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Abstract

This paper describes the architecture and implementafithe ®ullseye automatic test generation system. Bulls-
eye differs from existing systems in that itteggeted: by using program analysis, it is able to guide testing t@asire
that influence or are influenced by areas deemed to be ‘itit@geghat is, locations that are more important to test.
By not treating all paths equally and instead stressingethesas of influence, Bullseye guides branch selectionto tes
only these areas. As a consequence, Bullseye deals with agexole subset of program paths that still encapsulate
relevant program behavior.

1 Introduction

Test generation is the development of inputs to a program or function to tesbehavior. Manually developing
tests is hard; itis difficult and time-consuming for humamsévelop tests, and it is difficult to guarantee that human-
developed tests exhibit full coverage without being redmdSeveral automated techniques for generating tests hav
been proposed, such escution-driven testing, in which test inputs are used in conjunction with concresations

on those inputs to exhaustively test all possible progratihspa

Two systems that perform execution-driven testing are DA&JTand CUTE [8]. Both of these systems instru-
ment a program to collect branch conditions, then use randdial inputs to run the instrumented program. After
execution, both look at all path conditions generated bybtia@ches taken, invert the last one, and then attempt to
repeat the process by generating a new input satisfying thew conditions. Essentially, this performs a depth-first
search across the entire program, looking for possible.bugs

A major obstacle to execution-driven testing of entire paogs is the path explosion program: The number of
possible paths through a program grows exponentially. Baahch encountered may go in one of two ways; either
the branch is taken, or the branch is not taken. Executivemltesting systems such as CUTE are geared toward
unit testing. Units tend to be small, with limited branch tteExisting test coverage systems must bound the paths
they check to a fixed number of branches. While this sufficesifiit-testing, where paths are few and small, paths
through entire programs are greater in number and in depttepth-first search across all paths does not scale.

Additionally, most of these paths result in correct behavibhe competent programmer hypothesis states that
programmers write code that is almost perfect, and thaetposblems that do occur are syntactically small; these
are logic errors that can be corrected with a few keystrokesnstance, substitution of for >=. It is reasonable
to assume that a program behaves correctly most of the tingethat only a few paths through a program contain
errors. It is these paths that we consider interesting, fwe ican guide testing to these error-inducing paths, then
we can test program behavior at a greater path depth becaude mot need to test each and every path through the
program.

In this paper, we introduce Bullseye, a targeted testingegyshat uses program analysis to guide branch searching
to areas that influence or areas influenced by locations thadeem ‘interesting’; that is, locations that are more
important to test. We can define this interest in many patémtays, one of which we discuss later. By not treating
all paths equally and instead stressing these areas ofricBudullseye guides branch selection to test only these
areas. Consequently, Bullseye is able to explore relewa@hspearlier than if all branches were equal. In this way, we
are able to detect bugs more quickly than a traditional ei@wuariven test system.



One way to define interest of program locations would be igram changes, for instance, between two suc-
cessive versions of a program in a change management sy&iwen two versions of a program, we can identify
the locations that have changed between them. By markirgeths being interesting, Bullseye will prioritize its
searching to changed code and areas affected by those sh@®muse there is no need to retest areas not affected
by those changes, Bullseye saves time by not checking ugedavaths.

In this thesis, we describe an implementation of the Bulsgystem. We resolve and highlight some details in
the implementation of prior work, such as CUTE, that do ngdesp in literature. Finally, we empirically evaluate
this implementation of the Bullseye system.

This paper is structured as follows. In section 2, we give\@naew of how our system expands on CUTE and
the implementation details that were neglected in the dagmm. In section 3, we give a high-level description of the
overall architecture of our system. In section 4, we diseusamber of experiments that were performed to evaluate
our system. In section 5, we draw conclusions about our syste

2 Related Work

Bullseye is inspired by the CUTE automatic test generatymtesn [8]. CUTE instruments a program with symbolic
tracking information, then runs the program on a random tindduring execution, CUTE tracks the path taken
through the program and the branch conditions that leadautih that path. At conclusion of the execution CUTE
negates a condition at the end of the path. If negating thidition causes the modified list to be unsatisfiable, CUTE
simply chooses a different branch earlier in the branctohjaintil it finds one that can be satisfied. CUTE then takes
these satisfiable conditions and uses them to generate anpety then executes the program using it. This cycle
causes CUTE to enumerate all possible paths through a jpnagra depth-first manner, using a bound on the number
of branches to resolve issues with nontermination as wel asstrict the number of terms and variables for which
to determine satisfiability.

The authors of CUTE describe many of its inner workings inlenmgentation-level detail, which has made devel-
oping those components rather straightforward. Howemehe discussion of their implementation, the authors omit
a number of details that are required to fully implement CUTFECUTE, all that is mentioned regarding function
call handling is a brief sentence on the use of a symbolikstaithout further details. In Bullseye, the data structure
that maintains the symbolic state for variables also famatias a stack. CUTE also assumes the presence of sufficient
runtime type information to determine the size, in bytes vériable; whether it is a pointer or a primative type; and,
if a pointer, what type it points to. However, in the C prograimg language, runtime type information is generally
not available at runtime. Bullseye solves this by consingca data structure at compile time to represent all types
seen by the compiler, which is then accessed during executorthermore, CUTE assumes that a pointer to an
object will only ever point to NULL or one such object. CUTE, presented, does not have a mechanism to handle
pointers that point to an array of objects; that is, arrays ttave been dynamically allocated. (Statically allocated
arrays are simply unrolled into a sequence of variables.JE$ designed primarily for data-structure testing and
thus this restriction may not be disadvantageous for thadgae. On the other hand, we would like to be able to test
programs for which a bug-causing input may include a dynaltyi@llocated C string, and so Bullseye must be able
to handle dynamic arrays.

3 Oveall system architecture

The Bullseye system consists of two major parts, an instntimg compiler and a runtime library. Figure 1 shows the
overall architecture of the system. The compiler instruts@program by adding code to perform runtime tracking,
so that variables and constraints can be evaluated syrabpli¢he compiler generates instrumented source files, as
well as an additional driver source file containing type datd entry code for the program. The instrumented source
and the driver source file are compiled with an ordinary C dtenpnd are linked with the Bullseye runtime library.

When the resulting executable is run, code in the runtinraribruns the program code in a loop. First, an input is
generated and assigned into memory. The program is therBranch conditions encountered during execution are
stored. At the program’s end, a branch condition is seleitté@ negated to generate a new set of branch constraints.
A constraint solver takes these constraints and uses thgentrate a new input. Bullseye continues this generate-
execute-negate-solve loop until the chosen branch sefeetgorithm indicates that there are no branches left to
negate; this indicates that all paths have been explored.

To perform runtime tracking, we must add instrumentatioaxisting code. We do this by using a C-to-C source
compiler to read in source files and insert instrumentataokk inline with original source code. These hooks will, at
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Figure 1: The architecture of Bullseye

runtime, invoke portions of the Bullseye runtime libranhelcompiler also constructs a new source file that contains
a serialization of all types used in the original programwat as a driver for the entry function.

The runtime library is implemented as a modular collectiérCe+ classes, with linkage code callable from
instrumentation-added hooks written in C. The major sulesys of the runtime library are the logical input map, the
runtime type system, the evaluation engine, the symboliression evaluator, and the symbolic constraint solver.
The evaluation engine provides the main execution loopsésuthe input map and runtime type system in order to
instantiate input variables, the symbolic expressionuatal to compute linear and pointer constraints for inparts,
the constraint solver to generate new inputs.

3.1 Compiler Instrumentation

To track values through the program at runtime, Bullseyes @seinstrumenting compiler built on top of the C-
Breeze compiler infrastructure [5]. C-Breeze provides aAQSI C89) parser front-end and a collection of C++
classes that represent the parsed syntax tree, as well sesphat allow for code transformation. Using the provided
code transformation interfaces, the compiler inserts Bdokhe Bullseye runtime library and outputs the resulting
enhanced source files. These source files can then be comyiifed user’s ordinary C compiler, suchgsc, and
linked against the Bullseye runtime library.

The Bullseye instrumenting compiler performs AST transfations in the following order:

. The C-Breeze dismantler is invoked to transform the soaodle to an intermediate representation.
. Array and structure references are rewritten as popites-offset statements.

. Symbolic instrumentation is added for evaluation exgitess, branches, and procedure calls.

. Variable declarations are added for each variable.

. A source file containing additional C source code for thieediis output.

a b~ wNBE

3.1.1 Dismantler

The C-Breeze compiler contains routines to transform agoa€s source file into a medium-level intermediate rep-
resentation [5]. This representation consists of simplifiesignment statements, basic control flow operations, and
procedure calls, while still retaining higher-level comnsts of C, such as array and structure references. Thigsllo
subsequent transformations to the AST to be consideralvlglsr, as there are fewer types of expressions that need
to be handled.

3.1.2 Operand Changer

The oper andChanger class converts the array and structure references retainéae dismantler into an even
simpler pointer-plus-offset notation. Because C-Breqeeraies at a high level and does not know what the size or



Source After transformation
X =y cute_exec_synbolic_assign((void *) & x, "y");
X =Y,
*X =y cute_exec_synbolic_assign((void *) x, "y");
*X =Y,
X = xy cute_exec_synbolic_deref((void *) & x, "y");
X = *y,;
*X = xy cute_exec_synbolic_deref((void *) x, "y");
*X = xY;
X =y op z cute_exec_synbolic_eval ((void *) & x, "y", OPERATOR op, "z");
X =y op z;
*X =y op z cute_exec_synbolic_eval ((void *) x, "y", OPERATCOR op, "z");
*X =y op z;
if (x opy) goto|l; | cute_conparison_result = x op vy;
cute_eval uate_predi cate("x", OPERATOR op, "y",
cute_conparison_result, "branchldentifer");
if (cute_comparison_result !'=0) goto I;

Figure 2: Code instrumentation additions

offset of types will be, we employ the use of the C maafd set of (t ype,
the offset at compile time.

As an example, the expressipobj ect _t) x r.a. b[ 13] would be converted to pointer-plus-offset no-
tationas(voi d *) tnp = offsetof (object t, a.b[13]);tnp = & + tnp; x = *tnp;

nmenber) which is used to determine

3.1.3 Symbolic Instrumentation

Symbolic instrumentation occurs inside tbat eChanger class. Figure 2 shows the hooks that are added for
assignment statements and branches. The expressionsie dootes (“y”) represent symbolic variables; at runtime,
they are represented by strings. Branch identifiers areuenidentifiers for each branch. Because the dismantler
transforms branches with complex conditional expressiniosa series of branches with simplified conditions, simply
using file and line numbers is insufficient. Instead, we laaeh branch node in the AST with a unique identifier.

3.1.4 Variable Declarations

In order to use symbolic variables in an instrumented progtaey must be first be declared. Ttiet eDecl Add
class adds variable declaration calls that initialize atsylin variable with its address and its type. To handle local
and parameter variables, we maintain a stack of variableextm For local variables,ut e_decl are_vari abl e
calls are added to create variables in the current contextfdfmal parametersut e_decl are_vari abl e_-
from st ack calls are added to simulate C’s pass-by-value semantiesgthoth create a variable in the current
context and copy the value from the associated parametertfre stack.

3.1.5 Driver

The instrumentation phase also results in an additionaicediile, cut e_dri ver. c, containing type definitions
and a stub functiorgut e_pr ogr an( ) , which is used to initialize global variables before we rn@ &ntry function
of the program we wish to test.

Type definitions are output in two formats. First, type deti@ns are printed in the driver as C source code. These
are essentially copies of all types declared in the instniateprogram. These types have been simplified somewhat,
rewriting all occurrences of nested structures into mldtipructure definitions. Secondly, the instrumentaticipots
a functioncut e_pr ogram t ypes(), containing in its body a number of calls to the Bullseye imetlibrary to
construct the runtime type graph. These calls then usesitteeof () andof f set of () operators on the C-
language types in the driver.

C-Breeze makes use of several design patterns to traver$end&es, such a¥i si t or s, Wl ker s, and
Changer s. These suffer from lack of fine-grained control over thedrsal, thus we utilize a variant called (for



10 = <0, 10>
typedef struct cell_s {
head index int data;
[ v struct cell_s *next;
1 4 3 4
10 42 =<3, 10, 42, 0> } cell _t;
head index .data .next void test(cell_t *head,
[ LA | int index);
1 4 3 4
10 42 = <3, 10, 42, 3>
head index .data .next
| A4 | v
T 7 3 s 1) 5
10 42 38 =<3, 10, 42, 5, 38, 0>
head index .data .next .data .next

Figure 3: Example Memory Graphs and Corresponding InputdMap

lack of a better name) Bi spat cher . In aDi spat cher, however, thali spat cher () method invokes itself
recursively on children of an AST node, as opposed to ingkirevi si t () method of a AST node. This was
done to allow traversal to occur in the order necessary tafpropriate output format, while still permitting enough
abstraction to allow for composition @ spat cher s. TheTypeDi spat cher class is used for C-language type
definitions, and th€TypeDi spat cher class is used to create the function definitions to declaetuthtime type
graph. Each of these are composed withCamler edDi spat cher, which enforces that types are output in the
correct order; for example, all the types used Bta uct must be declared before teé r uct itself.

3.2 RuntimelLibrary

In order to perform runtime tracking, Bullseye uses a coerpitstrumentation phase to add hooks to a source pro-
gram, resulting in an instrumented version of the prograchaudriver. These are then linked against the Bullseye
runtime library, which contains the implementations far #tuded hooks. The resulting executable thus contains both
the original program as well as the instrumentation withalitto test it, running side-by-side. The execution of this
resultant program follows the procedure below:

1. The entry point parses command-line options and insti@stithe evaluation engine.

2. The evaluation engine initializes the runtime type systéth all of the types defined in the program. These
types were output by the instrumentation (see section)3.1.5

3. The evaluation engine generates a blank input for theranog

4. The evaluation engine starts the execution loop:

a. The instrumented program is run. Hooks in the programkieNibrary code to track symbolic execution
and branches.

b. After execution concludes, the evaluation engine ct®aseranch to negate. If negating this condition
results in an unsatisfiable input, the evaluation engin®@se® a different branch until it gets one that is
satisfiable.

c. This modified list of branch conditions is passed to thestramt solver in order to generate a new input.

d. The loop is repeated until the evaluation engine has exglall relevant paths.

The library contains the C entry pointgi n() ), from which options are parsed, weight data is loaded from a
file (if specified), and an instance of the evaluation engape¢ifically, theCut eEngi ne class) is created and run.

3.21 Logical Input Map

Bullseye represents inputs to a program using a logical mgmap, which is conceptually a serialized memory
structure that associates logical addresses, represasiteglpositive integer values, to a type and a value, which is



either a primitive value or another logical address. Logaciiresses are used, rather than physical in-memory ad-
dresses, because physical addresses may change betwessssugcexecutions of a program. Furthermore, physical
addresses are not necessary to represent memory strueiltiest is necessary is relationships between pointeits an
values. Figure 3 provides sample memory graphs and theegsmmonding input maps for a simple linked-list type.

Initially, all primitive values are assigned random val@esl all pointer values are assigned to be the NULL
address. Whenever Bullseye runs a program under instrami@mtit transforms the logical input map into a concrete
input, then runs the program with that input. After the peogrhas executed, Bullseye then modifies the input map,
changing entries or extending it as necessary (see Secfids).3

To go from a logical input map to a concrete input for a progrBuilseye applies the following transformation.
For primitive types, the value is simply copied from the inmap to memory. For pointer types, Bullseye maintains a
structure mapping logical addresses to concrete addrekaigcated blocks of memory; if Bullseye has determined
that a pointer should point to the object at a particulardabaddress, this structure is used to determine where that
object resides in memory. If Bullseye has determined thatiat@r should point to some address that is not NULL
(denoted by a special constant), Bullseye allocates a negk loff memory and updates the allocation structure.

The logical input map is implemented in th@put Map class, which contains two STL maps, one from logi-
cal addresses tbnput Cel | s representing value/type pairs and one from logical addeetoMenor yBuf f er s
representing handles for allocated blocks of memory.

To initialize a physical addresB from a logical addres&, Bullseye first checks to see if has been initialized
on a previous run. If not, then the cell at that address inripatimap is set to a default value: primitives are setto a
random integer, pointers are set to NULL. The cell’'s valuhén copied to the value &. If L had been initialized,
then, if the entry af_ in the input map is a primitive value, it will be simply copigalthe value a. If it is a pointer
value, then if the pointer points to a logical address foralild memory buffer was allocated in a previous rim,
will be initialized to the address of that buffer. Otherwiaenew buffer is created.

Input initialization is also recursive; for instance, whigitializing a pointer value, the object that is pointed
to should also be initialized so that it can be used by thermarog Because we permit cyclic data types, input
initialization also needs to perform cycle-detection sat Bullseye does not re-initialize addresses unnecegsaril

3.2.2 RuntimeType System

CUTE's technique, which we have adapted for Bullseye, dpsran integer values when performing input initial-
ization and symbolic execution, as opposed to direct hitfelttings such as in EXE [9]. The value of a variable is
defined by several properties, such as its location in mertteeynumber of bits it occupies, and how those bits are to
be interpreted. In order to do this effectively, we require presence of sufficient runtime type information in order
to determine the size of a variable in memory, whether it ismifive or pointer type, and the type it points to if it is

a pointer.

However, in the C programming language, this semantic imétion is typically lost in compilation and thus
unavailable at runtime. In Bullseye, we use the instrunt@ntgphase to create an additional source file containing
code to generate a runtime-accessible type graph, whittersused by the Bullseye runtime library. We will first
discuss this type graph before we discuss the construcigotiig source file.

Type Graph Representation The type graph is similar to the parsed form of a type expoesssed by compilers
[2]. The type graph has directed edges, with primitive tyaeterminal nodes, such asar s andi nt s, and other
types, such as pointers, arragé,r uct s, anduni ons, at the nonterminal nodes.

Fields in ast ruct oruni on are stored in a list type. Each field also maintains its owsetfin bytes, so that
this information does not need to be recomputed for everiimanaccess for a field. Maintaining a list of offsets for
each field also addresses the issue of structure paddinghwie are only able to determine at compilation.

Type aliases, created witly pedef , necessitate the creation of a table that maps type namlesitaorrespond-
ing location in the type graph. Such a mapping is demonstiatEigure 4.

Type Graph Construction One of the initial phases of the C-Breeze compiler, whichsisduin Bullseye to
perform instrumentation, is to parse ANSI C code. Convehie@-Breeze parses types into a form that it then uses
in subsequent phases. In order to make this informatioredolaiat runtime, Bullseye outputs a C functicmt e_-
program types(), containing a number of function calls to rebuild the infation from C-Breeze’s type graph
at runtime. One such output is demonstrated in Figure 4.



DefinedTypes _ o o _ _
» > > »> »>
CTypeComposite J CTypeSuespec J CTypeFieldList CTypeField CTypeNodePrim
: "foo_s" fieldList [0] name: "data" signed long
"foo_t" ]
— [1] offset: 0 size: 4
type -
> >
struct foo_s { int data; struct foo_s * next; } ” ”
typedef struct foo_s foo_t; CTypeField CTypeNodePointer
void cute_programtypes(void) { name: "next" subtype ||
cute_type_suespec_def ("foo_s", sizeof(struct foo_s) STiset 4
cute_type_cons(
cute_type_suespec_field("data", offsetof(struct foo_s, data), type -

cute_type_primtive(Cl TE_SI GNED_LONG) ),
cute_type_suespec_field("next", offset(struct foo_s,
cute_type_pointer(cute_type_struct("foo_s",
NULL)) ;
cute_type_register("foo_t",

}

next),
si zeof (struct foo_s)))),

cute_type_struct("foo_s"));

Figure 4: Type graph construction and representation fangle linked-list type

C-Breeze only maintains machine-independent informatidvas no notion of sizes or offsets of types. Therefore,
we incorporate calls to thei zeof () operator and thef f set of () macro into the resultant source code, so that
sizes and offsets can be evaluated when the instrumentgoapnas compiled.

Because the type graph is cyclic due to recursive struct@eBreeze has the notion sfiespecs, “struct,
uni on, andenumspecifications.” A suespec contains a list of fields in a casitpdype. When creating the function
declaration to create st r uct or uni on, we only refer to the name of the suespec; this resolves ttiesyjn the
type graph, allowing us to serialize it in the form of functideclarations.

Implementation In the implementation, the runtype type system is defined @slection of C++ classes with
C-linkage hooks. All classes inheriting froBTy peNode represent nodes in the type graph.

e Primitive types, such ashar s andi nt s, are represented witlypeNodePr i mobjects. Enumerations are
silently converted to integers.

e Static arrays are represented wifiypeNodeAr r ay objects containing a dimension and a reference to a
subtype node.

e Pointers are represented witfiypeNodePoi nt er objects containing a reference to a subtype node.

e Composite types, e.gt r uct s anduni ons, are represented withG'y peNodeConposi t e that contains
a reference to &TypeSuespec. A CTypeSuespec contains a list ofCTypeFi el ds, each with a name,
offset, and subtype reference. Because offsets are statfedach fieldst r uct s anduni ons are represented
identically.

Another classCTypel t er at or, is designed to ease iterating across all fields in a typeerGGavbase type and
an initial offset, it traverses a type, exploring all nedfiiettls and incrementing the offset.

3.2.3 Symbolic Execution

Bullseye executes a program both concretely (using thénaligource code) and symbolically (through added instru-
mentation. Bullseye maintains symbolic expressions faalées where possible, performing operations side-deg-si
with operations on concrete memory values.

Bullseye tracks two types of symbolic expressiobhmear arithmetic expressions are of the forma;z1 + ... +
anTn + ¢ Wheren > 1, eachz; is a variable, and each andc are integer constant®ointer expressions are either
NULL or a symbolic variable. Because not every expressioa G program can be represented in one of these two
forms, Bullseye uses the concrete value from memory whearihat represent an expression symbolically. This
can happen when Bullseye attempts to perform a non-linearatipn, such as multiplication of two non-constant
arithmetic expressions. Because the result of this operasi non-linear, Bullseye replaces one of the expressions
with its concrete value to simplify it, giving us an approxta linear solution. Although this method does lead to a



loss of accuracy, we consider that most operations in a @gnogend to be addition or subtraction and thus expressions
remain linear.

In the implementation, there are thr8gnbol i cExpr classes to represent symbolic expressions. Only one
object of theSynbol i cExpr base class ever existsnval i dExpr, to represent an expression that cannot be
represented symbolically. All other expressions are eibheéheAri t hmet i cExpr or Poi nt er Expr subclasses.

When Bullseye encounters a branch, it builds a constraint the branch condition. For arithmetic expressions,
these constraints take the fommz; + ... + anxy, + ¢ <1 0, wherex is one of<, <, >, >, =, or 2. When two
arithmetic expressiond and B are used to generate a constraint, the resulting constsaiit— B i 0, e.g., an
expression compared to 0. Pointer constraints take the dares x2, ©1 # 2, 1 = NULL, orx1 # NULL.

As an example, given the code on the left, the path conssraimthe right might be generated based upon the input
at the execution of the program. In the followings™ represents concrete assignments ane’ ‘tepresents pointer

relations.

int foo(int x, int = vy) { e Withz =0,y — NULL:
X =x + 1 (12 —9<0)A(y — NULL)
if (x < 10)

) e Withz =0,y — «,a = 0: (o is a new variable)
if (y == NULL)
return x + *y: (I —9<0)A(y - NULL)
return x; e Withz =10,y —» a,a=0:
} (1.2 —9>0)

In the implementation, the evaluation engine is defined B¥Etigi ne interface €ngi ne. h) and implemented
in the Cut eEngi ne class. The evaluation engine provides the main executigp. IThe engine’s un() method
sets up signal handlers for determining when the prograrentedt throws an error, by trappiadpor t () calls and
segmentation faults. The engine then clears symbolichargtates and path constraints, and executes the program.

As the program executes, it calls instrumentation-addet$orhe implementations for most of these hooks call
Engi ne methods. Several of these are then delegated further; $tarine Engi ne: ;i niti ali zel nput ()
immediately invokes a method in theput class in order to initialize input variables (see sectichB.

The Vari abl eCont ext s class, invari abl econt ext . h, provides a mapping from variable names to
concrete addresses. Because this name-address mappigeshvaith function calls, th¥ar i abl eCont ext s
class also serves as a symbolic stack, which is pushed dodvpapped on function calls and returns, respectively.
Two hooks are used to add variables to the current contexte_decl ar e_vari abl e, for local variables, and
cut e_decl are_vari abl e_from st ack, which initializes a parameter with a copy of a symbolic egsion
from the caller.

There is also a mapping from concrete addresses to symlaolable states, representedVWgr i abl eSt at e
class. Eaclvari abl eSt at e consists of a type and a symbolic expression, and also msevidiper methods for
retrieving the concrete value as a particular address haséd runtime type.

TheEval uat or class, handles symbolic evaluation, for addition, sultivacand multiplication. Given a result
address, the operator, and two variable namedstta¢ uat or looks up the symbolic expressions for the variables,
computes an appropriate symbolic result, and assignshieteytmbolic state for the result address.

3.2.4 Branch Selection

After the program finishes executing, it is the engine’s oesjbility to choose a new input. To do this, it queries
aBranchSel ect or for a potential condition to flip.Br anchSel ect or s are created with access to the path
history, path constraints, and the list of weights, and jl@an iterator-like decision API. The selector gives the
index of the ‘best’ branch to try to negate; the evaluatiogiea then tries to negate it and use it to generate a new
input. If this fails (because the resulting conditions ansatisfiable), then the selector is queried for the next-bes
choice, and so on, until either a satisfiable input is reactatere are no more possibilities. (In the latter case, we
conclude testing.)

Three basic branch selection strategies are provided anbecapecified using the- sel ect or command-line
option.

e TheCut eBr anchSel ect or performs CUTE's depth-first-search strategy.
e TheRandonBr anchSel ect or chooses the branch to negate entirely at random.



e TheProbabilisticBranchSel ect or uses the weighting data as probabilities for whether it khtip
the branch or not. To do this, it begins at the deepest braheh, chooses (with weighting) which way the
branch should go. If the direction chosen is different fréwa dlirection that the branch actually went, then the
branch is negated. Otherwise, the selector moves up to #ieleepest branch and continues.

After the engine has generated an input that can be satifffieges a constraint solver (see section 3.2.5) to
generate concrete values belonging to the class of inppitegented by the path conditions. The input is then loaded
into the input map, and the execution loop continues.

3.25 Solving Constraints

Any path through a program can be represented by the comjunaft constraints. Because each input to the program
is given a symbolic variable, a list of path constraints espnts a class of possible variable assignments that will
cause execution to follow a particular path. Therefore, &gating particular constraints and choosing a satisfying
assignment for the input variables, we generate inputsaiteain different classes and thus cause execution to follow
different paths.

CUTE creates a symbolic constraint for every branch tragrappending it to a list of branch conditions that
represents a path through the program. When the programohatuded execution, CUTE negates one constraint
and solves for new inputs.

Because CUTE tracks both symbolic arithmetic and symbdiatpr expressions, CUTE naturally must solve
both arithmetic and pointer constraints. To solve ariticnednstraints, CUTE usdsp_sol ve [4], a library for
linear integer programming.

To solve pointer constraints, CUTE looks at all constra@xisept for the negated one and uses equality constraints
to partition variables into equivalence classes. To datemsatisfiability, CUTE builds an undirected graph, where
vertices are equivalence classes and edges are disezpifdigitermined from disequality constraints). If the nedat
constraint is of the form:; = z2 and there is no edge between the clagses- and[z2]—, then the new set of
constraints is satisfiable. Otherwise, if the negated caimstis of the formz1 # x2, then the new set of constraints
is satisfiable ifz1]= and|[x2]= are different equivalence classes.

Once satisfiability is determined, the input map is updalethe negated constraint is of the form#= NULL,
all variables in[z]= in the input map are set to a constant denoting a non-NULLevalimilarly, if the negated
constraint is of the form: # y, all variables iNy]— in the input map are set to non-NULL. This non-NULL constant
is used during input initialization to indicate that a nevjemb should be created. Otherwise, if the negated constrain
is of the formz = NULL, all variables inz]= in the input map are set to NULL. If the negated constraint s y,
all variables iny]= in the input map are set to the current valuerof the input map.

As an example, assume we have the pointer constraints 2, x2 = x3, v3 # x4, andzs = y. Let the last
of the four be the one we have chosen to negate. First, we loalkaf the constraints excepting the last to discover
equivalency classds]— = {z1,x2, 23} and[z1]= # [z4]=. Because the negated constraintis# y, we set all
variables in the equivalency cla@g— (consisting of onlyy itself) to non-NULL.

Bullseye, much like CUTE, also tracks arithmetic and syrnthekpressions and constraints. However, Bullseye
solves for these constraints using the CVC3 Satisfiabilibglio Theories (SMT) solver [3]. A SMT solver improves
on a traditional boolean satisfiability (SAT) solver by iziihg binary-valued predicates rather than simple boolean
variables. Predicates can be solved using a number of mpressive theories; for instance, a SMT solver can solve
a predicate such as+ 2 < y using the theory of linear arithmetic, whereas a SAT solveuldl have to encode the
predicate as a series of boolean logic operations [7].

Bullseye uses the theory of linear arithmetic to solve argtic expressions, and the theory of equality to solve
pointer constraints. CVC3 is able to understand more thepsuch as theories of arrays, list structures, and bitvec-
tors, although Bullseye does not utilize these at the ptasar. Future work could include using these theories to
extend Bullseye’s symbolic tracking beyond CUTE's lineathanetic and pointers, for instance, to add support for
bitwise operations commonly seen in hand-optimized C @nogrand for floating-point expressions.

In the implementation, there are three classes for consstdir i t hnet i cConst r ai nt s represent relational
or equality constraints betweeéxr i t hnet i cExpr s, Poi nt er Const r ai nt s represent equality constraints be-
tweenPoi nt er Expr s (or between ®oi nt er Expr andNULL or non- NULL), andConcr et eConstrai nts
simply serve as a wrapper for a simple true or false value fockwve are unable to compute symbolically. All three
are implementations of théonst r ai nt interface.

TheConst r ai nt Sol ver class provides an interface for the constraint solver indgyk. It is implemented
by theCVC3Sol ver class; this implementation uses CVC¥%al i di t yChecker API. Variables in the constraint



GLib Binary Tree Singly-Linked List
Max Depth| Time | Paths Explored Max Depth| Time | Paths Explored
10 1.086s 50 10 0.052s 12
11 1.873s 73 20 0.124s 22
12 3.461s 102 30 0.231s 32
13 6.241s 142 50 0.557s 52
14 12.108 s 198 100 2.083s 102
15 23.733s 288 200 8.992s 202

Figure 5: Performance Results

solver are represented as integers using CVCBI§ type, and methods exist to convert Bullseyenstrai nts
into CVC3'’s constraint types.

4 Experiments

One way we could evaluate the performance of our systemasigimutant-kill testing. Mutants are variations in

a program that indicate a bug or some other deviation in beha@ur performance metric in this instance is how
long it takes for our system to detect the variations betwesource program and a mutant. One experiment to
perform, therefore, would be to test both an original progend a mutant using Bullseye. Bullseye should be able
to determine the point of change as being interesting, amglghould be able to detect the mutation at runtime faster
than a traditional bounded depth-first approach.

As the time of this writing, we are still evaluating our syste Currently, we are able to use Bullseye to test
the balanced binary tree structures provided in the GLib datictures library [1]. In GLib, thg_t r ee_node_-
check function performs invariant checking. By convention, adiion such as this is calledraepCk function.
When Bullseye tests this function, it produces inputs tloatespond to valid binary trees.

When operating with CUTE-style branch prediction (thatdashbounded depth-first strategy), Bullseye yields
similar performance results to CUTE’s results on similatadstructures in the SGLIB data structures library [8].
The results of using Bullseye to test the GLib binary treaditire and a singly-linked list data structure at various
maximum branch depths are summarized in Figure 5.

5 Conclusions

At this time, the basic system for Bullseye is complete amidlmused for testing programs in a depth-first manner.
The system is also able to employ weighting data to guidelsethough it is not yet able to generate this weighting
data itself. Work in adding the static analysis portion tograte weighting data is still ongoing.

There are still numerous areas of future work where Bullseydd see improvement. Currently, Bullseye only
performs symbolic evaluation on linear arithmetic expi@ss and pointers, yet the SMT solver that it employs is
capable of many more types of expressions. Bullseye alsdifiesilty with dynamically-generated arrays, such as
C-style strings represented witthar * types. Bullseye cannot generate inputs using call seqeeax€UTE is
able to; such a feature would be of considerable utility stitey data structures.
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