AUTOMATIC THEOREM PROVING

by Woody Bledsoe, University of Texas at Austin

A talk given before the Advanced Technical Planning Committee of CAU-I, in Dallas, Texas, August 24, 1982.

There is an active group of ATP researchers at UT-Austin under the direction of Woody Bledsoe, Bob Boyer, J. Moore, and Frank Brown, which includes 6 professors and about 12 graduate students. Also, Don Good heads a large group there working on Program Verification (the Gypsy project). Other AI researchers at UT-Austin include Bob Simmons (text understanding), Gordon Novac (Automatic Physics programs), and Elaine Rich (Expert Systems).

Woody Bledsoe and Michael Ballantyne are studying the feasibility of establishing an AI Laboratory at the Woodlands, a new city north of Houston. This laboratory (WAIL), if established, would be funded by the Mitchell Energy Corporations and other corporations in the Houston area. This would be part of HARC (Houston Area Research Center) at the Woodlands, which has already been given 110 acres of land and several million dollars.

A good introduction to ATP can be found in What Can Be Automated?, ed. Bruce Artin, MIT Press 1980, pp. 448-462. This appears as (*) in the list of references given here.
OKS

ang and Lee. *Symbolic Logic and Mechanical Theorem Proving.*
(see List of Reference in this book.)

nald Loveland. *Automated Theorem Proving: A Logical Basis.* Careful definitions
and proofs, especially on Resolution.

A. Robinson. *Logic, Form and Function.* (The inventor of the term RESOLUTION.)
Especially Chapters 11-13.

bert Kowalski. *Logic for Problem Solving.* (The inventor of Logic Programming,
SL-RESOLUTION, Resolution graphs, etc.).

yer and Moore. *A Computational Logic.* The "Boyer-Moore" system.

igenbaum and Feldman. *Computers and Thought.* Section 3. Early papers on ATP
by: Newell, Simon, and Shaw, and Gelertner and Loveland.

Forthcoming from Springer. Three volumes. (Martin Davis' history
of ATP will start the first volume; W. Bledsoe will write such a
history for the third volume.)

INTRODUCTION

'Automatic Theorem Proving" (by W.W.Bledsoe), in *What Can Be Automated?* (NSF COSERS Study).

JOURNALS

International Journal of Artificial Intelligence. (AI Jour.)

Journal of the Association for Computing Machinery. (JACM)

Machine Intelligence (MI-1-MI-9)

IEEE Transactions on Computers

CONFERENCE REPORTS

Proceedings of AAAI National Conferences, AAAI, 445 Burgess Dr., Menlo Park, California, 94025.
What is ATP?

Proving theorems Automatically (by computer)

e.g., Pythagorean Theorem
 Heine-Borel Theorem
 Schroeder Bernslein Theorem, etc.
 new theorems

What has been done? Later

How? "
- **Sound**: Does not "prove" non-theorems

- **Complete**: Proves all theorems (Semi-decision procedure) but may never finish on a non-theorem

- **Decision Procedure**: Can decide whether any formula is a theorem or not
Applications of ATP

Program Verification

esp. Man-machine theorem proving and proof checking

Now in use, somewhat (ISI, UT, Stanford, UT, --)

Program Synthesis (Waldinger-Manna, Balzer, ...)

Data Base Inference

Very important, but needs work

See Minker, et al. book (logic and data bases)

Truth maintenance?

Probabilistic inference

Logic Programming (Kowalski, et al.)

Expert Systems (MYCIN, PROLOGUE, PROSPECTOR, etc.)

Mathematics

Proof checking (see slide)

Man-machine (Assistant"

File of theorems

Any automatic decision maker
PROOF-CHECKING

J. Morris - "all" set theory theorems in A. P. Morse's book.

dé Bruijn - all of Landau's book.

Boyer-Moore - prime factorization theorem, etc.

PV projects at UT, ISI, Stanford, SRI, ...

Suppes-Kreisel - CAI course in Set Theory to Gödel's Incomp. Th.

. Weyhrauch - FOL

Excellent application area, but has not been done right.

The user has to bend to the computer (let's change that).

Interesting, challenging, open problem.

Neveln - current APC project at UT.
These three pages are from Reference (*).

One of the earliest ATP programs was Galernter plane geometry prover. For example,

Theorem. Two vertices of a triangle are equidistant from the median to the side determined by those vertices.

![Figure 1](image)

GIVEN: Segment BM = Segment MC, BD ⊥ AM, CE ⊥ ME.

GOAL: Segemtn BD = Segment EC.

SOLUTION:

- Angle DMB = Angle EMC
- Angle BDM = Angle CEM
- Segment BM = Segment MC
- CEM is a triangle
- BDM is a triangle
- Δ CEM ≅ Δ BDM
- Segment BD = Segment EC

This is the machine's proof though we have omitted some of its steps for simplicity of presentation.

In this proof the machine proceeds ("reasoning backwards") as follows:
Its goal is

G1 \hspace{1cm} \text{Segment } BD = \text{Segment } EC .

So it consults a list of solutions for this type of goal and finds (among others), that two segments can be proved equal by showing that they are corresponding parts of congruent triangles. Since \(BD \) is in \(\triangle BDM \) and \(EC \) is in \(\triangle CEM \), it selects the subgoal

G2 \hspace{1cm} \triangle CEM \cong \triangle BDM .

Now it consults another list for ways of proving two triangles congruent. It finds: (a) three-sides, (b) side-angle-side, (c) side-angle-angle. It sets the subgoal

G3 \hspace{1cm} "\text{three-sides}" \hspace{0.5cm} \text{for } \triangle \text{'s } CEM \text{ and } BDM .

This fails (after a good deal of work). So it sets the subgoal

G5 \hspace{1cm} "\text{side-angle-angle}" .

There are several ways this can be achieved, one of which requires the three subgoals

G6 \hspace{1cm} \text{Segment } BM = \text{Segment } MC

G7 \hspace{1cm} \text{Angle } DMB = \text{Angle } EMC

G8 \hspace{1cm} \text{Angle } BDM = \text{Angle } CEM .

The machine finds subgoal G6 among its premises. In solving subgoals G7 and G8 it consults a list of methods for making two angles equal, and finds (among others): "verticle angles are equal", and "all right angles are equal." Since it detects from the diagram that angles DMB and EMC are verticle angles, and
that angles BDM and CEM are right angles it successfully concludes the proof of subgoals G6 - G8, and therefore G5, G2 and G1. In the second step of the proof when subgoal G2 was selected, the machine could have selected any of the following subgoals:

- G2.1 $\Delta CEA \cong \Delta BDA$
- G2.2 $\Delta CEA \cong \Delta BDM$
- G2.3 $\Delta CEM \cong \Delta BDA$
- G2 $\Delta CEM \cong \Delta BDM$

But, by constructing in its memory a "general" diagram of the situation (which is its representation of the drawing in Figure 2), the machine easily checked by measurements that subgoals G2.1 - G2.3 could not be true, but that G2 seems alright. Thus it selected only subgoal G2 and thereby drastically reduced the search time.

This idea of filtering out false subgoals is generalized and used in many areas of automatic theorem proving. For example, in group theory a false subgoal can be discarded by testing it on known groups (such as the Klein four groups).
Mathematics can be divided as follows:

<table>
<thead>
<tr>
<th>FIRST ORDER LOGIC</th>
<th>HIGHER ORDER LOGIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROPOSITIONAL LOGIC</td>
<td>Complete</td>
</tr>
<tr>
<td></td>
<td>in incomplete</td>
</tr>
</tbody>
</table>

- **PROPOSITIONAL LOGIC** - Rather trivial

\[\exists \left[P \land (P \rightarrow \phi) \land (\neg \phi \lor R) \rightarrow R \right] \]

No quantifiers: (\(\forall, \exists\))

Easily handled by computers.

- **FIRST ORDER LOGIC** - difficult
- **HIGHER """"** - more """"
FIRST ORDER LOGIC

. Examples See next two pages.
. Quantification of individual variables
. This is the challenge of this age, to prove all theorems in first-order logic.
. A complete proof procedure was devised by Herbrand in 1930

Herbrand Procedure

So we are finished?

No. It was too slow!

Can methods be devised so that computer provers can compete with humans? surpass them?

That's the challenge.

Where are we now?
Theorem. If $a \leq b \leq a \leq t_0 \leq b$,

\[\forall \varepsilon > 0 \rightarrow \exists \delta \ (\delta > 0 \land \forall x \ (|x - t_0| < \delta \rightarrow |f(x) - g(x)| < \varepsilon)) \]

\[\forall \delta > 0 \rightarrow \exists \varepsilon \ (\varepsilon > 0 \land \forall x \ (|x - t_0| < \delta \rightarrow |\frac{f(x) + g(x)}{2} - \frac{f(x) + g(x)}{2}| < \varepsilon)). \]

Theorem. The sum of two continuous functions is continuous:

\[\forall \varepsilon > 0 \rightarrow \exists \delta \ (\delta > 0 \land \forall x \ (|x - x_0| < \delta \rightarrow |f(x) - f(x_0)| < \varepsilon)) \]

\[\forall \delta > 0 \rightarrow \exists \varepsilon \ (\varepsilon > 0 \land \forall x \ (|x - x_0| < \delta \rightarrow |f(x) - f(x_0)| < \varepsilon)). \]
Example: AM5

C1. \(\forall x \in [a, b] \quad \forall \varepsilon > 0 \quad \exists \delta > 0 \quad (w \leq \delta \leq x \rightarrow f(x) \leq f(w) + \varepsilon) \)

C2. \(\exists \gamma > 0 \quad \forall \gamma \in (x \leq w \leq y \rightarrow \) \)

B1. \(\forall x \in [a, b] \quad (\forall t \leq x \rightarrow f(t) \leq f(x)) \rightarrow x \leq \xi \)

B2. \(\forall y < \xi \rightarrow \exists z \in [a, b] \quad [\forall t (a \leq t \leq z \rightarrow f(t) \leq f(z)) \land y < z \leq \xi] \)

B1. \(\forall w \in [a, b] \exists \eta \quad \forall x \in [a, b] \quad (x \leq f(w) \rightarrow f \leq x) \)

B2. \(\forall w \in [a, b] \exists \eta \quad \forall y \quad (\eta < y \rightarrow \exists z \in [a, b] \quad f(z) \leq f(w) \land g \leq z < y)) \)

\(\text{Lemma (AM5):} \quad \alpha \leq \beta \land C1 \land C2 \land LUB1 \land LUB2 \land GLB1 \land GLB2 \land \) \(\exists \mu \in [a, b] \quad \forall \nu \in [a, b] \quad (f(\mu) \leq f(\nu)) \).
CHRONOLOGY

1930 "Herbrand Procedure"
 (also Skolem Presburger, etc.)

1955 Logic Theorist
 NSS Rand (Principia Math.)
1959 Geometry Machine
 Gelernter
1960 Herbrand Procedure Won't Work.
 Too Slow.
 Gilmore
1960-65 Improved Hilbert Procedure
 Davis, Putnam, Prowitz, Russians
 "
 Wang's System

1965 RESOLUTION
 J. A. Robinson
efficient, excitement
1965-70 Refinements of RESOLUTION
1970 "Natural Deduction Systems"
 Bledsoe, Nevins, C. Hewitt,
 Loveland, etc.
1970's Both types
 Applications

Applications
. Newell-Simon-Shaw (Chap. 2 of (1)
 38 of 52 theorems)
Wang
 (all of (1); > 350 Theorems)

(1) Principia Mathematica (Whitehead & Russell)

(2) Propositional Logic

. Gelernter
 A number of theorems in plane geometry
 (not requiring constructions)
Some Theorems Proved Automatically

\[x^3 = x \] (in a Ring) \[\rightarrow \] The Ring is Commutative

- Unique Factorization Theorem (with some input because)
- The sum of two continuous functions is continuous \((f, g)\)

- Intermediate Value Theorem

\[* \] \(f \) continuous on \([a, b]\) \[\rightarrow \] \(f \) u.cont. on \([a, b] \)
\[* \] using non-standard analysis
\[(+ \text{ Similar Theorems: Bolzano-Weierstrass, etc.}) \]

Some to Prove

- Schröder-Bernstein Theorem
\[* \] \(f \) cont on \([a, b]\) \[\rightarrow \] \(f \) u.cont. on \([a, b] \)
\[* \] without non-standard analysis

- Heine Borel Theorem

- Hahn-Banach Theorem
Two main Types of Provers (to be discussed shortly):

- Resolution
- Natural Deduction

Two Types of Activity (of Research):

- Devising Proof Procedures and testing them using Computers
- Proving Completeness of results (mathematical)

Or

- Man-Machine
- Machine alone
Much of the research in ATP during the last fifteen years has been stimulated by J. A. Robinson's introduction of RESOLUTION in 1965 (see the books by Chang and Lee, Loveland, or Robinson). A succinct easy-to-read, introduction in RESOLUTION is given in Reference (*).

Another kind of ATP research utilizes the "Natural Deduction" Method (see reference (**)).

Natural Deduction is governed by a set of (production) rules. They use the implication symbol "$\rightarrow\$". For example,

John is a boy \rightarrow John is a male,

or more generally

\[P \rightarrow Q \]

where \(P \) and \(Q \) are statements which are either true or false.
Some Natural Deduction Rules
(for the Ground Case - no variables)

\[P, P \rightarrow Q \]
\[\underline{\quad Q} \]

\[P \rightarrow Q, P \rightarrow R \]
\[\underline{\quad P \rightarrow Q \land R} \quad \text{AND-SPLIT} \]

\[R \rightarrow S, P \rightarrow Q \]
\[\underline{\quad P \land (Q \rightarrow R) \rightarrow S} \quad \text{BACK CHAIN} \]

\[P \rightarrow R, Q \rightarrow R \]
\[\underline{\quad P \lor Q \rightarrow R} \quad \text{CASES} \]

\[\underline{\quad P \rightarrow P} \quad \text{match} \]

\[\text{John is a boy} \rightarrow \text{John is male} \]