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Abstract
Despite all the benefits of garbage collection, memory leaksremain
a problem for Java programs. Amemory leakin Java occurs when
a program inadvertently maintains references to objects that it no
longer needs, preventing the garbage collector from reclaiming
space. At best, leaks degrade performance. At worst, they cause
programs to run out of memory and crash. Small continuous leaks
in long-running programs are notoriously hard to find and cancrash
the program only after days or weeks of execution.

We introduce Cork, a low-overhead, accurate technique for de-
tecting memory leaks in Java programs. Cork identifies overall
monotonic heap growth by piggybacking on the garbage collector.
On each full-heap collection, Cork builds a summarytype points-
to graph annotated with type volumes. Cork identifies potentially
leaking types that grow over multiple collections. Cork reports the
slice in the type points-to graph that is growing (i.e., the data struc-
ture that points to the leaking type). We implement Cork in MMTk
for Jikes RVM, where it adds an average overhead of 2.4% for mod-
erate heap sizes and 1.7% for large heap sizes toSPECjvm and
DaCapo benchmarks using a generational mark-sweep collector.
Cork exactly identifies a single growing data structure in each of
three popular benchmarks (fop, 202 jess, andSPECjbb2000).
Due to the precision of Cork’s report, we eliminated these leaks in
202 jess andSPECjbb2000, whereas their developers had not

previously done so. Cork is the first tool to find leaks in Java with
low enough overhead to consider using online.

1. Introduction
Memory-related bugs are a substantial source of errors, butare es-
pecially problematic for languages with explicit memory manage-
ment such as C and C++. For these languages, memory-related er-
rors include (1) dereferencing a pointer to memory that the program
previously freed (dangling pointer), (2) losing a pointer to an object� This work is supported by NSF CCR-0311829, NSF ITR CCR-0085792,
NSF CCR-0311829, NSF CISE infrastructure grant EIA-0303609, DARPA
F33615-03-C-4106, and IBM. Any opinions, findings and conclusions ex-
pressed herein are those of the authors and do not necessarily reflect those
of the sponsors.
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that the program neglects to free (lost pointer), and (3) keeping a
pointer to an object the program will never use again (unnecessary
reference).

Garbage-collected languages solve the first two memory errors,
but not the last. The garbage collector eliminates the dangling
pointer error since a pointer to an object prevents the collector from
reclaiming it. Additionally, the collector eliminates those memory
leaks caused lost pointers since it reclaims objects that donot have
pointers to them. Unfortunately, garbage collection is conservative
and therefore cannot detect, much less reclaim, memory referred
to by unnecessary references. Thus, amemory leakin a garbage-
collected language occurs when a program inadvertently maintains
references to objects that it no longer needs, preventing the garbage
collector from reclaiming space.

In the best case, unnecessary references to individual objects
simply degrade program performance by increasing its memory
requirements and consequently the collector workload. In the worst
case, unnecessary references refer to a growing data structure, parts
of which are no longer in use. These types of leaks can eventually
cause the program to run out of memory and crash. In long-running
programs, such as server applications, small leaks can takedays or
weeks to manifest making these bugs notoriously difficult tofind.

Heap-occupancy graphs [18, 24] reveal the underlying prob-
lem of systematic heap growth, but not the solution. A heap oc-
cupancy graph plots the total heap occupancy (y-axis) over time
(x-axis) measured in allocation by collecting the entire heap very
frequently (every 10K of allocation in our graphs). Figure 1shows
the heap occupancy graphs of213 javac from SPECjvm and
SPECjbb2000. The graph for213 javac shows four program al-
location phases that reach the same general peaks which indicates
213 javac uses about the same maximum amount of memory in

each phase and no phase leaks memory to the next. There is no leak.
On the other hand,SPECjbb2000 running one warehouse for long
periods of time shows memory requirements continue to grow until
the end of execution. Allowed to run for days, it would run outof
memory and crash. There is a leak. Although these graphs reveal
potential leaks, they do not pinpoint the source of the leak.

Previous approaches to finding memory leaks use heap diagno-
sis tools that rely on a combination of heap differencing [11, 12, 13,
19, 20] and allocation and/or fine-grain usage tracking [9, 10, 15,
16, 21, 25, 26] which makes them very expensive. These techniques
tend to yield large amounts of low-level details about individual ob-
jects that require a lot of time and expertise to interpret.

To address these shortcomings, this paper introducesCork, a
low-overhead, accurate technique for detecting potentialmemory
leaks in Java programs. Cork identifies overall monotonic heap
growth and reports the data structure(s) that generates it to the user.
Cork piggybacks on full-heap garbage collection to computethis
information. As the garbage collector scans the heap, Cork builds a
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(b) SPECjbb2000 running one warehouse for 1 hour

Figure 1. Example Heap Occupancy Graphs

summarytype points-tograph. The nodes of the graph represent
the volume of live objects of each type in the heap. The edges
represent the points-to relationship between two types andare
weighted by volume. At the end of each collection, the type points-
to graph completely summarizes the live-object points-to graph. By
comparing type points-to history over a series of collections, Cork
detects systematic heap growth, but does not require growthafter
every collection. Since the leaking object type could be prolific
(e.g., aString), Cork computes the parts of the type points-to graph
that cause the leak (e.g., the data structure referring toString), and
reports it to the user. Cork also reports the allocation points for
these types. Cork does not analyze whether the program is in fact
using the entire data structure.

We implement Cork in MMTk [6, 7], a memory-management
toolkit in Jikes RVM [2, 4], a Java-in-Java virtual machine.Cork
operates only during full-heap collections. Thus, we first use Cork
to detect memory leaks in short-running programs using a whole-
heap collector with frequent collections (every 4MB of allocation).
In this setting, Cork’s average overhead varies between 35%and
45.5% depending on the heap size.

For SPECjvm andDaCapo benchmarks, we show configura-
tions where Cork reports all growing data structures and does not
report any false positives. For all configurations, Cork reports or-
ders of magnitude fewer types than previous work [19, 20, 25,26].

Cork identifies unbounded heap growth in three commonly
used benchmarks:fop, 202 jess, andSPECjbb2000. fop grows
4.8MB every 64MB of allocation but actually uses the entire grow-
ing data structure. Since Cork does not sample or track individual
accesses to heap objects [10], it finds these types of false positives.
However, this heap growth is cause for concern, and is a limitation
of the formatting process and the implementation choices infop.

On the other hand,202 jess and SPECjbb2000 both leak
memory: 45KB every 64MB and 127KB every 64MB respectively.
Cork’s output precisely pinpoints the single data structure respon-
sible for the growth. For202 jess andSPECjbb2000, this pre-
cision pays off: we correct the leaks and show that the result-
ing heap occupancy graphs are flat. The developers of these pro-
grams knew of these leaks, but had not fixed them. In the case of
SPECjbb2000, the leak remained elusive for years, yet we found
it and fixed it in a day.

Cork reports leaks that manifest during an instrumented execu-
tion. To demonstrate that Cork could be used online in long-running

programs, we incorporate it in a generational collector where it exe-
cutes during infrequent full-heap collections which lowers its over-
head to between 1.7% and 2.4% on average for moderate to large
heaps, but grows as high as 12.9% for very tight heaps. Less fre-
quent full-heap collections means that Cork needs to run longer
before it has enough fodder to accurately identify memory leaks.
However, this low overhead combined with Java’s dynamic class
loading feature make it possible to consider using Cork online to
find leaks, and then eliminate them by loading the corrected class
without restarting.

Cork substantially increases the accuracy and reduces the cost
of finding and fixing memory leaks due to unbounded data struc-
ture growth as compared to prior work. In practice, Cork reports
leaks precisely without any false positives, and thus significantly
improves accuracy over prior work. With modest extensions,this
approach can be adapted by any garbage collected system, includ-
ing Boehm-Demer-Weiser’s conservative collector [8].

2. Related Work
A number of offline diagnosis tools help the user look inside the
heap to determine the root cause of a memory leak. They rely on
a combination of heap differencing [11, 12, 13, 20] and allocation
and/or usage tracking at a fine level of detail [9, 15, 16, 21, 25, 26].
The drawbacks of these approaches are that they are very expensive
and tend to yield large amounts of low-level details about individual
objects that require a lot of time and expertise to interpret.

An example online instance-based approach for C and C++ is
work by Chilimbi and Hauswirth [10]. They present an online,low-
overhead memory leak detector for C. It uses per-instance book-
keeping information to identifystaleobjects as those which have
not been accessed in a long time and thus may be leaks. Because
C programs often allocate big hunks of memory and then divide
them up [5], their approach often attains low overhead. In Java,
even the smallest application creates millions of distinctobjects,
making per-instance object tracking too expensive. However, their
sampling mechanism differentiates in-use objects from not-in-use,
which adds accuracy to their reports.

An example of a completely static analysis is Heine and
Lam’s [17] work in which a static pointer analysis identifiespo-
tential memory leaks in C and C++ through the object ownership
abstraction. This work finds double frees and missing frees that
occur when the program overwrites the last pointer to an object or



data structure without first freeing it. It does not find growing data
structures and thus is complementary to our approach. However, the
challenge implementing our approach for C and C++ is connecting
the allocation type to memory, sincemallocis untyped. Their static
analysis of ownership types could provide similar information as
types do in Java.

An example of the heap differencing approach to detect mem-
ory leaks in Java is Leakbot [19]. Leakbot combines offline analysis
with online diagnosis to find data structures which potentially have
memory leaks. The offline analysis takes two heap snapshots and
does a complete heap differencing to find parts of the graph which
may be leaking. It then identifies the data structure(s) which con-
tains these potential leaks. Feeding this information backinto the
online system, Leakbot then adds expensive object-instance instru-
mentation only on those types that have already been identified as
potentially leaking. Leakbot requires two program executions, both
of which include substantial overheads. Cork attains its low over-
head and high accuracy by piggybacking on the garbage collec-
tor and summarizing the structure versus tracking object instances.
Cork also uses simpler heuristics to prune growing types. Com-
pared with their user reports, Cork produces more accurate reports
with orders of magnitude fewer reported types by tracking all po-
tentially growing types and pruning the growing types reports based
on the type points-to graph.

Compared to Cork, the prior work on detecting heap growth
reports many more false positives and has much higher overhead.

3. An Example Memory Leak
We use Figure 2 as a running example throughout the paper. It
shows an order processing system for a small business with a leak.
NewOrderinserts new orders into theallOrdersHT hash table
and into thenewOrderQ as shown in Figure 2(a).ProcessOrders
processes thenewOrderQ one order at a time as shown in Fig-
ure 2(b). It removes each order from thenewOrderQ and fills it.
Then if the customer is a Company, it issues a bill (putting iton
the billingQ) and ships the order to the customer. When the
customer sends a payment,ProccessBillremoves the order from
the billingQ and the allOrdersHT hash table, as shown in
Figure 2(c). However, if the customer is not a company,ProcessOr-
derscallsProcessPaymentwith the customer-provided payment in-
formation and only then ships the order. However,ProcessOrders
should, but does not remove the order from theallOrdersHT
hash table which results in a memory leak. Figure 2(d) lists the
abbreviations and statistics for the different types used in our ex-
ample.

4. Finding Leaks with Cork
This section overviews how Cork identifies and reports the types of
leaking objects and correlates them back to the data structure which
contains them and the allocation sites that generate them.

Piggybacking on garbage collection, Cork builds a type points-
to graph during a full-heap collection. This graph summarizes the
volume of all types and the references between them that are live
in the current heap. Cork stores this graph between collections,
and differences the current graph with previous collections to find
types that grow. Cork finds parts of the graph that are growing, and
reports these parts back to the user after each full-heap collection.
Cork also prunes portions of the graph that substantially shrink to
avoid the space and time of storing complete type points-to graphs
across multiple collections. This step makes Cork efficient.

Since Cork piggybacks on live-object scanning during garbage
collection, it is suitable for use in any mark-sweep or copying
collector, but not in a reference counting collector. For clarity of
exposition, we describe Cork in the context of a full-heap collector.

1 NewOrder(Order n) {
2 int id = getOrderId();
3 allOrdersHT.add(id, n); // insert into HashTable
4 newOrderQ.add(n); // insert into NewOrder Queue
5 }

(a) Incoming order

1 ProcessOrders() {
2 while (! newOrderQ.isEmpty()) {
3 Order n = newOrderQ.getNext();
4 newOrderQ.remove(n); // removed from NewOrder Q
5 FillOrder(n);
6 if (n.getCustomer() instanceof Company) {
7 IssueBill(n); // inserts onto Billing Q
8 ShipOrder(n);
9 } else {

10 ProcessPayment(n);
11 ShipOrder(n);
12 // A MEMORY LEAK!! -- not removed from HashTable
13 }
14 }
15 }

(b) Processing orders

1 ProcessBill(int orderId) {
2 Order n = allOrdersHT.get(orderId);
3 billingQ.remove(n); // remove from Billing Q
4 allOrdersHT.remove(orderId); // remove from HashTable
5 }

(c) Process bills

Type Variable Symbol Size
HashTable allOrdersHT H 256
Queue newOrderQ N 256
Queue billingQ B 256
Company n C 64
People n P 32

(d) Object statistics

Figure 2. Order Processing System

However, we also demonstrate Cork in a generational collector;
it performs the same analysis only during a full-heap collection.
An incremental collector that never collects the entire heap at once
could incorporate Cork by defining intervals that combine statistics
from individual collections until the collector has considered the
entire heap. Cork would then compute difference statisticsbetween
intervals to detect leaks.

We now describe in detail the information Cork computes to
detect leaks, how Cork computes it, and what Cork reports.

4.1 Building the Type Points-To Graph

To detect leaks, Cork computes a summarytype points-tograph
annotated with instance and reference volumes and comparesthese
graphs across collections. To minimize the costs of building this
graph, Cork piggybacks its construction on the scanning phase of
the garbage collector. The scanning phase detects all live objects by
starting with the roots (statics, stacks, and registers) and performing
a transitive closure through all the object references overall the
reachable (live) objects in the heap. For each distinct object type,
Cork adds a node to the graph to track the volume of live-object
instances with that type. Each time the collector visits a live-object
instance of that type, Cork increments the total volume. Cork also
adds a directed edge between nodes for each reference from one



1 void scanObject(TraceLocal trace,
2 ObjectReference object) {
3 MMType type = ObjectModel.getObjectType(object);
4 type.incVolumeTraced(object); // added
5 if (!type.isDelegated()) {
6 int references = type.getReferences(object);
7 for (int i = 0; i < references; i++) {
8 Address slot = type.getSlot(object, i);
9 type.pointsTo(object, slot); // added

10 trace.traceObjectLocation(slot);
11 }
12 } else
13 Scanning.scanObject(trace, object);
14 }

Figure 3. Object Scanning
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Figure 4. The type points-to graph summarizes the object points-
to graph

object type to another. When the collector follows a reference
between two object instances, Cork increments the edge between
the corresponding types of the objects.

Figure 3 shows these two required changes to the scanning code
from MMTk in Jikes RVM; these simple additions appear in lines
4 and 9. AssumescanObjectis processing an object of type A
that refers to an object of type B. It takes the tracing routine and
object as parameters, finds the object type, and Cork adds line 4
to increment the volume of objects of type A. The collector scans
(detects liveness of) an object only once, and thus Cork increments
the total volume of this type only once per object instance. Next,
scanObjectmust determine if each field of the object has already
been scanned. Here, Cork adds line 9 which resolves the referent
type of each outgoing reference (A!B) and increments the volume
along the appropriate edge in the graph. This step increments the
edge volume for all references to an object (not just the firstone).
scanObjectthen traces these objects in line 10; if they have not yet
been scanned,trace enqueues them for scanning. The additional
work of the collector depends on whether it is moving objectsor
not, and is orthogonal to Cork.

At the end of scanning, Cork has constructed a summary type
points-to graph for all the live objects. In this graph, the nodes
report the volume of each type (VA) and the edges (A! B) report
the volume of typeB pointed to by typeA (VBjA). Figure 4(a) shows
an example of an object instance points-to graph (i.e., the heap
itself) with instances of objects of typesH, C, P, B, andN for the
types from the example order-processing system. Figure 4(b) shows
the corresponding type points-to graph annotated with volumes.
For example, we use the volumes in Figure 2(d) and calculate the
volume ofH as 256 (VH = 256). It points to three objects of type
C (VCjH = 192) and four of typeP (VPjH = 128). Notice that the
sum of the edges and the weight of the node are not the same. For
example, objects of typeB andN point to the same objects as those
from typeH.

Cork compares these volumes from distinct collections to deter-
mine where growth is occurring in the graph.

4.2 Finding Heap Growth

At the end of each collection, Cork compares the type points-
to graph (TPT) for this collection and previous collections. Cork
identifies those nodes whose volumes increase across several col-
lections and reports them as the source of potential leaks. For each
type that is growing, Cork examines the incoming edges to the
growing types to pinpoint the sources of the growth. In steady state
in our implementation, Cork stores a subset of the type points-to
graph for the last three collections:TPTi , TPTi�1, and T PTi�2,
whereTPTi is the most recent graph. For efficiency, Cork throws
out nodes inTPTi if the type is inT PTi�1 and has substantially
shrank.

For example, Figure 5 shows the full type points-to graph cre-
ated for three collections for the order processing system.Fig-
ure 5(a) represents an initial state of the system after three orders ar-
rive, but have not yet been processed. Figure 5(b) shows fourorders
processed: two billed and two completed. Notice that the program
removes the orders from individuals (P) from all the processing
queues (B;N), but not from the hash table (H) (line 12 in Figure 2).
These orders are leaking. Comparing the type points-to graphs from
the first two collections shows bothC andP objects are potentially
growing. We need more history to be sure. Figure 5(c) represents
the state at the next collection after processing more orders, where
it becomes clearer that the number ofP objects is monotonically
increasing, whereasC objects are simply fluctuating. This problem
also occurs, though more subtly, when programs iterativelybuild
multiple data structures containing references to the sametype, but
only one of the data structures is causing heap growth. In this sit-
uation, the type’s volume may jitter. Thus, Cork cannot onlylook
for monotonic non-decreasing type growth.

To adjust for jitter, Cork uses adecay factor, f where 0< f < 1
to keep types in the graph that shrink a little on this collection,
but may ultimately be growing. Cork compares the current volume
of type VTi to its previous volume: ifVTi > (1� f ) �VTi�1, Cork
keeps the type in the graph, otherwise, it deletes the type. If the
type does not appear inTPTi�1, Cork keeps it in the graph. We find
that the decay factor is increasingly important as the speedof the
leak decreases. Choosing the leak decay factor balances between
too much information and not enough. At the end of this phase,all
nodes inTPTi are potentially growing.

Cork then ranks these potentially growing types by how likely
they are to leak. In order to calculate an overall rank, we first
calculate thephase growth factor(g) of each type asgTi = pTi �(Q�1), wherep is the number of phases that type has potentially
been growing andQ is the ratio of volumes of this phase and the
previous phase such thatQ> 1. Cork only reports types that have
been potentially growing for some minimum number of phases.
Thus, the first time a type appears in a graph, Cork does not report
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Figure 5. Comparing Type Points-to Graphs to Find Heap Growth

it. Cork accumulates the phase growth factor to rank each type such
that absolute growth is rewarded (rTi = rTi�1 + gTi ) and decay is
penalized (rTi = rTi�1 �gTi ). Types above a rank threshold (Rthres)
are reported as leaking. We use a similar ranking calculation to rank
incoming edges to typeT in the graph.

4.3 Correlating to Data Structures and Allocation Sites

Just knowing the type of the leaking object is not enough to as-
sist users. For example, reporting that a low-level type such as
String is leaking is not helpful. Cork instead identifies the leak-
ing data structure by constructing theslice of the type points-to
graph that contains the type growth. We define aslice through the
type points-to graph to be the set of all paths originating from
vertex t0 whose rankrt0 > Rthres such that the rank of each edge
rti!ti+1 > 0:0. Thus the slice defines the growth originating at type
t0 and following a sequence of typesft0;t1; : : : ;tng and a sequence
of edges(ti ;ti�1) where typeti points toti�1.

Cork identifies a slice by starting at a leaking type and tracing
growth edges backward through the graph until it encountersa non-
growing type. In this way, Cork reports not only leaking types, but
also the data structure containing them (e.g., the hash tableH in our
example). Additionally, Cork reports allocation sites forthe leaking
types. As each allocation site is compiled, Cork assigns it aunique
identifier, and constructs a map to it from the appropriate type. For
each leaking type, Cork then also reports all allocation sites.

4.4 Implementation Details

One of the main challenges in building the type points-to graph
during garbage collection is that Cork is prohibited from allocating
memory. Cork thus uses a pool of pre-allocated graph nodes. When
Cork needs a node, Cork removes it from the pool. When Cork
removes a node from the type points-to graph (because the type is
not growing), Cork returns the node to the pool. In the event that
the pool cannot fulfill the node request, Cork stops buildingthe type
points-to graph for that collection phase, generates a warning to the
user, and records the number of requested nodes which could not

be fulfilled. At the end of the phase, when Cork is free to allocate
again, it allocates more nodes to the pool so that there will be
sufficient nodes during the next collection. This approach works
well in our benchmarks. Alternative implementations with less
overhead include allocating the graph nodes in an immortal space
or a separately managed space that gets collected and managed
independently from the application heap.

5. Results
This section presents overhead and qualitative results forCork.
First, we present two methodologies: one for detecting leaks in
short running programs and one for detecting leaks in long run-
ning programs. We explore the parameter space for Cork and show
how selecting reasonable values for the decay factor and therank
threshold gives highly accurate results. Finally, we show how Cork
identifies the sources of growth in three commonly used bench-
marks:fop, 202 jess andSPECjbb2000.

5.1 Methodology

We implement our technique in MMTk, a memory management
toolkit in Jikes RVM version 2.3.7. MMTk implements a number
of high-performance collectors [7, 6] and Jikes RVM is a high-
performance VM written in Java with an aggressive optimizing
compiler [2, 1]. We use configurations that precompile as much as
possible, including key libraries and the optimizing compiler (the
Fastbuild-time configuration), and turn off assertion checking.

We evaluate our techniques using theSPECjvm benchmarks,
theDaCapo benchmarks, andSPECjbb2000.SPECjbb2000 [22,
23] measures throughput as operations per second for a duration
of 2 minutes for an increasing number of warehouses (1 to 8).
For our purposes, we change this default behavior. To perform a
performance-overhead comparison, we usepseudojbb, a variant
of SPECjbb2000 that executes a fixed number of transactions. For
memory-leak analysis, we configureSPECjbb2000 to run only
one warehouse for 3 hours. We perform all of our experiments on a



GenMS Relative Heap SemiSpace
Benchmark 1.4 1.9 3.0 6.0 with 4MB Trigger
201 compress 9 6 2 1 31
202 jess 0 0 0 0 70
205 raytrace 0 0 0 0 53
209 db 1 0 0 0 24
213 javac 3 1 1 0 53
222 mpegaudio 0 0 0 0 5
227 mtrt 0 0 0 0 40
228 jack 2 1 0 0 73

pseudojbb 8 2 0 0 51
SPECjbb2000 * * * * *
antlr 19 10 5 2 72
bloat 46 18 7 3 err
fop 1 0 0 0 19
jython 3 1 0 0 89
pmd 6 3 1 0 62
ps 0 0 0 0 130
xalan 2 1 0 0 31

Table 1. Number of Full-heap collections at various heap sizes
relative to the minimum. *Minimum heap size forSPECjbb2000
depends on length of run.

3.2GHz Intel Pentium 4 with hyper-threading enabled, an 8KB4-
way set associative L1 data cache, a 12Kµops L1 instruction trace
cache, a 512KB unified 8-way set associative L2 on-chip cache,
and 1GB of main memory, running Linux 2.6.0.

Eeckhout et al. [14] show that including adaptive compilation
in performance measurements obscures application behavior. Thus,
for our overhead measurements, we report a second run with no
compilation and a deterministic application of the adaptive com-
piler usingReplay compilation. Replay compilation deterministi-
cally applies the optimizing compiler to frequently executed meth-
ods chosen by the adaptive compiler in previous (offline) runs giv-
ing us a realistic mixture of optimized and unoptimized code. We
report only application performance by running two iterations of
each benchmark. The first run uses replay compilation, and then
turns off compilation. Before the second iteration, a wholeheap
collection flushes compiler objects from the heap.

For performance results, we explore the time-space trade-off
by executing each program on five heap sizes, ranging from the
smallest one possible for the execution of the program to sixtimes
that size. We execute timing runs five times in each configuration
and choose the best execution time (i.e., the one least disturbed by
other effects in the system). We perform separate runs to gather
overall and individual collection statistics.

For qualitative results, we explore two different garbage collec-
tion configurations. Cork needs to have a chance to gather statistics
over a number of full-heap collections. With a generationalcollec-
tor, many of these benchmarks have fewer than 10 full-heap collec-
tions, which is not enough fodder for Cork (see Table 1). Therefore,
we use a single-space collector (SemiSpace) with frequent collec-
tions (every 4MB of allocation) for short running programs.This
configuration increases the number of type points-to graphsCork
calculates and the likelihood that it can accurately identify the leak-
ing type. For long running programs, Cork does not require this
collector configuration. It can run much less frequently andstill
find heap growth. In an online deployment, Cork could be addedto
a generational mark-sweep collector (GenMS) and thus we report
these overhead numbers as well.

5.2 Overhead Results

Figure 6 shows the total time overhead for our two different garbage
collector configurations. In a single-spaced collector with frequent
collections, it shows an average overhead of 45.5% in very tight
heaps (minimum heap size), 35.0% in moderate heaps (three times

Benchmark Percent
201 compress 0.3
202 jess 1.7
205 raytrace 0.4
209 db 0.0
213 javac 1.4
222 mpegaudio 0.5
227 mtrt 0.3
228 jack 1.6

pseudojbb 2.6
SPECjbb2000 0.1
antlr 0.7
bloat 0.5
fop 0.2
jython 3.4
pmd 0.2
ps 2.9
xalan 0.0
Average 1.0

Table 2. Space Overhead for Benchmarks

Decay Factor
Benchmark 0% 5% 10% 15% 20% 25%
201 compress 0 0 0 0 0 0
202 jess 0 1 1 1 1 2
205 raytrace 0 0 0 0 0 0
209 db 0 0 0 0 0 0
213 javac 0 0 0 0 0 0
222 mpegaudio 0 0 0 0 0 0
227 mtrt 0 0 0 0 0 0
228 jack 0 0 0 0 0 0

pseudojbb 0 0 0 0 0 0
SPECjbb2000 0 4 4 4 4 4
antlr 0 0 0 0 0 0
bloat 0 0 0 0 0 0
fop 2 2 2 2 2 2
jython 0 0 0 0 0 1
pmd 0 0 0 0 0 0
ps 0 0 0 0 0 0
xalan 0 0 0 0 0 0

Table 3. Reported types as a function of the decay factor at a
moderate threshold (Rthres= 100). We chose the decay factorf =
15%.

minimum heap size), and 34.4% in large heaps (six times minimum
heap size). In the worst case, the overhead was 130% forpseudo-
jbb in a very tight heap. In the generational mark-sweep collector,
Cork only calculates the summary points-to graph on full-heap col-
lections. In this case, the overhead average is 13.3% in verytight
heaps, 2.4% for moderate heaps, and 1.7% for large heaps. In the
worst case, the overhead was 52% in a very tight heap, again for
pseudojbb. These very small heaps however are not representative
of typical heap configurations.

The sources of overhead are two-fold. First, construction and
scanning of the points-to graph increases the pause time of the
garbage collector. Second, the objects required for the construction
and saving of the points-to information are long-lived heapobjects.
Table 2 shows an average space overhead of 1.0% over total alloca-
tion. This rise in heap activity increases the burden on the garbage
collector. One could reduce this overhead by allocating these ob-
jects in a separate space that would not need to be collected.

5.3 Decay Factor and Rank Thresholds

We experiment with different sensitivities for both the decay factor
( f ) and the rank threshold (Rthres). Table 3 shows how changing
the decay factor changes the number of reported types whose vol-



Thresholds: > 0 > 50 > 100 > 200
Percent of GCs: 0 10 25 50 0 10 25 50 0 10 25 50 0 10 25 50
201 compress 9 6 4 2 0 0 0 0 0 0 0 0 0 0 0 0
202 jess 22 12 9 2 4 2 1 1 2 1 1 1 2 1 1 1
205 raytrace 31 8 4 0 0 0 0 0 0 0 0 0 0 0 0 0
209 db 7 7 2 1 2 2 0 0 2 2 0 0 2 2 0 0
213 javac 118 92 71 39 16 5 2 1 5 0 0 0 3 0 0 0
222 mpegaudio 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
227 mtrt 43 12 3 0 6 6 2 0 4 4 0 0 0 0 0 0
228 jack 35 22 9 1 0 0 0 0 0 0 0 0 0 0 0 0

pseudojbb 50 13 9 7 5 0 0 0 1 0 0 0 0 0 0 0
SPECjbb2000 138 14 10 9 66 7 6 2 46 5 4 0 38 4 4 0
antlr 83 26 9 1 15 0 0 0 12 0 0 0 9 0 0 0
bloat 60 51 33 5 30 11 0 0 11 0 0 0 1 0 0 0
fop 107 74 35 24 12 11 2 1 7 6 2 1 4 3 1 1
jython 51 5 3 0 4 0 0 0 2 0 0 0 2 0 0 0
pmd 127 89 11 1 21 5 2 0 17 2 0 0 13 0 0 0
ps 16 8 3 0 2 0 0 0 0 0 0 0 0 0 0 0
xalan 40 11 5 4 0 0 0 0 0 0 0 0 0 0 0 0

Table 4. Reported data structures as a function of rank thresholds and percentage of collections in which the type appears for a moderate
decay factor (f = 15%). We choose the rank thresholdRthres= 100.
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Figure 6. Geometric Mean Overhead Graphs over all benchmarks. Bars show minimum and maximum overheads.

ume increases between the first and third collections for a full-heap
collector. We find that the detection of growing types is not very
sensitive to small changes in the decay factor. We choose a mod-
erate decay factor (f = 15%) for which Cork accurately identifies
the growing data structures in202 jess andfop without any false
positives. Forpseudojbb, we find that Cork gives a false negative
for some configurations. In this case, Cork does not have the oppor-
tunity to accumulate sufficient rank for growing types responsible
for a known memory leak. ForSPECjbb2000, on the other hand,
Cork reports the leak because it runs for a longer period of time.
Table 4 shows how increasing the rank threshold eliminates false
positives from our reports. We find that a moderate rank threshold
(Rthres= 100) is sufficient for eliminating any false positives.

5.4 Finding and Fixing Leaks

This section describes the data structure growth that Cork finds
in fop, 202 jess, andSPECjbb2000. Each section describes the
benchmark, the Cork report, and the analysis.

5.4.1 fop

The programfop (Formatting Objects Processor) is from theDa-
Capo benchmark suite. It uses the standard XSL-FO file format as
input, lays the contents out into pages, and then renders it to PDF.

Converting a 352KB XSL-FO file into a 128KB PDF generates the
heap occupancy graph in Figure 7(a) which clearly demonstrates
an overall monotonic heap growth.

Cork analyzesfop and gives reports shown in Figure 7(b)-
(d). Figure 7(b) shows Cork’s reports of leaking types and their
associated ranks for three different garage collections. It shows
ArrayList with a large rank making it the most likely cause
of a potential leak. We continue our exploration by examining the
slices of the type points-to graph to determine what is keeping
the ArrayList alive. Figure 7(c) shows part of the slice for
ArrayList. The figure represents the points-to relation between
different types in the graph. It uses to represent the direction of
the points-to relationship with the indentation depth indicating the
referent. It shows thatArrayListsare nested in a data structure.
Interestingly, Cork is able to distinguish that theArrayList is
implemented using anObject[] and reports both. Finally, Cork
lists the allocation sites for all the types giving the user astarting
point for debugging (see Figure 7(d)). Because the allocation sites
are numerous, it is not useful to exploreArrayList. We go to
secondary allocations sites:WordAreaand LineArea.

Next we explore fop’s implementation. fop performs two
passes: the first parses the formatting object tree buildinga complex
structure ofArrayListscontaining different formatting objects
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(a) Heap-occupancy graph forfop

GC No. Rank Type
15 2104.17 Ljava/util/ArrayList;

135.26 Lorg/apache/fop/fo/LengthProperty;
115.64 Lorg/apache/fop/datatypes/AutoLength;

18 2106.28 Ljava/util/ArrayList;
21 2108.24 Ljava/util/ArrayList;

(b) Leaking Type Report for three different garbage collections

Type
Ljava/util/ArrayList; Lorg/apache/fop/layout/inline/WordArea; Ljava/lang/Object; [] Ljava/util/ArrayList; Lorg/apache/fop/layout/LineArea; Ljava/lang/Object; [] Ljava/util/ArrayList; Lorg/apache/fop/layout/inline/WordArea; Ljava/lang/Object; [] Ljava/util/ArrayList; Lorg/apache/fop/layout/inline/InlineSpace; Ljava/lang/Object; [] Ljava/util/ArrayList;
. . .

(c) Slice Report forArrayList

Method bcidx
Ljava/util/ArrayList;
too numerous to be useful(45)
Lorg/apache/fop/layout/inline/WordArea;
.../render/pdf/PDFRenderer;.renderWordArea... 355
.../render/pdf/PDFRenderer;.renderWordArea... 450
.../render/pdf/PDFRenderer;.renderWordArea... 555
.../render/pdf/PDFRenderer;.renderWordArea... 811
.../render/pdf/PDFRenderer;.renderWordArea... 820
Lorg/apache/fop/layout/LineArea;
.../layout/BlockArea;.getCurrentLineArea... 26
.../layout/BlockArea;.createNextLineArea... 45

(d) Allocation Sites Report

Figure 7. Fixing fop

Type
Lspec/benchmarks/202 jess/jess/Value; Lspec/benchmarks/202 jess/jess/Value; [] Lspec/benchmarks/202 jess/jess/ValueVector; Lspec/benchmarks/202 jess/jess/ValueVector; [] Lspec/benchmarks/202 jess/jess/Token; Lspec/benchmarks/202 jess/jess/Token; [] Lspec/benchmarks/202 jess/jess/TokenVector;
. . .

(a) Slice Report forValue
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(b) Original input file
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(c) Fixed input file

Figure 8. Fixing 202 jess

which themselves can containArrayLists.Oncefop encoun-
ters an end of page sequence, it begins rendering during a second
pass of the data structure it built during parsing. Unfortunately, it
is not possible to start rendering earlier because of the possibility
of forward referencesin the XSL-FO tree. Thus, while our analysis
accurately pinpoints the source of the growth,fop does not have a
memory leak because it uses the entire heap. The developers of fop
agree with this analysis, that the heap growth thatfop experiences
is partly inherent to the formatting process and partly caused by
implementation choices [3].



5.4.2 202 jess

From theSPECjvm benchmark suite,202 jess is a Java Expert
Shell System based on NASA’s CLIPS. In an expert system, the
input is a set of facts and a set of rules. Each fact represents
some existing relationship and each rule represents some legal way
of manipulating facts. The expert system then reasons by using
rules toassertnew facts andretrace existing facts. As each part
of a rule matchesexisting facts, the rulefires creating new facts
and removing the rule from the set of activated rules. The system
continues until the set of activated rules becomes empty.

Cork analyzes202 jess and finds thatValue is overwhelm-
ingly a growing type reporting a slice showing in Figure 8(a).
Correlating it to the implementation,202 jess compiles all the
rules into a single set of nodes. The assertion or retractionof a
fact is then turned into atoken, which is fed to the input nodes
of the network. Each node in the network may pass the token on
to its children, or filter it out. As tokens are propagated through
the network, rules create new facts. Each new fact is stored in
Token in a ValueVector implemented asValue[]. A global
TokenVector, implemented asToken[], stores the tokens in
the system. Since original facts are part of the input, we examine
this path further.

Examining the input for 202 jess, we find the benchmark
iterates over the same problem several times. The developermade it
artificially more complex by introducing distinct facts in the input
file representing the same kind of information for each iteration.
Thus, with each iteration, the number of facts to test increases
which triggers more allocation. This complexity is documented in
the input file. In order to remove the memory leak, we removed this
artificial complexity from the input file. Figure 8(b) shows the heap
occupancy graph for the original input file. It shows a growthof
45KB every 64MB. Figure 8(c) shows the resulting heap occupancy
graph once we removed the artificial complexity. The heap growth,
and thus the memory leak, is gone.

5.4.3 SPECjbb2000

TheSPECjbb2000 benchmark models a wholesale company that
consists of a number of warehouses (or districts). Each warehouse
has one terminal where customers can generate requests, such as
placing new orders or requesting the status of an existing order. The
warehouse executes operations in sequence, with each operation
selected from the operation mix using a probability distribution. It
implements this system entirely in software using Java classes for
database tables and Java objects for data records (roughly 25MB
of data). The objects are stored in memory using BTrees and other
data structures. Figure 1(b) shows the heap occupancy graphfor
SPECjbb2000 running one warehouse for one hour.

Cork’s analysis finds four types as possible leaks:Order,
Date, NewOrder, and OrderLine (see Figure 9(a)). The
rank of the four types changes between garbage collections making
it difficult to determine the importance of each. Further examina-
tion into the slices of the four reported types reveal why. Figure 9(b)
shows the complex structure of types thatSPECjbb2000 creates
(the shaded types are growing). Clearly there is an interrelationship
between all of the leaking types and if one is leaking then therest
are as well, hence the reordering of the ranks in our reports.In-
terestingly, Object[]’s use inSPECjbb2000 is prolific and as
a result its volume jitters sufficiently that it never shows sufficient
growth to be reported as leaking. It does, however, appear inthe
slice containing the data structures.

We correlate Cork’s results withSPECjbb2000’s implemen-
tation. We find that orders are placed in anorderTable, im-
plemented as a BTree, when they are created. When they are com-
pleted during aDeliveryTransaction, they are not properly removed
from the orderTable. By adding code to properly remove the

Type
Lspec/jbb/NewOrder; Ljava/lang/Object; [] Lspec/jbb/infra/Collections/longBTreeNode; Ljava/lang/Object; [] Lspec/jbb/infra/Collections/longBTree; Lspec/jbb/infra/Collections/longStaticBTree; Lspec/jbb/Order;
Lspec/jbb/Order; Ljava/lang/Object; [] Lspec/jbb/infra/Collections/longBTreeNode; Ljava/lang/Object; [] Lspec/jbb/infra/Collections/longBTree; Lspec/jbb/infra/Collections/longStaticBTree; Lspec/jbb/Order;  Lspec/jbb/NewOrder;
Lspec/jbb/Orderline; Ljava/lang/Object; [] Lspec/jbb/infra/Collections/longBTreeNode; Ljava/lang/Object; [] Lspec/jbb/infra/Collections/longBTree; Lspec/jbb/infra/Collections/longStaticBTree; Lspec/jbb/Order;
Ljava/util/Date; Lspec/jbb/Order; Lspec/jbb/Orderline;
. . .

(a) Slice Report forSPECjbb2000

OrderLine NewOrder

Date

Order

Object[ ]

longBTreeNode

longBTree longStaticBTree

Source

(b) Slice diagram
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(c) Fixed heap-occupancy graph

Figure 9. Fixing SPECjbb2000



orders from theorderTable, we remove this memory leak. Fig-
ure 9(c) shows the heap occupancy after correcting the memory
leak and runningSPECjbb2000 with one warehouse for one hour.

6. Conclusion
In this paper, we introduce Cork and show that it can detect and re-
port memory leaks in Java programs. Cork identifies the data struc-
ture and allocation sources of these leaks. Cork traces growth in
the heap and report slices of a summarizing type points-to graph
that it calculates by piggybacking on full-heap garbage collections.
We show that Cork adds only 2.4% overhead on average to mod-
erate heaps for our benchmarks, and 1.7% overhead on average
for large heaps in a generational collector. We use Cork to pre-
cisely identify data structures with unbounded heap growthleaks
in three popular benchmarks:fop, 202 jess, andSPECjbb2000.
We use Cork’s analysis to eliminate memory leaks in202 jess
andSPECjbb2000. Cork is the first tool to find memory leaks in
Java with low enough overhead to consider using online. Corkis
also accurate, reporting few false positives regardless ofits config-
uration and all the leaks in our benchmarks programs.
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