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Abstract

Despite all the benefits of garbage collection, memory leaksin

a problem for Java programs.memory leakn Java occurs when
a program inadvertently maintains references to objectsitino
longer needs, preventing the garbage collector from nedte
space. At best, leaks degrade performance. At worst, theyeca
programs to run out of memory and crash. Small continuousslea
in long-running programs are notoriously hard to find andarash
the program only after days or weeks of execution.

We introduce Cork, a low-overhead, accurate techniqueder d
tecting memory leaks in Java programs. Cork identifies dvera
monotonic heap growth by piggybacking on the garbage doltec
On each full-heap collection, Cork builds a summge points-
to graph annotated with type volumes. Cork identifies poténtia
leaking types that grow over multiple collections. Corkagp the
slicein the type points-to graph that is growing (i.e., the datacst
ture that points to the leaking type). We implement Cork in WiV
for Jikes RVM, where it adds an average overhead of 2.4% faF-mo
erate heap sizes and 1.7% for large heap siz&PBCjvm and
DaCapo benchmarks using a generational mark-sweep collector.
Cork exactly identifies a single growing data structure ioheaf
three popular benchmarkop, _202_jess, and SPECjbb2000).
Due to the precision of Cork’s report, we eliminated thesdden
_202_jess and SPECjbb2000, whereas their developers had not
previously done so. Cork is the first tool to find leaks in Javth w
low enough overhead to consider using online.

1. Introduction

Memory-related bugs are a substantial source of errorsgarieuts-
pecially problematic for languages with explicit memorymage-

that the program neglects to free (lost pointer), and (3pkega
pointer to an object the program will never use again (ursesny
reference).

Garbage-collected languages solve the first two memorysrro
but not the last. The garbage collector eliminates the daggl
pointer error since a pointer to an object prevents the ciotdrom
reclaiming it. Additionally, the collector eliminates th® memory
leaks caused lost pointers since it reclaims objects thabtibave
pointers to them. Unfortunately, garbage collection isseowative
and therefore cannot detect, much less reclaim, memoryreefe
to by unnecessary references. Thuspemory leakn a garbage-
collected language occurs when a program inadvertentlptaias
references to objects that it no longer needs, preventimgahbage
collector from reclaiming space.

In the best case, unnecessary references to individuattsbje
simply degrade program performance by increasing its mgmor
requirements and consequently the collector workloachémtorst
case, unnecessary references refer to a growing datasggarts
of which are no longer in use. These types of leaks can evgntua
cause the program to run out of memory and crash. In longingnn
programs, such as server applications, small leaks cardtalseor
weeks to manifest making these bugs notoriously difficufirtd.

Heap-occupancy graphs [18, 24] reveal the underlying prob-
lem of systematic heap growth, but not the solution. A heap oc
cupancy graph plots the total heap occupancy (y-axis) o t
(x-axis) measured in allocation by collecting the entiraheery
frequently (every 10K of allocation in our graphs). Figurshbws
the heap occupancy graphs &f13_javac from SPECjvm and
SPECjbb2000. The graph for213_javac shows four program al-
location phases that reach the same general peaks whidatesli
_213_javac uses about the same maximum amount of memory in

ment such as C and C++. For these languages, memory-retated e €ach phase and no phase leaks memory to the next. There &kno le

rors include (1) dereferencing a pointer to memory that thgimam
previously freed (dangling pointer), (2) losing a pointeah object
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On the other hand&PECjbb2000 running one warehouse for long
periods of time shows memory requirements continue to g u
the end of execution. Allowed to run for days, it would run ofit
memory and crash. There is a leak. Although these graphslreve
potential leaks, they do not pinpoint the source of the leak.

Previous approaches to finding memory leaks use heap diagno-
sis tools that rely on a combination of heap differencing 12, 13,

19, 20] and allocation and/or fine-grain usage tracking (9,15,
16, 21, 25, 26] which makes them very expensive. These tqobsi
tend to yield large amounts of low-level details about i)l ob-
jects that require a lot of time and expertise to interpret.

To address these shortcomings, this paper introdGaek, a
low-overhead, accurate technique for detecting potemihory
leaks in Java programs. Cork identifies overall monotoniaphe
growth and reports the data structure(s) that generateghietuser.
Cork piggybacks on full-heap garbage collection to comphig
information. As the garbage collector scans the heap, Qailida
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Figure 1. Example Heap Occupancy Graphs

summarytype points-tograph. The nodes of the graph represent

programs, we incorporate it in a generational collectornaliteexe-

the volume of live objects of each type in the heap. The edges cutes during infrequent full-heap collections which log/is over-

represent the points-to relationship between two types aed
weighted by volume. At the end of each collection, the typatgse
to graph completely summarizes the live-object pointsrépl. By
comparing type points-to history over a series of collewidCork
detects systematic heap growth, but does not require grafteh
every collection. Since the leaking object type could bdifico
(e.g., aString), Cork computes the parts of the type points-to graph
that cause the leak (e.g., the data structure referrit®iring), and
reports it to the user. Cork also reports the allocation fgofar
these types. Cork does not analyze whether the program &in f
using the entire data structure.

We implement Cork in MMTk [6, 7], a memory-management
toolkit in Jikes RVM [2, 4], a Java-in-Java virtual machir@ork
operates only during full-heap collections. Thus, we fisst Cork
to detect memory leaks in short-running programs using devho
heap collector with frequent collections (every 4MB of alition).

In this setting, Cork’s average overhead varies between 85666
45.5% depending on the heap size.

For SPECjvm andDaCapo benchmarks, we show configura-
tions where Cork reports all growing data structures and oo
report any false positives. For all configurations, Corkorép or-
ders of magnitude fewer types than previous work [19, 20285,

Cork identifies unbounded heap growth in three commonly
used benchmark$op, -202_jess, andSPECjbb2000. fop grows
4.8MB every 64MB of allocation but actually uses the entirewg
ing data structure. Since Cork does not sample or track ioha
accesses to heap objects [10], it finds these types of falstves.
However, this heap growth is cause for concern, and is adtioit
of the formatting process and the implementation choicdsgn

On the other hand,202_jess and SPECjbb2000 both leak
memory: 45KB every 64MB and 127KB every 64MB respectively.
Cork’s output precisely pinpoints the single data struet@spon-
sible for the growth. For202_jess and SPECjbb2000, this pre-
cision pays off: we correct the leaks and show that the result
ing heap occupancy graphs are flat. The developers of these pr

head to between 1.7% and 2.4% on average for moderate to large
heaps, but grows as high as 12.9% for very tight heaps. Less fr
quent full-heap collections means that Cork needs to rugdon
before it has enough fodder to accurately identify memoakse
However, this low overhead combined with Java’s dynamis<la
loading feature make it possible to consider using Corknentd

find leaks, and then eliminate them by loading the correctassc
without restarting.

Cork substantially increases the accuracy and reducesotiie ¢
of finding and fixing memory leaks due to unbounded data struc-
ture growth as compared to prior work. In practice, Cork repo
leaks precisely without any false positives, and thus &iantly
improves accuracy over prior work. With modest extensiadinis,
approach can be adapted by any garbage collected systdud-inc
ing Boehm-Demer-Weiser’s conservative collector [8].

2. Related Work

A number of offline diagnosis tools help the user look inside t
heap to determine the root cause of a memory leak. They rely on
a combination of heap differencing [11, 12, 13, 20] and atmn
and/or usage tracking at a fine level of detail [9, 15, 16, 31 28].
The drawbacks of these approaches are that they are vemysxpe
and tend to yield large amounts of low-level details aboditiialual
objects that require a lot of time and expertise to interpret

An example online instance-based approach for C and C++ is
work by Chilimbi and Hauswirth [10]. They present an onlilosy-
overhead memory leak detector for C. It uses per-instano&-bo
keeping information to identiftale objects as those which have
not been accessed in a long time and thus may be leaks. Because
C programs often allocate big hunks of memory and then divide
them up [5], their approach often attains low overhead. kaJa
even the smallest application creates millions of distislgjects,
making per-instance object tracking too expensive. Howeheir
sampling mechanism differentiates in-use objects fromimaise,

grams knew of these leaks, but had not fixed them. In the case ofwhich adds accuracy to their reports.

SPEC]jbb2000, the leak remained elusive for years, yet we found
it and fixed it in a day.

Cork reports leaks that manifest during an instrumentediexe
tion. To demonstrate that Cork could be used online in lamgiing

An example of a completely static analysis is Heine and
Lam’s [17] work in which a static pointer analysis identifigs-
tential memory leaks in C and C++ through the object ownershi
abstraction. This work finds double frees and missing frees t
occur when the program overwrites the last pointer to ancbloje



data structure without first freeing it. It does not find growidata
structures and thus is complementary to our approach. Hawie
challenge implementing our approach for C and C++ is colimgct
the allocation type to memory, sinagallocis untyped. Their static
analysis of ownership types could provide similar inforimatas
types do in Java.

An example of the heap differencing approach to detect mem-

ory leaks in Java is Leakbot [19]. Leakbot combines offlinal\sis
with online diagnosis to find data structures which potdigttzave
memory leaks. The offline analysis takes two heap snapshdts a
does a complete heap differencing to find parts of the grapbhwh
may be leaking. It then identifies the data structure(s) ieimn-
tains these potential leaks. Feeding this information batkthe
online system, Leakbot then adds expensive object-instiastru-
mentation only on those types that have already been idethts
potentially leaking. Leakbot requires two program exemsj both

of which include substantial overheads. Cork attains s dver-

head and high accuracy by piggybacking on the garbage eollec*?

tor and summarizing the structure versus tracking objetairces.
Cork also uses simpler heuristics to prune growing typesn-Co
pared with their user reports, Cork produces more accuegierts
with orders of magnitude fewer reported types by trackinged
tentially growing types and pruning the growing types répbased
on the type points-to graph.

Compared to Cork, the prior work on detecting heap growth
reports many more false positives and has much higher cagrhe

3. An Example Memory Leak

We use Figure 2 as a running example throughout the paper. It

shows an order processing system for a small business watka |
NewOrderinserts new orders into thal | Or der sHT hash table
and into thenewOr der Qas shown in Figure 2(aProcessOrders
processes thenewOr der Qone order at a time as shown in Fig-
ure 2(b). It removes each order from tlewOr der Qand fills it.
Then if the customer is a Company, it issues a bill (puttingnit
the bi I i ngQ) and ships the order to the customer. When the
customer sends a paymetoccessBillremoves the order from
the bi I I i ngQand theal | Or der sHT hash table, as shown in
Figure 2(c). However, if the customer is not a compdhgcessOr-
derscallsProcessPaymentith the customer-provided payment in-
formation and only then ships the order. HoweRngcessOrders
should, but does not remove the order from thkl Or der sSHT
hash table which results in a memory leak. Figure 2(d) lises t
abbreviations and statistics for the different types usedur ex-
ample.

4. Finding Leakswith Cork

This section overviews how Cork identifies and reports tpesyof
leaking objects and correlates them back to the data stenatoich
contains them and the allocation sites that generate them.
Piggybacking on garbage collection, Cork builds a type {3oin
to graph during a full-heap collection. This graph sumnesithe
volume of all types and the references between them thaivare |
in the current heap. Cork stores this graph between calesti
and differences the current graph with previous colledtinfind
types that grow. Cork finds parts of the graph that are grovand
reports these parts back to the user after each full-hedgctoh.
Cork also prunes portions of the graph that substantialinkho
avoid the space and time of storing complete type pointgaplts
across multiple collections. This step makes Cork efficient
Since Cork piggybacks on live-object scanning during ggeba
collection, it is suitable for use in any mark-sweep or cagyi
collector, but not in a reference counting collector. Farity of
exposition, we describe Cork in the context of a full-healpector.

1 NewOrder (Order n) {

int id = getOderld();
al | OrdersHT. add(id, n);
4 newOr der Q add(n);

}

/1 insert into HashTable
/1 insert into NewOrder Queue

w N

o

(a) Incoming order

1 ProcessOrders() {

2 while (! newOrderQisEmty()) {

3 Order n = newOrderQ get Next ();

4 newOr der Q renove(n); // renpved from NewOrder Q
5 Fill Order(n);

6 if (n.getCustoner() instanceof Conpany) {

7 IssueBill(n); /'l inserts onto Billing Q
8 Shi pOrder(n);

9 } else {

10 ProcessPaynent (n);

11 Shi pOrder(n);

/1 A MEMORY LEAK!'! -- not renoved from HashTabl e
14 }

15 }
(b) Processing orders

1 ProcessBill (int orderld) {

2 Order n = all OrdersHT. get (orderld);

3 bi I1ingQ renove(n); /1 renmove fromBilling Q
4 al | OrdersHT. renove(orderld); // renpve from HashTabl e
5

}

(c) Process bills

Type Variable Symbol  Size
HashTable al | Order sHT H 256
Queue newQr der Q N 256
Queue billingQ B 256
Company n C 64
People n P 32

(d) Object statistics

Figure2. Order Processing System

However, we also demonstrate Cork in a generational collpct
it performs the same analysis only during a full-heap ctilbec
An incremental collector that never collects the entirephaizonce
could incorporate Cork by defining intervals that combiraistics
from individual collections until the collector has corsidd the
entire heap. Cork would then compute difference statistaeen
intervals to detect leaks.

We now describe in detail the information Cork computes to
detect leaks, how Cork computes it, and what Cork reports.

4.1 Buildingthe Type Points-To Graph

To detect leaks, Cork computes a summgyye points-tograph
annotated with instance and reference volumes and comibeass
graphs across collections. To minimize the costs of buildhris
graph, Cork piggybacks its construction on the scanninglud
the garbage collector. The scanning phase detects allbjeets by
starting with the roots (statics, stacks, and registers panforming
a transitive closure through all the object references allethe
reachable (live) objects in the heap. For each distinctabhjge,
Cork adds a node to the graph to track the volume of live-abjec
instances with that type. Each time the collector visitve-tibject
instance of that type, Cork increments the total volume kGiso
adds a directed edge between nodes for each reference frem on



1 void scanObj ect (TraceLocal trace,

2 bj ect Ref erence obj ect) {

3 MVType type = Obj ect Mbdel . get Cbj ect Type( obj ect) ;
4 type. i ncVol umeTr aced( obj ect) ; /1 added

5 if (!type.isDelegated()) {

6 int references = type. get Ref erences(object);

7 for (int i =0; i < references; i++) {

8 Address sl ot = type.getSlot(object, i);

9 type. poi nt sTo(obj ect, slot); /1 added
10 trace. traceQbj ect Location(slot);

12 } else
13 Scanni ng. scanObj ect (trace, object);

Figure 3. Object Scanning

(b) Type points-to graph

Figure 4. The type points-to graph summarizes the object points-
to graph

object type to another. When the collector follows a refeeen
between two object instances, Cork increments the edgeckatw
the corresponding types of the objects.

At the end of scanning, Cork has constructed a summary type
points-to graph for all the live objects. In this graph, thedes
report the volume of each typ¥) and the edgesA(— B) report
the volume of typeB pointed to by typeé\ (VB‘A). Figure 4(a) shows
an example of an object instance points-to graph (i.e., taph
itself) with instances of objects of typés, C, P, B, andN for the
types from the example order-processing system. Figujesttivs
the corresponding type points-to graph annotated with meki
For example, we use the volumes in Figure 2(d) and calcuhate t
volume ofH as 256 Yy = 256). It points to three objects of type
C (Vejn = 192) and four of typeP (Vpy = 128). Notice that the
sum of the edges and the weight of the node are not the same. For
example, objects of typB andN point to the same objects as those
from typeH.

Cork compares these volumes from distinct collections terde
mine where growth is occurring in the graph.

4.2 Finding Heap Growth

At the end of each collection, Cork compares the type points-
to graph T PT) for this collection and previous collections. Cork
identifies those nodes whose volumes increase across lsevkra
lections and reports them as the source of potential leakedch
type that is growing, Cork examines the incoming edges to the
growing types to pinpoint the sources of the growth. In syesidte

in our implementation, Cork stores a subset of the type pdmt
graph for the last three collection$:PT,, TPT_3, and TPT_o,
whereT PT; is the most recent graph. For efficiency, Cork throws
out nodes inT PT; if the type is inTPT_1 and has substantially
shrank.

For example, Figure 5 shows the full type points-to graph cre
ated for three collections for the order processing systeigk
ure 5(a) represents an initial state of the system aftee thrders ar-
rive, but have not yet been processed. Figure 5(b) showofders
processed: two billed and two completed. Notice that thgam
removes the orders from individual®)(from all the processing
queuesB,N), but not from the hash tablél] (line 12 in Figure 2).
These orders are leaking. Comparing the type points-tdgriippm
the first two collections shows bo@andP objects are potentially
growing. We need more history to be sure. Figure 5(c) reptese
the state at the next collection after processing more syadrere
it becomes clearer that the numberRbbjects is monotonically
increasing, whereds objects are simply fluctuating. This problem
also occurs, though more subtly, when programs iteratialid
multiple data structures containing references to the sgpee but
only one of the data structures is causing heap growth. s
uation, the type’s volume may jitter. Thus, Cork cannot dolyk
for monotonic non-decreasing type growth.

To adjust for jitter, Cork usesdecay factor f where 0< f < 1

Figure 3 shows these two required changes to the scannileg cod to keep types in the graph that shrink a little on this coltett

from MMTk in Jikes RVM; these simple additions appear in $ine
4 and 9. AssumescanObjectis processing an object of type A
that refers to an object of type B. It takes the tracing rautmd
object as parameters, finds the object type, and Cork adestlin
to increment the volume of objects of type A. The collectarsc
(detects liveness of) an object only once, and thus Corlkements
the total volume of this type only once per object instancextN
scanObjectmust determine if each field of the object has already
been scanned. Here, Cork adds line 9 which resolves theergfer
type of each outgoing referenck - B) and increments the volume
along the appropriate edge in the graph. This step increntbat
edge volume for all references to an object (not just the dinsf).
scanObjecthen traces these objects in line 10; if they have not yet
been scannedrace enqueues them for scanning. The additional
work of the collector depends on whether it is moving objeuts
not, and is orthogonal to Cork.

but may ultimately be growing. Cork compares the currentinva
of type Vr, to its previous volume: ity > (1— f) Vg ,, Cork
keeps the type in the graph, otherwise, it deletes the typbel
type does not appear PT;_1, Cork keeps it in the graph. We find
that the decay factor is increasingly important as the spéd¢de
leak decreases. Choosing the leak decay factor balancesdret
too much information and not enough. At the end of this phale,
nodes inT PT; are potentially growing.

Cork then ranks these potentially growing types by how Jikel
they are to leak. In order to calculate an overall rank, we firs
calculate thephase growth facto(g) of each type agy, = pr, *
(Q—1), wherep is the number of phases that type has potentially
been growing and) is the ratio of volumes of this phase and the
previous phase such th@> 1. Cork only reports types that have
been potentially growing for some minimum number of phases.
Thus, the first time a type appears in a graph, Cork does nottrep
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Figure5. Comparing Type Points-to Graphs to Find Heap Growth

it. Cork accumulates the phase growth factor to rank eaahsyph
that absolute growth is rewardedr(= rt,_, + g7,) and decay is
penalized (t; =ry, , —gr). Types above a rank thresholBfres
are reported as leaking. We use a similar ranking calculatioank
incoming edges to typ€ in the graph.

4.3 Correlatingto Data Structuresand Allocation Sites

Just knowing the type of the leaking object is not enough to as
sist users. For example, reporting that a low-level typehsas
Stri ngis leaking is not helpful. Cork instead identifies the leak-
ing data structure by constructing tk8ce of the type points-to
graph that contains the type growth. We defirgiee through the
type points-to graph to be the set of all paths originatirgnfr
vertextp whose rankry, > Ripres such that the rank of each edge
ry—t,, > 0.0. Thus the slice defines the growth originating at type
to and following a sequence of typég,t1,...,tn} and a sequence
of edgeq(ti,ti_1) where typd; points totj_1.

Cork identifies a slice by starting at a leaking type and trgci
growth edges backward through the graph until it encoustem-
growing type. In this way, Cork reports not only leaking tgpbut
also the data structure containing them (e.g., the hashltainl our
example). Additionally, Cork reports allocation sitestioe leaking
types. As each allocation site is compiled, Cork assignsiitique
identifier, and constructs a map to it from the appropriapetyror
each leaking type, Cork then also reports all allocatiogssit

4.4 Implementation Details

One of the main challenges in building the type points-tqogra
during garbage collection is that Cork is prohibited fromoehting
memory. Cork thus uses a pool of pre-allocated graph nodbenwW
Cork needs a node, Cork removes it from the pool. When Cork
removes a node from the type points-to graph (because tedgyp
not growing), Cork returns the node to the pool. In the eviat t
the pool cannot fulfill the node request, Cork stops buildiegtype
points-to graph for that collection phase, generates aingto the
user, and records the number of requested nodes which cotld n

be fulfilled. At the end of the phase, when Cork is free to altec
again, it allocates more nodes to the pool so that there \&ill b
sufficient nodes during the next collection. This approachks

well in our benchmarks. Alternative implementations widsd
overhead include allocating the graph nodes in an immopt@te

or a separately managed space that gets collected and rdanage
independently from the application heap.

5. Results

This section presents overhead and qualitative result<tok.
First, we present two methodologies: one for detectingdeak
short running programs and one for detecting leaks in lomg ru
ning programs. We explore the parameter space for Cork aowd sh
how selecting reasonable values for the decay factor anchtiie
threshold gives highly accurate results. Finally, we show Rork
identifies the sources of growth in three commonly used bench
marks:fop, -202_jess andSPECjbb2000.

5.1 Methodology

We implement our technique in MMTK, a memory management
toolkit in Jikes RVM version 2.3.7. MMTk implements a number
of high-performance collectors [7, 6] and Jikes RVM is a high
performance VM written in Java with an aggressive optingzin
compiler [2, 1]. We use configurations that precompile ashmag
possible, including key libraries and the optimizing colap{the
Fastbuild-time configuration), and turn off assertion checking

We evaluate our techniques using tBEECjvm benchmarks,
theDaCapo benchmarks, an8PECjbb2000. SPECjbb2000 [22,
23] measures throughput as operations per second for aafurat
of 2 minutes for an increasing number of warehouses (1 to 8).
For our purposes, we change this default behavior. To parfor
performance-overhead comparison, we pseudojbb, a variant
of SPECjbb2000 that executes a fixed number of transactions. For
memory-leak analysis, we configuBPECjbb2000 to run only
one warehouse for 3 hours. We perform all of our experimemis o



GenM S Relative Heap SemiSpace
Benchmark 14 19 30 6.0 | with4MB Trigger
_201_compress 9 6 2 1 31
202 jess 0 0 0 0 70
_205_raytrace 0 0 0 0 53
-209._db 1 0 0 0 24
_213_javac 3 1 1 0 53
_222_mpegaudio 0 0 0 0 5
_227_mitrt 0 0 0 0 40
_228_jack 2 1 0 0 73
pseudojbb 8 2 0 0 51
SPECjbb2000 * * * * *
antlr 19 10 5 2 72
bloat 46 18 7 3 err
fop 1 0 0 0 19
jython 3 1 0 0 89
pmd 6 3 1 0 62
ps 0 0 0 0 130
xalan 2 1 0 0 31

Table 1. Number of Full-heap collections at various heap sizes
relative to the minimum. *Minimum heap size f&PECjbb2000
depends on length of run.

3.2GHz Intel Pentium 4 with hyper-threading enabled, an 8KB
way set associative L1 data cache, a [l@ps L1 instruction trace
cache, a 512KB unified 8-way set associative L2 on-chip cache
and 1GB of main memory, running Linux 2.6.0.

Eeckhout et al. [14] show that including adaptive compilati
in performance measurements obscures application behakiss,

for our overhead measurements, we report a second run with no

compilation and a deterministic application of the adaptiom-
piler usingReplay compilationReplay compilation deterministi-
cally applies the optimizing compiler to frequently exesaitmeth-
ods chosen by the adaptive compiler in previous (offline} ryin-
ing us a realistic mixture of optimized and unoptimized code
report only application performance by running two itesasi of
each benchmark. The first run uses replay compilation, aad th
turns off compilation. Before the second iteration, a whiodap
collection flushes compiler objects from the heap.

For performance results, we explore the time-space tréde-o

Benchmark Percent
_201_compress 0.3
_202_jess 1.7
_205_raytrace 0.4
_209.db 0.0
_213_javac 1.4
_222_mpegaudio 0.5
_227_mtrt 0.3
_228_jack 1.6
pseudojbb 2.6
SPECjbb2000 0.1
antlr 0.7
bloat 0.5
fop 0.2
jython 3.4
pmd 0.2
ps 2.9
xalan 0.0
Average 1.0

Table2. Space Overhead for Benchmarks

Decay Factor

Benchmark 0% 5% 10% 15% 20% 59
_201_compress
202_jess
_205_raytrace
209.db
_213_javac
222 _mpegaudio
227 _mtrt
_228_jack
pseudojbb
SPECjbb2000
antlr

bloat

fop

jython

pmd

ps

xalan

Table 3. Reported types as a function of the decay factor at a
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by executing each program on five heap sizes, ranging from the moderate thresholdR{yes = 100). We chose the decay factbe=

smallest one possible for the execution of the program tdirsigs
that size. We execute timing runs five times in each configurat
and choose the best execution time (i.e., the one leastloksty
other effects in the system). We perform separate runs teegat
overall and individual collection statistics.

For qualitative results, we explore two different garbagkec-
tion configurations. Cork needs to have a chance to gathestits
over a number of full-heap collections. With a generatiaradlec-
tor, many of these benchmarks have fewer than 10 full-heligceo
tions, which is not enough fodder for Cork (see Table 1). &fee,
we use a single-space collector (SemiSpace) with frequatece
tions (every 4MB of allocation) for short running progranisis
configuration increases the number of type points-to gra
calculates and the likelihood that it can accurately idgiie leak-
ing type. For long running programs, Cork does not requirg th
collector configuration. It can run much less frequently atill
find heap growth. In an online deployment, Cork could be added
a generational mark-sweep collector (GenMS) and thus wertrep
these overhead numbers as well.

5.2 Overhead Results

Figure 6 shows the total time overhead for our two differembgge
collector configurations. In a single-spaced collectohviiiequent
collections, it shows an average overhead of 45.5% in vet ti
heaps (minimum heap size), 35.0% in moderate heaps (timnes ti

15%.

minimum heap size), and 34.4% in large heaps (six times nimm
heap size). In the worst case, the overhead was 130%stardo-

jbb in a very tight heap. In the generational mark-sweep calfect
Cork only calculates the summary points-to graph on fuigheol-
lections. In this case, the overhead average is 13.3% intigiy
heaps, 2.4% for moderate heaps, and 1.7% for large heag® In t
worst case, the overhead was 52% in a very tight heap, again fo
pseudojbb. These very small heaps however are not representative
of typical heap configurations.

The sources of overhead are two-fold. First, constructioth a
scanning of the points-to graph increases the pause timbeof t
garbage collector. Second, the objects required for thetnaction
and saving of the points-to information are long-lived hebjects.
Table 2 shows an average space overhead of 1.0% over tocd-all
tion. This rise in heap activity increases the burden on Hrbape
collector. One could reduce this overhead by allocatingehab-
jects in a separate space that would not need to be collected.

5.3 Decay Factor and Rank Thresholds

We experiment with different sensitivities for both the agéactor
(f) and the rank thresholdR{,ed. Table 3 shows how changing
the decay factor changes the number of reported types winbse v



Thresholds: >0 > 50 > 100 > 200

Percent of GCs: 0 10 25 50| O 10 25 50f O 10 25 50| O 10 25 50
_201_compress 9 6 4 2 0 0 0 0 0 0 O 0 0 0 0 0
_202_jess 22 12 9 2| 4 2 1 1 2 1 1 1 2 1 1 1
_205_raytrace 31 8 4 0| O 0 0 0 0 0 O 0 0 0 0 0
_209_db 7 7 2 1 2 2 0 0 2 2 0 0 2 2 0 0
_213_javac 118 92 71 39| 16 5 2 1 5 0 O 0 3 0 0 0
_222_mpegaudio 0 0 0 0 0 0 0 0 0 0 O 0 0 0 0 0
_227_mtrt 43 12 3 0| 6 6 2 o 4 4 0 0 0 0 0 0
_228_jack 35 22 9 1] O 0 0 0 0 0 O 0 0 0 0 0
pseudojbb 50 13 9 71 5 0 0 0 1 0 O 0 0 0 0 0
SPECjbb2000 138 14 10 9| 66 7 6 2| 46 5 4 0| 38 4 4 0
antlr 83 26 9 1| 15 0 0 0| 12 0O O 0 9 0 0 0
bloat 60 51 33 5( 30 11 0 0| 11 (O] 0 1 0 0 0
fop 107 74 35 24|12 11 2 1| 7 6 2 1 4 3 1 1
jython 51 5 3 0| 4 0 0 0 2 0 O 0 2 0 0 0
pmd 127 89 11 1] 21 5 2 0| 17 2 0 0] 13 0 0 0
ps 16 8 3 0| 2 0 0 0 0 0 O 0 0 0 0 0
xalan 40 11 5 41 0 0 0 0 0 0 O 0 0 0 0 0

Table 4. Reported data structures as a function of rank thresholdgarcentage of collections in which the type appears for darate

decay factor f = 15%). We choose the rank threshéighes= 100.
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Figure6. Geometric Mean Overhead Graphs over all benchmarks. Bavs istnimum and maximum overheads.

ume increases between the first and third collections foll-néap
collector. We find that the detection of growing types is nety
sensitive to small changes in the decay factor. We chooseda mo
erate decay factorf(= 15%) for which Cork accurately identifies
the growing data structures i202_jess andfop without any false
positives. Fopseudojbb, we find that Cork gives a false negative
for some configurations. In this case, Cork does not havegpere
tunity to accumulate sufficient rank for growing types rasgble
for a known memory leak. FB8PECjbb2000, on the other hand,
Cork reports the leak because it runs for a longer periodnogé ti
Table 4 shows how increasing the rank threshold eliminatise f
positives from our reports. We find that a moderate rank Hulels
(Rihres= 100) is sufficient for eliminating any false positives.

5.4 Findingand Fixing Leaks

This section describes the data structure growth that Cads fi
in fop, _202_jess, andSPECjbb2000. Each section describes the
benchmark, the Cork report, and the analysis.

54.1 fop

The programfop (Formatting Objects Processor) is from tha-
Capo benchmark suite. It uses the standard XSL-FO file format as
input, lays the contents out into pages, and then rendesPiDI-.

Converting a 352KB XSL-FO file into a 128KB PDF generates the
heap occupancy graph in Figure 7(a) which clearly dematestra
an overall monotonic heap growth.

Cork analyzesfop and gives reports shown in Figure 7(b)-
(d). Figure 7(b) shows Cork’s reports of leaking types argirth
associated ranks for three different garage collectionshéws
ArraylLi st with a large rank making it the most likely cause
of a potential leak. We continue our exploration by exangrtime
slices of the type points-to graph to determine what is kegpi
the ArraylLi st alive. Figure 7(c) shows part of the slice for
ArraylLi st . The figure represents the points-to relation between
different types in the graph. It uses to represent the direction of
the points-to relationship with the indentation depth dading the
referent. It shows thafr r ayLi st s are nested in a data structure.
Interestingly, Cork is able to distinguish that th r ayLi st is
implemented using aitbj ect [ ] and reports both. Finally, Cork
lists the allocation sites for all the types giving the usatating
point for debugging (see Figure 7(d)). Because the allonatites
are numerous, it is not useful to explorr r ayLi st . We go to
secondary allocations site®¥r dAr eaand Li neAr ea.

Next we explorefop’s implementation.fop performs two
passes: the first parses the formatting object tree buikoamplex
structure of Ar r ayLi st s containing different formatting objects
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(a) Heap-occupancy graph ftap

GC No. Rank  Type

15 2104.17 Ljava/util/ArrayList;

135.26  Lorg/apache/fop/fo/LengthProperty;
115.64 Lorg/apache/fop/datatypes/AutoLeng
18 2106.28  Ljava/util/ArrayList;

21 2108.24  Ljava/util/ArrayList;

=

(b) Leaking Type Report for three different garbage coiderst

Type
Ljava/util/ArrayList;
+ Lorg/apache/fop/layout/inline/WordArea;
+ Ljava/lang/Object; []
+ Ljava/util/ArrayList;

+ Lorg/apache/fop/layout/LineArea;
+ Ljava/lang/Object; []
+ Ljava/util/ArrayList;
+ Lorg/apache/fop/layout/inline/WordArea;
+ Ljava/lang/Object; []
+ Ljava/util/ArrayList;
+ Lorg/apache/fop/layout/inline/InlineSpace;
+ Ljava/lang/Object; []
«+ Ljava/util/ArrayList;

(c) Slice Report forAr r ayLi st

Method bcidx
Ljava/util/ArrayList;

too numerous to be usef(#5)
Lorg/apache/fop/layout/inline/WordArea;
...Irender/pdf/PDFRenderer;.renderWordArea... 355
...Irender/pdf/PDFRenderer;.renderWordArea... 450
...Irender/pdf/PDFRenderer;.renderWordArea... 855
...Irender/pdf/PDFRenderer;.renderWordArea... 811
...Irender/pdf/PDFRenderer;.renderWordArea... 820
Lorg/apache/fop/layout/LineArea;
.../layout/BlockArea;.getCurrentLineArea... 26
.../layout/BlockArea;.createNextLineArea... 45

(d) Allocation Sites Report

Figure7. Fixing fop

Type
Lspec/benchmarks202 jess/jess/Value;
+ Lspec/benchmarks202 jess/jess/Value; []
+ Lspec/benchmarks202 jess/jess/ValueVector;
+ Lspec/benchmarks202 jess/jess/ValueVector; []
+ Lspec/benchmarks202 jess/jess/Token;
+ Lspec/benchmarks202 jess/jess/Token; []
+ Lspec/benchmarks202 jess/jess/TokenVector

(a) Slice Report forval ue
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Figure 8. Fixing _202_jess

which themselves can contaifir r ayLi st s. Oncefop encoun-
ters an end of page sequence, it begins rendering duringoadec
pass of the data structure it built during parsing. Unfoatety, it

is not possible to start rendering earlier because of theilpitity

of forward referencef the XSL-FO tree. Thus, while our analysis
accurately pinpoints the source of the growftip does not have a
memory leak because it uses the entire heap. The develdpers o
agree with this analysis, that the heap growth fbptexperiences
is partly inherent to the formatting process and partly edusy
implementation choices [3].
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From theSPECjvm benchmark suite,202_jess is a Java Expert
Shell System based on NASAs CLIPS. In an expert system, the
input is a set of facts and a set of rules. Each fact represents
some existing relationship and each rule represents saabviay

of manipulating facts. The expert system then reasons hygusi
rules toassertnew facts andetrace existing facts. As each part

of a rule matchesexisting facts, the ruldires creating new facts
and removing the rule from the set of activated rules. Théesys
continues until the set of activated rules becomes empty.

Cork analyzes202_jess and finds thatVal ue is overwhelm-
ingly a growing type reporting a slice showing in Figure 8(a)
Correlating it to the implementation202_jess compiles all the
rules into a single set of nodes. The assertion or retracifom
fact is then turned into #oken which is fed to the input nodes
of the network. Each node in the network may pass the token on
to its children, or filter it out. As tokens are propagatedtigh
the network, rules create new facts. Each new fact is stared i
Tokenina Val ueVect or implemented as/al ue[ ] . A global
TokenVect or, implemented asToken[ ], stores the tokens in
the system. Since original facts are part of the input, wemnixe
this path further.

Examining the input for_202_jess, we find the benchmark
iterates over the same problem several times. The developae it
artificially more complex by introducing distinct facts imetinput
file representing the same kind of information for each ttera
Thus, with each iteration, the number of facts to test ireesa
which triggers more allocation. This complexity is docurteehin
the input file. In order to remove the memory leak, we remotaed t
artificial complexity from the input file. Figure 8(b) showsetheap
occupancy graph for the original input file. It shows a growth
45KB every 64MB. Figure 8(c) shows the resulting heap ocoapa
graph once we removed the artificial complexity. The heaprtirp
and thus the memory leak, is gone.

54.3 SPECjbb2000

The SPECjbb2000 benchmark models a wholesale company that
consists of a number of warehouses (or districts). Eachhoaise
has one terminal where customers can generate requestsasuc
placing new orders or requesting the status of an existidgror he
warehouse executes operations in sequence, with eachtiopera
selected from the operation mix using a probability disttitn. It
implements this system entirely in software using Javases$or
database tables and Java objects for data records (roughii3 2
of data). The objects are stored in memory using BTrees drat ot
data structures. Figure 1(b) shows the heap occupancy doaph
SPECjbb2000 running one warehouse for one hour.

Cork’s analysis finds four types as possible leal®:der,
Dat e, NewOrder, and OrderlLine (see Figure 9(a)). The
rank of the four types changes between garbage collectiakggn
it difficult to determine the importance of each. Furtherrak@a-
tion into the slices of the four reported types reveal whgué 9(b)
shows the complex structure of types tISRECjbb2000 creates
(the shaded types are growing). Clearly there is an insgicgiship
between all of the leaking types and if one is leaking therrdéis¢
are as well, hence the reordering of the ranks in our repbrts.
terestingly, Cbj ect [ ] 's use inSPECjbb2000 is prolific and as
a result its volume jitters sufficiently that it never showsfisient
growth to be reported as leaking. It does, however, appetrein
slice containing the data structures.

We correlate Cork’s results witBPECjbb2000’s implemen-
tation. We find that orders are placed in ar der Tabl e, im-
plemented as a BTree, when they are created. When they are com
pleted during @eliveryTransactionthey are not properly removed
from the or der Tabl e. By adding code to properly remove the

Heap occupancy (M B)

Type

Lspec/jbb/NewOrder;
+ Ljava/lang/Object; []
+ Lspecl/jbbl/infra/Collections/longBTreeNode;
+ Ljaval/lang/Object; []
+ Lspec/jbb/infra/Collections/longBTree;

+ Lspecl/jbb/infra/Collections/longStaticBTree;

+ Lspec/jbb/Order;

Lspec/jbb/Order;
+ Ljava/lang/Object; []
+ Lspecl/jbbl/infra/Collections/longBTreeNode;
+ Ljava/lang/Object; []
+ Lspec/jbb/infra/Collections/longBTree;

+ Lspec/jbb/infra/Collections/longStaticBTree;

+ Lspec/jbb/Order; <« Lspec/jbb/NewOrder;

Lspec/jbb/Orderline;
+ Ljava/lang/Object; []
+ Lspecl/jbbl/infra/Collections/longBTreeNode;
+ Ljava/lang/Object; []
+ Lspecl/jbb/infra/Collections/longBTree;

+ Lspec/jbb/infra/Collections/longStaticBTree;

+ Lspec/jbb/Order;

Ljava/util/Date;
+ Lspecljbb/Order;
+ Lspec/jbb/Orderline;

(a) Slice Report foSPECjbb2000
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(b) Slice diagram
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Figure9. Fixing SPECjbb2000



orders from theor der Tabl e, we remove this memory leak. Fig-

ure 9(c) shows the heap occupancy after correcting the memor

leak and runningPECjbb2000 with one warehouse for one hour.

6. Conclusion

In this paper, we introduce Cork and show that it can detetren
port memory leaks in Java programs. Cork identifies the data-s
ture and allocation sources of these leaks. Cork tracesthriow
the heap and report slices of a summarizing type pointsdphyr
that it calculates by piggybacking on full-heap garbagéectibns.

and Operating Systempages 156-164, Boston, Massachusetts,
October 2004.

[11] W. De Pauw, D. Lorenz, J. Vlissides, and M. Wegman. Eteou
patterns in object-oriented visualization. Tihe Conference on
Object-Oriented Technologies and Systepages 219-234, Santa
Fe, New Mexico, April 1998.

[12] W. De Pauw and G. Sevitsky. Visualizing reference patefor
solving memory leaks in Java. [hhe European Conference on
Object-Oriented Programmingrolume 1628 ofLecture Notes in
Computer Sciencepages 116-134, Lisbon, Portugal, June 1999.
Springer Verlag.

We show that Cork adds only 2.4% overhead on average to mod-[13] W. De Pauw and G. Sevitsky. Visualizing reference pagefor

erate heaps for our benchmarks, and 1.7% overhead on average

for large heaps in a generational collector. We use Cork ¢ pr
cisely identify data structures with unbounded heap grdesiks

in three popular benchmarkfp, 202_jess, andSPECjbb2000.
We use Cork’s analysis to eliminate memory leaks202_jess
and SPECjbb2000. Cork is the first tool to find memory leaks in
Java with low enough overhead to consider using online. @ork
also accurate, reporting few false positives regardlests obnfig-
uration and all the leaks in our benchmarks programs.
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