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ABSTRACT

Co-clustering, or simultaneous clustering of the rows and
columns of two-dimensional data matrices, is a powerful
data mining technique with varied applications such as text
clustering, microarray analysis and recommender systems.
An information-theoretic approach that is applicable when
the data matrix can be interpreted as a two-dimensional em-
pirical joint probability distribution, was recently proposed.
However, in many situations, co-clustering of more general
matrices is desired. In this paper, we present a substan-
tially generalized co-clustering framework wherein (i) loss
functions corresponding to all Bregman divergences, which
include squared Euclidean distance and KL-divergence as
special cases, can be used, thereby making it applicable
to a wide range of data matrices, (ii) various conditional
expectation based constraints can be considered based on
the statistics that need to be preserved, thereby giving rise
to different parametric co-clustering models, and (iii) the
maximum entropy principle is generalized to the minimum
Bregman information principle to provide a natural model
selection technique. The analysis yields an elegant meta
algorithm that is guaranteed to achieve local optimality.
Our methodology encompasses a vast majority of previously
known clustering and co-clustering algorithms based on al-
ternate minimization. We provide examples and empirical
evidence to establish the generality and efficacy of the pro-
posed co-clustering framework.

1. INTRODUCTION

Co-clustering, or bi-clustering [10, 5], is the problem of si-
multaneously clustering rows and columns of a data matrix.
The problem of co-clustering arises in diverse data mining
applications, such as simultaneous clustering of genes and
experimental conditions in bioinformatics [5, 6], documents
and words in text mining [9], users and movies in recom-
mender systems, etc. Often, it forms a key intermediate
step in the data mining process and is essential to overcome
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the noise and sparsity in the input data matrix. Further,
co-clustering is capable of providing compressed representa-
tions that are highly interpretable while preserving most of
the information contained in the original data, which makes
it valuable to a large class of statistical data analysis appli-
cations.

In order to design a co-clustering framework, we need to
first characterize the “goodness” of a co-clustering. Existing
co-clustering techniques [6, 5, 9] achieve this by quantifying
the “goodness” of a co-clustering in terms of the approxi-
mation error between the original data matrix and a matrix
reconstructed by co-clustering based on the summary statis-
tics. Currently, the most efficient and scalable ones are those
based on alternate minimization schemes [6, 9, 6] that allow
only two distortion measures namely, KL-divergence and the
squared Euclidean distance. Further, they also allow only a
few matrix reconstruction schemes that involve preserving
particular summary statistics of the original matrix. These
two limitations restrict the applicability of these techniques
to a small range of data matrices.

In this paper, we address the following two questions:
(a) what class of distortion functions admit efficient co-
clustering algorithms based on alternate minimization?, and

(b) what are the different possible matriz reconstruction schemes

for these co-clustering algorithms?. We show that alternate
minimization based co-clustering algorithms work for a large
class of distortion measures called Bregman divergences [1],
which include squared Euclidean distance, KL-divergence,
Itakura-Saito distance, etc., as special cases. Further, we
demonstrate that for a given co-clustering, a large variety of
approximation models are possible based on the type of sum-
mary statistics that need to be preserved. To achieve these
results, we propose and use a new minimum Bregman infor-
mation principle that simultaneously generalizes the maxi-
mum entropy and the least squares principles. Based on the
proposed principle, and other related results, we develop an
elegant meta-algorithm for the Bregman co-clustering prob-
lem with a number of desirable properties such as scalabil-
ity and applicability to a wide range of data matrices. Most
previously known parametric clustering and co-clustering al-
gorithms based on alternative minimization follow as special
cases of our methodology.

2. MOTIVATION

We start by reviewing information-theoretic co-clustering [9]
and concretely motivating the need for a more general co-
clustering framework.



Let X and Y be discrete random variables that take val-
ues in the sets {z,}[u]{" where [u]!* denotes an index u
running over {1,--- ,m} and {y. }[v]T respectively. Suppose
we are in the idealized situation where the joint probability
distribution p(X,Y) is known. In practice, p may be es-
timated from a contingency table or co-occurrence matrix.
Suppose we want to co-cluster, or, simultaneously cluster X
into k disjoint (row) clusters {xg} [¢]¥ and Y into I disjoint
(column) clusters, {§n} [h]}. Let X and Y denote the corre-
sponding clustered random variables that range over these
sets. An information theoretic formulation of finding the
optimal co-clustering is to solve the problem

min  I(X;Y) - I(X;7), (2.1)

’

where I(X;Y) is the mutual information between X and Y [7].

In [9], it was shown that

I(X;Y) - I(X,Y) = D(p(X,Y)[la(X,Y)), (2.2)

where ¢(X,Y) is a distribution of the form
9(X,Y) = p(X,Y)p(X|X)p(Y]Y), (2:3)

and D(:||-) denotes the Kullback-Leibler(KL) divergence,
also known as relative entropy. Thus, the search for the op-
timal co-clustering may be conducted by searching for the
nearest approximation ¢(X,Y") that has the above form. On
closer examination, we note that the distribution ¢(X,Y")
depends only on (kl + m + n — 3) independent parameters,
which is much smaller than the (mn — 1) parameters that
determine a general joint distribution p. Hence, we call
q(X,Y) a “low complexity” or low parameter matrix ap-
proximation.

The above is the viewpoint presented in [9]. We now
present an alternate viewpoint that will enable us to gen-
eralize our approach to arbitrary data matrices and general
distortion measures. The following lemma highlights the
key maximum entropy property that makes ¢(X,Y) a “low
complexity” or low parameter approximation.

Lemma 1 Given a fized co-clustering X, f’, consider the
set of joint distributions p’ that preserve the following statis-

tics of the input distribution p:
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Among all such distributions p’, the distribution q in (2.8)
has the mazimum entropy, i.e.,

H(g(X,Y)) > H(p'(X,Y)).

PRrOOF. It can be easily checked that g preserves the
relevant statistics so that p (X Y) = p(X,Y) = q(X,Y),

P'(X) = p(X) = ¢(X) and p'(Y) = p(Y) = ¢(Y). Using
this property of q, it is easy to show that H(q) — H(p') =
D(p'|lg) > 0. O

What is the significance of the above lemma? In the absence
of any constraints, the uniform distribution, po(X,Y) =
{-£-}, has the maximum entropy. If only row and column
marginals are to be preserved, then the product distribu-
tion p(X)p(Y) has maximum entropy (see [7, Problem 5,
Chap. 11]). The above lemma states that among all distribu-
tions that preserve marginals as well as co-cluster statistics,

the maximum entropy distribution has the form in (2.3).
It is important to note that this mazimum entropy charac-
terization is equivalent to saying that q is a low-complexity
matriz approzimation. Thus, by (2.2) and Lemma 1, the
co-clustering problem (2.1) is equivalent to the problem of
finding the nearest (in KL-divergence) mazimum entropy
distribution that preserves the marginals, and the co-cluster
statistics of the original data matriz.

The above formulation is applicable when the data ma-
trix corresponds to an empirical joint distribution. However,
there are important situations when the data matrix is more
general, for example, the matrix may contain negative en-
tries and/or a distortion measure other than KL-divergence,
such as the squared Euclidean distance, might be more ap-
propriate.

This paper addresses the general situation by extending
the information-theoretic co-clustering along three different
directions. First, “nearness” can be now measured by any
one of a large class of distortion measures called Bregman
divergences. Second, we allow specification of a larger vari-
ety of constraints that preserve various statistics of the data.
The different constraints allow a trade-off between complex-
ity and fidelity of the resulting approximation. Lastly, to ac-
complish the above, we generalize the maximum entropy ap-
proach: we guide our co-clustering generalization by appeal-
ing to the minimum Bregman information principle that we
shall introduce shortly. The optimal co-clustering is guided
by the search for the nearest (in Bregman divergence) ma-
triz approrimation that has minimum Bregman information
while satisfying the constraints mentioned above.

3. FORMULATION AND ANALYSIS

In this section, we formulate the Bregman co-clustering
problem in terms of the Bregman divergence between a given
matrix and an approximation based on the co-clustering.
We show that a natural way of specifying the approxima-
tion matrix leads to a new minimum Bregman information
principle, which we analyze in detail.

3.1 Preliminaries

We start by defining Bregman divergences [1, 3]. Let ¢
be a real-valued strictly convex function defined on the con-
vex set S = dom(¢) C R, the domain of ¢, such that ¢
is differentiable on int(S), the interior of S. The Breg-
man divergence dg : S X int(S) — [0,00) is defined as
dy(21,22) = ¢(21) — ¢(22) — (21 — 22, V¢(22)), where V¢ is
the gradient of ¢.

Example 1.A (I-Divergence) Given z € Ry, let ¢(z) =
zlog z. For 21,22 € Ry, dg (21, 22) = z1log(z1/22) — (21 —22).

Example 2.A (Squared Euclidean Distance) Given z €
R, let ¢(2z) = 22, For 21,7z € R, dy(z1,22) = (21 — zz)z.

Data Matrix

We focus on the problem of approximating a given m x n
data matrix Z under various constraints. Let each entry of
Z take values in a convex set S = dom(¢). Hence, Z takes
values in S™*™. Observe that we are now admitting a much
larger classes of matrices than that in [9, 6].

We will think of Z as a random variable that is a known
deterministic function of two underlying random variables



U and V, which we now introduce. Let U be a random

variable taking values in {1,---,m}, the set of row indices,
and let V' be a random variable taking values in {1,---  n},
the set of column indices. Hence, the matrix Z = [zuv] is

such that zy, is some fixed deterministic function of v and
v. Let v = {vuo : [u]T", [v]T} denote the joint probability
measure of the pair (U, V), which is either pre-specified or
set to be the uniform distribution. Throughout the paper,
all expectations are with respect to v.

Example 1.B (I-Divergence) Let (X,Y) ~ p(X,Y) be
jointly distributed random variables with X,Y taking values
in {zu}, [u]" and {y.}, [v]T respectively. Then, p(X,Y’) can
be written in the form of the matrix Z = [z4.], [u]T", [v]T,
where 24y, = p(xy, yv) is a deterministic function of u and v.
This example with a uniform measure v corresponds to the
setting described in section 2 (originally in [9])".

Example 2.B (Squared Euclidean Distance) Let Z €
R™*™ denote a data matrix whose elements may assume
positive, negative, or zero values and let v be a uniform
measure. This example corresponds to the setting described
in [6, 5].

Bregman Co-clustering

We define a k x [ co-clustering as a pair of maps:

pi{l,- m}— {1, k}
y:{Ll---,n} = {1,--- 1}

Let U and V be random variables taking values in {1, --- , k}
and {1,---,1} such that U = p(U) and V = ~(V). Let
Z = [Z4v] € §™*" be an approximation for the data matrix
Z such that it depends upon a given co-clustering (p,~).
We shall then measure the goodness of the underlying co-
clustering as:

E[d¢(Z: Z)] = Zzyuvdqb(zuv,éuv). (34)

u=1lv=1

To carry out this plan, we need to make precise the connec-
tion between (p,v) and Z.

Example 1.C (I-Divergence) The Bregman co-clustering
objective function in this case is given by E[ds(Z,Z)] =
EZlog(Z/Z2) - Z + Z].

Example 2.C (Squared Euclidean Distance) The Breg-

man co-clustering objective function in this case is given by
Eld,s(Z, 2)| = E[(Z - 2)*]

3.2 Co-Clustering and Matrix Approximation

Every co-clustering can lead to numerous different matrix
approximations. The crucial point is precisely what infor-
mation from Z do we retain.

Let us fix a co-clustering (p,7y). Given the co-clustering,
there are essentially five random variables of interest: Z, U,
V, U, and V. Now, we can specify the statistics of Z that
we want to preserve using non-trivial combinations from this
set, given by

L= {U VI AU VIAU VLU AVEAUL AV,

!Note that in [9] KL-divergence was used, which is a special
case of I-divergence applicable to probability distributions.

where {U, V'} is not included since E[Z|U,V] = Z. We will
be interested in random variables that depend on sets of
conditional expectations® of the form {E[Z|C], C € I'}. If
w(I") denotes the power set of I', then every element of w(I")
is a set of constraints, and leads to a (possibly) different
matrix approximation. Intuitively, we think of 7(T") as the
class of matriz approzimation schemes related to a given
co-clustering (p,7).

We now display four concrete examples of interesting el-
ements of w(I") that we will use throughout this paper to
illuminate discussions:

Ci = {U}{V}}, C:={{U,V}}
Cs = {{0:V}: {U}: {V}} Cs= {{U7 V}: {U:V}}

The diligent reader may verify that these are the only non-
trivial symmetric constraint sets in w(I"). Also, observe that
if we have access to {E[Z|C] : C € C;}, for some 1 < ¢ < 4,
then we can compute {E[Z|C] : C € C;} for all 1 < j <
i. In this sense, we say that the constraint set C; is more
complex than C; for all j < 4. From a practical perspective,
a more complex set of constraints allows us to retain more
information about Z.

Our abstraction allows us to handle the essence behind the
above constraint sets and, in fact, all constraint sets in 7(T")
at once. Now, consider an element C in the power set 7(T")
as the pertinent constraint set. Given this choice, we seek
to find the “best” approximation matrix. Let Za(p,~,C)
denote the class of random variables Z' € S§”*™ that satisfy
the following conditional independence condition:

Condition A. The Markov condition
Z = {E[Z|C]:CeC}—Z

holds. In other words, Z' depends upon Z only through
the set of random variables {E[Z|C]: C € C}.

We define the “best” matrix approximation Za corre-
sponding to the co-clustering (p,7y) and the constraint set
C as the one in the class E4(p,7,C) that minimizes the ap-
proximation error, i.e.,

Za=Za(p,y,C)= argmin Elds(Z,Z")]. (3.5)

Z'€Z24(p,7,C)
Before we proceed further, we will furnish an alternative
characterization of (3.5) in terms of an extremely useful con-
cept called Bregman information. This alternative charac-
terization will be an important step in our hunt for a gener-
alized algorithm.

3.3 Minimum Bregman Information

For any random variable Z’', its Bregman information
is defined as the expected Bregman divergence to the expec-
tation, i.e.,

1,(Z") = Elds(Z', E[Z'])]. (3.6)
Intuitively, this quantity is a measure of the “spread” or the
“information” in the random variable.

Example 1.D (I-Divergence) Given Z' € R}'*", the Breg-
man information corresponding to I-divergence is given by
I,(Z") = E|Z'log (Z' | E[Z'])].

2Given a sub-c-algebra G for Z, the conditional expecta-
tion E[Z|G] is the optimal Bregman predictor among all
G-measurable random variables [2].




When Z’ corresponds to a probability distribution, i.e., 2z, =
p(Tu,yu) and v is a uniform measure, then E[Z'] is the
uniform distribution py and the Bregman information is
given by D(p||po) = —H(p)+ constant, where D(:||-) is KL-
divergence and H(.) is the Shannon entropy.

Example 2.D (Squared Euclidean Distance) Given Z'
€ R™*" the Bregman information corresponding to squared
Euclidean distance is given by I4(Z') = E[(Z' — E[Z'])?],
which is just the squared Frobenius norm of the matrix for
a uniform measure v.

We now consider a different class of approximating ran-
dom variables based on a specified constraint set C and a
specified co-clustering (p,v). Let Eg(p,~,C) denote a class
of random variables such that every Z' satisfies the following
linear constraints:

Condition B. For every C € C, E[Z|C] = E[Z'|C].

With respect to the set Eg(p,v,C), we ask: What is the
“best” random variable to select from this set? We now pro-
pose a new minimum Bregman information principle
that recommends selecting a random variable that has the
minimum Bregman information subject to the linear con-
straints:

Zp = Zp(p,7,C) = argmin I4(Z'). (3.7)

Z'€Ep(p7,C)

It is easy to see that the widely used mazimum entropy
principle [12, 7] is a special case of the proposed principle
since the entropy of a joint distribution is negatively related
to the Bregman information (Example 1.D). In fact, the
minimum Bregman information principle neatly unifies both
the maximum entropy, and the least squares principle [8].

The following theorem characterizes the solution to the
minimum Bregman information problem (3.7).

Theorem 1 For a Bregman divergence dg, any random vari-
able Z € S™*™, a specified co- clustering (p,7) and a speci-
fied constraint set C, the solution Zp to (3.7) is given by’

s

*

- E A’V‘?
r=1

where A* = {A}} are the optimal Lagrange multipliers cor-
responding to set of the linear constraints:

E[Z'|C,] = E[Z|C,], [r];.

Furthermore, ZB always exists, is unique, and satisfies Con-
dition A.

PrOOF. Consider the Lagrangian J(Z',A) of the mini-

mum Bregman information problem. After some algebraic
manipulation, it can be shown that

+ZA

E[Z']) +ZA E[Z'|C)]

J(Z' N =1,(Z E[Z'|C,] — E[Z|C}])

E[Z|C.]) .

3In general, we use f(Z) to denote f(-) applied to Z ele-
mentwise for any function f.

Table 1: Minimum Bregman information solution
for I-Divergence.

Constraints C Approximation Zp

c E[Z|U]XE[Z|V]
L E[Z]
Cy E[Z|U,V]
Cs E[Z|UIXE[Z|VIXE[Z|U,V]

E[Z|UIXE[Z]V]
E[Z|U,VIXE[Z|U,V]
E[Z|U,V]

Ca

Table 2: Minimum Bregman information solution
for squared Euclidean distance.

Constraints C Approximation Zp
Cy E[Z|U)+ E[Z|V] — E|Z]
Co E[Z|U,V]
Cs BIZU1+ BIZ|V] + BIZ]D, V]
—E[Z|U] - E[Z|V]
Cq E[Z|U,V]+ E[Z|U,V] — E[Z|U,V]

Now, the Lagrange dual, L(A) = infz J(Z',A), is strictly
concave in A. By maximizing the Lagrange dual we get the

optimal Lagrange multipliers, i.e., A" = {A;} = argmax, L(A).

Replacing A into the first order necessary conditions corre-
sponding to the minimizer Zp, we get

VI(Zs,A)=0 & V¢(Zs)+) A=
Rearranging terms proves the first part of the theorem.
The existence and the uniqueness of ZB follow from the
strict convexity of ¢. Also, observe that due to the fact
that the minimization problem takes as input only the set
{E[Z|C] : C € C}, and, hence, has no other information
about Z, it follows that ZB satisfies Condition A. O

Example 1.E (I-Divergence) When ¢(z) = zlogz,z €
R4, V¢(z) = logz and the minimum Bregman informa-
tion solution is given by log Zp = — Yo _ A where A* =
{A}} are the optimal Lagrange multipliers of problem (3.7).
For constraint set Co = {{U,V}}, there is only one con-
straint E[Z|U,V] and on applying this, we obtain Aoy =
—log(E[Z|U,V]) so that Zg = E[Z|U,V]. The minimum
Bregman information solutions for all the cases are shown
in the table below. Note that ZB for the constraint set Cs
reduces to ¢(X,Y) = % for probability distri-
butions, which is the same as (2.3). Further, the fact that
q is the minimum Bregman information solution for KL-
divergence under certain constraints is equivalent to Lemma
1, which shows that is the maximum entropy distribution
under those constraints.

Example 2.E (Squared Euclidean Distance) When ¢(z) =

22, 2€R, Vé(z) =2z and Zp = — >0, Ay where A* =
{A}} are the optimal Lagrange multipliers of problem (3.7).
Hence, for constraint set C» = {{U, V'}}, we obtain Np vy =
—2E[Z|U, V] so that Zg = E[Z|U, V] once again. The min-
imum Bregman information solutions for all the cases are
shown in the table below.



3.4 A Projection Lemma

We have proposed two alternative ways, namely, (3.5) and
(3.7) of quantifying the goodness of a given co-clustering
(p,~y) with respect to a user specified constraint set C. The
following pleasantly surprising projection lemma shows that
these two formulations lead to the same solution, and, hence-
forth, we will simply write Z = Z4 = Zp. The projection
lemma essentially states that the minimum Bregman infor-
mation solution Zp is the Bregman projection ( nearest in
Bregman divergence) of Z onto the set of all approximations
that satisfy the Markov property in condition A.

Lemma 2 (Projection Lemma) For a Bregman divergence

dy, any random variable Z € S™*™, a specified co-clustering

(p,7) and a specified constraint set C,
E[dy(Z,Z")) = Elds(Z, Zs)| + Eldy(Zp, Z')]
where Z' € 2a(p,7,C) and Zp = Zp(p,7,C) as in (3.7).
ProoF. By definition,
Elds(Z,2")]
< Blp(2) - Blo(2)] - Bz ~ 2, V6(Z)]
Eldy(Z, Z5)] + Eldy (Zp, z")]
+E[Z — Z5,V$(Zs) = VH(Z"))]
Y Elds(Z, Zs)) + Elds(Zs, Z')]

—~

where (a) follows from algebraic manipulation and (b) fol-

lows since Z', ZB both satisfy Condition A and ZB satisfies
Condition B, the last term vanishes by taking conditional
expectations over {E[Z|C], C € C}. O

Theorem 2 For a Bregman divergence dg, any random vari-
able Z € S™*™, a specified co-clustering (p,~y) and a speci-
fied constraint set C,

Za=2p.
where Za and Zp are given by (3.5) and (3.7) respectively.
PROOF. By definition,

Za = argmin E[ds(Z,2Z')]
Z'€Ea(p7,C)

= argmin  E[dy(Z5, Z')]
Z'€Ea(p,7,C)

= ZB

where (a) follows from Lemma 2 and (b) follows since dg (-, ) >

0 unless both the arguments are equal due to the strict con-
vexity of ¢, and the fact that Zp satisfies condition A. [

3.5 Main Problem

The expected Bregman divergence between the given ma-
trix Z and the minimum Bregman information solution Z
provides us with a elegant way to quantify the goodness of a
co-clustering. Interestingly, the following lemma shows that
this expected Bregman divergence is exactly equal to the
loss in Bregman information due to co-clustering, which is
on the same lines as the information-theoretic co-clustering
formulation as in Eqn (2.1) (originally, Lemma 2.1 in [9]).

Lemma 3 For a Bregman divergence dg, any random vari-
able Z € S™*™, a specified co-clustering (p,7) and a speci-
fied constraint set C,

Elds(Z,2)] = 14(2) — 15(Z)

where Z = Za = Zp defined in (3.5) and (3.7).

PROOF. By definition,

Elds(2, 7))
= E[¢(
= Elp(2)] -

(

()

—~
N

—~
N

—~

c

= I4(2) - I¢(2)

<

where (a) follows from the fact that Z satisfies conditions A

and B so that taking conditional expectations over {E[Z|C], C €

C} makes the last term vanish, and (b) follows since E[Z] =
E[Z] and (c) follows since E[(Z—E[Z], V$(E[Z]))] =0. O

We are now ready to concretely define the generalized co-
clustering problem.

Definition 1 Given k, [, a Bregman divergence dg, a data
matrix Z € S™*", a set of constraints ¢ € ('), and an
underlying probability measure v, we wish to find a co-
clustering (p*,~”*) that minimizes:

(p*,7") = argmin E[dy(Z, Z)] = argmin 14(Z) — 15(Z),
(py7) (1)
(3.8)
where Z = Z(p,7,C) = argmin I4(Z’).
Z'€Ep(p7,C)

The problem is NP-complete by a reduction to the kmeans
problem. Hence, it is difficult to obtain a globally optimal
solution efficiently. However, in section 4, we analyze the
problem in detail, and prove that it is always possible to
come up with an iterative update scheme that (a) monoton-
ically decreases the objective function, and (b) converges to
a local minimum of the problem.

Example 1.F (I-Divergence) Continuing from Example
1.C, the Bregman co-clustering objective function is given by
E[Z log(Z/Z) — Z + Z] = E[Zlog(Z/ Z)] since E[Z] = E[Z]
where Z is the minimum Bregman information solution from
Table 1. Note that for the constraint set Cz and Z based on
a joint distribution p(X,Y’), this reduces to D(p||q) where
q is the joint distribution corresponding to the minimum
Bregman solution indicating that (2.1) follows as a special
case of (3.8).

Example 2.F (Squared Euclidean Distance) Continuing
from Example 2.C, the Bregman co-clustering objective func-
tion is E[(Z — Z)?] where Z is the minimum Bregman in-
formation solution from Table 2. Note that for the con-
straint set C4, this reduces to E[(Z—E[Z|U, V]-E[Z|U, V]+
E[Z|U,V])?], which is same as the objective function pro-
posed in [6, 5].



4. A META ALGORITHM

In this section, we shall develop an alternating minimiza-
tion scheme for the general Bregman co-clustering problem.
Our scheme shall serve as a meta algorithm from which a
number of special cases (both previously known and un-
known) can be derived.

Throughout this section, let us suppose that the underly-
ing measure v, the Bregman divergence dg, the data matrix
Z € S"™*™ number of row clusters k, number of column
clusters [, and the constraint set C are specified and fixed.
We shall focus on finding a good co-clustering for (3.8).

4.1 |Intuition and Plan of Attack

We first outline the essence of our scheme.

Step 1: Start with an arbitrary row and column clustering,
say, (p°,~°). Set t = 0. With respect to this clustering,
compute the matrix approximation VA by solving the
minimum Bregman information problem (3.7).

Step 2: Repeat one of the following two steps till conver-
gence:

Step 2A: Hold the column clustering ~* fixed, and

find a new row co-clustering, say, p'*'. Set y'*! =
v'. With respect to co-clustering (p'**,~'*1),
compute the matrix approximation Zttt by solv-
ing the minimum Bregman information problem.

Set t =t + 1.

Step 2B: Hold the row clustering p’ fixed, and find a
new column co-clustering, say, v'**. Set p'™! =
pt. With respect to co-clustering (p'**,~!*1),

compute the matrix approximation Zttt by solv-

ing the minimum Bregman information problem.

Set ¢t =t + 1.

We shall prove that this scheme converges in a finite number
of steps to a local minima. Also, at any time, in Step 2, the
algorithm may choose to perform either Step 2A or 2B.

4.2 A Decomposition Lemma

As is clear from the outline above, a key step in our algo-
rithm will involve finding a solution of the minimum Breg-
man information problem (3.7). Besides this, we will be
employing the functional form for the minimum Bregman
solution Z given in Theorem 1 to obtain new matrix ap-
proximations. To be more precise, for a given (p,,C), there
exist a unique set of optimal Lagrange multipliers A* so that
Theorem 1 uniquely specifies the minimum Bregman infor-
mation solution Z. In general, the formula in Theorem 1
provides a unique approximation, say Z, for any set of La-
grange multipliers A (not necessarily optimal), and (p,~,C)
since V¢(-) is a monotonic function [1, 3]. To underscore
the dependence 0f~Z on the Lagrange multipliers, we shall
use the notation Z = ((p,7,A) = (Vo) '(=X5_ Ar). In
particular, Z = Z(p,7,C) = ((p,7,A*) where C is fixed.
The basic idea in considering approximations of the form
C(p,7,A) is that (i) optimizing the co-clustering keeping the
Lagrange multipliers fixed, and then (ii) optimizing the La-
grange multipliers, provides an efficient update scheme that
does not require solving the minimum Bregman information
problem anew for each possible co-clustering.

Having equipped ourselves with the above update strat-
egy based on approximations of the form ((p,v,A), we now

focus on updating row clustering while keeping the column
clustering fixed, and vice versa. Before we can outline con-
crete updates, we need an analytical tool to decompose the
matrix approximation error in terms of either the rows or
the columns. This separability makes it possible for us to
efficiently obtain the best row clustering by optimizing over
the individual row assignments with a fixed column cluster-
ing, and similarly for column clustering.

Lemma 4 For a fized co-clustering (p,7) and a fized set of
(not necessarily optimal) Lagrange multipliers A, and Z =
C(p,7v,A), we can write:

Elds(Z,2Z)] = EulBviulEU,pU),V,7(V)]
= EV[EU\V[E(U:p(U):V77(V )]]:

where £(°) is given by (U, p(U), V,y(V)) = dy(Z, Z).

)
)

PROOF. By definition, Z = (V)™ *(— Y.°_, A,). Hence,

r=1""T

Eldy(Z, 2)]

Ew,)[de(Z,(V) (= Y A))]

—~
Sl
N

E(U,V) [g(U’ p(U), v, V(V))]]
= Eu[EviulEU,pU),V,7(V))]]
= Ev[Eyw[EU,pWU), V,y(V)I,

where £(-) is a function determined by the Lagrange mul-
tipliers A, Bregman divergence ds and the original ran-
dom variable Z and (a) follows since the random variables

{C,},[r]; are subsets of {U,U,V,V}. O

4.3 Updating Row and Column Clusters

We will now present the details of our plan in Section 4.1.
First, we will demonstrate how to update row clustering (or
column clustering) with respect to a fixed column clustering
(or row clustering) and a fixed set of Lagrange multipliers.
Then, we will find the optimal Lagrange multipliers corre-
sponding to the minimum Bregman solution of the updated
co-clustering.

Suppose we are in Step 2A outlined in Section 4.1. Updat-
ing the row clustering keeping the column clustering and the
Lagrange multipliers fixed leads to a new value for the Breg-
man co-clustering objective function. Now making use of the
separability property in Lemma 4, we can efficiently opti-
mize the contribution of each row assignment to the overall
objective function to obtain the following row cluster update
step.

Lemma 5 Let p't' be defined as

p' T (u) = argmin By, [6(u, g, V, Y (V))], [u]?

g:[g]¥
and let Z' = C(p'T, 4!, A*Y). Then,
Elds(2,7"]) < Blds(2,2")).

where Z' = ¢(pt,~t, A*).



with A*F being the optimal Lagrange multipliers in (38.7).
Then,

Elds(2,2'") < E[dys(2,2")].
where Z* = (p+, 7, A™)
ProOF. By definition,

Eldy(Z, 2")]

Table 3: Row and column cluster updates for I-
divergence.

¢ £(u,9,V,7(V)) £, p(U), v, h)

¢ | BviulZiog ()] Emv[zmg(Eé )]

C2 | Byulzlog (5 z\gV]) Bujol2108 (55 h])

e Bz (2 2B | Bl ()
Ci | ByulZlog (L500E40)] | Bupulzlog (Z5thn )]
Table 4: Row and column cluster updates for

squared Euclidean distance.
C £(u,9,V,7(V)) £, p(U),v,h)
G | Evu(Z - E[Z]g])?] Ey[(Z — E[Z]h])?]
C2 | By[(Z - E[Z|g,V])?] | Ev[(Z — E[Z]U, h])?]
Cs EV\u[(Z E[Z|g,V] Eyl[(Z - E[Z|U, h]
E[Z|g])?] + E[Z]h])?]
Cq EV\u[(Z E[Z‘Q,V] EU|U[(Z E[Z|U h]
+ E[Z]9,V))?] + B[Z|U, h))]

PRrROOF. From Lemma 4, we have
Eldy(2,2")] = Eu[BviulEU,p"™(U), V.4 (V)]
= Ey[min Eviul€U, g, V,y" (V)]

g:[g1%
Eu[Eviu[£(U, p'(U), V,7(V))]]
= E[dy(Z,2") O

IN

A similar argument applies to step 2B where we seek to up-
date the column clustering keeping the row clustering fixed.

Lemma 6 Let ' be defined as

v (w) = arg[rrllin Ey €U, p'(U), v, k)] [v]}
h:[h]}

and let Z' = C(pt,v'TL, A*Y). Then,

Eldy(Z,Z")] < Eldy(Z, Z")].
Clp' Ayt A,

Applying the above Lemmas 5 and 6 for I-divergence and
squared Euclidean distance, we obtain the appropriate row
and column cluster updates shown in Tables 3 and 4.

Let us come back to step 2A again. So far we have
only considered updating the row (or column clustering in
step 2B) keeping the Lagrange multipliers fixed. After up-
dation, the approximation Z! = ((p'*!, v+, A*Y) is closer
to the original matrix Z than the earlier minimum Bregman
information solution Z°, but the Lagrange multipliers A**
are no longer optimal and Z* is itself not a minimum Breg-
man information solution. Hence, we now optimize over the
Lagrange multipliers keeping the co-clustering fixed so that
the functional form ((.) yields the best approximation to
Z. The following lemma shows that the “best” Lagrange
multipliers for achieving this are the same as the optimal
Lagrange multipliers of the minimum Bregman information
problem.

where Z¢ =

Lemma 7 Let 2!t = ((p'*, 'L, A**HL) be the minimum

Bregman information solution corresponding to (p'tt,~'Th)

= E[$(2) — §(Z") (2 — 2, V(2]

2 Bp(2) - 92

= Elds(2,2")] - Eldo(2*, 2%)] — E[(Z — 2,V $(2"))]
© Eldy(z,2") - Bldg(2',2")]

< Eldy(2,2%)

where (a) follows since Z'*! satisfies both conditions A and
B so that taking conditional expectations over E[Z|C],C €
C makes the last term zero and (b) follows since by definition,
Vé(Z*) is summation of terms A,,[r]; and E[Z!*!|C,] =
E[Z|C,], thus making the last term vanish. o

4.4 The Algorithm

Finally, we state the meta algorithm for generalized Breg-
man co-clustering (see Algorithm 1), that is a concrete “im
plementation” of our plan in Section 4.1. We now establish
that our algorithm is guaranteed to achieve local optimality.

Theorem 3 The general Bregman co-clustering algorithm
(Algorithm 1) converges to a solution that is locally optimal
for the Bregman co-clustering problem (3.8), i.e., the objec-
tive function cannot be improved by changing either the row
clustering, the column clustering.

Proor. From lemmas b5, 6, and 7, it follows that up-
dating the row clustering p, the column clustering v and the
Lagrange multipliers A one at a time decreases the objective
function of the Bregman co-clustering problem. Hence, the
Bregman co-clustering algorithm (Algorithm 1) which pro-
ceeds by alternately updating p - A — v — A monoton-
ically decreases the Bregman co-clustering objective func-
tion. Since the number of distinct co-clusterings is finite,
the algorithm is guaranteed to converge to a locally optimal
solution. Note that updation over A is the same as obtain-
ing the minimum Bregman information solution. O

When the Bregman divergence is I-divergence or squared
Euclidean distance, the minimum Bregman information prob-
lem has a closed form analytic solution as shown in Tables
1 and 2. Hence, it is straightforward to obtain the row and
column cluster update steps (Tables 3 and 4) and implement
the Bregman co-clustering algorithm (Algorithm 1). The
resulting algorithms involve a computational effort that is
linear in the size of the data and are hence, very scalable. In
general, the minimum Bregman information problem need
not have a closed form solution and the update steps need
to be determined using numerical computation techniques.
However, since the Lagrange dual L(A) in the minimum
Bregman information problem (3.7) is convex in the La-
grange multipliers A, it is possible to obtain the optimal La-
grange multipliers using convex optimization techniques [4].
The minimum Bregman information solution and the row



