ATP 29

NON-RESOLUTION
THEOREM PROVING

W. W, BLEDSOE

ATP 29 SepTEMRER 1975

BASED ON A TUTORIAL TALK GIVEN AT THE FOURTH
INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL

INTELLIGENCE., IJCAI-75, Tmirist, USSR, Sepr.
8, 1975,

*TH1S WORK WAS suPPORTED BY 'ISF GranT DCR74-1288€,

NON -RESOLUTION THEOREM PROVING
by

W.W. Bledsoe

ABSTRACT

This talk reviews those efforts in automatic theorem proving, during the
past few years, which have emphasized techmiques other than resolution. These
include: knowledge bases, natural deduction, reduction (rewrite rules), typing,
procedures, advice, controlled forward chaining, algebraic simplificationm,
built-in associativity and commutavity, models, analogy, and man-machine systems.

Examples are given and suggestions are made for future work.
P

IT.

I1I.

Iv.

V.

Table of Contents

Introduction
Concepts
1. Knowledge Base
2. Reduction (Rewrite rules)
Conditional Reductions
Complete Sets of Reductions
3. Algebraic Simplifications
4. Built-in Inequality (and total ordering)
5. Natural Systems
6. Forward Chaining
7. Overdirector
8. Types
9. Advice
10. Procedures (and Built-in Concepts)
11. Models (and Counterexamples)
12. Analogy
13. Man-Machine

Programming Languages

Comments

Challenges

Page

oo ~N o

10
12
13
15
16
18
19
20
21
22
23

25

26

28

I. Introduction

Automatic theorem proving was born in the early 1930's with the work of
Herbrand, but did not get much interest until high speed digital computers were
developed. Earlier work by Newell, Simon, Shaw, and Gelernter in the middle
and late 1950's, emphasized the heuristic approach, but the weight soon shifted
to various syntactic methods culminating in a large effort om resolution type
systems in the last half of the 1960's. It was about 1970 when considerable in-
terest was revived in heuristic methods and the use of human supplied, domain
dependent, knowledge.

It is not my intention here to slight the great names in automatic theorem
proving, and their contributions to all we do, but rather to show another side
of it. TFor recent books on automatic theorem proving see Chang and Lee [19],
Loveland [44], and Hays [31]. Also see Nilsson's recent review article [61].

The word "resolution'" has come to be associated with general purpose types
of theorem provers which use very little domain dependent information and few
if any special heuristics besides those of a syntactic nature. It has also
connoted the use of clauses and refutation proofs.

There was much hope in the late 60's that such systems, especially with
various exciting improvements, such as set of support, model eliminations, etc.,
would Ee powerful provers. But by the early 70's there was emerging a belief
that resolution type systems could never really "hack" it, could not prove
really hard mathematical theorems, without some extensive changes in philosophy.

This report is about this other non-resolution effort. But we do not just
want to emphasize non-resolution, but rather to emphasize the efforts that are
less syntactic in nature, that use heuristics and user supplied knowledge, which
is often domain dependent. Our belief is that other purely syntactic methods such

as Gentzen systems will fare only about as well as resolution systems, unless they

employ some of the kinds of concepts we mention below. Also much improvement in
resolution systems can be gained by using such concepts, and this has been done
in many cases.

The author was one of the researchers working on resolution type systems
who '"'made the switch'". It was in trying to prove a rather simple theorem in set
theory by paramodulation and resolution, where the program was experiencing a
great deal of difficulty, that we became convinced that we were on the wrong track.
The addition of a few semantically oriented rewrite rules and subgoaling pro-
cedures [7] made the proof of this theorem, as well as similar theorems in ele-
mentary set theory, very easy for the computer. Put simply: the computer was
not doing what the human would do in proving this theorem. When we instructed it
to proceed in a "human-like" way, it easily succeeded. Other researchers were
having similar experiences.

This is not really a general review in any fair sense. Rather it is a list
of things I feel are important, with a real bias toward my work, and that of my
students and friends. See Slides 1A, 1B.

A list of references is given at the end of the paper.

1‘I‘he family of subsets of (ANB) 1is the same as the intersection of the family

of subsets of A and the family of subsets of B. This example is treated later.

IT. Concepts

We will now list some of the concepts and techniques that we have in mind,
that seem to hold promise in automatic theorem proving, and briefly discuss
them. Of course no such list could be complete and we apologize for glaring
omissions. Also these concepts are not mutually exclusive, some being special
cases of others.

See Slide 2.

The word "knowledge" is a key to much of this modern theorem proving. Some-
how we want to use the knowledge accumulated by humans over the last few thousand
vears, to help direct the search for proofs. Once a proof has been found it is a
relatively simple matter to verify its wvalidity by purely syntactic procedures.
So in a sense all of our concepts have to do with the storage and manipulation of
knowledge of one sort or another.

The use of knowledge and built-in procedures partially eliminates the need for
long lists of axioms, which tend to slow up proofs and use excessive amounts of

memory. Such knowledge must be organized in a way that is easy to use and change.

See Slide 3

This slide shows the 13 concepts we will discuss in the succeeding pages.

BASIC CONCEPTS

KNOWLEDGE
BuiLD-IN MAN'S KNOWLEDGE

OFTEN DOMAIN-SPECIFIC

CONTEXTUAL AND PERMANENT

AVOID LISTING OF AXIOMS

CLOGS UP THE SYSTEM

EASY TO USE anp CHANGE

SLipE 2

oo O

G B B 5 o

CONCEPTS

KNOWLEDGE BaSE

Repuctions (REWRITE RULES)
ALGEBRAIC SIMPLIFICATION

BuILT-IN INEQUALITIES (AND TOTAL ORDERING)
NATURAL SYSTEMS

FORWARD CHAINING

OVERDIRECTOR

TYPES

Apvice

ProceDURES (AND PUILT-IN CONCEPTS)
MODELS (AND COUNTEREXAMPLES)
ANALOGY

MAN-MACHINE

SLIDE 3

1. KNOWLEDGE BASE
We store information in a knowledge base (or data base), process that infor-
mation to obtain other information (by procedural forward chaining, etc.), and in-

terrogate the data base when necessary to answer questions. A central idea here

is, that facts are stored about '"objects'" rather than "predicates'". For example
the hypothesis Open(AO) would be stored with "Open' as a property of "Ad‘
rather than with ”AO" as a property of "Open'". (Objects are the skolem con-

stants arising in a proof.) Also knowledge is stored about concepts. This knowl-
edge can be stored in procedures or in lists or other structures.

The planner - QA4 type systems are ideally suited for using these concepts.
See for example Winograd's Thesis [84], especially Sections 3.1.3 -3.3.1 for an
excellent description of some of these concepts.

Some concepts associated with aknowledge base are shown in Slide 4. Demons
are routines that watch the knowledge base and only act whenever certain proper-
ties become true of the data base. Languages like Microplanner, Conniver, and Q&4
greatly facilitate the use of demons.

Some parts of the base remains static (as for example, properties of continu-
ous functions) while other parts such as information about objects in the proof
are dynamic and should be carried in a contextual data base.

The "graph" provers of Bundy [17], Ballantyne and Bennett [4] use such a data
base, as do the provers of Winograd [84], Goldstein [28], and others. Minsky's
frames [55] appear to offer good advice for organizing data for a knowledge base.

Shortly we will show an example from analysis [5] which utilizes a data base

with many of the concepts we have discussed in this paper.

EDGE BASE

CONTAINS FACTS aBouT ConcCEPTS AND UBJECTS

FACTS ARE MANIPULATED DURING PROOF TO OBTAIN NEW FACTS (CONTEXTUAL)
PROCEDURAL FORWARD CHAINING

StaTic INFORMATION

Look UP ANSWERS

OBJECT ORIENTED: OPEN (AQ)
PROPERTY LIST AO
ggOPEN
DeMons
ExAMPLES
PARTIAL SETS SEE LATER
MONADS

REDUCTION RULES
“"GrRAPH" PROVERS
MODELS

FRAMES

SLIDE

2. REDUCTION
See Slide 5.

A reduction is a rewrite rule,
A-- 338
For example, the rule
te (ANB) - -- - teAANtebB

requires that we change all subformulas of the form t e (A N B) into the form
(t e ANt e B), (but never rewrite the later into the former). Such rules are
semantic; their inclusion, and their use is not based upon their syntactic structure
but on their meaning. The user supplies these rules. Slide 6 lists some such rules.

The use of REDUCTIONS is best illustrated by an example from [71.

See Slide 7.

Here the formula subsets (A) means the set of all subsets of A; we have shortened
it to sb{A) for this proof.

The reduction rules and definitions given in Slide 6 are used in the proof.
Notice how easy and "humanlike" the proof proceeds when reductions are used. A
corresponding resolution proof (without built-in partial ordering) required 14
clauses and a lengthy deduction.

Reductions also offer a convenient way for storing unit facts that can be
easily used during proofs.

See Slide 8.

CONTROLLED DEFINITION INSTANTIATION.
In this example we did not instantiate all definitions possible, but rather

followed the rule: when all other strategies fail, instantiate the definition

of the main connective of the conclusion.

REDUCTION

REDUCTION (RewriTE RuLES)

ConDITIONAL REDUCTION

CONTROLLED DEFINITION INSTANTIATION

CoMPLETE SETS OF REDUCTIONS

SLIDE 5

DEFINITIONS

A= B AS BABESA (SET EQUALITY)
A€ B \/x(xEA~>xeB)
| SKOLEM FORM
Xy ¢ A~ xb e B IN "coNcLUSTON"
(x e A > X ¢ B IN “HYPOTHESIS"

SUBSETS (A) (B:Bc A

SBCA)
REDUCE 1aBLE (REWRITE RULES)
IN ouT
Te¢ @A nB) TeA A TeB
Te AyuB) TeA y T¢B
T e {xP (x)}? P(T)
T ¢ suBSETS (A) TS A
TCANB TS A A TEB
e s Hole ¢ F AT e 6(a))

ag

SLiDE 6

[HEOREM. \V/A VB (suBsets (A B) = sussets (A) N sussets (B))
(1> seB(ANnB) = sB(A) N sB(B) THE GOAL

[sB(ANB) &£ sB(A) NnsB(B)1 A [---2 ... 1, DEFN OF =
SUBGOAL 1
(11) 1se(AN B) € sB(A) n sB(B)3

[T, € sB(ANB) = T, € (s8(A) A sB(B))I, DEFN OF &
(T, &£ (ANB) = 7,¢ sB(A) A T,& sB(B)]
REDUCE
T,eAaTgegB S T1,€ A, T,€ B1
REDUCE
nn
SUBGOAL 2
(12) (sB(A) A sB(B) & SB(A N Bl
“T" SIMILARLY

QED

SLipe 7

StoriNg UNIT FacTs

By REpucTions

ae A
Ach

Aefd
0<1

Oren @
Ach

WE WOULD NOT INCLUDE

P(Y) A PX)—> NX)) —» Q(Y)

BECAUSE IT IS TOO COMPLEX.

SLIDE §

ar

Ia'Tl!
II‘TII
HTII

“FpaLse”

!ITH

!ITI!
Hi TII

IITII

Instantiating all definitions can badly clutter up the proof and is often not ’

needed. For example, we would not define "Regular' in the theorem
(Separable ¥ N Regular ¥ ——3 Regular 7
In general, definition instantiation should be carefully controlled. See Slide 9.

CONDITIONAL REDUCTION

This is a slight generalization of the reduction concept, whereby the program
will perform the reduction only if a given stated condition is true in the data base.
We do not want a large effort expended to determine whether the condition is true,
because Reductions are supposed to be performed guickly, so we verify the condition

in the data base (rather than call the prover itself for this purpose). See Slide 10

for a simple example.

COMPLETE SETS OF REDUCTIONS

Instead of using a reduction

A---3>8

one could get the same effect by adding the formula

as another hypothesis, but this would usually greatly increase the run time and
storage space. So it is clearly desirable to use reductions instead of equatioms
whenever we can.

When can we use only reductions instead of equations? This is the object of
much research right now. The principal workers in this area, which is called complete

sets of reductions, are shown on Slide 11. The pioneering work of Knuth and Bendix

[40] dealt principally with group theory, where the initial equality axioms can all

be converted to reductions. See Slide 12. Slide 13 gives a proof in group theory

using these reductiomns.

CONTROLLED DEFINITION IMSTANTIATION

!' XAMPLES:

Do NOT EXPAND DEFINITIONS IN:

Ach A xecA A Open A—>Oren A)

Do EXPAND THE DEFINITION oF “OCCLFR" 1N

(Reguar (7)) A OCLFR(Z) = OCCLFR(7))

IF OTHER ATTEMPTS FAIL.

SLine 9

CONDITIOHAL REDUCTIONS

il CONDITION h
[NTERIOR (M) OPEN (A) A
CLOSI'RE () CLOSED (A) A

[A] A>0 A

Al A< -A
REGULAR (T T{(d) T7(J)
NORMAL (@) T(D Ty (D)

EXAMPLE THeoreM., 2 <l a 4 =<J <9

A 0K AL < I0—PUDI—$ P, 1D,

PROOF, THE HYPOTHESIS Z2 <1 anD 4 <J <9

ARE STORED IN THE DATA BASE ON THE PROPERTY LISTS OF

I anp J. THe 1Erm [JI 15 Repucep (REWRITTEN)
TO J AFTER A CHECK IN THE DATA BASE VERIFIES THE
conniTion J > 0,

BACKCHAINING ON THE THIRD HYPOTHESIS NOW GIVES THE
suBcoAL (0 < I anp J < 10) WHICH IS EASILY VERIFIED
BY THE DATA BASE. QED

Stine 10

co SETS OF REDUCTION

KnuTH AND Benpix (40)

StaceL (/3) NARROWINGS

ProTkin (63)

LankForD (41 ,42)

WINKER (83) DEMODULATIONS

LirsHITS (43)

Stipe 11

COMPLETE SET OF REDUCTIONS

FOR A GROUP
KBl x+ 0 — x
KB2 0+ x — X
KB3 x + (-x) — 0
KB4 (-x) + x — O
KBS (x+v)+z—x+ (y+2)
KB6 -0— 0
KB7 -(-x) — X
KB8 -(x+v) — (-v) + (=)
KB x + ((-x) + Y)) — v

KBI0 (-x) + (x + v) — v

SLipe 12

THEOREM,

e D+ (C+C¢ON+(C(-@O+ AN e H

—

D+ A) ¢H

ProorF. (USING THE COMPLEE% SET OF REDUCTIONS FOR A

o

(]

GROUP ON SLIDE

[D+ (C+¢ON+(-CAIeH

> D+ A e H

(M+0)+ (- A)1 eH

-

(D+A) «H

M+ (- CGA1 eH—> D+ A) «Hl

M +Al el —=>@D+A) cHl

TRUE

SLipe 13

KB2

KB3

KB1

KB6

Unfortunately there is no complete set of reductions for commutative group
theory, ring theory, and many other theories, so efforts have been made and are
being made to extend the concepts of [40], to these theories. [73,63,41,42,83].

For example, in proving a theorem of the form
(x+ x+x) = 0—»C) ,

when the hypothesis, (x+ (x+x)=0), is added to the axioms of group theory
the whole set no longer can be converted to a complete set of reductions. The
extensions mentioned above are designed to cope with such situatioms.

For ex-

ample, Lankford's method [41], handles the theorem

(x+ (x+x) = 0 ——>
A+B+ (-A) +B + A+ (-B) + (-A) + (-B) = 0)

(Associate to the right)

by adding the hypothesis as another reduction

11. ®+ & +x)—>»0,

and proving the theorem in two rounds. See Slides 14, 15, 16.

It is hoped that these techniques might help provide a more satisfactory
answer to the equality problem.' Bowever, it is our belief that heuristics methods
and built-in procedures such as those given by Slagle and Norton [76] and Nevins
[56] will be needed for any truly effective handling of equality.

A challenging problem in this area is the Ring Theory theorem given on

Slide 17.

COMPLETE SET OF REDUCTIONS

FOR A Group
KBl x+0 —x
KB2 0+ x-—X
KBBL x+ (-x) = 0
KB (0 tx O
KBS (x+¥) +z—x+ (¥ +2)
ke -0-—0
KB7 -(-x) — X
KBS -(x +Y) — (-v) + (-x)
‘KB9 x + ((-x) +Y) — ¥

KBI0O (-x) + (x +Y) — Y

THEOREM. x + (x +x) =0 —

A+B+ (-A) +B+A+ (-B)+ (-a) + (-B) = 0.
(ASSOCIATE TO THE RIGHT)

THE HYPOTHESIS (X + (X + X) — 0) 1S ADDED AS ANOTHER
RECUCTION. | '

- SLipe 14

LAEORD' S METHOD

11, X+ (xt) —> 0 AppED

IN THE FIRST ROUND, THREE NEW REDUCTIONS ARE GENERATED, AND
ONE EQUALITY:

nl X+ X+X+Y—>Y 11,K85
M2 XH + XHY + XY —> 0 11,KB5
N3 -X—» X + X 11,KB1O
F1 Xt + Xty = vyHy 4 ¥ N3, KB3

(THIS CANNOT BE MADE A REDUCTION)

NI-3 Act upon KBI-10,11 AND ELIMINATE ALL
oF KBI-10,11 ExcepT

KBL X+0—>0

KB2 0t X—s

KBS X+) + 7 —> x+(v+z)
11 X+ X+ X=—>0

Stipe 15

IN THE SECOND ROUND, THREE NEW REDUCTIONS ARE GENERATED,
AND NO NEW EQUATIONS

N X+y+ x+y + X+y +72-—>0
NS X+Yy+z + x+vy+z +x+y+z —>0
NG X+y + X+Y +X—>Vv+y

THE GoaL:

A+B+ () +R+A+ (-B) + (A) + (-B) =0
IS PROVED IN THIS ROUND BY APPLYING

Steps: 2
FORMULAS SAVED: 7/

TiMme: 30 SECONDS

Stipe 16

CHALLENGING PROBLENM

THe IN A RING

X3=1-——-—-)'AB=BA

(RecaLL THAT A RiNG 15 + CommutaTivEe)

SLipe 17

10.

3. ALGEBRAIC STMPLIFICATION

There is a strong need to avoid adding the field axioms for the real numbers
as hypotheses to a theorem being proved, because this greatly slows proofs. The
associativity and commutativity axioms for + and - are especially troublesome,
so several efforts have been made to "build these in'.

Some references to this work are:

Slagle and Norton [74,75]
QA4, QLISP [65,68]
Plotkin [63]

Fronig [25]

Stickel [77]

Bledsoe, et al [9,12]

Of course much is learned from the researchers working in the field of symbol
manipulation and algebraic simplification, where these methods have been applied
to other problems in physics and mathematics. However, automatic theorem proving
presents difficulties not covered by that work.

For example, the theorem
P(a+ b +¢)——>»P(h + a+ c)
is easily handled by using a canonical form, but the theorem
Pk + 2)—>P(b + 5)

where k 1is a variable and b 1is a constant, presents more difficulty. An

ordinary unification algorithm
UNIFY(k + 2,b + 5)

would put b for k, b/k, and fail. An "Algebraic Unifier", could write the

i1,

equation

k+2=Db+5,

and "solve for" k, getting k=b+3, and return (b+3) for k, to successfully
complete the proof.

A similar approach works on the example

i

UNIFY B[k +1] = Amax(B, j,k+1) ,

Ao(io] = Amax(Ag,l,iO)}

where B, j,k are variables, and AO, io are constants. This example is from the
field of program verification (See [13], pp. 27-28).

Data types such as sets, bags, and triples [68,65] handle some of these

problems.

*

12.

4. BUILT-IN INEQUALITIES (and total orderings)

Again we must avoid the explicit use of such axioms as the tramsitivity axiom
GE<yANy<z—3x < 2)

See Slide 18.

Slagle and Norton [75] have built-in axioms for handling total and partial
ordering (including inequalities). See Slide 19.

Slide 20 gives a theorem from program verification which was proved by Slagle
and Norton's program. This theorem and others like it have been proved by the
"interval type" methods of Bledsoe and Tyson [13,8], and by others.

Also Slagle and Norton have built-in partial ordering for handling some prob-

lems in set theory.

INEQUALITIES

(AVOID AXIOMS LIKE

X< YAY < Z—3$X < Z)

BuiLT IN TOTAL ORDERING

- SLAGLE & NORTON

INTERVAL TYPES

- PLEDSOE ET AL

SLAGLE & NORTON

BuiLt In

PARTIAL ORDERING

(INCLUDES TOTAL ORDERING)

ALLow UNIFIcATION IN ALL oF THESE CASES.

Stipe 19

A<B B<C A<B B<C
\/ \/
A<C A<C
A<B B<A A<B A=C
\/ \/
A=2B C<8B
A <A A<B
! |
m A<BAA=B

OREM.

M=<P=@Q=%N

Vx\/Y(Mix< IaJ <Y <N-=>AIXI < Alv])

Vx ’V/Y(M
Vx VY(I

—=> Alpl < Alql

| A

X <y <J - Alxl < Alvl)

| A

X <Y < N=>»Alx] < Alvyl)

A VERIFICATION CONDITION FROM HoARE's FIND PROGRAM

Stipe 20

13.

5. NATURAL SYSTEMS

We have chosen to emphasize the so called "natural” systems in this report.
1 would not like to define the term, but will only give examples. 1In general we
are not talking about refutation systems such as resolution, though we sometimes
do proofs by contradiction [66]. They are sometimes called goal oriented systems,
or Gentzen type systems. See Slide 21.

We are given a goal G and a hypothesis H and wish to show that G follows

from H,
(H —G)
or more generally to find a substitution 6 for which
(H9 ~———3 GB)

is a valid propositional formula. A set of rules is given for manipulating H
and G to obtain the desired ©. See Slide 22. The Rules on Slides 23 and 24
are from the IMPLY System described in [12,9]. They are given more precisely
and completely in [12]. See Slide 25 for a simple example.

Newell, Simon, and Shaw's logic theorist [59,60], and Gelernter's geometry
machine [26], were natural (or goal directed) systems, although we will see that
they included various other features. See Slides 26 and 27. Reiter's MATH-HACK
system [66] is much like that of [12] but has the important addition of models which
we will mention later, and other features.

Other natural systems include the Planner-Conniver-QA4 group, and those of
Maslov, Goldstein, Nevins, Bibel, Boyer-Moore, Ernst, [48,49,28,34,78,52,68,65,
6,14,23,46,15,30] and others. See Slide 28.

What are the advantages (if any) of the natural systems? There may be none--

NATURAL SYSTEMS

GOAL ORIENTED

GENTZEN SYSTEMS

(NOT REFUTATION)

Stipe 21

NATURAL SYSTEM

(H=p 06

H 1S A SET OF HYPOTHESES.
G 1s A GoAL.

To FIND A SUBSTITUTION & FOR WHICH
(Ho — Ge)
IS A VALID PROPOSITIONAL FORMULA.

EXAMPLE.

P(A) a4 (P(x)=» Q(x)) = Q(a)

ANSWER: © = AlX

SOMETIMES © MUST BE MORE cOMPLICATED (See ApPENDIX 3 oF [121)
AS IN THE FOLLOWING EXAMPLE, WHERE A DISJUNCTION 1S NEEDED

(PC)—y PA) A PB))
Answer: @ = A/X v B/X

SLipE 27

14,

I3,

I5,

17,

113,

IMPLY RULES

A PArRTIAL SET FROM [12]

(H=>»A A B) "SPLIT”

IF (H=>» A) RETURNS
AND (H =3» B) RETURNS
THEN RETURN 69X

D

>

(Hy y Hy =0 “CASES”

D

IF (H1=$ C) RETURNS
AND (Hp® == C) RETURNS
THEN RETURN ~ 0°X

S

H=)
Putr C':= REDUCE(C): H':= REDUCE(H)
CaL (H'= (")

(H ==»(A =—38B)) “PROMOTE"

CaLL (Ha A= B).
H =0)

Pur C':= DEFINE(C)
Cact (H=2» C")

SLiDE 253

H2.

Hb .,

H7.

HI.

(H = C) MATCH"
Ir Ho® (C6, RETURN ©,

(An B =0 "OR-FORK"
Ir (A %C)' RETURNS 6 (NoT NIL). RETURN ©,
ELse CaLL (B=p ()

Ha (A=?D)=» (“BACK-CHAIN®
IF (D ==8» () RETURNS ¢,
AND (H =2> ABJRETURNS 7,
THEN RETURN 8°)

Ha (A =B)=p("SUB =
Put A’:= CHOOSE (a.B). B':= OTHER(A,B)
CaLL (H(a'/B") =2C(a"/8")).

SLipe 24

ExampLE Usine IMPLY

Tueogen. (P(a) A WX(POO — Q60) —~ Qw).
P() A PG~ B60) =25 Q(a)

(P(a) = (Qa))
FAILS

(P(x) — Q) = Q(a))

Q) =3» QA(a))
RETURN ¢ = AlX

P => PG (Alx)
RETURN TRUE,

RETURNS AlX,

SLipe 25

(STARD)

SELECT PROBLEM < (M0 MORE. METHODS) <
L2
TRY METHOD ¢ (NO MORE THEOREMS) <
\ SELECT THEOREM ¢

~/

ﬁwf

TRY IT — (FAID

R 4
(GFT NEW PROBLEM)

v
TRY SUBSTITUTION
l (NO MORE
THED
SELECT THEOREM < aw
A 4
TRY [T ——> (FAID N
v
(PROOF)
\4
THROUGH

GENERAL FLOW DIAGRAM OF THE
LOGIC THEORIST 591

NEWELL - SIMON _ SHAW
1957

SLipeE 26

START
|

%7

SCAN
DIAGRAM

A

SET UP
INITIAL
CONDITIONS

> EXPAND
DEFINITIONS

N

GLERNTER 1261

DIAGRAM FILTER

/

/
/
I3
{

/

CHOOSE
GENERATING
SUBGOAL

10
NO MORE SUBGOALS FAIL

|

GENERATE
LOWER
SUBGOALS

|

DISCARD
UNWANTED

LOWER SUBGOALS

-~ PARALLEL
SUBGOALS TO BE
ESTABLISHED

IS

11

PRINT
PROOF

GENERATING SUBGOAL
ESTABLISHED?

8

ADD ACCEPTABLE
OWER SUBGOALS

| (IF ANY EXIST)

® TO PROBLEM-
SOLVING GRAPH

FIGURE 3., SIMPLIFIED FLOW CHART FOR THE GEOMETRY-THEOREM PROVING

MACHINE,
SLipe 27

OTHER NATURAL SYSTEMS

MSS - Locic THEORIST (LATER)
(GELERNTER’'S GEOMETRY MACHINE (LATER)

REITER'S MATH-HACK - MucH LIKE THIS BUT MORE

MasLov
BIBEL NEVINS
ERNST

BoYer-MooRE

PLANNER

CONNIVER EXAMPLES
LATER

QAAL, QLISP

GOLDSTEIN

SLiDE 29

14.

especially in the long run--and especially if the techniques we emphasize here are
built into the resolution systems. But we feel that this is not easy to do.

Specifically we feel that the natural systems are:

® FEasier for human use

e Easier for machine use of knowledge

See Slides 29, 30, 31, 32.

On the question of completeness I refer to a statement by Winograd. Slide 33.

NATURAL SYSTEMS

e FASIER FOR HUMAN USE

® EASIER FOR MACHINE USE OF KNOWLEDGE

Stipe 29

NATURAL SYSTEMS

HUMAN USE

o BRING TO BEAR KNOWLEDGE FROM PURE MATHEMATICS IN THE

SAME FORM USED THERE
e RECOGNIZE SITUATIONS WHERE SUCH KNOWLEDGE CAN BE USED
o PROFESSIONAL MATHEMATICIAN WILL WANT TO PARTICIPATE
o EASIER TO DESIGN, PROGRAM, WORK UPON

o ESSENTIAL FOR MAN-MACHINE INTERACTION (WHERE THE MAN IS A

TRAINED MATHEMATICIAN)

SLipe 30

NATURAL SYSTEMS

MACHINE USE

AUTOMATICALLY LIMITS THE SEARCH. DOES NOT START ALL
PROOFS OF THE THEOREM. (SYNTACTIC SEARCH STRATEGY).

A NATURAL VEHICLE TO HANG ON HEURISTICS., KNOWLEDGE.,
SEMANTICS. (SEMANTIC SEARCH STRATEGIES).

EASIER TO COMBINE PROCEDURES WITH DEDUCTION.

CONTEXTUAL DATA BASE PROBLEM. ONE FOR EACH CLAUSE.

INCOMPLETE

NEw LANGUAGES (PLANHER, OAL)., FEASE THE IMPLEMENTATION,

Stipe 31

NATURAL SYSTEMS

“THERE IS A NATURALNESS WITH WHICH SYSTEMS OF NATURAL
DEDUCTION ADMIT A SEMANTIC COMPONENT WITH THE RESULT THAT A
GREAT DEAL OF CONTROL IS GAINED OVER THE SEARCH FOR A PROOF,
IT 1S PRECISELY FOR THIS REASON THAT WE ARGUE IN FAVOUR OF THEIR
USE IN AUTOMATIC THEOREM-PROVING, IN OPPOSITION TO THE USUAL
RESOLUTION-BASED SYSTEMS, WHICH APPEAR TO LACK ANY KIND OF REASON-
ABLE CONTROL OVER DEAD-END SEARCHES.”

RaymonND REITER [66]

"A POINT WORTHY OF STRESS IS THAT A DEDUCTIVE SYSTEM IS NOT
"SIMPLER” MERELY BECAUSE IT EMPLOYS FEWER RULES OF INFERENCE.
A MORE MEANINGFUL MEASURE OF SIMPLICITY IS THE EASE WITH WHICH
HEURISTIC CONSIDERATIONS CAN BE ABSORBED INTO THE SYSTEM,”

ARTHUR NEVINS [561

SLipE 32

INCOMPLETENESS

"TT 1S WORTH POINTING OUT HERE THAT COMPLETENESS MAY IN FACT

BE A BAD PROPERTY. [T MEANS (WE BELIEVE, NECESSARILY) THAT IF

THE THEOREM-PROVER IS GIVEN SOMETHING TO PROVE WHICH IN FACT

IS FALSE., IT WILL EXHAUST EVERY POSSIBLE WAY OF TRYING TO PROVE

I1T. BY FORSAKING COMPLETENESS., WE ALLOW OURSELVES TO USE GOOD

SENSE IN DECIDING WHEN TO GIVE UP.”

TErRrY WiNoGrAD [84 , p. 2361

SLIDE 33

15.

6. TFORWARD CHAINING

Forward chaining is accomplished when one hypothesis is applied to another to
obtain an additional hypothesis. See the example in Slide 34.

Since such a process can, in some cases, result in an infinite repetition it
is important that it be controlled by a cut-off mechanism. Alsoc we have found
other controls desirable, suéh as allowing only those new hypotheses which are
ground formulas.

Procedural forward chaining is where a procedure is invoked which manipulates
items in the data base (or in the hypothesis) to produce new items. This is ex-
hibited in the non-standard analysis example given below and in [5].

Several programs have found a good deal of success through extended use of>
forward chaining. See Slide 35. WNevins remarks [58, pp.2,3] are particularly

interesting on this point.

