar contains three journals on highly related research topics and is more difficult
to cluster.

In both subsets, we consider document similarities from five different sources. The first three are obtained from
document-term matrices; in particular, each document can be represented as a vector of non-trivial words from differ-
ent parts of the articles, namely abstract, title or user-supplied keywords. We calculate the cosine similarity between
each pair of documents within these different contexts to form the first three similarity matrices. The last two similarity
matrices are obtained via the author and citation relations, respectively.

Details about the five link types are described below:

• The abstract similarity matrix A(1) is constructed from the document-abstract matrix. A(1)
ij is the cosine simi-

larity between the abstracts of documents i and j.

• The title similarity matrix A(2) is formed from the document-title matrix. A(2)
ij is the cosine similarity between

the titles of documents i and j.

• The keyword similarity matrix A(3) is computed from the document-keyword matrix. A(3)
ij is the cosine simi-

larity between the keywords of documents i and j.

• The author similarity matrix A(4) represents the number of common authors for each pair of documents.

• The citation similarity matrix A(5) has the citation relation between each pair of documents. A(5)
ij = A

(5)
ji = 1

if there is citation between documents i and j, and 0 otherwise.

Some statistics about the SIAM data sets are shown in Table 1. It can been seen that, in both data sets, the first three
graphs are much denser than the last two graphs.

Description nnz (different) nnz (similar)
A(1) abstract 755,016 1,401,900
A(2) title 108,364 277,338
A(3) keywords 178,508 406,080
A(4) author 2,118 4,742
A(5) citation 1,328 2,248

Table 1: Statistics of the SIAM data. nnz stands for the number of non-zero entries.

2.2 Clustering with Individual Graphs
We adopt Normalized Mutual Information (NMI) to measure the clustering performance. LetZ be the random variable
denoting the underlying journal labels for documents, and Ẑ the random variable denoting the cluster assignments;
then NMI can be computed as

NMI =
I(Ẑ;Z)√
H(Ẑ)H(Z)

, (1)

where I(Ẑ;Z) = H(Z) −H(Z|Ẑ) is the mutual information between the random variables Ẑ and Z , H(Z) is the
Shannon entropy of Z , and H(Z|Ẑ) is the conditional entropy of Z given Ẑ .

Figure 2 shows spy plots for all the five adjacency matrices belonging to the SIAM-different and SIAM-similar
data sets, with documents being aligned to their published journals. Clearly each graph contains certain information



abstract title keywords author citation

Figure 2: Spy plots of SIAM-similar data set (upper row) and SIAM-different data set (lower row). SIAM-different
data set can be seen to be easier to cluster.

SIAM-different SIAM-similar
abstract 0.5893 0.2037

title 0.0324 0.2021
keywords 0.3731 0.2502

author 0.0042 0.0017
citation 0.0211 0.0078

Table 2: Clustering performance measured by NMI on two SIAM data sets.

about the relationships between documents. If we apply spectral clustering [10] on each individual graph, we get the
clustering results shown in Table 2 in terms of NMI. It is clear from Figure 2 and Table 2 that although the edges in
the last two graphs are highly consistent with the cluster structure of journals, they do not contain enough information
to recover the clusters alone. As we will show in later sections, combining all the graphs, especially with our proposed
LMF model, can yield significantly improved clustering results.

3 Unsupervised Clustering Models
Let us take one step back and consider the more general problem of clustering with multiple graphs. Suppose we are
given M undirected graphs whose adjacency matrices are A(m),m = 1, 2, · · · ,M , each of size N ×N , with vertices
in all graphs corresponding to the same entities. We intend to find a clustering of the vertices based on the information
from multiple sources.

Besides clustering each graph individually, we also have the following baseline models for combining the infor-
mation from multiple graphs.

Summation of Graphs We find a combined adjacency matrix

A =
M∑
m=1

A(m).

With this new adjacency matrix A, we can perform spectral partitioning which can be achieved by computing the
smallest eigenvectors of the graph Laplacian

L = D −A,



where D is the diagonal degree matrix with Dii =
∑
j Aij . The use of eigenvectors can also be motivated as

minimizing the “roughness” of vector f = [f1, · · · , fN ]T over all the graphs:

G =
M∑
m=1

fTL(m)f =
M∑
m=1

N∑
i,j=1

A
(m)
ij (fi − fj)2 (2)

where L(m) is the graph Laplacian for the mth graph. Alternatively, we can use the normalized adjacency matrix,
Ã =

∑M
m=1 Ã

(m), where Ã(m) = (D(m))−1/2A(m)(D(m))−1/2.

Summation of Spectral Kernels We first construct spectral kernels for each graph, i.e., kernel K(m) based on the
eigen-spectrum of the graph Laplacian L(m), and then use the summation

K =
M∑
m=1

K(m)

as the kernel summarizing all graphs. One particular example (called step-function kernel in [13]) is the model

K(m) =
d∑
k=1

v(m)
k (v(m)

k )T

where v(m)
k is the kth smallest eigenvector of graph Laplacian L(m) and d � N is the number of eigenvectors used

per individual graph. Clustering can then be obtained by performing kernel K-means on kernel K. Other choices of
K(m) include the heat diffusion kernel and regularized inverse of graph Laplacian[13], but the discussion of them is
omitted here due to their inferior performance on our task.

Consensus Clustering Consensus clustering reconciles clustering results about the same data set coming from dif-
ferent sources. In this paper we follow the models in [14], where three consensus clustering algorithms are proposed:
Cluster-based Similarity Partitioning Algorithm, HyperGraph Partitioning Algorithm, and Meta-Clustering Algorithm.
In our experiments (Section 6), we only report the best result from these three methods.

4 Linked Matrix Factorization
One major limitation of the baseline models is that they treat all graphs on an equal basis, and therefore cannot
discriminate the informative sources and uninformative or noisy ones. A more sensible alternative is to extract the
structure information shared by all the sources, and hence filter out irrelevant information or noise. Here we present
Linked Matrix Factorization (LMF), a novel model for finding the common factor for all graphs .

4.1 Model
One natural model for unsupervised graph clustering is to approximate the given graph through a low-rank matrix
factorization A ≈ PΛPT , where P is an N × d matrix and Λ is an d × d symmetric matrix. Since we are given
multiple graphs and the underlying entities are shared among graphs, a common factor matrix is desirable to link
the multiple matrix factorizations together. Therefore, the objective of clustering over multiple graphs by matrix
factorization can be formulated as minimizing

G =
1
2

M∑
i=1

‖A(m) − PΛ(m)PT ‖2F +
α

2

( M∑
m=1

‖Λ(m)‖2F + ‖P‖2F
)
, (3)

where matrix P is the common factor shared among graphs, Λ(m) captures the characteristics of each graph (note that
we do not constrain Λ(m) to be diagonal), ‖ · ‖F denotes the Frobenius norm and α is the regularization parameter.
Matrix P can be regarded as a low dimensional embedding of entities characterized by multiple graphs, the differences
being captured by Λ(m). The regularization terms on both P and Λ(m) are added to improve numerical stability and to
avoid overfitting. In addition to the generic form given in (3), there are several possible alternative modeling choices.



For example, instead of using the squared Frobenius norm, we could choose the relative entropy or other divergence
measures for comparing A(m) and PΛ(m)PT . If the graphs were not symmetric, we could instead model each graph
as PΛ(m)QT . One could also enforce the columns of P to be orthonormal and drop the regularization term. However,
in this paper, we will only focus on the case where eachA(m) is an undirected symmetric graph and the approximation
error is measured by the squared Frobenius norm.

4.2 Optimization
Note that the solutions to LMF are not unique. For instance, let matrices P ∗ and Λ(m)∗ (i = 1, . . . ,M) be the solutions
to the optimization problem (3), then for any orthogonal matrixR ∈ Rd×d (R only needs to be non-singular if there is
no regularization term), the matrices P ∗R andR−1Λ(m)∗R−1 will also be solutions. Moreover, the objective function
is not jointly convex in P and Λ(m). Hence, we adopt an effective alternating minimization algorithm to find a locally
optimal solution to LMF. First, matrix P is optimized while fixing each Λ(m); then, each matrix Λ(m) is optimized
while fixing matrix P . This procedure is repeated until convergence. In optimizing matrix P and each Λ(m), we apply
a quasi-Newton method, Limited memory BFGS (L-BFGS) [9], to optimize each factor in the inner loop.

The bottleneck in the L-BFGS algorithm is the evaluation of the objective in (3) and its gradient with respect to P
and each Λ(m), respectively. Taking the derivative of (3) with respect to P , we get

∂G
∂P

= −2
M∑
i=1

(A(m) − PΛ(m)PT )PΛ(m) + αP, (4)

and taking the derivative of (3) with respect to Λ(m) yields

∂G
∂Λ(m)

= −PT (A(m) − PΛ(m)PT )P + αΛ(m). (5)

One can gain computational efficiency by taking advantage of the sparsity of A(m). In particular, the first term of
the objective in (3) can be rewritten as:

G′ =
1
2

M∑
i=1

(
‖A(m)‖2F − 2 Tr(Λ(m)PTA(m)P ) + Tr(PTPΛ(m)PTPΛ(m))

)
, (6)

which can be evaluated in O(d(nnz + Nd)) time for each graph (nnz represents the number of nonzero entries
averaged over all graphs). Similarly, computing the gradient in (4) and (5) takes O(d(nnz+Nd)) time for each graph
by utilizing the sparsity ofA(m). Since the evaluation of the objective and its gradient share some computational steps,
we can actually compute them at the same time within one loop over the multiple graphs. The total time complexity
is O(Md(nnz +Nd)).

4.3 Alternate Interpretations
LMF can be viewed as a special case of low-rank tensor approximation and a relaxed version of the stochastic block
model. Both interpretations shed light on understanding how information from different graphs is fused and how
common structure is extracted in LMF.

4.3.1 Tensor Decomposition

LMF can be related to tensor decompositions of various types. To see this, we first re-arrange all adjacency matrices
from all individual graphs into a third order tensor A ∈ RN×N×M , where each frontal slice A::m = A(m) for
m = 1, . . . ,M . We first note that LMF on {A(1), · · · , A(M)} can be viewed as a regularized variant of Tucker
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Figure 3: An illustration of LMF, Tucker, and DEDICOM.

decomposition [15] with no compression in the third mode. A low-rank Tucker model for a general tensor T =
(tijτ ) ∈ RM×N×L is of the form

T = (X,Y, Z) · C, tijτ =
d1,d2,d3∑
λ,µ,ν=1

cλµνxiλyjµzτν ,

where X,Y, Z are M ×d1, N ×d2, L×d3 matrices, respectively, and C = (cijτ ) is a d1×d2×d3 core tensor. In our
case the tensor A is composed of multiple undirected (symmetric) graphs and we employ a symmetric Tucker model
in first and second modes

A ≈ (P, P, I) · C.
The matrix I multiplied in the third mode is simply the identity matrix. This is exactly the approximation used in LMF
if we rewrite the mth frontal slice of core tensor C as Λ(m). See Figure 3(a) for an illustration.

DEDICOM (DEcomposition into DIrectional COMponents) is a decomposition model introduced by Harshman [6]
for modeling directional (asymmetric) relationships.

In the three-way DEDICOM model, we are given multiple asymmetric relationship matrices Xm, m = 1, . . . ,M ,
and the decomposition is

Xm ≈ QD(m)RD(m)QT for m = 1, . . . ,M, (7)

where Q ∈ RN×d specifies the latent components, R ∈ Rd×d models the interactions between components, and the
diagonal matrix D(m) ∈ Rd×d gives the weights of latent components specific for slice A(m), see Figure 3(b) for
an illustration. Although the three-way DEDICOM is similar to LMF there are important differences: 1) DEDICOM
uses a diagonal matrix D(m) to account for the difference between slices while LMF uses a more flexible symmetric
matrix Λ(m), and 2) DEDICOM is generally used for modeling directed (asymmetric) data while LMF is tailored for
undirected (symmetric) graphs.

4.3.2 Stochastic Block Model

The stochastic block model (SBM) is widely used in modeling relational data [7], where we assume there are C
communities (called blocks), named B1, · · · ,BC . The probability of observing a relation (edge) between object i and
j is

pij =
C∑

ci=1

C∑
cj=1

p(ci|i)p(cj |j)qcicj



where p(ci|i) gives the soft membership of object i to block ci, and the probability qcicj stands for the probability that
an edge is formed between block ci and cj . In other words, the blocks serve as latent variables, and the observed edges
are ascribed by the interaction between these latent blocks. The task of learning is then to find the membership p(·|·)
and block interaction q, through maximizing the likelihood of the observed edges. One can generalize this stochastic
block model to multiple types of relations, in which for each relation type we assume the same membership of vertices
to blocks, but different block-interaction pattern. Thus, the probability of observing an edge between i and j in the
mth type of relation is

p
(m)
ij =

C∑
ci=1

C∑
cj=1

p(ci|i)p(cj |j)q(m)
cicj

,

which closely resembles the formulation for predicting the entry (i, j) in the mth graph

Ã
(m)
ij =

d∑
ni=1

d∑
nj=1

PiniPjnj Λ(m)
ninj

,

where P specifies for each vertex the weights to each of the d factors and Λ(m) coordinates the factors for the mth

graph. It is easy to see that SBM for multiple relations essentially turns into LMF after the following relaxation and
modification

• Soft membership:
probability (SBM)→ real numbers (LMF);

• Block interaction:
probability (SBM)→ real numbers (LMF);

• Observation:
Bernoulli (SBM)→ Gaussian (LMF).

Intuitively, the “soft membership” matrix P from LMF (although not directly usable as a cluster indicator matrix), can
still serve as features for all the vertices.

5 Semi-supervised Clustering Models
In many real-world applications, we often do not realistically expect the clustering to discover intended structure in a
total unsupervised fashion. In those situations, we can often benefit from various types of weak supervision or side
information. Here we consider the following two types of instance-level constraints on cluster assignments, which can
naturally emerge in various situations [1]:

must-link: entity i and entity j are in the same cluster;

cannot-link: entity i and entity j are in different clusters.

There is a large body of work on using these pairwise constraints to boost the performance of clustering algorithms
(see [1] for more details), but it has never been previously used in the context of combining multiple graph relations.

We consider two ways to incorporate these pairwise constraints into the clustering algorithm, both of which require
viewing the unsupervised learning methods described in Sections 3 and 4 as means of feature extraction for vertices.
This applies explicitly for LMF ( the features for vertex i are given by the ith row of P ), and implicitly for spectral
kernel cases where the obtained kernel can be viewed as the inner product of feature vectors. The first semi-supervised
method is metric learning, which directly adapts the distance metric in the corresponding feature space to fit the given
pairwise constraints. The second method is to express the pairwise constraints as a penalty term in the unsupervised
learning objective function, based on which the feature vectors for clustering are learned.



5.1 Metric Learning
Metric learning seeks a distance metric in feature space that fits our clustering or classification preference [5, 16].
Typically we learn a squared Mahalanobis distance

d(fi, fj) = (fi − fj)TΣ(fi − fj),

or equivalently the positive definite matrix Σ. The general idea is to learn a metric so that distances between must-
linked pairs are small, and distances between cannot-linked pairs are large. Among the metric learning models,
we consider Information-Theoretic Metric Learning (ITML) [5] since it is scalable to handle millions of pairwise
constraints. The ITML method learns the metric Σ through the following optimization

min
Σ

D`d(Σ,Σ0)

s.t. (fi − fj)TΣ(fi − fj) ≤ l, (i, j) ∈M,

(fi − fj)TΣ(fi − fj) ≥ u, (i, j) ∈ C,
Σ � 0,

where D`d(Σ,Σ0) denotes the log-determinant divergence between Σ and Σ0 [5], l and u are pre-determined scalars,
and M and C stand respectively for the set of must-link and cannot-link constraints. The learning of Σ can be
performed rather efficiently through cyclic Bregman projections, which is a significantly faster method as compared
to semi-definite programming and can readily handle up to millions of constraints.

Since metric learning model only learns a linear transformation in the feature space, its modeling capacity can be
somewhat limited. Take the XOR data for example, one cannot find a linear transformation to the feature space to
separate the data, and metric learning is hence futile in this case. One way to overcome this limitation is to introduce
more modeling flexibility is by mapping data points into a (potentially infinite dimensional) space through a non-linear
function φ(·) and consider the inner product Kij =< φ(fi), φ(fj) > as the kernel. The kernelized ITML learns a new
kernel K based on a given K0 through

min
K

D`d(K,K0)

s.t. Kii +Kjj − 2Kij ≤ l, (i, j) ∈M,

Kii +Kjj − 2Kij ≥ u, (i, j) ∈ C,
K � 0.

ITML can serve as a post-processing step for the unsupervised learning in Section 3 to incorporate the pairwise
constraints. For example, the learned spectral kernels from the graphs can be used as the initial kernel K0, and after
that, kernel K-means is performed to obtain the clustering. For LMF, the rows of learned P matrix will be treated as
feature vectors , and ITML can be used to learn a kernel K based either on linear kernel K0 = PPT or a Gaussian
kernel with rows of P as the feature vectors for vertices.

5.2 Semi-supervised Feature Extraction
One limitation of the metric learning as a post-processing step is that it is often futile to correct the learned bad feature.
One can often alleviate this by learning more “discriminative” features with the semi-supervision from the pairwise
constraints. We consider the following objective function for feature F ≡ {f1, · · · , fN},

L(F ) = e(F, {A(1), · · · , A(M)}) + γs(F ;M, C), (8)

where e(F, {A(1), · · · , A(M)}) stands for the “empirical error” term from unsupervised learning described in Section
3 (called unsupervised term), s(F ;M, C) stands for the extra penalty term from given pairwise constraints (called
supervised term), and the parameter γ controls the balance between the two terms. The unsupervised term could either
be the objective function for LMF as in (3), or the measurement of roughness associated with the (combined) graph



Laplacian as in (2). The supervised term is designed to ensure that the features of must-linked pairs are close and the
features of cannot-linked pairs are far away from each other,

s(F ;M, C) =
∑

(i,j)∈M

‖fi − fj‖2 −
∑

(i,j)∈C

‖fi − fj‖2 ≡ Tr(FLpFT ),

where Lp is defined as Dp −Ap with Ap being the “adjacency” matrix from pairwise constraints

Ap,ij =


−1 (i, j) ∈M;
1 (i, j) ∈ C;
0 otherwise.

and Dp is the diagonal “degree” matrix with Dp,ii =
∑
j Ap,ij .

For the LMF model, the optimization for the semi-supervised objective can be performed using the same opti-
mization routine with minimal change. For the graph spectral methods based on a graph Laplacian Lp, the objective
function is essentially

Tr(FL̃FT ) = Tr(FLFT ) + Tr(FLpFT ),

where L is the graph Laplacian of summation of graphs. The above problem can be solved by finding the eigenvectors
of matrix L̃ with the smallest eigenvalues.

6 Experiments
In this section, we present results of clustering with multiple graphs on both synthetic and SIAM journal data. As we
will show in the results, 1) we can improve the clustering performance by simultaneously modeling multiple sources
of information, and 2) the pairwise constraints help in the semi-supervised learning scenario.

To evaluate the performance of LMF in the unsupervised setting, we compare it with several baseline methods
introduced in Section 3: 1)SpecC: spectral clustering algorithm [10] on single graph; 2)mSpC-A: spectral clustering
algorithm on the sum of adjacency matrices; 3) mSpC-B: spectral clustering algorithm on the sum of normalized
adjacency matrices; 4)SpecK: sum of spectral kernels from each graph; 5)Consensus: consensus clustering with
SpecC as the base component.

6.1 Synthetic Data
This synthetic 500-vertex example is designed to show that LMF can handle data sets where individual graphs have
widely varying characteristics. The example consists of two similarity graphs over the same set of entities. The first
graph contains complete information about cluster structure but has a lot of noise; while the second graph only contains
partial information about the cluster structure. The spy plots of the synthetic data set are presented in Figure 4. The
clustering performance measured in NMI and confusion matrix are presented in Figure 5. LMF is seen to be the best
method, closely followed by mSpc–B.

6.2 SIAM Data: Unsupervised Clustering
The results of unsupervised clustering on SIAM-similar and SIAM-different are presented in Table 3, with each
column representing a different combination of individual graphs. The results are consistent with our observation
that SIAM-similar is a much harder problem than SIAM-different. We observe that LMF is the only method that
can consistently benefit from including more graphs. LMF leads with 7 out of 8 graph combinations on both SIAM-
different and SIAM-similar. Most importantly, the best performance from all models (NMI = 0.714) is achieved by
LMF with all five graphs.
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Figure 4: Spy plots of the synthetic data.

SpecC (1st graph) SpecC (2nd graph) mSpC–A
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Figure 5: The confusion matrices of competing methods, where rows represent the actual classes and columns the
clusters.

Choice of Rank & Regularization Parameter In the above experiments, we set the parameters for LMF rather
arbitrarily. Nevertheless it is meaningful to examine the impact of rank and regularization on the clustering perfor-
mance based on LMF. Instead of varying both factors simultaneously, we will fix one and let the other vary. Figure 7
(left panel) shows the clustering performance on SIAM-different (averaged over 10 trials with different initializations)
based on P from LMF with rank varying from 10 to 50 and a fixed regularization parameter α = 0.5. As seen in
Figure 7, the performance of LMF is rather robust to the rank in the range 20 to 40. Similarly, Figure 7 right panel,
shows the impact of regularization parameter α with a fixed rank 30. The LMF performance is rather stable with α
from 0 to 0.8, with the range 0.55 to 0.8 being slightly better than the rest before the accuracy plunges. Although it
is not shown here, a similar story holds for SIAM-similar, where the LMF performance is reasonably robust to the
change of both rank and regularization parameter.

6.3 SIAM: Semi-supervised Clustering
In this section, we discuss semi-supervised clustering results on both SIAM data sets with pairwise constraints. As we
will show, metric learning and semi-supervised feature extraction demonstrate different behavior, while both of them
help in improving the clustering performance.

Metric Learning We considered kernelized metric learning with the following choices of initial kernelK0: 1) SpC-
ML: spectral kernel based on sum of adjacency matrices, 2) SpK-ML: sum of spectral kernels based on individual



SIAM-different
{1, 2, 3} {1, 2, 3, 4} {1, 2, 3, 5} {1–5}

mSpC-A 0.657 0.649 0.621 0.630
mSpC-B 0.626 0.683 0.684 0.701
SpecK 0.636 0.455 0.637 0.638
Consensus 0.587 0.597 0.559 0.444
LMF 0.611 0.698 0.689 0.714

SIAM-similar
{1, 2, 3} {1, 2, 3, 4} {1, 2, 3, 5} {1–5}

mSpC-A 0.226 0.238 0.229 0.238
mSpC-B 0.244 0.235 0.238 0.234
SpecK 0.237 0.240 0.237 0.237
Consensus 0.212 0.202 0.186 0.151
LMF 0.246 0.249 0.251 0.253

Table 3: Results of unsupervised clustering on SIAM-different and SIAM-similar data sets, measured in NMI. Each
column represents a different combination of individual graphs. The results are averaged over ten trials.

SIAM-different
mSpC–A mSpC–B SpecK

245 8 7
30 593 33
57 6 281

242 7 11
17 603 36
19 6 319

0 231 29
0 606 50

22 23 299

Consensus LMF
17 11 232
6 442 208
18 4 322

241 8 11
13 614 29
21 8 315

SIAM-similar
mSpC–A mSpC–B SpecK

268 69 274
3 405 15

176 249 231

289 74 248
7 405 11

211 224 221

319 74 218
14 404 5

239 206 211

Consensus LMF
262 68 281
50 354 19

257 164 235

399 39 173
2 366 55

219 176 261

Figure 6: The confusion matrices of competing methods on the SIAM data set, where rows represent the actual classes
and columns the clusters.

graphs, 3) LMF-ML(L): linear kernel PPT based on LMF feature P , and 4) LMF-ML(G): Gaussian kernel with rows
of P as feature vectors: K0(i, j) = exp(−‖pi − pj‖2/σ2). Figure 8 presents the results of metric learning on four
different kernels with the number of randomly selected constraints varying from 0 to 3000. As seen from the figure,
the three linear kernels (SpC-ML, SpK-ML, and LMF-ML(L) ) do not respond well to the pairwise constraints, while
the Gaussian kernel based on LMF feature (LMF-ML(G))(interestingly, the Gaussian kernel gives a much poorer result
in the unsupervised case, as seen in the figure), can lead to superior performance after 2000 constraints. This behavior
can be explained by the fact that the linear kernels, although informative by themselves have low rank and hence do
not provide enough modeling flexibility for ITML, while the Gaussian kernel gives enough room for ITML to improve
performance.
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Figure 7: Clustering result of LMF on SIAM-different with varying rank and regularization parameter (α).
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Figure 8: Semi-supervised clustering result on SIAM data with metric learning.

Semi-supervised Feature Extraction In this section, we report experimental results conducted to investigate the
effectiveness of Semi-supervised Feature Extraction. As discussed in Section 5.2, we can have two semi-supervised
feature extraction algorithms based on their unsupervised counterparts: 1)LMF-SSFE: feature extraction based on
LMF, and 2)Eig-SSFE: based on the eigenvectors of graph Laplacian, as in (2). Figure 9 plots the clustering perfor-
mance, measured in NMI, as a function of the number of constraints on SIAM-different and SIAM-similar data sets.
As indicated by Figure 9, both algorithms can benefit from pairwise constraints, but LMF-SSFE does significantly
better on SIAM-different and performs comparably to Eig-SSFE on SIAM-similar.

7 Related Work
Multi-view Learning In multi-view learning, each object is described from multiple aspects, called views, and the
most common learning scheme is to find a classification that maximizes the agreement between different views. Most
work in multi-view learning is for classification, where labeled samples are given [2, 11] and the unlabeled data are
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Figure 9: Semi-supervised clustering using semi-supervised feature extraction.

classified based on the average of the decision function from different views in either the inductive or transductive
setting. Clustering based on multiple sources is a relatively new topic, and the published work is relatively rare,
mainly because it is harder to enforce agreement between different views in a clustering scheme. Zhou et. al, [17]
proposed an algorithm for graph partitioning based on multiple graphs, which is based on approximately minimizing
the normalized cut objective function combined from all the graphs. Another direction is proposed by Chaudhuri
et al [3] where multi-view clustering is performed by canonical correlation analysis (CCA) which extracts the most
correlated direction shared by each view.

Collective Matrix Factorization Singh and Gordon [12] proposed a Collective Matrix Factorization method for
relational learning, where the relational data are approximated by a set of matrix factorizations which share common
factor matrix for the same set of entities between two relations. A similar work by Zhou et al. [18] considered com-
bining multiple relations for document recommendation, where a single low-dimensional embedding of documents
is learned through matrix factorization over multiple relational data. The major difference between LMF and these
approaches is that we model the data as multiple undirected graphs over the same set of vertices while [12] and [18]
model the relational data as multiple directed graphs connected by different sets of vertices. Another recent work by
Koren et al. [8] considers combining the “who-rates-what” binary matrix with the rating matrix in matrix factorization
for collaborative recommendation. Again, they model two different sets of entities in the graphs, which is different
from our problem.

8 Conclusion and Discussion
In this paper, we discussed the general problem of clustering based on multiple similarity graphs in both unsupervised
and semi-supervised settings. We extend several graph-based clustering methods to handle multiple graphs. As
one of our major contribution, we proposed Linked Matrix Factorization (LMF) as a novel method for learning the
characteristics common to all given graphs. Experiments show that: 1) in an unsupervised setting, LMF can effectively
extract informative and reliable features for vertices, and yield better clustering performance than single graph methods
and other graph-based models for combining multiple graphs, and 2) LMF, as a feature extraction model, responds
fairly well to pairwise constraints.

However, several questions remained unanswered. The most obvious one is how to incorporate the reliability of
different sources into the clustering model. When this information is available, it can be simply integrated into LMF
by having the reconstruction error term from different graphs weighted accordingly. However, finding the weights



from the graph themselves, in both unsupervised and semi-supervised cases, remains an open problem. Techniques
such as kernel-target alignment [4] have been developed by the machine learning community for weighing different
information sources, but they typically work for supervised learning scenarios and from our experiments (not reported
here), did not seem to help in our setting. Another direction, as suggested in [3], is to explicitly model the common
characteristics of all sources through canonical correlation analysis of the feature vectors, which is in the same spirit
as LMF. It will be interesting and useful to suitably extend these methods to the problem of multiple graphs, which
will be one of the directions of our future research.
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