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ABSTRACTCo-
lustering, or simultaneous 
lustering of the rows and
olumns of two-dimensional data matri
es, is a powerfuldata mining te
hnique with varied appli
ations su
h as text
lustering, mi
roarray analysis and re
ommender systems.An information-theoreti
 approa
h that is appli
able whenthe data matrix 
an be interpreted as a two-dimensional em-piri
al joint probability distribution, was re
ently proposed.However, in many situations, 
o-
lustering of more generalmatri
es is desired. In this paper, we present a substan-tially generalized 
o-
lustering framework wherein (i) lossfun
tions 
orresponding to all Bregman divergen
es, whi
hin
lude squared Eu
lidean distan
e and KL-divergen
e asspe
ial 
ases, 
an be used, thereby making it appli
ableto a wide range of data matri
es, (ii) various 
onditionalexpe
tation based 
onstraints 
an be 
onsidered based onthe statisti
s that need to be preserved, thereby giving riseto di�erent parametri
 
o-
lustering models, and (iii) themaximum entropy prin
iple is generalized to the minimumBregman information prin
iple to provide a natural modelsele
tion te
hnique. The analysis yields an elegant metaalgorithm that is guaranteed to a
hieve lo
al optimality.Our methodology en
ompasses a vast majority of previouslyknown 
lustering and 
o-
lustering algorithms based on al-ternate minimization. We provide examples and empiri
aleviden
e to establish the generality and eÆ
a
y of the pro-posed 
o-
lustering framework.
1. INTRODUCTIONCo-
lustering, or bi-
lustering [10, 5℄, is the problem of si-multaneously 
lustering rows and 
olumns of a data matrix.The problem of 
o-
lustering arises in diverse data miningappli
ations, su
h as simultaneous 
lustering of genes andexperimental 
onditions in bioinformati
s [5, 6℄, do
umentsand words in text mining [9℄, users and movies in re
om-mender systems, et
. Often, it forms a key intermediatestep in the data mining pro
ess and is essential to over
ome
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the noise and sparsity in the input data matrix. Further,
o-
lustering is 
apable of providing 
ompressed representa-tions that are highly interpretable while preserving most ofthe information 
ontained in the original data, whi
h makesit valuable to a large 
lass of statisti
al data analysis appli-
ations.In order to design a 
o-
lustering framework, we need to�rst 
hara
terize the \goodness" of a 
o-
lustering. Existing
o-
lustering te
hniques [6, 5, 9℄ a
hieve this by quantifyingthe \goodness" of a 
o-
lustering in terms of the approxi-mation error between the original data matrix and a matrixre
onstru
ted by 
o-
lustering based on the summary statis-ti
s. Currently, the most eÆ
ient and s
alable ones are thosebased on alternate minimization s
hemes [6, 9, 6℄ that allowonly two distortion measures namely, KL-divergen
e and thesquared Eu
lidean distan
e. Further, they also allow only afew matrix re
onstru
tion s
hemes that involve preservingparti
ular summary statisti
s of the original matrix. Thesetwo limitations restri
t the appli
ability of these te
hniquesto a small range of data matri
es.In this paper, we address the following two questions:(a) what 
lass of distortion fun
tions admit eÆ
ient 
o-
lustering algorithms based on alternate minimization?, and(b) what are the di�erent possible matrix re
onstru
tion s
hemesfor these 
o-
lustering algorithms?. We show that alternateminimization based 
o-
lustering algorithms work for a large
lass of distortion measures 
alled Bregman divergen
es [1℄,whi
h in
lude squared Eu
lidean distan
e, KL-divergen
e,Itakura-Saito distan
e, et
., as spe
ial 
ases. Further, wedemonstrate that for a given 
o-
lustering, a large variety ofapproximation models are possible based on the type of sum-mary statisti
s that need to be preserved. To a
hieve theseresults, we propose and use a new minimum Bregman infor-mation prin
iple that simultaneously generalizes the maxi-mum entropy and the least squares prin
iples. Based on theproposed prin
iple, and other related results, we develop anelegant meta-algorithm for the Bregman 
o-
lustering prob-lem with a number of desirable properties su
h as s
alabil-ity and appli
ability to a wide range of data matri
es. Mostpreviously known parametri
 
lustering and 
o-
lustering al-gorithms based on alternative minimization follow as spe
ial
ases of our methodology.
2. MOTIVATIONWe start by reviewing information-theoreti
 
o-
lustering [9℄and 
on
retely motivating the need for a more general 
o-
lustering framework.



Let X and Y be dis
rete random variables that take val-ues in the sets fxug[u℄m1 where [u℄m1 denotes an index urunning over f1; � � � ;mg and fyvg[v℄n1 respe
tively. Supposewe are in the idealized situation where the joint probabilitydistribution p(X;Y ) is known. In pra
ti
e, p may be es-timated from a 
ontingen
y table or 
o-o

urren
e matrix.Suppose we want to 
o-
luster, or, simultaneously 
luster Xinto k disjoint (row) 
lusters fx̂gg [g℄k1 and Y into l disjoint(
olumn) 
lusters, fŷhg [h℄l1. Let X̂ and Ŷ denote the 
orre-sponding 
lustered random variables that range over thesesets. An information theoreti
 formulation of �nding theoptimal 
o-
lustering is to solve the problemminX̂;Ŷ I(X;Y )� I(X̂; Ŷ ) ; (2.1)where I(X;Y ) is the mutual information betweenX and Y [7℄.In [9℄, it was shown thatI(X;Y )� I(X̂; Ŷ ) = D(p(X;Y )jjq(X;Y )); (2.2)where q(X;Y ) is a distribution of the formq(X;Y ) = p(X̂; Ŷ )p(XjX̂)p(Y jŶ ); (2.3)and D(�jj�) denotes the Kullba
k-Leibler(KL) divergen
e,also known as relative entropy. Thus, the sear
h for the op-timal 
o-
lustering may be 
ondu
ted by sear
hing for thenearest approximation q(X;Y ) that has the above form. On
loser examination, we note that the distribution q(X;Y )depends only on (kl+m+ n � 3) independent parameters,whi
h is mu
h smaller than the (mn � 1) parameters thatdetermine a general joint distribution p. Hen
e, we 
allq(X;Y ) a \low 
omplexity" or low parameter matrix ap-proximation.The above is the viewpoint presented in [9℄. We nowpresent an alternate viewpoint that will enable us to gen-eralize our approa
h to arbitrary data matri
es and generaldistortion measures. The following lemma highlights thekey maximum entropy property that makes q(X;Y ) a \low
omplexity" or low parameter approximation.Lemma 1 Given a �xed 
o-
lustering X̂, Ŷ , 
onsider theset of joint distributions p0 that preserve the following statis-ti
s of the input distribution p:Xx2x̂Xy2ŷ p0(x; y) = p(x̂; ŷ) =Xx2x̂Xy2ŷ p(x; y); 8x̂; ŷ;p0(x) = p(x); p0(y) = p(y); 8x; y:Among all su
h distributions p0, the distribution q in (2.3)has the maximum entropy, i.e.,H(q(X;Y )) � H(p0(X;Y )):Proof. It 
an be easily 
he
ked that q preserves therelevant statisti
s so that p0(X̂; Ŷ ) = p(X̂; Ŷ ) = q(X̂; Ŷ ),p0(X) = p(X) = q(X) and p0(Y ) = p(Y ) = q(Y ). Usingthis property of q, it is easy to show that H(q) �H(p0) =D(p0jjq) � 0:What is the signi�
an
e of the above lemma? In the absen
eof any 
onstraints, the uniform distribution, p0(X;Y ) =f 1mng, has the maximum entropy. If only row and 
olumnmarginals are to be preserved, then the produ
t distribu-tion p(X)p(Y ) has maximum entropy (see [7, Problem 5,Chap. 11℄). The above lemma states that among all distribu-tions that preserve marginals as well as 
o-
luster statisti
s,

the maximum entropy distribution has the form in (2.3).It is important to note that this maximum entropy 
hara
-terization is equivalent to saying that q is a low-
omplexitymatrix approximation. Thus, by (2.2) and Lemma 1, the
o-
lustering problem (2.1) is equivalent to the problem of�nding the nearest (in KL-divergen
e) maximum entropydistribution that preserves the marginals, and the 
o-
lusterstatisti
s of the original data matrix.The above formulation is appli
able when the data ma-trix 
orresponds to an empiri
al joint distribution. However,there are important situations when the data matrix is moregeneral, for example, the matrix may 
ontain negative en-tries and/or a distortion measure other than KL-divergen
e,su
h as the squared Eu
lidean distan
e, might be more ap-propriate.This paper addresses the general situation by extendingthe information-theoreti
 
o-
lustering along three di�erentdire
tions. First, \nearness" 
an be now measured by anyone of a large 
lass of distortion measures 
alled Bregmandivergen
es. Se
ond, we allow spe
i�
ation of a larger vari-ety of 
onstraints that preserve various statisti
s of the data.The di�erent 
onstraints allow a trade-o� between 
omplex-ity and �delity of the resulting approximation. Lastly, to a
-
omplish the above, we generalize the maximum entropy ap-proa
h: we guide our 
o-
lustering generalization by appeal-ing to the minimum Bregman information prin
iple that weshall introdu
e shortly. The optimal 
o-
lustering is guidedby the sear
h for the nearest (in Bregman divergen
e) ma-trix approximation that has minimum Bregman informationwhile satisfying the 
onstraints mentioned above.
3. FORMULATION AND ANALYSISIn this se
tion, we formulate the Bregman 
o-
lusteringproblem in terms of the Bregman divergen
e between a givenmatrix and an approximation based on the 
o-
lustering.We show that a natural way of spe
ifying the approxima-tion matrix leads to a new minimum Bregman informationprin
iple, whi
h we analyze in detail.
3.1 PreliminariesWe start by de�ning Bregman divergen
es [1, 3℄. Let �be a real-valued stri
tly 
onvex fun
tion de�ned on the 
on-vex set S = dom(�) � R, the domain of �, su
h that �is di�erentiable on int(S), the interior of S. The Breg-man divergen
e d� : S � int(S) 7! [0;1) is de�ned asd�(z1; z2) = �(z1) � �(z2) � hz1 � z2;r�(z2)i, where r� isthe gradient of �.Example 1.A (I-Divergen
e) Given z 2 R+, let �(z) =z log z. For z1; z2 2 R+ , d�(z1; z2) = z1 log(z1=z2)�(z1�z2).Example 2.A (Squared Eu
lidean Distan
e) Given z 2R, let �(z) = z2. For z1; z2 2 R, d�(z1; z2) = (z1 � z2)2.
Data MatrixWe fo
us on the problem of approximating a given m � ndata matrix Z under various 
onstraints. Let ea
h entry ofZ take values in a 
onvex set S = dom(�). Hen
e, Z takesvalues in Sm�n. Observe that we are now admitting a mu
hlarger 
lasses of matri
es than that in [9, 6℄.We will think of Z as a random variable that is a knowndeterministi
 fun
tion of two underlying random variables



U and V , whi
h we now introdu
e. Let U be a randomvariable taking values in f1; � � � ;mg, the set of row indi
es,and let V be a random variable taking values in f1; � � � ; ng,the set of 
olumn indi
es. Hen
e, the matrix Z = [zuv℄ issu
h that zuv is some �xed deterministi
 fun
tion of u andv. Let � = f�uv : [u℄m1 ; [v℄n1 g denote the joint probabilitymeasure of the pair (U; V ), whi
h is either pre-spe
i�ed orset to be the uniform distribution. Throughout the paper,all expe
tations are with respe
t to �.Example 1.B (I-Divergen
e) Let (X;Y ) � p(X;Y ) bejointly distributed random variables with X;Y taking valuesin fxug; [u℄m1 and fyvg; [v℄n1 respe
tively. Then, p(X;Y ) 
anbe written in the form of the matrix Z = [zuv℄, [u℄m1 ; [v℄n1 ,where zuv = p(xu; yv) is a deterministi
 fun
tion of u and v.This example with a uniform measure � 
orresponds to thesetting des
ribed in se
tion 2 (originally in [9℄)1.Example 2.B (Squared Eu
lidean Distan
e) Let Z 2Rm�n denote a data matrix whose elements may assumepositive, negative, or zero values and let � be a uniformmeasure. This example 
orresponds to the setting des
ribedin [6, 5℄.
Bregman Co-clusteringWe de�ne a k � l 
o-
lustering as a pair of maps:� : f1; � � � ;mg 7! f1; � � � ; kg
 : f1; � � � ; ng 7! f1; � � � ; lg:Let Û and V̂ be random variables taking values in f1; � � � ; kgand f1; � � � ; lg su
h that Û = �(U) and V̂ = 
(V ). LetẐ = [ẑuv℄ 2 Sm�n be an approximation for the data matrixZ su
h that it depends upon a given 
o-
lustering (�; 
).We shall then measure the goodness of the underlying 
o-
lustering as:E[d�(Z; Ẑ)℄ = mXu=1 nXv=1 �uvd�(zuv; ẑuv): (3.4)To 
arry out this plan, we need to make pre
ise the 
onne
-tion between (�; 
) and Ẑ.Example 1.C (I-Divergen
e) The Bregman 
o-
lusteringobje
tive fun
tion in this 
ase is given by E[d�(Z; Ẑ)℄ =E[Z log(Z=Ẑ)� Z + Ẑ℄.Example 2.C (Squared Eu
lidean Distan
e) The Breg-man 
o-
lustering obje
tive fun
tion in this 
ase is given byE[d�(Z; Ẑ)℄ = E[(Z � Ẑ)2℄
3.2 Co-Clustering and Matrix ApproximationEvery 
o-
lustering 
an lead to numerous di�erent matrixapproximations. The 
ru
ial point is pre
isely what infor-mation from Z do we retain.Let us �x a 
o-
lustering (�; 
). Given the 
o-
lustering,there are essentially �ve random variables of interest: Z, U ,V , Û , and V̂ . Now, we 
an spe
ify the statisti
s of Z thatwe want to preserve using non-trivial 
ombinations from thisset, given by� = ffU; V̂ g; fÛ ; V g; fÛ ; V̂ g; fUg; fV g; fÛg; fV̂ gg;1Note that in [9℄ KL-divergen
e was used, whi
h is a spe
ial
ase of I-divergen
e appli
able to probability distributions.

where fU; V g is not in
luded sin
e E[ZjU; V ℄ = Z. We willbe interested in random variables that depend on sets of
onditional expe
tations2 of the form fE[ZjC℄; C 2 �g. If�(�) denotes the power set of �, then every element of �(�)is a set of 
onstraints, and leads to a (possibly) di�erentmatrix approximation. Intuitively, we think of �(�) as the
lass of matrix approximation s
hemes related to a given
o-
lustering (�; 
).We now display four 
on
rete examples of interesting el-ements of �(�) that we will use throughout this paper toilluminate dis
ussions:C1 = ffÛg; fV̂ gg; C2 = ffÛ ; V̂ ggC3 = ffÛ ; V̂ g; fUg; fV gg C4 = ffU; V̂ g; fÛ ; V ggThe diligent reader may verify that these are the only non-trivial symmetri
 
onstraint sets in �(�). Also, observe thatif we have a

ess to fE[ZjC℄ : C 2 Cig, for some 1 � i � 4,then we 
an 
ompute fE[ZjC℄ : C 2 Cjg for all 1 � j �i. In this sense, we say that the 
onstraint set Ci is more
omplex than Cj for all j � i. From a pra
ti
al perspe
tive,a more 
omplex set of 
onstraints allows us to retain moreinformation about Z.Our abstra
tion allows us to handle the essen
e behind theabove 
onstraint sets and, in fa
t, all 
onstraint sets in �(�)at on
e. Now, 
onsider an element C in the power set �(�)as the pertinent 
onstraint set. Given this 
hoi
e, we seekto �nd the \best" approximation matrix. Let �A(�; 
; C)denote the 
lass of random variables Z0 2 Sm�n that satisfythe following 
onditional independen
e 
ondition:Condition A. The Markov 
onditionZ ! fE[ZjC℄ : C 2 Cg ! Z0holds. In other words, Z0 depends upon Z only throughthe set of random variables fE[ZjC℄ : C 2 Cg:We de�ne the \best" matrix approximation ẐA 
orre-sponding to the 
o-
lustering (�; 
) and the 
onstraint setC as the one in the 
lass �A(�; 
; C) that minimizes the ap-proximation error, i.e.,ẐA � ẐA(�; 
; C) = argminZ02�A(�;
;C)E[d�(Z;Z0)℄: (3.5)Before we pro
eed further, we will furnish an alternative
hara
terization of (3.5) in terms of an extremely useful 
on-
ept 
alled Bregman information. This alternative 
hara
-terization will be an important step in our hunt for a gener-alized algorithm.
3.3 Minimum Bregman InformationFor any random variable Z0, its Bregman informationis de�ned as the expe
ted Bregman divergen
e to the expe
-tation, i.e., I�(Z0) = E[d�(Z0; E[Z0℄)℄: (3.6)Intuitively, this quantity is a measure of the \spread" or the\information" in the random variable.Example 1.D (I-Divergen
e) Given Z0 2 Rm�n+ , the Breg-man information 
orresponding to I-divergen
e is given byI�(Z0) = E[Z0 log �Z0=E[Z0℄�℄:2Given a sub-�-algebra G for Z, the 
onditional expe
ta-tion E[ZjG℄ is the optimal Bregman predi
tor among allG-measurable random variables [2℄.



When Z0 
orresponds to a probability distribution, i.e., z0uv =p(xu; yu) and � is a uniform measure, then E[Z0℄ is theuniform distribution p0 and the Bregman information isgiven by D(pjjp0) = �H(p)+ 
onstant, where D(�jj�) is KL-divergen
e and H(:) is the Shannon entropy.Example 2.D (Squared Eu
lidean Distan
e) Given Z02 Rm�n , the Bregman information 
orresponding to squaredEu
lidean distan
e is given by I�(Z0) = E[(Z0 � E[Z0℄)2℄,whi
h is just the squared Frobenius norm of the matrix fora uniform measure �.We now 
onsider a di�erent 
lass of approximating ran-dom variables based on a spe
i�ed 
onstraint set C and aspe
i�ed 
o-
lustering (�; 
). Let �B(�; 
; C) denote a 
lassof random variables su
h that every Z0 satis�es the followinglinear 
onstraints:Condition B. For every C 2 C, E[ZjC℄ = E[Z0jC℄:With respe
t to the set �B(�; 
; C), we ask: What is the\best" random variable to sele
t from this set? We now pro-pose a new minimum Bregman information prin
iplethat re
ommends sele
ting a random variable that has theminimum Bregman information subje
t to the linear 
on-straints: ẐB � ẐB(�; 
; C) = argminZ02�B(�;
;C)I�(Z0): (3.7)It is easy to see that the widely used maximum entropyprin
iple [12, 7℄ is a spe
ial 
ase of the proposed prin
iplesin
e the entropy of a joint distribution is negatively relatedto the Bregman information (Example 1.D). In fa
t, theminimumBregman information prin
iple neatly uni�es boththe maximum entropy, and the least squares prin
iple [8℄.The following theorem 
hara
terizes the solution to theminimum Bregman information problem (3.7).Theorem 1 For a Bregman divergen
e d�, any random vari-able Z 2 Sm�n, a spe
i�ed 
o-
lustering (�; 
) and a spe
i-�ed 
onstraint set C, the solution ẐB to (3.7) is given by3r�(ẐB) = � sXr=1�?r ;where �? � f�?rg are the optimal Lagrange multipliers 
or-responding to set of the linear 
onstraints:E[Z0jCr℄ = E[ZjCr℄; [r℄s1:Furthermore, ẐB always exists, is unique, and satis�es Con-dition A.Proof. Consider the Lagrangian J(Z0;�) of the mini-mum Bregman information problem. After some algebrai
manipulation, it 
an be shown thatJ(Z0;�) = I�(Z0) + sXr=1�r(E[Z0jCr℄�E[ZjCr℄)= E[�(Z0)℄ � �(E[Z0℄) + sXr=1�r(E[Z0jCr℄ �E[ZjCr℄) :3In general, we use f(Z) to denote f(�) applied to Z ele-mentwise for any fun
tion f .

Table 1: Minimum Bregman information solutionfor I-Divergen
e.Constraints C Approximation ẐBC1 E[ZjÛ℄�E[ZjV̂ ℄E[Z℄C2 E[ZjÛ; V̂ ℄C3 E[ZjU℄�E[ZjV ℄�E[ZjÛ;V̂ ℄E[ZjÛ℄�E[ZjV̂ ℄C4 E[ZjU;V̂ ℄�E[ZjÛ;V ℄E[ZjÛ;V̂ ℄Table 2: Minimum Bregman information solutionfor squared Eu
lidean distan
e.Constraints C Approximation ẐBC1 E[ZjÛ℄ + E[ZjV̂ ℄�E[Z℄C2 E[ZjÛ; V̂ ℄C3 E[ZjU ℄ +E[ZjV ℄ + E[ZjÛ; V̂ ℄�E[ZjÛ℄� E[ZjV̂ ℄C4 E[ZjU; V̂ ℄ +E[ZjÛ; V ℄�E[ZjÛ; V̂ ℄Now, the Lagrange dual, L(�) = infZ0 J(Z0;�), is stri
tly
on
ave in �. By maximizing the Lagrange dual we get theoptimal Lagrange multipliers, i.e., �� = f��rg = argmax� L(�).Repla
ing �� into the �rst order ne
essary 
onditions 
orre-sponding to the minimizer ẐB , we getrJ(ẐB ;��) = 0 , r�(ẐB) + sXr=1��r = 0 :Rearranging terms proves the �rst part of the theorem.The existen
e and the uniqueness of ẐB follow from thestri
t 
onvexity of �. Also, observe that due to the fa
tthat the minimization problem takes as input only the setfE[ZjC℄ : C 2 Cg, and, hen
e, has no other informationabout Z, it follows that ẐB satis�es Condition A.Example 1.E (I-Divergen
e) When �(z) = z log z; z 2R+ ; r�(z) = log z and the minimum Bregman informa-tion solution is given by log ẐB = �Psr=1 ��r where �? =f�?rg are the optimal Lagrange multipliers of problem (3.7).For 
onstraint set C2 = ffÛ ; V̂ gg, there is only one 
on-straint E[ZjÛ ; V̂ ℄ and on applying this, we obtain �(Û;V̂ ) =� log(E[ZjÛ ; V̂ ℄) so that ẐB = E[ZjÛ ; V̂ ℄. The minimumBregman information solutions for all the 
ases are shownin the table below. Note that ẐB for the 
onstraint set C3redu
es to q(X;Y ) = p(X)p(Y )p(X̂;Ŷ )p(X̂)p(Ŷ ) for probability distri-butions, whi
h is the same as (2.3). Further, the fa
t thatq is the minimum Bregman information solution for KL-divergen
e under 
ertain 
onstraints is equivalent to Lemma1, whi
h shows that is the maximum entropy distributionunder those 
onstraints.Example 2.E (Squared Eu
lidean Distan
e) When �(z) =z2; z 2 R; r�(z) = 2z and ẐB = �Psr=1 ��r where �? =f�?rg are the optimal Lagrange multipliers of problem (3.7).Hen
e, for 
onstraint set C2 = ffÛ ; V̂ gg, we obtain �(Û;V̂ ) =�2E[ZjÛ ; V̂ ℄ so that ẐB = E[ZjÛ ; V̂ ℄ on
e again. The min-imum Bregman information solutions for all the 
ases areshown in the table below.



3.4 A Projection LemmaWe have proposed two alternative ways, namely, (3.5) and(3.7) of quantifying the goodness of a given 
o-
lustering(�; 
) with respe
t to a user spe
i�ed 
onstraint set C. Thefollowing pleasantly surprising proje
tion lemma shows thatthese two formulations lead to the same solution, and, hen
e-forth, we will simply write Ẑ = ẐA = ẐB. The proje
tionlemma essentially states that the minimum Bregman infor-mation solution ẐB is the Bregman proje
tion ( nearest inBregman divergen
e) of Z onto the set of all approximationsthat satisfy the Markov property in 
ondition A.Lemma 2 (Proje
tion Lemma) For a Bregman divergen
ed�, any random variable Z 2 Sm�n, a spe
i�ed 
o-
lustering(�; 
) and a spe
i�ed 
onstraint set C,E[d�(Z;Z0)℄ = E[d�(Z; ẐB)℄ +E[d�(ẐB ; Z0)℄where Z0 2 �A(�; 
; C) and ẐB = ẐB(�; 
; C) as in (3.7).Proof. By de�nition,E[d�(Z;Z0)℄(a)= E[�(Z)℄�E[�(Z0)℄�E[hZ � Z0;r�(Z0)i℄= E[d�(Z; ẐB)℄ +E[d�(ẐB ; Z0)℄+E[hZ � ẐB ;r�(ẐB)�r�(Z0)i℄(b)= E[d�(Z; ẐB)℄ +E[d�(ẐB ; Z0)℄where (a) follows from algebrai
 manipulation and (b) fol-lows sin
e Z0; ẐB both satisfy Condition A and ẐB satis�esCondition B, the last term vanishes by taking 
onditionalexpe
tations over fE[ZjC℄; C 2 Cg.Theorem 2 For a Bregman divergen
e d�, any random vari-able Z 2 Sm�n, a spe
i�ed 
o-
lustering (�; 
) and a spe
i-�ed 
onstraint set C, ẐA = ẐB :where ẐA and ẐB are given by (3.5) and (3.7) respe
tively.Proof. By de�nition,ẐA = argminZ02�A(�;
;C)E[d�(Z;Z0)℄(a)= argminZ02�A(�;
;C)E[d�(ẐB; Z0)℄(b)= ẐBwhere (a) follows from Lemma 2 and (b) follows sin
e d�(�; �) >0 unless both the arguments are equal due to the stri
t 
on-vexity of �, and the fa
t that ẐB satis�es 
ondition A.
3.5 Main ProblemThe expe
ted Bregman divergen
e between the given ma-trix Z and the minimum Bregman information solution Ẑprovides us with a elegant way to quantify the goodness of a
o-
lustering. Interestingly, the following lemma shows thatthis expe
ted Bregman divergen
e is exa
tly equal to theloss in Bregman information due to 
o-
lustering, whi
h ison the same lines as the information-theoreti
 
o-
lusteringformulation as in Eqn (2.1) (originally, Lemma 2.1 in [9℄).

Lemma 3 For a Bregman divergen
e d�, any random vari-able Z 2 Sm�n, a spe
i�ed 
o-
lustering (�; 
) and a spe
i-�ed 
onstraint set C,E[d�(Z; Ẑ)℄ = I�(Z)� I�(Ẑ)where Ẑ = ẐA = ẐB de�ned in (3.5) and (3.7).Proof. By de�nition,E[d�(Z; Ẑ)℄= E[�(Z)� �(Ẑ)� hZ � Ẑ;r�(Ẑ)i℄(a)= E[�(Z)℄ �E[�(Ẑ)℄(b)= E[�(Z)� �(E[Z℄)℄�E[�(Ẑ)� �(E[Ẑ℄)℄(
)= I�(Z)� I�(Ẑ)where (a) follows from the fa
t that Ẑ satis�es 
onditions Aand B so that taking 
onditional expe
tations over fE[ZjC℄; C 2Cg makes the last term vanish, and (b) follows sin
e E[Z℄ =E[Ẑ℄ and (
) follows sin
e E[hZ�E[Z℄;r�(E[Z℄)i℄ = 0.We are now ready to 
on
retely de�ne the generalized 
o-
lustering problem.De�nition 1 Given k, l, a Bregman divergen
e d�, a datamatrix Z 2 Sm�n, a set of 
onstraints C 2 �(�), and anunderlying probability measure �, we wish to �nd a 
o-
lustering (�?; 
?) that minimizes:(�?; 
?) = argmin(�;
) E[d�(Z; Ẑ)℄ = argmin(�;
) I�(Z) � I�(Ẑ);(3.8)where Ẑ = Ẑ(�; 
; C) = argminZ02�B(�;
;C)I�(Z0).The problem is NP-
omplete by a redu
tion to the kmeansproblem. Hen
e, it is diÆ
ult to obtain a globally optimalsolution eÆ
iently. However, in se
tion 4, we analyze theproblem in detail, and prove that it is always possible to
ome up with an iterative update s
heme that (a) monoton-i
ally de
reases the obje
tive fun
tion, and (b) 
onverges toa lo
al minimum of the problem.Example 1.F (I-Divergen
e) Continuing from Example1.C, the Bregman 
o-
lustering obje
tive fun
tion is given byE[Z log(Z=Ẑ)�Z + Ẑ℄ = E[Z log(Z=Ẑ)℄ sin
e E[Z℄ = E[Ẑ℄where Ẑ is the minimumBregman information solution fromTable 1. Note that for the 
onstraint set C3 and Z based ona joint distribution p(X;Y ), this redu
es to D(pjjq) whereq is the joint distribution 
orresponding to the minimumBregman solution indi
ating that (2.1) follows as a spe
ial
ase of (3.8).Example 2.F (Squared Eu
lidean Distan
e) Continuingfrom Example 2.C, the Bregman 
o-
lustering obje
tive fun
-tion is E[(Z � Ẑ)2℄ where Ẑ is the minimum Bregman in-formation solution from Table 2. Note that for the 
on-straint set C4, this redu
es to E[(Z�E[ZjU; V̂ ℄�E[ZjÛ ; V ℄+E[ZjÛ ; V̂ ℄)2℄, whi
h is same as the obje
tive fun
tion pro-posed in [6, 5℄.



4. A META ALGORITHMIn this se
tion, we shall develop an alternating minimiza-tion s
heme for the general Bregman 
o-
lustering problem.Our s
heme shall serve as a meta algorithm from whi
h anumber of spe
ial 
ases (both previously known and un-known) 
an be derived.Throughout this se
tion, let us suppose that the underly-ing measure �, the Bregman divergen
e d�, the data matrixZ 2 Sm�n, number of row 
lusters k, number of 
olumn
lusters l, and the 
onstraint set C are spe
i�ed and �xed.We shall fo
us on �nding a good 
o-
lustering for (3.8).
4.1 Intuition and Plan of AttackWe �rst outline the essen
e of our s
heme.Step 1: Start with an arbitrary row and 
olumn 
lustering,say, (�0; 
0). Set t = 0. With respe
t to this 
lustering,
ompute the matrix approximation Ẑt by solving theminimum Bregman information problem (3.7).Step 2: Repeat one of the following two steps till 
onver-gen
e:Step 2A: Hold the 
olumn 
lustering 
t �xed, and�nd a new row 
o-
lustering, say, �t+1. Set 
t+1 =
t. With respe
t to 
o-
lustering (�t+1; 
t+1),
ompute the matrix approximation Ẑt+1 by solv-ing the minimum Bregman information problem.Set t = t+ 1.Step 2B: Hold the row 
lustering �t �xed, and �nd anew 
olumn 
o-
lustering, say, 
t+1. Set �t+1 =�t. With respe
t to 
o-
lustering (�t+1; 
t+1),
ompute the matrix approximation Ẑt+1 by solv-ing the minimum Bregman information problem.Set t = t+ 1.We shall prove that this s
heme 
onverges in a �nite numberof steps to a lo
al minima. Also, at any time, in Step 2, thealgorithm may 
hoose to perform either Step 2A or 2B.
4.2 A Decomposition LemmaAs is 
lear from the outline above, a key step in our algo-rithm will involve �nding a solution of the minimum Breg-man information problem (3.7). Besides this, we will beemploying the fun
tional form for the minimum Bregmansolution Ẑ given in Theorem 1 to obtain new matrix ap-proximations. To be more pre
ise, for a given (�; 
; C), thereexist a unique set of optimal Lagrange multipliers �� so thatTheorem 1 uniquely spe
i�es the minimum Bregman infor-mation solution Ẑ. In general, the formula in Theorem 1provides a unique approximation, say ~Z, for any set of La-grange multipliers � (not ne
essarily optimal), and (�; 
; C)sin
e r�(�) is a monotoni
 fun
tion [1, 3℄. To unders
orethe dependen
e of ~Z on the Lagrange multipliers, we shalluse the notation ~Z = �(�; 
;�) = (r�)�1(�Psr=1 �r). Inparti
ular, Ẑ = Ẑ(�; 
; C) = �(�; 
;��) where C is �xed.The basi
 idea in 
onsidering approximations of the form�(�; 
;�) is that (i) optimizing the 
o-
lustering keeping theLagrange multipliers �xed, and then (ii) optimizing the La-grange multipliers, provides an eÆ
ient update s
heme thatdoes not require solving the minimum Bregman informationproblem anew for ea
h possible 
o-
lustering.Having equipped ourselves with the above update strat-egy based on approximations of the form �(�; 
;�), we now

fo
us on updating row 
lustering while keeping the 
olumn
lustering �xed, and vi
e versa. Before we 
an outline 
on-
rete updates, we need an analyti
al tool to de
ompose thematrix approximation error in terms of either the rows orthe 
olumns. This separability makes it possible for us toeÆ
iently obtain the best row 
lustering by optimizing overthe individual row assignments with a �xed 
olumn 
luster-ing, and similarly for 
olumn 
lustering.Lemma 4 For a �xed 
o-
lustering (�; 
) and a �xed set of(not ne
essarily optimal) Lagrange multipliers �, and ~Z =�(�; 
;�), we 
an write:E[d�(Z; ~Z)℄ = EU [EV jU [�(U; �(U); V; 
(V ))℄℄= EV [EUjV [�(U; �(U); V; 
(V ))℄℄;where �(�) is given by �(U; �(U); V; 
(V )) = d�(Z; ~Z).Proof. By de�nition, ~Z = (r�)�1(�Psr=1 �r). Hen
e,E[d�(Z; ~Z)℄ = E(U;V )[d�(Z; (r�)�1(� sXr=1�r))℄(a)= E(U;V )[�(U; �(U); V; 
(V ))℄℄= EU [EV jU [�(U; �(U); V; 
(V ))℄℄= EV [EUjV [�(U; �(U); V; 
(V ))℄℄;where �(�) is a fun
tion determined by the Lagrange mul-tipliers �, Bregman divergen
e d� and the original ran-dom variable Z and (a) follows sin
e the random variablesfCrg; [r℄s1 are subsets of fU; Û ; V; V̂ g.
4.3 Updating Row and Column ClustersWe will now present the details of our plan in Se
tion 4.1.First, we will demonstrate how to update row 
lustering (or
olumn 
lustering) with respe
t to a �xed 
olumn 
lustering(or row 
lustering) and a �xed set of Lagrange multipliers.Then, we will �nd the optimal Lagrange multipliers 
orre-sponding to the minimum Bregman solution of the updated
o-
lustering.Suppose we are in Step 2A outlined in Se
tion 4.1. Updat-ing the row 
lustering keeping the 
olumn 
lustering and theLagrange multipliers �xed leads to a new value for the Breg-man 
o-
lustering obje
tive fun
tion. Now making use of theseparability property in Lemma 4, we 
an eÆ
iently opti-mize the 
ontribution of ea
h row assignment to the overallobje
tive fun
tion to obtain the following row 
luster updatestep.Lemma 5 Let �t+1 be de�ned as�t+1(u) = argming:[g℄k1 EV ju[�(u; g; V; 
t(V ))℄; [u℄m1and let ~Zt = �(�t+1; 
t;��t). Then,E[d�(Z; ~Zt℄) � E[d�(Z; Ẑt)℄:where Ẑt = �(�t; 
t;��t).



Table 3: Row and 
olumn 
luster updates for I-divergen
e.C �(u; g; V; 
(V )) �(U; �(U); v; h)C1 EV ju[Z log � ZE[Zjg℄�℄ EUjv[Z log� ZE[Zjh℄�℄C2 EV ju[Z log � ZE[Zjg;V̂ ℄�℄ EUjv [Z log � ZE[ZjÛ;h℄�℄C3 EV ju[Z log �Z�E[Zjg℄E[Zjg;V̂ ℄ �℄ EUjv [Z log �Z�E[Zjh℄E[ZjÛ;h℄ �℄C4 EV ju[Z log �Z�E[Zjg;V̂ ℄E[Zjg;V ℄ �℄ EUjv[Z log �Z�E[ZjÛ;h℄E[ZjU;h℄ �℄Table 4: Row and 
olumn 
luster updates forsquared Eu
lidean distan
e.C �(u; g; V; 
(V )) �(U; �(U); v; h)C1 EV ju[(Z �E[Zjg℄)2℄ EUjv [(Z � E[Zjh℄)2℄C2 EV ju[(Z �E[Zjg; V̂ ℄)2℄ EUjv[(Z � E[ZjÛ; h℄)2℄C3 EV ju[(Z � E[Zjg; V̂ ℄ EUjv [(Z � E[ZjÛ; h℄+E[Zjg℄)2℄ +E[Zjh℄)2℄C4 EV ju[(Z � E[Zjg;V ℄ EUjv[(Z � E[ZjU;h℄+ E[Zjg; V̂ ℄)2℄ + E[ZjÛ; h℄)2℄Proof. From Lemma 4, we haveE[d�(Z; ~Zt)℄ = EU [EV jU [�(U; �t+1(U); V; 
t(V ))℄℄= EU [ ming:[g℄k1 EV jU [�(U; g; V; 
t(V ))℄℄� EU [EV jU [�(U; �t(U); V; 
(V ))℄℄= E[d�(Z; Ẑt)℄A similar argument applies to step 2B where we seek to up-date the 
olumn 
lustering keeping the row 
lustering �xed.Lemma 6 Let 
t+1 be de�ned as
t+1(v) = argminh:[h℄l1 EUjv[�(U; �t(U); v; h)℄ [v℄n1and let ~Zt = �(�t; 
t+1;��t). Then,E[d�(Z; ~Zt)℄ � E[d�(Z; Ẑt)℄:where Ẑt = �(�t; 
t;��t).Applying the above Lemmas 5 and 6 for I-divergen
e andsquared Eu
lidean distan
e, we obtain the appropriate rowand 
olumn 
luster updates shown in Tables 3 and 4.Let us 
ome ba
k to step 2A again. So far we haveonly 
onsidered updating the row (or 
olumn 
lustering instep 2B) keeping the Lagrange multipliers �xed. After up-dation, the approximation ~Zt = �(�t+1; 
t+1;��t) is 
loserto the original matrix Z than the earlier minimum Bregmaninformation solution Ẑt, but the Lagrange multipliers ��tare no longer optimal and ~Zt is itself not a minimum Breg-man information solution. Hen
e, we now optimize over theLagrange multipliers keeping the 
o-
lustering �xed so thatthe fun
tional form �(:) yields the best approximation toZ. The following lemma shows that the \best" Lagrangemultipliers for a
hieving this are the same as the optimalLagrange multipliers of the minimum Bregman informationproblem.Lemma 7 Let Ẑt+1 = �(�t+1; 
t+1;��t+1) be the minimumBregman information solution 
orresponding to (�t+1; 
t+1)

with ��t+1 being the optimal Lagrange multipliers in (3.7).Then, E[d�(Z; Ẑt+1) � E[d�(Z; ~Zt)℄:where ~Zt = �(�t+1; 
t+1;��t)Proof. By de�nition,E[d�(Z; Ẑt+1)℄= E[�(Z)� �(Ẑt+1)� hZ � Ẑt+1;r�(Ẑt+1)i℄(a)= E[�(Z)� �(Ẑt+1)℄= E[d�(Z; ~Zt)℄�E[d�(Ẑt+1; ~Zt)℄�E[hZ � Ẑt+1;r�( ~Zt)i℄(b)= E[d�(Z; ~Zt)℄�E[d�(Ẑt+1; ~Zt)℄� E[d�(Z; ~Zt)℄where (a) follows sin
e Ẑt+1 satis�es both 
onditions A andB so that taking 
onditional expe
tations over E[ZjC℄; C 2C makes the last term zero and (b) follows sin
e by de�nition,r�( ~Zt) is summation of terms �r; [r℄s1 and E[Ẑt+1jCr℄ =E[ZjCr ℄, thus making the last term vanish.
4.4 The AlgorithmFinally, we state the meta algorithm for generalized Breg-man 
o-
lustering (see Algorithm 1), that is a 
on
rete \im-plementation" of our plan in Se
tion 4.1. We now establishthat our algorithm is guaranteed to a
hieve lo
al optimality.Theorem 3 The general Bregman 
o-
lustering algorithm(Algorithm 1) 
onverges to a solution that is lo
ally optimalfor the Bregman 
o-
lustering problem (3.8), i.e., the obje
-tive fun
tion 
annot be improved by 
hanging either the row
lustering, the 
olumn 
lustering.Proof. From lemmas 5, 6, and 7, it follows that up-dating the row 
lustering �, the 
olumn 
lustering 
 and theLagrange multipliers � one at a time de
reases the obje
tivefun
tion of the Bregman 
o-
lustering problem. Hen
e, theBregman 
o-
lustering algorithm (Algorithm 1) whi
h pro-
eeds by alternately updating � ! � ! 
 ! � monoton-i
ally de
reases the Bregman 
o-
lustering obje
tive fun
-tion. Sin
e the number of distin
t 
o-
lusterings is �nite,the algorithm is guaranteed to 
onverge to a lo
ally optimalsolution. Note that updation over � is the same as obtain-ing the minimum Bregman information solution.When the Bregman divergen
e is I-divergen
e or squaredEu
lidean distan
e, the minimumBregman information prob-lem has a 
losed form analyti
 solution as shown in Tables1 and 2. Hen
e, it is straightforward to obtain the row and
olumn 
luster update steps (Tables 3 and 4) and implementthe Bregman 
o-
lustering algorithm (Algorithm 1). Theresulting algorithms involve a 
omputational e�ort that islinear in the size of the data and are hen
e, very s
alable. Ingeneral, the minimum Bregman information problem neednot have a 
losed form solution and the update steps needto be determined using numeri
al 
omputation te
hniques.However, sin
e the Lagrange dual L(�) in the minimumBregman information problem (3.7) is 
onvex in the La-grange multipliers �, it is possible to obtain the optimal La-grange multipliers using 
onvex optimization te
hniques [4℄.The minimum Bregman information solution and the row


