Completeness Results for Inequality Provers

W. W. Bledsoe, K. Kunen, and R. Shostak

1983 ATP-65

Completeness Results for Inequality Provers

W. W. Bledsoel, K. Kunenz, and R. Shostak3

1. Introduction

1.1 Intent
In a purely syntactical approach to automatic theorem proving,
we fix some formal deductive system and input a formal theorem of that system;
the computer then searches for a formal proof of that theorem. In order to make
such a procedure practical, it is necessary to define the system so that there
are few legal options at any given stage in a formal deduction.

For example, in standard Hilbert-style proof theory, it is conventional to
allow any propositional tautology as é legal step in a formal deduction; this
makes the completeness theorem fairly easy to prer. However, a computef
searching mechanically for a formal proof of a theorem in such a system would
waste much (or an infinite amount of) time searching through all tautologies as
possible first lines of proof. Restricting the system somehow to allow only
tautologies ''syntactically relevant'" to the theorem will shorten the search but
may make the completeness theorem for the system more difficult to prove (or
even false).

The systeﬁ (due to Bledsoe and Hines; see [BH]) described in this paper is
tailored to discover proofs of propositions about dense total orders without
endpoints. In particulaf, it can be used to‘prove theorems in elementary cal-
culus which involve the ordering of the real numbers. It is in fact an‘Herbrand~

style rather than a Hilbert-style system, and is a modification of the resolution

1. Work supported by NSF Grant MCS 8011417.
2. Work supported by NSF Grant MCS 8200729,

3. TWork supported by NSF Grant MCS 7904081.

system of J. A. Robinson (see [L] or [R]). Whereas Robinson's system was desigicd
work in pure predicate calculus, ours involves an order (corresponding to the

ordering of the real numbers), so the corresponding proof theory and complete-

ness results are more difficult.

1.2 Lexical Issues

When describing formal languages we shall use o, B, v, 8, €, for
terms, X, ¥, Z, t for variables, f, g, h for function symbols, c, d, e, for con-
stant symbols, * , &, ~/ , —, J » and o for the logical operators, L for
atomic formulas or literals, and A°:-H for formulas or clauses. The symbol \

signifies the end of proof, or the end of a lemma whose proof is omitted.

1.3 Orders

A PARTIAL ORDER is a relation that is transitive and irreflexive;
a TOTAL ORDER is a partial order that also satisfies trichotomy. A partial

order is DENSE iff it satisfies

dxVy(x <y »Jzx <z &z <y)).

A partial order is WITHOUT ENDPOINTS iff it satisfies

Nxdy(x <y) & ¥YxJyly < x).

Thus, the usual order of the real numbers is a dense total order without end-
points. Basic facts about orders can be found in standard texts on discrete
mathematics. We shall occasionally refer to the following two facts which are

somewhat less elementary. The proofs are easy exercises in constructing orders

by transfinite recursiomn.

LEMMA 1: Suppose < partially orders a set ¢/ . Then there is a set ot
partially ordered by a relation <' such that (L is a subset of ([, < is the
restriction of <' to Cl, and <' is dense and without endpoints. Furthermore,

if < is a total order, then <' can be taken to be total also.\

LEMMA 2: Suppose < partially orders a set ({. Then there is a total
order, <' , of the SAME set ({, such that <' extends < (i.e., x <y implies

x <' y). 1f < is dense, or without endpoints, or both, then <" can be taken

to have the same properties. \

In the next section we shall discuss the model-theoretic importance of

these results.

1.4 Our Predicate Logic

Ve assume the reader is familiar with elementary model theory;
see, e.g., Enderton [E]. Let 5{ be a language in predicate calculus with =
whose non-logical symbols consist of the Binary relation symbols < and <

(but no other relation symbols), finitely many (or 0) constant symbols, and

finitely many (or O) function symbols (of one or more places). As usual in
predicate éalculus, we have basic syntactic notions such as the formulas and
sentences ofét, as well as semantic notions such as the notion of a structure
for & (any non-empty set together with appropriate interprétations for the
various non-logical symbols). As usual, = is intérpreted as real equality in
any structure. < may be interpre;ed as any binary relation, but we adopt the
convention that x.< y MUST be interpreted as x <yVzx =y, It is more common
in model theory to consider x < y merely an abbreviation of x < y\VxX=1¥),
but in our system it will be convenient later to eliminate = in the context

of orders by replacing x = y by (x <y &y =< X) .

Recall that a formula of X is called UNIVERSAL iff it is of the

form
Vxl sz Lo xD A,

where A is quantifier-free, and a formula is called POSITIVE iff the only
propositional connectives appearing in it are & and \/. The two lemmas
in the previous section have the following consequences.

LEMMA 1: Let A be a universal sentence of £ that contains no function
symbols. If A is wvalid in all dense partial orders without endpoints, then
A is valid in all partial orders. Likewise for total orders.\

LEMMA 2: Let A be any positive sentence of L. If A is valid in some
partially ordered structure, then A is valid in some totally ordered struc-
ture. If A is valid in some dense partial order without endpoints, then A
is valid in some dense total order without endpoints.\

In this paper, we are primarily interested in studying those sentences
which are valid in all dense total orders without endpoints; let us call
such sentenceé DENSELY VALID. 'If £ has no function symbols, then the usual
decision procedure for demse total orders, (see [V]), provides a simple decision proce-
dure for testing whether a sentence is densely valid. However, if <£ has
at least one function symbol; then the set of densely valid sentences is not
recursive. Of course, this set is r.e. (recursively enumerable), as can be
seen from any form of the completeness theorem. The system described in
this paper is intended to search for formal proofs of densely valid sentences.

A word of caution. In many applications, the intent is that ‘<!

represent the usual order of the real numbers. Call a sentence REALLY wvalid

iff it is valid in all structures whose < 1is isomorphic to the usual
ordering of the reals. Denself valid and really valid are NOT the same
(unless < has no function symBols). In part, this is because

orders may fail to satisfy the least upper bound (lub) axiom. In our
first-order logic, the lub axiom is really an infinite schema; namely,
for each formula B(x) (with possibly other free variables besides x),

we have the universal closure of the following sentence, which says that

if {x: B(x)} 1is non-empty and bounded above, its lub exists:

(3xB(x) & Iy Vx(BE »x <y) -
Iyl v x(Bx) »x <y) &

¥z(z <y Ix(Bx) &z < x))]

For any B, this axiom is really valid, but for very simple B it fails to be
densely valid; for example, let B(x) be £(x) = x; this fails in the rationals
if f 1is any function such that £(x) = x 1iff x < V2 . Since most theorems of
elementary éalculus require the lub axiom, the use of this axiom must be put in
expiicitly (by the human) in the input. Thus, if A is the desired theorem,

the input to the prover will be of the form

Ci& .. &C_ > A,

where Cl . Cn are the relevant instances of the lub axiom.

A more fundamental (and less interesting practically) distinction between
really valid and densely valid is the following. The set of really valid sen-
tences is not r.e. (in fact it is a compiete ﬁz

1

sive axiomatization. Specifically, let LUB be the set of instances of the lub

set). Thus, it has no recur-

axiom. LUB is recursive, so the set LUB* of sentences tyue in all dense total

orders without endpoints that satisfy LUB is r.e. Thus, there are really valid
sentences that are not in LUB*; a suitable encoding of the consistency of LUB is

such a sentence; a suitable encoding of Borel determinacy is another. However,

LUB has the same proof-theoretic strength as second-order number theory. Thus, o
all the theorems of calculus at the level of difficulty currently being investi~-
gated in automatic theorem proving certainly are in LUB%*, and the practical
interest presently is in getting the computer to prove these theorems efficiently

(or at all), rather than in looking at more advanced theorems for which LUB does

not suffice.

1.5 Herbrandization

The official versions of all our theorems will be stated within
the Herbrand-style framework of resolution theory. We describe here how to
translate into this framework from more standard predicate logic. Let A be
a sentence of Cﬁ, as above. Our original desire is to design a system that
will test whetger A is densely valid:; more precisely, it will input A and
terminate in a finite amount of time iff A dis densely valid, in which case
the output will be a formal proof of A. Call a sentence B DENSELY INCON-
SISTENT if B is false in all structures whose < is a dense total order without
endpoints; equivalently, iff —— B is demnsely valid. It will be convenient to
view our procedure as one that tests whether 71 A 1is densely inconsistent. -
Furthermore, before beginning to work on —™ A, we shall replace "™ A by another
sentence which is in a very simple logical form.

We first define some terminology. AVLITERAL is a formula of the form

o <Bora<pB, wvhere a and b are terms. A CLAUSE is a finite set of

1iterals. We use [to denote the empty clause. If C dis the clause

and //) is a structure, we say that C€ is valid in) iff the formula
L1 \Vi L2 eee /L

is valid in %7 in the usual sensevin predicate calculus (i.e., its universal
quantification is true). It is consistent with our notation to say (by defi-
nition) that the empty clause, [] , is never valid in 7.

Since our semantics causes a clause to be interpreted as the disjunction

of its literals, we shall often use the notation
A A '
as an abbreviation for the clause

{Ll, Loy vees Lm}

and we shall use C ~/ D to abbreviate C lj D. But note that

Ll \' LZ’
L2 \/ Ll, and

Lyv v
are all the SAME clause, namely

{., L,}.

1° 72

If éﬁ is a set of clauses, we say that 14 is valid in %7 iff every member
of g{ is valid is 7?{. zfis DENSELY INCONSISTENT iff there is no 77! such that
x4 is valid in 7] and 7%/ is a dense total ordering without endpoints. Note
that besides being in simple logical form, x{ does not use negation or equality.
Our proof theory will be a collection of rules deriving semantic consequences of

y{ ; the completeness theorem will say that if cf is densely inconsistent, the
proof rules will eventually derive 1 from <J.

We now describe the procedure by which, given a sentence A, we find a
finite set ,4 of clauses such that A 1is densely valid iff gf ié densely incon-
sistent. The procedure is essentially one of Skolemization and reduction to
conjunctive normal form. In particular, g{ may invblve new function symbols

not used in A.

Let B be the sentence of _{ obtained by replacing all subformulas of
A of the form a = B (where & and B are terms) by (o < B & B < o). Then

B does not use =, and B is equivalent to A in all structures in which <
is irreflexive. .

Let € be —™B. Clearly, B is densely valid iff € is densely incon-

sistent. By Skolemization, we can find a language ,7f+ formed by édjoining

“y

finitely many function and constant symbols to X and a sentence D of Q7f+
such that D is universal and such that D 1is densely inconsistent iff C s,
We continue to operate on D, Our'theory does not distinguish between the

S
"interesting" functions symbols of 7 and the "artificial" Skolem functions

adjoined in Jf+. Say D is

a
, \-/’xl ‘q/xz ceo an ,

‘e . a
where DY is quantifier-free. Let E” be obtained by reducing D to con-

junctive normal form; so, EY is propositionally equivalent to D" , and o

is a conjunction of disjunctions of atomic and negated atomic formulas. We have

already eliminated =, so atomic formulas are all of the form o < B and o < B.

Let F" be obtained from E- by replacing formulas of the form -—f(a < B) by

B < a and replacing = (o < B) by B < a. Then FY is a conjunction of dis-

junctions of literals. Say FD is

Fl & F2 & oo & F

m’
where each Fi is

Lil\/ \}Lini .

Let Ci be the clause

{L L

i1? "t in.} ’
i

and let £4 be

{c., ¢,y v.., C 1}
m

1’ 23

Then A is densely valid iff ;4 is densely inconsistent.

10

2. Some Rules of Inference

2.1 Intent

In this section.we describe some rules of inference. Each rule
will obviously be sound; i.e., for any given structure in which < is inter-
preted as a'dense total order without endpoints, it will lead from clauses
valid in that structure to a clause valid in that structure. It will also be
a fairly trivial modification of Herbrand's Theofem to see that all our rules
together will lead to a complete system. However, our final deductive system
will not allow all the rules, but will be restricted so that only a few of then
can apply at any particular time.

Of course, in theory we do not need é néw system at all, since Robinson's
original resolution system'works for any language in predicate logic. Thus, we
could write a set of clauses, [NJ& ; expressing the axioms for dense total
orders without endpoints; then, if‘a set 4 of clauses is densely inconsistent.
ordinary resolution will produce [j fromcj union tQCJ@‘. Howevef, since [/, "
is a rather long list, this ap?roach would not really be practical. " Rather,
we shall modify resolution to incorporate the properties of such orders as proofl
rules rather than axioms, so that the only axioms which will need to be ex-
plicitly added to eﬁ Qill be the axioms asserting that equals may be substituted

for equals within a function symbél.

2.2 Substitution and Renaming

We shall define a SUBSTITUTION FUNCTION to be any function whose
domain is the set of all variable symbols and whose range is a subset of the

set of terms of qlf. If 0 is a substitution function, we consider it to

11

operate on the terms, literals, and clauses of gfpin the obvious way. As usual
in predicate logic, we assume that the set of all variable symbols is countably
infinite, so g always has infinite domain; of course, in any particular appli-
cation of O, we are only interested in finitely many values.

It is clear that substitution is a valid rule of inference; i.e., if a clause
C is valid in a structure and O 1is any substitution function, then CO is also
valid in that structure (we are following the usual convention here of writing
substitution functions on the right). Tt is also clear that since there are
infinitely many substitution instances of C, one should not allow arbitrary
substitution as a rule of inference in our system. In fact, we shall use sub-
stitutions only when they occur as a renaming or as an mgu; we take up these
two concepts next.

A RENAMING is a substitution function which maps the variables 1-1 onto
the set of variables. It will be safe>to allow arbitrary renamings as a rule
of inference. Even though a clause C has infinitely many renamings, they
are all of exa&tly the same fdrﬁ as C, so that the prover never needs to list
any of them, but merely has to bear in mind that they exist.

If 0y andVOL2 are terms, they are said to be UNIFIABLE iff there is a sub-
stitution O such that 00 = 0,0, and we say that o© UNIFIES a, anda,. O is

2 1 2

a MOST GENERAL UNIFIER (mgu) of a, and a, iff o wunifies a; and éz and for any

T which unifies al and az, there exists a Vv such that T = 0 v {the substi-~
tution ¢ followed by VvV)3 informally, ¢ makes the minimum changes necessary

to unify ay and a,- It is known (see, e.g., [L] or [R]) that if ay and a, are
unifiable, then they have an mgu that is unique up to renaming , in that if o

and T are both mgu's of al and ay, then for some renaming 7Yy, 0= T Y . One

12
usually adopts some convention for choosing a specific mgu and writes
g = mgu(al,az); this will not cause trouble in our deductive system since

renaming is allowed anyway as a proof rule.

One may also unify more than two terms. For example, we say that aj, Ay,

a, are unifiable iff there is a O such that‘alﬁ = 2,0 = a,0 . In that case
there is a most general unifier; in fact if T = mgu(az,ag), and v = mgu(alT,azT),
then mgu(al, a2,a3)§;'T Vo,

Precisely the same discussion pertains to unifying literals instead of
terms. In fact, on this purely syntactic level, there is no distinction between

the function symbols occurring in terms and the predicate symbols (< and <)

occurring in literals.

2.3 Self-Chaining and Factoring

We describe here two instances of substitution which we shall allow
because they decrease the length of a clause. Self-chaining is used when a sub-
stitution instance of C contains an inconsistent literal (e.g., o < a), which
may then be deletedifrom the disjunction, and factoring is used when a substi-

tution instance of C contains a redundancy, such as o < 8 v/ o < B, which may

then be shortened to o < B.

Suppose C 1is the clause
a<B VD

where the terms o and B are unifiable. If ¢ is mgu(o,B), then Co is

logically equivalent to Do . We call DO a result of self-chaining applied

to C,

13

For factoring, suppose that the literals Ll and L2 are unifiable, and

let ¢ be their mgu. Let L = LlG = LZO . If C 1is the clause

Ll\/ L, N D,

then C0O 1is the clause
L v Do

note that by our convention, L \ L abbreviates the set {L,L} which equals
{L}. We call CoO a result of factoring applied to C.
There is another possible form of factoring which is not necessary, so that

we shall NOT include it as part of our formal system. Say C 1is

al < 81 v oa, < 82 v D.

Assume that the literals oy < 81 and o, < 82 are unifiable, with ¢ their mgu

and o = alo and B = BlO. Then CC is

a<B N a<B VW Do

which is not any shorter than C, but which is equivalent in any ordered structure

to
a<B V¥ DO.

One might call this last clause a result of factoring applied to C. We shall
not, since we shall obtain completeness without this rule, but as a practical
matter, it is probably advisable to include this rule in actual provers. Of

course adding this rule (or any other sound rule of inference) to a complete

14

system will maintain completeness.,

We remark that multiple self-chainings and factorings are obtained by

applying these rules several times. For example, suppose C is

L,V L, V LyV D,

g = mgu(Ll, Lz, L3), and LlO is L. Then we may obtain
L VvV Do

by factoring twice; specifically, let T = mgu(Lz, L3), and let v = mgu(LlT,LzT).

Then 0 = T v , so we factor first using .T and then again using V.

2.4 Chaining

Chaining operates on two clauses and uses transitivity of «; for
example, from o < B and B < Yy we infer o < vy, More generally, if Bl and 82 are
unifiable and C¢ dis their mgu, we wish to infer (o < y)O from o < Bl and 82 <y
There is a slight complication introduced here by the fact that variables
cccurring in different clauses could just as well be distinct. For example, the
terms f(x,c) and f(d,x) are NOT unifiable, and we are certainly not justified in

concluding [} from the clause f(x,c) < £f(d,x) as we would from f(x,c) < £(d,y).

However, from the two clauses.

1. e, < flx,c)

2. f(d,x) < ey

we would be justified in concluding el < ez, since this is valid in any ordered

structure in which (1) and (2) are valid; (2) could just as well have been

f(d,y) < e,-

15

One way to handle this would be to allow different substitutions to act on
the different clauses; it is certainly sound to conclude g < yT from o < Bl

and 62 < vy if BlO is the same as BZT. However, this is not enough. Consider

1. f(x) <c¢

2. ¢ < f(x).

Here there is no problem with unification; whether we chain on the ¢ or the
f(x), the mgu is the identity substitution; but all we can produce are the tri-
' vialities f(x) < f(x) and ¢ < ¢ . We should really be able to chain on the c
and produce f(x) < £(y) (which asserts that f is a constant function); e.g.,
the x in clause 1 should really be considered a DIFFERENT VARIABLE from the x
in clause 2.

The way this is handled is tb STANDARDIZE APART variables. Informally,
th;s means that distinct clauses are considered to have disjoint sets of variéb}xhw
Formally, we handle this by requiring that chaining may apply only to pairs of
clauses whi¢h have no variables in common. This will not caﬁse any undue re-
striction, since we are allowing arbitrary renaming as a rule of inference. As
mentioned above, the computer never attempts to list all the renamings of a
clause, €. However, when examining the possible chainipg,consequences of C and
D, it will first choose a renaming, C', of C with variables disjoint from the
ones in D (it does not matter which renaming is chosen), and then list all the
(finite number of) chaining consequences of C' and D.

We must also be careful, in defining chaining, to allow for < as well as

<, Thus if @l and @2 are either of the symbols < and <, we wish to be able

16

to apply transitivity to a@lB and B@ZY to arrive at a literal of the form
o @ B. Define tr(@l’@2) to be the symbol < iff at least one of @l and @2
is <, and the symbol < otherwise.

Now, let C be the clause,
a@ BN c',
and let D be the clause,

N
Y@ZS D',

and let @ be tr(@l,@z). Assume that B8 and Y are unifiable, and let 0o

be their mgu. .Then we say the clause
(@8 v C' ¥V DYo

is a result of chaining C and D on the terms b and ¢, PROVIDED that C

and D have no variables in common.

2.5 Variable Elimination

Our proof rules have not yet reflected the fact that we wish to
consider only dense total orders without endpoints. Thus, for example, the
clause x < ¢ is densely inconsistent, but is valid in totally ordered structures
with a largest element (if the constant symbol ¢ 1is interpreted as that element);
since the proof rules discussed so far are sound for such stfuctures, they will
never derive [from this clause. WNote that there is no such problem with
x < ¢, which is not valid in any ordered structure, and which yields I via

self-chaining.

17

The deduction rule called "variable elimination' really corresponds to what
a model-theorist would call the QUANTIFIER eliﬁination procedure for dense total
orders without endpoints. This is the procedure by which the quantifiers are
successively eliminated from a formula, eventually showing that the formula is
eéuivalent (in all such orders) to a quantifier-free formula; one hence obtains
a decision procedure for validity in such orders. Of course, this procedure
works only if the language has no function symbols.

DEFINITION: A variable x dis ELIGIBLE in a clause € diff x occurs
in C, but no term of C other than x itself contains x.

1f we phrase quantifier elimination in our framework, we have the following:
Suppose the variable x 1is eligible in the clause C. Since x may be thought
of as being universally quantified, we may attempt to eliminate it and obtain an
equivalent (but simpler) clause which does not use x.

There are four types of variable elimination. The first three correspond
to the three facts that our orders have no largest element, no smallest element,
and are dense.

~ For type 1, supfose that € is of the form

X@lu

A D
1 X@zotz ces X@nOLn ~ s

where x does not occur anywhere in D or in the terms Oy Oy wowy O Then
we say that D is the result of type 1 variable elimination applied to C. D

may be empty, so that, for example, we may now infer [} directly from x < ¢ ~f
x < d. The symbols @l’ @2""’@n are free to be < of < in any combination.

Type 2 variable elimination is the exact analogue of type 1, applied to

clauses of the form

al@lx v uz@zx \/ocn@nx vV D,

18

with the same restrictions on occurrences of x,

For type 3, suppose C is of the form
0 €x Vol x ...y @x V
x$ 1B, NV x$,8, ... N x$ BV D,

where neither n nor m is 0, and x does not occur in D or in any of the

o, or B.. Let &,. be the symbol < iff both @, and $. are <; otherwise &.,
i i ij i j i

is < (note that we do not use tr(@i,$j) here). Let Lij be the literal

ai&ijgj’ and let E be the disjunction of D with all of the Lij; namely:

Lig v Ly eee VLV
ooooooooo ® v
Lnl N an cea N/ an N D.

Then we say that E is a result of type 3 variable elimination applied to C.
E may well be longer than C, ‘although it is somehow "simpler'”, since it contains
one fewer variable,.

Finally, if C dis any clause of the form x < x v D, we shall say that D
is a consequence of C by type 4 variable elimination. Of course, we could also
apply self-chaining here, but we shall eventually restrict self-chaining (see

Section 4.3) so that it does not apply.

The fact that variable elimination is a sound rule may be stated officially

by the following easy lemma:

LEMMA 1: Suppose that the clause E 1is obtained from C by variable eli-

mination. Then for any dense partial order without endpoints, C dis valid in

that order iff E is:\

is

If x dis eligible in C and C does not contain any literal of the form
x < x, then one of the four types of variable elimination may be applied to eli-

minate x from C. An easy induction now shows:

LEMMA 2: For any clause C, variable elimination may be applied finitely
many times to C to obtain a clause D such that either D has no eligible

variables or D contains a literal of the form x < x.\

For example, if C is x<yV y < x, then D is x < x; in fact, one can
design the prover to simply throw out tautologies such as C and D, but care
must be taken 1f the system is to remain complete; see Section 5.1. In the
course of obtaining D, one may eliminate variables which were not eligible
in C, but which become eligible after other variébles are eliminated. For
example, if C is x < £(y) v y < ¢, we may eliminate x first to obtain vy

y < c, and then eliminate y to obtain U .

2.6 Remarks on Trichotomy ' /

Ihe reader may note that we have not yet introduced a proof rule
to reflect trichotomy, so that our proof theory might be relevant to partial
orders, not total orders. In fact, however, trichotomy was incorporafed by our
herbrandization process. Specifically, trichotomy was used in replacing (o < B)
by B <a and —f(o < B) by B <o . This step is not valid for partial orders.
It is now not necessary to adopt any further axioms (such as x < y~wvy < x) or
proof rules for trichotomy.

More formally, that no such axioms or rules are needed is simply to say

that we shall succeed in proving the completeness theorem without them.

20

However, this fact is not tied to some specific feature of our particular du-
ductive system. If Q{ is a set of clauses, 94 corresponds to a positive
sentence, A, in ordinary predicate logic; namely, A 1is the universal quanti-
ficatién of the conjunction of the clauses in 44 . By Lemma 2 of Section 1.4,
A (and hence Ed) fails to be valid in any dense total order without endpoints
iff it fails to be valid in any dense partial order without endpoints. Thus,
to derive [] from ég, we would not expect that our proof theory would have to
contain any rule reflecting trichotomy.

Observe that unlike Hilbert-style proof theories, our completeness theorem
will involve deriving [] only from inconsistent éi; it will not be the case
that if € 1is a semantic consequence of gd, then C is derivable from ,é{.
In particular, the trichotomy rule will not be derivable from the empty set of

clauses; for that matter, neither will anything else.

2.7 Substitution of Equals for Equals

We shall need to incorporate the fact that equals may be substi-
tuted for equals in an expression. TFor a simple example, consider the clauses:

1. ¢<d

2. d<c¢

3. f(e) < £(d)
where ¢ and d are constant symbols. One cannot derive [from these clauses
using the rules presented so far; in fact, it is easy to check that the only new

clauses which can be derived are-c < ¢ and d < d. We handle this by explicitly

adding an axiom. In general, if £ is an n-place function symbol, we define

21

the clause EE(f) to be:

x1<yl\/ t,..\/xn<yn Y

' i
v, <% ...\/yn<xn\/
E(xp,eeesx) S E(y,een,y)e

Let &£& be the set of all EE(f) for f din our language. Then our complete-
ness theorem will actually say that if a set S of clauses is densely inconsis-

tent, then there is a deduction of [] from S wunion & E

Now, to consider our specific example, we may add EE(f), which is
4, x <y V y<x vV £x <1f(y).

We proceed to derive [] as follows:

5. d<y V y<d Vv ffe) <£(y) (3,4, chaining d/x)
$. d <c V c<d (5 self-chaining c/y)

7. ¢<c¢ N c<d (1,6, chaining)

8. ¢ <¢ (2,7, chaining)

9. [J (8, self-chaining)

As was the case with trichotomy, our system does not need any special rules
or axioms reflecting the fact that equality is symmetric, reflexive, and transi-

tive, These facts are subsumed by the rules for <

e

22

3. The Ground Case

3.1 Basics

Informally, a set of clauses is ground consistent iff it is con-
. 7
sistent when we regard each term as a constant symbol. Formally, let & be a
set of clauses. A ground model for gd is a triple (({., <,F), where (l,ois a
set partially ordered by the relation < and F 1is a function from the set of
. . @i . (? o . ,
terms occurring in into (/- such that all the clauses of s+ are true in the
obvious sense; namely, for each C in QJ , either C contains a literal of the
form o < B and we have F(a) < F(B), or C contains a literal of the form a < 8

and we have F(a) < F(B). We say ;zf is ground consistent iff g{ has a ground

model; if not, ¢! is ground inconsistent.

A térm, literal, or clause is said to be GROUND iff it contains no variables.
In the definition of groﬁndvconsistent, we are treating the terms of ¢(AS IF
they were distinct and unrelated ground terms even if in fact they contain vari

ables.

Clearly, if ¢i has any totally ordered model, it is ground consistent.
The converse of this is false; for example, let ;A be {x < y}. Even if ;4’ con-
tains only ground clauses, it may be ground consistent but fail to have any
totally ordered model; for example, let s contain the clauses c <d, d <c,
and f(c) < £(d).

Observe that here it does not matter whether we are looking at partial

orders, total orders, or dense total orders:

LEMMA 1: Let l§ be a set of clauses. Then the following are

equivalent:

23

1. ¢4 has a ground model.
2. gf has a ground model ([?A,<,F) in which < totally orders &

3. %4 has a ground model ([Z,,<,F) in which < totally orders (I

and < is dense and without endpoints.

4, ¢4 has a ground model ((]_ ,<,F) in which < totally orders Qi

R . e
and F maps the terms occurring in % ONTO /.

PROOF: It is sufficient to-show that (1) implies (2-4). If‘(cz‘,<,)
is any groﬁnd model for 54 . Qe may find a relation, <' on (L which extends <«
and which tétally orders (1 (Lemma 2 of Section 1.3). Then (@ ,<',F) satis-
fies (2). Now, we can construct a superset, B, of QL, and a dense total order
without endpoints, <'' of B such that <'' restricted to (] agrees with <'
(Lemma 1 of Section 1.3). Then (B,<"',F) satisfies (3). Finally, let C be the
range of F and let <''' be the restriction of <' to C. Then (C,<''".T)
satisfies (4). .,

Of cburse, one cannot in general expect to get an ((L ,<,F) to satisfy (3)
and (4) simultaneously; for example, if ;4 is finite, then (4) would imply that
Cl/ is finite, so the ordering could not be dense. We also remark that the

usual compactness theorem yields:

LEMMA 2: Let 4 be any set of clauses. éd is ground consistent iff every

finite subset of ¢4 is ground consistent.\

We now take up the following two topics: First, there is the analog of
Herbrand's Theorem from ordinary predicate logic, which says that if a set of
clauses is inconsistent, then some substitution instance of them is ground incon-

sistent. Second, there is a ground completeness theorem.

24

3.2 Herbrand's Theorem

s
’

If g4 is any set of clauses of the language 7, let subinst(. |)
be the set of all C0 such that € is a clause in u{ and O 1is a substitution

function of g;f. The expected Herbrand theorem would be that if y(is densely

-

inconsistent, then subinst(\;f) is ground inconsistent, but this is false for

two reasons. First, we must assume that » contains the set = of Section)

J

2,7, Second, we wanted dense orders. For example, if consists only of the

two clauses ¢ < d and x < ¢ v d <x, then $¢& is vacuous and subinst(¢f) is

ground consistent, but every model for ﬁo{ has no elements between P and Q.

[Vl

For an Herbrand theorem which produces a dense model for f{, we would need to
assume that «JJ contains the axioms for dense total order without endpoints.
More on this later. TFor the time .being, we shall only state the Herbrand result

in terms of totally ordered models.

THEOREM: If subinst(aJ) is ground consistent and Ejﬁ; is a subset of

3

then A has a totélly ordered model.

1

PROOF: Let (/) ,<,F) be a ground model for subinst(.{). As we saw above,

we may assume that F maps the terms of Y onto (. and < totally orders ...

We shall make (lﬂ,, <) into a model for ud « If ¢ 1is a constant symbol of .
interpret ¢ as F(c). If g is an n-place function symbol of .37, the inter- o

pretation of g in the model should be an n-place function, G, on (.. We would

like to define G by

G(F(ul), censy F(uh)) = F(g(@l, ceoy un)).

25

In view of the fact that F is onto, this is a legitimate definition PROVIDED

we can show that if Bl,...,Bn are terms with each F(uf = F(Bl) then

F(g(ul, cees un)) = f(g(Bl, cees B D).

n

Suppose that this fails; say

f(g(al, eeos un))7'f(g(81, ceoy Bn)).

Since the axiom EE(g) is in 4, its substitution instance,

al<Bl\/...\loan<Bn vV
Bl<ocl\/... \/Bn<ocn N

g(al,...,an) j_g(bl,...,b),

n

is a subinst(¢4). Since the ground model must make one of the literals in this

last clause true, we have
. F(g(@.l, Les sy (Xn)) < F(%(Bl, ooy Bn>)a

a contradiction.
Now, as usual in completeness theorems, we easily' check, using the fact

that F is onto, that we have constructed a totally ordered model for m{.\\

3.3 The Ground Completeness Theorem

We now show that if ¢i is ground inconsistent, we can derive L]

from A by’using\bnly ground instances of chaining and self-chaining (that is,

26

the only substitution allowed is the identity substitution). Furthermore,
we show that there is a great amount of freedom in the order in which we eliminate
terms. We may fix any set # of terms and demand that we first do only

) . o
chainings on terms in %’, until we obtain a ground inconsistent set of clauses

that do not use ‘4 at all.

First, we state specifically our rules of inference. If C is the

clause
B<B v D,

then we call D a result of ground self-chaining applied to C on the term

b. For chaining, if C is the clause
u@lB v Cc',

D 1is the clause,
~8@26 v D'

and @ is tr(@l,@z) (see Section 2.4), then we say that the clause
a@s v ¢c' v D'

is a result of ground chaining C and D on the term b. Observe that in this
definition, we do not require the variables of C and D to be disjoint. This
is in line with our definition of ground consistent, in which we treat all terms

as if they were ground.

