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ABSTRACT
Many programmers use custom memory allocators hoping to achieve
performance improvements. This first in-depth study examines eight
applications that use custom allocators. Surprisingly, for six of
these applications, a state-of-the-art general-purpose allocator per-
forms as well as or better than the custom allocators. The two ex-
ceptions use regions, which deliver higher performance (up to 44%
faster). Regions also reduce programmer burden and help eliminate
a source of memory leaks. We show, however, that the inability of
programmers to free individual objects within regions can lead to a
substantial increase in memory consumption (up to 230% more).

To eliminate this excessive memory consumption, we develop
the Reap extended general-purpose memory allocator, which com-
bines region semantics with individual object deletion. Reap out-
performs similar allocators and comes close to matching region
performance while providing the potential for reduced memory con-
sumption. We thus demonstrate an implementation of an extended
memory allocation interface that eliminates the need for most cus-
tom memory allocators and the programmer effort needed to build
and maintain them.

1. Introduction
Programmers seeking to improve performance often incorporate
custom memory allocators into their applications. Custom alloca-
tors aim to take advantage of application-specific patterns of mem-
ory usage to manage memory more efficiently than a general-purpose
memory allocator. For instance, 197.parser runs over 60% faster
with its custom allocator than with the Windows XP allocator [2].
Numerous books and articles recommend custom allocators as an
optimization technique [4, 20, 21]. The use of custom memory al-
locators is widespread, including the Apache web server [1], the
GCC compiler [9], three of the SPECint2000 benchmarks [28] and
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the C++ Standard Template Library [7, 26], all of which we exam-
ine here.

The key contributions of this work are the following. We perform
what we believe to be the first comprehensive evaluation of cus-
tom allocation. We survey a wide range of custom allocators and
compare their performance and memory consumption to general-
purpose allocators. We were surprised to find that, contrary to
conventional wisdom, custom allocation generally does not im-
prove performance, and in one case, actually leads to a performance
degradation. A state-of-the-art general-purpose allocator (the Lea
allocator [18]) yields equivalent performance for six of our eight
benchmarks. The exceptions both useregioncustom allocators.

Regions provide high-performance but force the programmer to
retain all memory associated with a region until the last object in
the region dies [10, 11, 14, 24, 32]. We believe we are the first to
show that the performance gains of regions (up to 44%) can come at
the expense of excessive memory consumption (up to 230%). We
measure the memory cost of regions using a binary instrumentation
tool that determines the distance between the last reference to an
object within a region and when the program frees the region.

We develop Reap, a high-performance extended general-purpose
allocator that provides the performance and semantics of regions
while allowing programmers to delete individual objects. The Reap
allocator provides a reusable library solution for region allocation
with competitive performance and the potential for reduced mem-
ory consumption, making conventional region allocators obsolete.
We believe this general-purpose library eliminates the need for most
programmers to write and maintain custom allocators.

The remainder of this paper is organized as follows. We dis-
cuss related work in Section 2. We describe our benchmarks in
Section 3. Section 4 analyzes the structure of custom memory al-
locators used by our benchmark applications. We describe our ex-
perimental infrastructure and methodology in Section 5 and present
experimental results in Section 6. Section 7 explores the cost in ex-
cess memory consumption of region-based custom allocators. We
next describe the Reap extended general-purpose memory allocator
in detail and present experimental results showing that Reap cap-
tures the performance of regions while allowing individual object
deletion. We discuss our results in Section 9 and then conclude.

2. Related Work
Numerous articles and books have appeared in the trade press pre-
senting custom memory allocators as an optimization technique.
Bulka and Mayhew devote two entire chapters to the development
of a number of custom memory allocators [4]. Meyers describes in
detail the use of a freelist-based per-class custom allocator in “Ef-
fective C++” [19] and returns to the topic of custom allocators in
the sequel [20]. Milewski also discusses per-class allocators as an
optimization technique [21]. Hanson devotes a chapter to an im-
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plementation of regions (“arenas”), citing both the speed and soft-
ware engineering benefits of regions as motivation [15]. Ellis and
Stroustrup describe the syntactic facilities that allow overloading
operator new , simplifying the use of custom allocators in C++
[6], and Stroustrup describes per-class allocators that use these fa-
cilities [30]. In all but Hanson’s work, the authors present custom
memory allocation as a widely effective optimization, while our
results suggest that only regions yield performance improvements.

Region allocation, variously known as arenas, groups, and zones
[14, 24] has recently attracted attention as an alternative to garbage
collection. Following the definitions in the literature, programmers
allocate objects within a region and can delete all objects in a region
at once but cannot delete individual objects [10, 11, 14, 24, 32].
Tofte and Talpin present a system that provides automatic region-
based memory management for ML [32]. Aiken and Gay describe
saferegions which raise an error when a programmer deletes a re-
gion containing live objects and introduce the RC language, an ex-
tension to C that further reduces the overhead of safe region man-
agement [10, 11]. While these authors present only the benefits of
regions, we investigate the hidden memory consumption cost of re-
gions and present an alternative that avoids this cost by combining
individual object deletion with the benefits of regions.

To compute the memory cost of region allocation, we measure
the elapsed time between last use and reclamation of an object. This
metric is known as “object drag”. Our definition differs slightly
from the original use of the term by Runciman and Rojemo [25],
where drag is the time between last use and unreachability of an
object, which in a garbage-collected environment defines availabil-
ity for reclamation. Shaham, Kolodner and Sagiv measure drag
by performing periodic object reachability scanning in the context
of Java, a garbage-collected language [27]. We use binary instru-
mentation to determine when objects are last referenced and post-
process a combined allocation-reference trace to obtain object drag.

The literature on general-purpose memory allocators is exten-
sive [34]. Here we describe the Windows XP and Lea allocators
[18, 22], which we use in this study because of their widespread
use (the Lea allocator forms the basis of the Linux memory allo-
cator [12]). The Windows allocator is a best-fit allocator with 127
exact-size quicklists (one linked list of freed objects for each mul-
tiple of 8 bytes), which optimize for the case when many requests
are for same-sized objects. Objects larger than 1024 bytes are ob-
tained from a sorted linked list, sacrificing speed for a good fit. The
Lea allocator is an approximate best-fit allocator with different be-
havior based on object size. Small objects (less than 64 bytes) are
allocated using exact-size quicklists. Requests for a medium-sized
object (less than 128K) and certain other events trigger the Lea allo-
cator tocoalescethe objects in these quicklists (combining adjacent
free objects) in the hope that this reclaimed space can be reused for
the medium-sized object. For medium-sized objects, the Lea allo-
cator performs immediate coalescing andsplitting (breaking large
objects into smaller ones) and approximates best-fit. Larger objects
are allocated and freed usingmmap. The Lea allocator is the best
overall allocator (in terms of the combination of speed and memory
usage) of which we are aware [17].

In addition to the standardmalloc /free interface, Windows
also provides a Windows-specific memory allocation interface that
we refer to as Windows Heaps (all function calls begin withHeap).
The Windows Heaps interface is exceptionally rich, including mul-
tiple heaps and some region semantics (not including nested re-
gions) along with individual object deletion [23]. Vmalloc, a mem-
ory allocation infrastructure, also provides (non-nested) regions that
permit individual object deletion [33]. We show in Section 7 that
neither of these implementations match the performance of regions,

while Reap adds the full range of region semantics and provides
similar performance.

The only previous work evaluating the impact of custom memory
allocators is by one of the authors (Zorn). In a paper on conserva-
tive garbage collection, Zorn compares custom (“domain-specific”)
allocators to general-purpose memory allocators [35]. He analyzed
the performance of four benchmarks (cfrac, gawk, Ghostscript, and
Perl) and found that the applications’ custom allocators only slightly
improved performance (from 2% to 7%) except for Ghostscript,
whose custom allocator was outperformed by most of the general-
purpose allocators he tested. Zorn also found that custom allocators
generally had little impact on memory consumption. His study dif-
fers from ours in a number of ways. Ours is a more comprehensive
study of custom allocation, including a benchmark suite covering a
wide range of custom memory allocators, while Zorn’s benchmarks
include essentially only one variety.1 We also address custom al-
locators whose semantics differ from those of general-purpose al-
locators (e.g., regions), while Zorn’s benchmarks use only seman-
tically equivalent custom allocators. Our findings therefore differ
from Zorn’s, in that we find that certain custom allocators (espe-
cially regions) consistently yield performance improvements over
existing general-purpose memory allocators.

While previous work has either held that custom memory alloca-
tors are a good idea (articles in the trade press), or a waste of time
(Zorn), we find that both are true. Most custom allocators have
no impact on performance, but regions in particular have both high
performance and some software engineering benefits. We show that
the inability of programmers to delete objects within regions leads
to a substantial increase in memory consumption. We develop a
memory allocator that preserves the high performance of regions
while providing individual object deletion to eliminate their exces-
sive memory consumption.

3. Benchmarks
We list the benchmarks we use in this paper in Table 1, including
general-purpose allocation benchmarks that we use for comparison
with custom allocation in Section 7. Most of our benchmarks come
from the SPECint2000 benchmark suite [28]. For the custom allo-
cation benchmarks, we include a number of programs used in prior
work on memory allocation. These programs include those used by
Aiken and Gay (Apache, lcc, and mudlle) [10, 11], and boxed-sim,
used by Chilimbi [5]. We also use the C-Breeze compiler infra-
structure [13]. C-Breeze makes intensive use of the C++ Standard
Template Library (STL), and most implementations of the STL use
custom allocators, including the one we use in this study (STLport,
officially recommended by IBM) [7, 26].

We use the largest inputs available to us for most of the custom
allocation benchmarks (except for 175.vpr and 197.parser). For
these and the general-purpose benchmarks, we used the test in-
puts. The overhead imposed by our binary instrumentation made
runtimes for the reference inputs and the resultant trace files in-
tractable. We excluded one SPEC benchmark, 256.bzip2, because
we could not process even its test inputs.

We describe all of the inputs we used to drive our benchmarks in
Table 1 except for Apache. To drive Apache, we follow Aiken and
Gay and run on the same computer a program that fetches a large
number of static web pages. While this test is unrealistic, it serves
two purposes. First, it isolates performance from the usual network
and disk I/O bottlenecks, magnifying the performance of custom
allocation. Second, using the same benchmark as Aiken and Gay
facilitates comparison with their work.

1These allocators are all variants of what we call per-class allocators in
Section 4.2.
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Benchmarks
custom allocation

175.vpr FPGA placement & routing [28] test placement
boxed-sim Balls-in-box simulator [5] -n 3 -s 1
197.parser English parser [28] test.in
c-breeze C-to-C optimizing compiler [13] espresso.c
lcc Retargetable C compiler [8] scilab.i
176.gcc Optimizing C compiler [28] scilab.i
apache Web server [1] see Section 5
mudlle MUD compiler/interpreter [10] time.mud

general-purpose allocation
164.gzip GNU zip data compressor [28] test/input.compressed 2
181.mcf Vehicle scheduler [28] test-input.in
186.crafty Chess program [28] test-input.in
252.eon Ray tracer [28] test/chair.control.cook
253.perlbmk Perl interpreter [28] perfect.pl b 3
254.gap Groups language interpreter [28]test.in
255.vortex Object-oriented DBM [28] test/lendian.raw
300.twolf CAD placement & routing [28] test.net
espresso Optimizer for PLAs [29] test2
lindsay Hypercube simulator [34] script.mine

Table 1: Benchmarks used in this paper, with descriptions and
inputs used. We include the general-purpose benchmarks for
comparison with custom allocation in Section 7.

4. Custom Allocators
In this section, we explain exactly what we mean by custom mem-
ory allocators. We discuss the reasons why programmers use them
and survey a wide range of custom memory allocators, describing
briefly what they do and how they work.

While custom memory allocation could denote any mechanism
different from direct use of the general-purpose allocator, we use
the term in a more proscribed way to denote any memory allocation
mechanism that differs from general-purpose allocation in at least
one of two ways. A custom allocator provides more than one object
for every object allocated from the system, or it does not immedi-
ately return objects to the system.2 For instance, a custom alloca-
tor can obtain large chunks of memory from the general-purpose
allocator which it carves up into a number of objects. A custom
allocator might also defer object deallocation indefinitely.

4.1 Why Programmers Use Custom Allocators

There are a variety of reasons why programmers use custom mem-
ory allocators. The principal reason cited by programmers and au-
thors of books on programming is runtime performance. Because
the per-operation cost of most system general-purpose memory al-
locators is an order of magnitude higher than that of custom mem-
ory allocators, programs that make intensive use of the allocator
may see performance improvements by using custom allocators.

Figure 1 shows the amount of time spent in memory operations
on eight applications using a wide range of custom memory al-
locators, with the custom memory allocator replaced by the Win-
dows allocator3. Many of these applications spend a large percent-
age of their runtime in the memory allocator (16% on average),
demonstrating an opportunity to improve performance by optimiz-
ing memory allocation.

2This definition of custom allocators excludes,inter alia, wrappers that
perform certain tests (e.g., for null return values) before returning objects
obtained from the general-purpose allocator.
3When needed, we use aregion emulatorthat matches the semantics of the
custom allocator (see Section 5.1).

Time Spent in Memory Operations

0

20

40

60

80

100

19
7.

pa
rs

er

bo
xe

d-
sim

c-
br

ee
ze

17
5.

vp
r

17
6.

gc
c

ap
ac

he lcc

m
ud

lle

Ave
ra

ge

%
 o

f 
ru

n
ti

m
e

Memory Operations Other

Figure 1: Time spent in memory operations for eight applica-
tions using custom memory allocators.

Nearly all of our benchmarks use custom allocators to improve
performance, among other considerations. This goal is often ex-
plicitly stated in the documentation or source code. For instance,
the Apache API documentation claims that its custom allocator
ap palloc “is generally faster than malloc.” The STLport im-
plementation of STL (used in our runs of C-Breeze) refers to its
custom allocator as an “optimized node allocator engine”, while
197.parser’s allocator is described as working “best for ’stack-like’
operations.” Allocation with obstacks (used by 176.gcc) “is usually
very fast as long as the objects are usually small”4 and mudlle’s
region-based allocator is “fast and easy”. Because Hanson cites
performance benefits for regions in his book, we assume that they
intended the same benefit. Lcc also includes a per-class custom al-
locator, intended to improve performance, which had no observable
performance impact.5 The per-class freelist-based custom allocator
for boxed-sim also appears intended to improve performance. Only
175.vpr was explicitly optimized not for performance but for space
(see Section 6.2).

While comments and documentation make it clear that program-
mers use custom allocators to improve performance, programmers
generally do not appear to use them to reduce memory consump-
tion. Only one of our benchmarks, 175.vpr, explicitly mentions this
goal, stating that the custom allocator “should be used for allocating
fairly small data structures where memory-efficiency is crucial.”6

Implicitly, the use of obstacks might be at least partially motivated
by space considerations. While the source documentation is silent
on the subject, the documentation for obstacks in the GNU C li-
brary suggests it as a benefit.7 We are not aware of any discussion
in the trade press of using custom allocators to improve memory
efficiency.

While writing custom code to replace the general-purpose allo-
cator is generally not a good software engineering practice, custom
memory allocators can provide some software engineering benefits.
The use of region-based custom allocators in parsers and compil-

4From the documentation on obstacks in the GNU C library.
5Hanson, in a private communication, indicated that the only intent of the
per-class allocator was performance. We disabled this custom allocator to
isolate the impact of region-based allocation.
6See the comment formy chunk malloc in util.c .
7“And the only space overhead per object is the padding needed to start
each object on a suitable boundary. ”
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Motivation Policy Mechanism
performance space software same API region- nested multiple chunks stack same-type

Benchmark Allocator engineering Delete lifetimes areas optimized optimized

197.parser custom pattern X X X X
boxed-sim per-class X X X X
c-breeze per-class (STL) X X X X
175.vpr region X X X X
176.gcc obstack region X X X X X X X
apache nested region X X X X X X
lcc region X X X X X
mudlle region X X X X X

Table 2: Characteristics of the custom allocators in the benchmarks used in this paper. All but one of the custom allocators were
motivated by performance concerns, while only two were (possibly) motivated by space concerns (see Sections 6.1 and 6.2). “Same
API” means that the allocator allows only individual object allocation and deallocation, and “chunks” mean the custom allocator
obtains large blocks of memory from the general-purpose allocator for its own use (see Section 4.2).

ers (e.g., 176.gcc, lcc, and mudlle) simplifies memory management
[15]. Regions provide separate memory areas that can be disposed
of with one operation, which is useful for server applications like
the Apache web server. However, regions do not allow individual
object deletion, so an entire region must be retained as long as just
one object within it remains live. This policy can potentially lead
to excessive memory consumption, as we explore in Section 7.

4.2 A Taxonomy of Custom Allocators

In order to outperform the general-purpose memory allocator, pro-
grammers apply knowledge they have about some set of objects.
For instance, programmers can use regions to manage objects that
all die at the same time. Programmers can also write custom allo-
cators to take advantage of other object allocation patterns.

We break down the allocators from our custom allocation bench-
marks in terms of several characteristics in Table 2. We divide these
into three categories: themotivationbehind the programmer’s use
of a custom allocator, thepolicies implemented by the allocators,
and themechanismsused to implement these policies. Notice that
in all but one case (175.vpr), performance was a motivating factor.
We explain the meaning of each characteristic in the descriptions
of the custom allocators below.

per-class Per-class allocators optimize for allocation of the same
type (or size) of object by eliding size checks and keeping
a freelist with objects only of the specific type. They im-
plement the same API (application-programmer interface) as
malloc andfree , i.e., they provide individual object allo-
cation and deletion, but are optimized for only one type.

region Regions allocate objects by incrementing a pointer into large
chunks of memory. Programmers can only delete regions in
their entirety. A region allocator includes aregionDelete
function that deletes all memory in one operation and in-
cludes support for multiple allocation areas that may be man-
aged independently. Regions reduce bookkeeping burden on
the programmer and aid in reducing memory leaks, but do
not allow individual objects to be deleted.

obstack region An obstackis an extended version of a region al-
locator that adds deletion of every object allocated after a
certain object [34]. This extension supports object allocation
that follows a stack discipline (hence the name, which comes
from “object stack”).

nested region Nested regions are an extension of regions that sup-
port nested object lifetimes. Apache uses these to provide re-

gions on a per-connection basis, with sub-regions for execu-
tion of user-provided code. Tearing down all memory asso-
ciated with a connection requires just oneregionDelete
call on the per-connection memory region.

custom pattern This catch-all category refers to what is essen-
tially a general-purpose memory allocator optimized for a
particular pattern of object behavior. For instance, 197.parser
uses a fixed-size region of memory (in this case, 30MB) and
allocates after the last block that is still in use by bumping
a pointer. Freeing a block marks it as free, and if it is the
last block, the allocator resets the pointer back to the new
last block in use. This allocator is fast for 197.parser’s stack-
like use of memory, but if object lifetimes do not follow a
stack-like discipline, it can exhibit unbounded memory con-
sumption.

As this discussion shows, programmers use a wide range of cus-
tom allocators, and in the next section, we evaluate whether they
achieved their goals. In particular, we quantitatively analyze the
performance of custom memory allocators in terms of runtime per-
formance and space, and compare these to the Windows XP and
Lea allocators.

5. Evaluating Custom Memory Allocators
We provide allocation statistics for our benchmarks in Table 3.
Many of the general-purpose allocation benchmarks are not allo-
cation intensive, but we include them for completeness. In partic-
ular, 181.mcf, 186.crafty, 252.eon and 254.gap allocate only a few
objects over their entire lifetime, including one or more very large
ones. Certain trends appear from the data. In general, programs
using general-purpose allocators spend relatively little time in the
memory allocator (on average, around 3%), while programs using
custom allocators spend on average 16% of their time in memory
operations. Programs using custom allocators also tend to allocate
many small objects. This kind of allocation behavior places con-
siderable stress on the memory allocator.

5.1 Emulating Regions

Because custom allocators can support semantics that differ from
the C memory allocation interface, we need to emulate regions with
malloc /free as the underlying allocation mechanism. We wrote
and tuned a region emulator that provides the full range of region
semantics used by our benchmark applications, including nesting
and obstacks. We record a pointer to every allocated object and
when the region is deleted, we callfree on each one. We record
pointer information in a dynamic array associated with each region.
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Benchmark Statistics
Benchmark Total objects Max objects Average object size Total memory Max in use Total/max Memory operations

in use (in bytes) (in bytes) (in bytes) (% of runtime)
custom allocation
175.vpr 3,897 3,813 44 172,967 124,636 1.4 0.1%
boxed-sim 52,203 4,865 15 777,913 301,987 2.6 0.2%
197.parser 9,334,022 230,919 38 351,772,626 3,207,529 109.7 41.8%
c-breeze 5,090,805 2,177,173 23 118,996,917 60,053,789 1.9 17.4%
lcc 1,465,416 92,696 57 83,217,416 3,875,780 21.5 24.2%
176.gcc 9,065,285 2,538,005 54 487,711,209 112,753,774 4.3 6.7%
apache 149,275 3,749 208 30,999,123 754,492 41 0.1%
mudlle 1,687,079 38,645 29 48,699,895 662,964 73.5 33.7%
general-purpose allocation
espresso 4,483,621 4,885 249 1,116,708,854 373,348 2991.1 10.8%
lindsay 108,861 297 64 6,981,030 1,509,088 4.6 2.8%
164.gzip 1,307 72 6108 7,983,304 6,615,288 1.2 0.1%
181.mcf 54 52 1,789,028 96,607,514 96,601,049 1.0 1.5%
186.crafty 87 86 10,206 887,944 885,520 1.0 0.0%
252.eon 1,647 803 31 51,563 33,200 1.6 0.4%
253.perlbmk 8,888,870 5,813 16 144,514,214 284,029 508.8 12.6%
254.gap 50 48 1,343,614 67,180,715 67,113,782 1.0 0.0%
255.vortex 186,483 53,087 357 66,617,881 17,784,239 3.7 1.9%
300.twolf 9,458 1,725 56 532,177 66,891 8.0 0.9%

Table 3: Statistics for our benchmarks, replacing custom memory allocation by general-purpose allocation. We compute the runtime
percentage of memory operations with the default Windows allocator. Programs using custom allocators spend on average 16% of
their time in memory operations and use many small objects, while programs using general-purpose allocators spend relatively little
time in memory operations (on average, 3%) and use few, large objects.

This method ensures that the last access to any allocated object
is by the client program and not by our region emulator. Using
this technique means that our region emulator has no impact on
object drag. However, region emulation has an impact on space.
Every allocated object requires 4 bytes of memory (for its record in
the dynamic array) in addition to per-object overhead (4–8 bytes).
Eliminating this overhead is an advantage of regions, but as we
show in Section 7, the inability to free individual objects may have
a much greater impact on space.

6. Results
In this section, we present our experimental results on runtime and
memory consumption, discussing the programmers’ goals for their
custom allocators and whether they were met. All runtimes are the
best of three runs after one warm-up run8; variation was less than
one percent. All programs were compiled with Visual C++ 6.0 and
run on a 600 MHz Pentium III system with 320MB of RAM, a
unified 256K L2 cache, and 16K L1 data and instruction caches,
under Windows XP build 2526. We compare the custom allocators
to the Windows XP memory allocator, which we refer to in the
graphs as “Win32”, and to version 2.7.0 of Doug Lea’s allocator,
which we refer to as “DLmalloc”.

6.1 Runtime Performance

To compare runtime performance of custom allocation to general-
purpose allocation, we simply reroute custom allocator calls to the
general-purpose allocator. For this study, we compare custom allo-
cators to both the Windows XP memory allocator and to version
2.7.0 of the Lea allocator. Figure 3 shows that for four of the
programs, the Windows allocator provides performance that comes
within 10% of the original custom allocators: boxed-sim, 175.vpr,
176.gcc, and Apache (around 6% slower on average). Replacing
the custom allocators with the Lea allocator (DLmalloc) provides
8We needed a longer warm-up period (five runs) for lcc.

nearly identical performance for six of the eight applications (less
than 2% slower on average). The Lea allocator actually slightly
improved performance for C-Breeze when we turned off STL’s in-
ternal custom allocators. This result shows that a good general-
purpose allocator eliminates the performance advantages of custom
allocators for most of our benchmarks.

However, the two remaining benchmarks (lcc and mudlle), do
show runtime improvement when using their custom allocator, on
average cutting runtime by 35%. Both lcc and mudlle use region-
based allocators, which we examine in Section 7.

6.2 Memory Consumption

We also measured the memory consumed by the various memory
allocators by running the benchmarks, with and without custom
allocation, linked with a slightly modified version of the Lea al-
locator. We modified thesbrk andmmapemulation routines to
keep track of the high water mark of memory consumption. We
were unable to include the Windows XP allocator because it does
not provide a way to keep track of memory consumption. While
the measurements given in Table 3 include all memory allocated,
in these results we include only memory consumed by the custom
allocator or its replacement.

Regions complicate our measurement of memory consumption.
We can simply directly compare the amount of memory consumed
by the original region and by the general-purpose allocators com-
bined with region emulation. However, we want to understand the
impact of using the traditional region interface on memory con-
sumption. By using regions, programmers give up the ability to
delete individual objects. We explore the impact of this restriction
on memory consumption.

We wrote a tool using the Vulcan binary instrumentation system
[31] to track object drag, the time elapsed between the last access
to an object and its reclamation [25, 27]. We link each program
with our region emulator and instrument them to track both alloca-
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Figure 2: Memory consumption for custom memory allocators compared to the Lea allocator with region emulation. Except for
197.parser, non-region custom allocators consume on average 3% less space than the Lea allocator. Region-based allocators consume
on average 35% less memory. Only 197.parser and 176.gcc consume a significant amount of memory on modern hardware.
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Figure 3: Normalized runtimes (smaller is better), replacing
custom allocation with both the Windows and Lea allocators
combined with region emulation. For six of the eight appli-
cations, the Lea allocator performs nearly as well as or better
than the original custom allocators (less than 2% slower on av-
erage).

tions and accesses to every heap object. When an object is actually
deleted (explicitly by afree or implicitly by a region deletion), the
tool outputs when the object was last touched, in allocation time.
We post-process the trace to compute object drag and thus compare
the amount of memory that would have been used had the program-
mer freed each individual object as soon as possible. This highly-
aggressive freeing is not always unrealistic, as we show in Section 7
with drag measurements of programs using general-purpose mem-
ory allocators.

Figure 2(a) shows our results for memory consumption. Exclud-
ing one outlier (197.parser), general-purpose allocators consume
from 0% to 49% more memory than the custom allocators (on av-
erage 12%). Most of this increase arises in region-based alloca-

tors, where per-object overhead and region-emulation data struc-
tures combine to consume an average of 34% more memory. In one
case, using general-purpose allocation dramaticallyreducesmem-
ory consumption. The custom memory allocator in 197.parser al-
locates from a fixed-sized chunk of memory (a compile-time con-
stant, set at 30MB), while the Lea allocator achieves nearly the
same performance with just 15% of the memory. Worse, this cus-
tom allocator is brittle; requests beyond the fixed limit result in
program termination.

Region allocators show savings in memory consumption (from
8% to 49%) over general-purpose allocation with region emula-
tion, while the other allocators only yield an average 3% savings,
excluding 197.parser, whose custom allocator consumes 85%more
memory. Of the two allocators implicitly or explicitly intended to
reduce memory consumption, 176.gcc’s obstacks achieves its goal,
saving 32% of memory, while 175.vpr’s provides only an 8% sav-
ings. While the performance improvements of lcc and mudlle could
be attributed to improved locality due to avoiding per-object over-
head, we show in Section 8.2 that these applications perform better
simply because they allocate and delete faster.

Most of the space savings of region allocators is due to the over-
head of region emulation plus general-purpose allocation. While
these space savings can be substantial, it is worth noting that most
of these benchmarks consume relatively little memory, although
different inputs may increase memory consumption. For instance,
the application whose custom allocator saves the most memory
by percentage, Apache, only requires 450K of memory for its re-
gions. Figure 2(b) shows the actual amount of space required by
these benchmarks. In the context of most current hardware, only
197.parser and 176.gcc require large amounts of memory (30MB
and 90MB, respectively), but still much less than typical RAM
sizes of modern desktop PCs (256MB) and servers (1GB).

Our results show that while most custom allocators achieve nei-
ther performance nor space advantages, region-based allocators fre-
quently provide both over general-purpose allocation combined with
region emulation. These space advantages are misleading. While
region emulation adds a fixed overhead to each object, regions can
tie down arbitrarily large amounts of memory because program-
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Figure 4: Drag statistics for applications using general-purpose
memory allocation (average 1.1), non-regions (average 1.0) and
region custom allocators (average 1.6, 1.1 excluding lcc).

mers must wait until all objects are dead to free their region. In the
next section, we measure this hidden space cost of using the region
interface.

7. Evaluating Region Allocation
Regions achieve high performance by allocating memory by bump-
ing a pointer through reasonably large chunks of memory, typically
from 8K to 32K. Threading a linked list through these chunks per-
mits region deletion of many small objects with a few operations.
Regions also confer some software engineering benefits, because
they simplify memory management and avoid memory leaks.

However, the region interface is severely constrained. A pro-
grammer can only free a region in its entirety and cannot free indi-
vidual objects within a region [10, 11]. When all objects in a region
die at the same time, this restriction does not affect memory con-
sumption. However, the presence of just one live object ties down
an entire region, potentially leading to a considerable amount of
wasted memory.

We calculate the effect of this restriction by comparing actual
memory consumed to the amount that would have been required
had the programmer immediately reclaimed dead objects. We could
not measure this effect directly by modifying the source of our
region-based benchmarks to usemalloc andfree , which would
have required a complete rewrite of these applications. As we de-
scribe in Section 6.2, we collect allocation and reference traces
using a binary instrumentation tool and subsequently post-process
this trace. We obtain two curves over allocation time [16]: memory
consumed by the region allocator, and memory required when dead
objects are freed immediately after their last access. Dividing the
areas under these curves gives ustotal drag. A program that imme-
diately frees every dead object thus has the minimum possible total
drag of 1.

Figure 4 shows drag statistics for a wide range of benchmarks,
including programs using general-purpose memory allocators. Pro-
grams using non-region custom allocators have minimal drag, as
do the bulk of the programs using general-purpose allocation, in-
dicating that programmers tend to be aggressive about reclaiming
memory. The drag results for 255.vortex show that programmers
are occasionally less aggressive. The programs with regions con-
sistently exhibit more drag, including 176.gcc (1.16), and mudlle
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Regions
Free immediately

Figure 5: Memory requirement profile for lcc. The Y-axis is
memory required, and the X-axis is allocation time. The top
curve shows memory required when using regions, while the
bottom curve shows memory required if individual objects are
freed immediately.

(1.23), and lcc has high drag (3.34). In other words, lcc’s regions
keep around 234% more memory than needed over time. The peak
memory required with regions for lcc is approximately 1MB, while
the peak when objects are immediately freed is 670K, an increase
of 62%. Figure 5 shows the memory requirement profile for lcc,
demonstrating how regions influence memory consumption over
time. These measurements confirm the hypothesis that regions can
lead to excessive memory consumption. While programmers may
be willing to give up this additional space in exchange for program-
ming convenience, we believe that they should not be forced to do
so in order to achieve high performance.

Region-based allocation clearly has both performance and soft-
ware engineering advantages over general-purpose memory alloca-
tion, but can lead to considerable increases in memory consump-
tion. Ideally, we would like to combine general-purpose allocation
with region semantics, allowing for multiple allocation areas that
can be cheaply deleted en masse. We would also like to extend re-
gion semantics with individual object deletion in order to address
the problem of excessive memory consumption.

Both Vmalloc and the Windows “Heap” family of memory al-
location functions come close to these mixed semantics. One key
feature lacking in both is nested regions, which Apache requires.
More importantly, however, neither implementation provides the
performance we need, as we show in Section 8.2.

Providing a general-purpose allocation library with a wide range
of region semantics, including nested heaps, would eliminate the
need for programmers to roll their own region implementations.
Extending such an interface to provide individual object deletion
could yield significant memory savings. A high-performance im-
plementation of such an allocator would make conventional regions
obsolete. These are the goals of the extended general-purpose allo-
cator that we describe in the next section.

8. The Reap Memory Allocator
We have designed and implemented a memory allocator which we
call Reap (region + heap). Reap is an extended general-purpose
memory allocator that provides a standardmalloc /free inter-
face. In addition, Reap adds the semantics of regions. Figure 6
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Figure 6: A lattice of APIs, showing how Reap combines the
semantics of regions and heaps.

depicts a lattice of our interfaces. Reap provides a full range of
region semantics, including nested regions, along with individual
object deletion. We show that this allocator provides the extended
semantics we want along with high performance. We provide a
C-based interface to region allocation, including operations for re-
gion creation and destruction, deletion (freeing of every object in a
region without destroying the region data structure) and individual
object allocation and deallocation:

void regionCreate (void ** region, void ** parent);
void regionDelete (void ** region);
void regionDestroy (void ** region);
void * regionAllocate (void ** region, size_t size);
void regionFree (void ** region, void * object);

We implemented Reap using Heap Layers [2]. The Heap Layers
infrastructure allows programmers to compose allocator “layers” to
build high-performance memory allocators much more easily than
by modifying the code of an existing memory allocator. These lay-
ers are C++ implementations ofmixins [3], using classes whose
superclass is a template argument. With mixins, the programmer
creates allocators from composable layers that a compiler imple-
ments efficiently.

8.1 Reap Design and Implementation

In order to add region semantics to a general-purpose allocator,
each heap must manage its own memory and quickly discard mem-
ory. We adapt LeaHeap, a heap layer that approximates the be-
havior of the Lea allocator, in order to take advantage of Lea-
Heap’s high speed and low fragmentation. In addition, we wrote
three new layers: NestedHeap, ClearOptimizedHeap and Region-
Heap. The first layer, NestedHeap, provides support for nesting
of heaps. The second layer, ClearOptimizedHeap, helps us op-
timize for the case when no memory has yet been freed by al-
lowing us to allocate memory by bumping a pointer. ClearOpti-
mizedHeap takes two heaps as arguments and maintains a boolean
flag, noMemoryFreed , which is initially true. While this flag is
true, ClearOptimizedHeap allocates memory from its first heap ar-
gument. When an object is freed,noMemoryFreed is set to false.
ClearOptimizedHeap then allocates memory from its second heap.
Deleting a region resets thenoMemoryFreed flag to true. In
Reap, we use ClearOptimizedHeap to obtain memory directly from
the system via CoalesceableHeap, which adds necessary header in-
formation so we can later free this memory (and coalesce adjacent
free objects). Bypassing the LeaHeap for this case has no impact
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Figure 7: A diagram of the individual heap layers that com-
prise the Reap allocator. ClearOptimizedHeap bypasses the
LeaHeap when no memory has yet been freed, dramatically im-
proving the performance of region allocation.

on general-purpose memory allocation, but dramatically improves
the performance of region allocation.

The last layer, RegionHeap, maintains a linked list of allocated
objects and provides a region deletion operation (clear() ) that
iterates through this list and frees the objects. In Reap, we use the
RegionHeap layer to manage memory in chunks of at least 8K,
making regionDelete efficient. In total, Reap required less
than 150 lines of new code. Figure 7 depicts the design of Reap
in graphical form.

8.2 Experimental Results for Reap

In this section, we present experimental results for Reap. We com-
pare Reap to the Windows XP and Lea allocators, combined with
region emulation where appropriate. For the two applications where
region-based allocation provided performance improvements, lcc
and mudlle, we present additional results comparing Reap with
two allocators that provide region semantics, Windows Heaps and
Vmalloc (see Section 2). Windows Heaps are a Windows-specific
interface providing multiple (but non-nested) heaps, and Vmalloc
is a custom allocation infrastructure that provides the same func-
tionality.

Figure 9 shows our results for lcc and mudlle. Using Windows
Heaps in place of regions makes lcc run 217% slower, and mudlle
68% slower. Using Vmalloc results in 407% slower execution
for lcc and 43% slower execution for mudlle. The performance
results for Windows Heaps and Vmalloc suggest that neither of
them were designed with intensive region allocation and deletion
in mind. Reap yields only 10% overhead for both lcc and mudlle,
achieving performance comparable to the original custom alloca-
tors while providing the flexibility of individual object deletion.
In Figure 8(a), we compare Reap to the original custom alloca-
tors and to the Lea allocator across all of our custom allocation
benchmarks. Except for 197.parser, Reap comes within 10% of the
performance of the original custom allocators. In Figure 8(b), we
present our space results. 176.gcc allocates many small objects, so
Reap’s per-object overhead (8 bytes) leads to somewhat increased
memory consumption compared to the Lea allocator (whose per-
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(a) Normalized runtimes (smaller is better) for applications us-
ing custom memory allocators, replacing custom allocation with
both the Lea allocator with region emulation and Reap.
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tors, replacing custom allocation with both the Lea allocators
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Figure 8: Runtime and memory consumption for custom memory allocators compared to the Lea allocator with region emulation
and Reap. Except for 197.parser, Reap performs within 10% of the original custom allocators.
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Figure 9: Normalized runtimes (smaller is better). Reap
performs almost as quickly as the original custom allocators
(within 10%), much faster than region emulation or other
region-based allocators.

object overhead is 4 bytes). Reap is close in memory efficiency to
the Lea allocator for most of the rest of the benchmarks.

We have shown that Reap is highly effective as a replacement for
region-based custom allocators. For six of our eight benchmarks,
replacing the custom allocator with the Lea allocator yields com-
parable performance. Reap provides similar performance for the
other two. We see that using the Lea allocator for some bench-
marks and Reap for others yields performance comparable to the
original custom allocators. In addition, Reap provides a more flexi-
ble interface that permits programmers to reclaim unused memory.

9. Discussion
We have shown that performance frequently motivates the use of
custom memory allocators and that they do not provide the perfor-
mance they promise. Below we offer some explanations of why

programmers used custom allocators to no effect.

Recommended practice.

One reason that we believe programmers use custom allocators to
improve performance is because it is recommended by so many
influential practitioners and because of the perceived inadequacies
of system-provided memory allocators. Examples of this use of
allocators are the per-class allocators used by boxed-sim and lcc.

Premature optimization.

During software development, programmers often discover that cus-
tom allocation outperforms general-purpose allocation in micro-
benchmarks. Based on this observation, they may put custom al-
locators in place, but allocation may eventually account for a tiny
percentage of application runtime.

Drift.

In at least one case, we suspect that programmers initially made
the right decision in choosing to use custom allocation for perfor-
mance, but that their software evolved and the custom allocator no
longer has a performance impact. The obstack allocator used by
176.gcc performs fast object reallocation, and we believe that this
made a difference when parsing dominated runtime, but optimiza-
tion passes now dominate 176.gcc’s runtime.

Improved competition.

Finally, the performance of general-purpose allocators has contin-
ued to improve over time. Both the Windows and Lea allocators
are optimized for good performance for a number of programs and
therefore work well for a wide range of allocation behaviors. For
instance, these memory allocators perform quite well when there
are many requests for objects of the same size, rendering per-class
custom allocators superfluous (including those used by the Stan-
dard Template Library). While there certainly will be programs
with unusual allocation patterns that might lead these allocators
to perform poorly, we suspect that such programs are increasingly
rare. We feel that programmers finding their system allocator to be
inadequate should consider an off-the-shelf solution like Reap or
the Lea allocator rather than writing a custom allocator.

9



10. Conclusions
Despite the widespread belief that custom allocators should be used
in order to improve performance, we come to a different conclu-
sion. In this paper, we examine eight benchmarks using custom
memory allocators, including the Apache web server and several
applications from the SPECint2000 benchmark suite. We find that
the Lea allocator is as fast as or even faster than most custom allo-
cators. The exception is region allocators, which often outperform
general-purpose allocation.

We show that regions can come at an excessive cost in mem-
ory consumption. With our implementation of the Reap alloca-
tor, we demonstrate an extended general-purpose memory alloca-
tor that provides a broad range of region semantics while achieving
the performance of region-based allocators and the flexibility of
general-purpose allocation.

We believe custom allocators are suitable for managing special
kinds or specific ranges of memory, like DMA, shared or embedded
memory. But our results indicate that an extension of the general-
purpose memory management interface combined with an efficient
implementation effectively removes custom allocators as an appro-
priate optimization technique.
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