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Abstract 1. Introduction

End-user software problems take too much time to resolve, in part Bad error messages have been around as long as software. Despite
due to unclear or ambiguous error messages. The quality of errordecades of improvements in languages, static analysis [4, 11, 38],
messages embedded within software is unlikely to improve given program verification [16], testing methodologies [42, 13], and de-
the variety of contexts in which errors can occur, the programming velopment tools, bad error messages show no signs of abating. The
complexity of sophisticated error reporting, and the modular struc- cost of administering, configuring and updating a machine’s soft-
ture of modern applications. While vendors supply documents, help ware is surpassing the cost of its hardware [22], and a large portion
systems and websites to support end users, it is still difficult for of modern software support cost comes from time wasted with bad
users to figure out how to resolve their problems. error messages. A bad error message is any message that does not
Navel improves error reporting by monitoring software execu- provide sufficient information for a user to fix the problem in a
tion and determining if a particular execution is an instance of a timely fashion. One recent study concluded that up to 25 percent
known error. As a program executes, Navel builds a compact ab- of a system administrator’s time may be spent following blind al-
straction of the program'’s behavior (a behavior profile) using con- leys suggested by poorly constructed and unclear messages [6]. If
trol flow information. Navel classifies behavior profiles using a ma- T professionals struggle to administer systems, home users prob-
chine learning model trained on known errors by vendors, support ably fare worse, since they do not have the time and expertise to
organizations or other users, enabling them to better disseminatesuccessfully diagnose many of their problems.
error workarounds by matching user behavior profiles with known There are several reasons why error messages embedded in soft-
problems. Navel provides a way for an average user to get solutionsware are difficult to improve. First, since the text of the error mes-
to software problems with less effort. sages are written at the same time as the code itself, the useful-
A prototype implementation, Skepsis, demonstrates the effi- ness of the text is limited by the foresight of the developer. Second,
cacy of the Navel approach. Skepsis collects three behavior pro-modular programming style hinders the quality of error reporting.
files based on program control flow: function counting, path pro- Modules are designed as building blocks to be re-used in multiple
filing, and a new technique, call-tree profiling. We evaluate Skep- disparate contexts, so they often abstract away the precise context
sis on confusing error messages currently emitted by large, maturethat makes a good error message possible. Third, communication
programs including thgcc compiler and Microsoft’s Visual Fox- between protection boundaries prohibits a good error message. Pro-
Pro database. Using call-tree profiling, Skepsis achieves an averaggrams such aispt abl es andi pr out e2 consist of user code and
classification accuracy of 97% across a range of nine benchmarksa kernel module, and the error reporting interface from the kernel to
on two operating systems, while function counting and path pro- user space is constrained to a simple list of overloaded error codes.
filing achieve average classification accuracies of 92% and 94%  Due to the limitations of program error reporting, software

respectively. vendors provide other support channels such as help files, support
websites, and user forums. However, end-users suffer from the
Categories and Subject Descriptors D [2]: 5 arduous task of ferreting out the exact solution they need from this

barrage of information. Delivering the correct and exact solution to
the end-user is the crucial problem of error reporting system.
Navel is an error reporting system that classifies program be-
havior, enabling matching an erroneous execution with a solution
Keywords error reporting, profiling, software support, machine already found by others. By framing the problem of software sup-
learning port in term of program behavior classification, Navel can provide
diagnostic help for a wide range of symptoms, including unclear
error messages, crashes, hangs, and poor performance.apleis p
focuses on improving error reporting.
Figure 1 shows the Navel process. A program is instrumented
to produce a profile of its behavior (e.g., function call counts, or
a path profile). A small groups of users and/or developers train a
machine-learning classifier on the behavior profile by labeling er-
ror executions. The label is a solution to the underlying problem for
that error case. Users can then use the classifier to get the solution
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today might involve typing the error text into a web search engine  (A) behavior profiling (B) machine-learning model construction

and winnowing the responses with human intelligence, Navel re-

duces the task of an average user finding the advice of the expert to ——
running a classifier on a program profile. The residual complexity strumented program _ 4 ,
of running a classifier on a program profile can be hidden by a sim- machine learning algorithm

ple interface we call, “hitting the Navel button” when something human labels behavior
goes wrong. Applications can be instrumented by users or software
distributors. A software distributor would use Navel as a common (C) behavior classification

support infrastructure for all of its applications or as a way to of-

fload its support burden. Open source developers would use Navel g

to simplify the process by which the average user gains wisdom
from more experienced users.
Navel is trained by a community of users. Téwpertsare peo- Figure 1. An overview of the Navel workflow. The rectangles represent
ple who currently diagnose problems and develop work-arounds, processes consuming and producing data. Section A showseipe that
and post their solutions to software support websites. They pro- generate a behavior profile. Behavior profiles are labeledused to gen-
vide the improved error messages reported by Navéarmed erate machine-learning models (B), which are ultimately usetignose
users search software support websites, and implement the solubehaviors for users (C).
tions they read about. They provide the labeled executions used to
train the Navel classifiers by giving feedback that they experienced o ) .
the same problem that was identified by an expert (e.g., similar to SUch temptation is to require each software project individually to
the feedback form provided by some Support WebSiteS)rﬁ'diﬁseS eXpend Sca:rce deve|0per _I’esources -On error I’epor_tlng. A Common
can follow directions, but do not have the ability or interest to di- €rror reporting framework is more efficient and desirable. Navel is
agnose their computer problems. They use the Navel system. Asd COmmon error reporting system that can be used by unmodified
the name implies, the masses vastly outnumber the experts and in{regram binaries. ]
formed users. A small number of users train the system foramuch ~ Complexity is the bane of software development, and reporting
larger group of non-expert users, and the system will continue to Useful error messages is a complex problem. The problem space of
adapt as the support needs of the user community change. Navelvhat can possibly go wrong with a program is large, so testing all
takes the manual work already being done by a user community possibilities is extremely difficult. Because only a small subset of
and makes it more accessible to the average user. what could go wrong actually does, clarifying the error reports that
The contributions of this paper are: actually occur in a software deployment can minimize the work
) ) . required for error reporting while providing the most benefit to
e We present Navel, a design for a system that disambiguatesggrs.
different root causes of an error message by using a machine-  |nstead of burdening the application developer with the task of
learning model. Ours is the first such system to deal with this ,operly correlating application behavior with a proper error report,
problem by monitoring program control flow. (Sections 3and 5)  Navel correlates error reports with low-level details of application
e We designed a new techniqum)l-tree profiling that represents ~ behavior that can be collected automatically. Sometimes a program
software behaviors more accurately, on average, than existingcan easily report a clear error, but as the following example, the
profiling techniques such as function counting, or path profil- example in Section 5.2, and the variety of cases in Table 3 demon-
ing. (Section 3.1) strate, this is not always the case for a variety of reasons. A solution
beyond better programming is required.

behavior profiles
==

We evaluate a Navel prototype, Skepsis, on large, mature pro-
grams that currently produce unclear error messages and con
fusing behavior, such @g ¢ and Microsoft's database program ) ) ]
FoxPr o. Our study is the most comprehensive in terms of Using Linux 2.6.12, an unsuccessful attempt to mount an NFS file
number of benchmarks, and benchmark size and maturity for System can result in this error message.

any system that builds a machine-learning model from program
behavior. (Section 4)

2.1 NFS mount: when good error reporting goes bad

NFSv3 not supported!
mount: wrong fs type, bad option,

e The machine-learning models built by Skepsis require human bad superbl ock on hostnane:/tnp,
labeling effort. We present two novel methods to minimize the m ssing codepage or other error
amount of human effort: unsupervised clustering of errors, and In some cases useful info is found
using a model trained for one version of the software on the in syslog - try
next version without retraining. (Section 6) dmesg | tail or so

In Section 2 we present the motivation for Navel and how a
prototype would be used to improve error reporting. Section 3
describes how Navel abstracts program behavior. In Section 4 we
evaluate Skepsis in terms of the accuracy of its models, and its run-_ . ;
time overhead. Section 5 examines the models built by Skepsis toWlth the suggestion to rudlr_resg. The server supports NFSv3, and

there is no useful information in the syslog. What went wrong?

understand how they can achieve such high accuracy. Section 6 . L) .
describes how to reduce the amount of human effort with Navel. Everything after the first line is printed in response to the er
ror number returned from the kernel. The kernel’s error reporting

We position Navel with respect to related work in Section 7. We . . I . .
outline future work in Section 8 and conclude in Section 9. mterfacg IS qU|te_I|m|ted and completely f'X?d- Ad(_:ilng text about
dnesg is a shot in the dark by the error writer, trying to give the
s user more specific context to understand the error report.
2. Navel motivation and use The line about NFSv3 not being supported is the result of a
There is a natural temptation to believe that bad error reporting is a collision between two attempts at helpfulness on the part of the
simple matter for programmers to fix. The peril of succumbing to programmer.

The program output is actually two error messages from two
locations in the mount code: the first location prints the message
that NFSv3 is not supported, the second prints the verbose message



1. If an NFS mount fails, there is an automatic attempt to retry Q

with a lower protocol version. This is useful, especially when CTP-DO: A:(A)
servers are migrating to new protocol versions. @ G CTP-D1: A:(A (B C))
2. There is an attempt to catch obviously bad configurations early CTP-D2: A:(A (B (D) C))

with sanity checks before too many computational resources are Q
expended. These sanity checks provide an opportunity for more
specific error reports.

. o Figure 2. An example of call-tree profiling. The left side of the

The message comes from a sanity check that is intended 10 djagram is the function activation tree (the dynamic call graph) with
catch attempts to mount with a higher protocol version than the arrows pointing in the direction of the function call. The right side
kernel is compiled with. The retry attempt (1) decrements the are the subtrees for function A generated by the CTP algorithm
version counter, causing the sanity check to think 2 is the maximum ¢ gepth bounds from zero to two. Each subtree has parentheses
allowed protocol version. At the same time, the retry attempt will jngjcating the depth of the function call in the tree.
still use the version specified on the command line if present (in
this case the command line specified version 3). Mount, therefore,
retries with v3 instead of v2, and the sanity check fails. only control flow information is high (see Section 4.3), and using

This can be fixed from within the program, but only to replace  qqtr] flow information minimizes the possibility of leaking sen-
an incorrect message with a generic, useless one. Two isolated ative user data.
tempts at better error messages actually yield a worse error mes-- tpe ot successful machine-learning methods today (e.g., de-
sage: the whole can be less than the sum of its parts. This exam<;sjon, trees, support vector machines, boosting, etc.) classify based
ple shows some of the inherent limitations of error reporting from o, 5 fixed-length vector representation of the data, called feature
within a program. vectors by the machine-learning community. Navel builds behavior
profiles that are fixed-length feature vectors, with the same number
. o ) of features for every execution (though some features values might
We plan to use Navel to build a distributed support service for pe zero for a particular execution). For instance, a feature vector
non-commercial software. When something goes wrong that a usercoy|g have an entry for every function, with the value of the entry
does not understand, the user can download the latest machineis the number of times the function was executed.
learning models from a server machine (much like users download
virus definitions for anti-malware software today). The model will 3.1 Representation
determine the error based on the behavior profile. The behavior
profile can be collected by reproducing the error, or leaving the
Navel instrumentation “always on” (at some cost to performance
that is quantified in Section 4.4). When the user presses the Navel
button, Navel presents the user with a solution or work-around for
their problem if the user community has found one. The following
scenario illustrates how a complete software support system base
on Navel will work.

2.2 End-user support

This paper explores three approaches to behavior profiles that have
different tradeoffs for performance overhead and level of etien
detail. The first method usdanction counting'sometimes called
function call profiling [34]). Each function has a counter that is
incremented when the function is executed. The order in which the
Junctions are called is not retained. Function counting is efficient
and tends to be accurate when each behavior has a set of unique
functions associated with it.
1. A user experiences a software error that she or he cannot fix  Navel's second behavior profiling methodpath profiling as
while running a Navel-instrumented program on their machine. presented by Ball and Larus [3]. Each program path (unique se-
2. Program help menus do not provide sufficient help to the user. quence of basic blocks) has a counter that is incremented when
3. The user activates the Navel monitor (probably already running the path is executed. Path profiling distinguishes well amongst pro-
as a system service) on the machine to read the behavior profilegram behaviors that result in different control flow within a function
from the Navel-instrumented program and help diagnose the (intra-procedural control flow), something that function counting
problem. cannot do. . . y . .
4. The Navel monitor classifies the problem, possibly consulting  Navel's third behavior profiling technique is neveall-tree

other machines on the Internet which contain repositories of Profiling (CTP). Call-tree profiling associates a counter with a
trained machine-learning models and problem solutions. depth-bounded subtree of the program’s activation tree, and incre-

5. The Navel system possibly returns a diagnosis (clear descrip-me'.1tS the coqnterwhen the subtree executes. The dynamicf_unc_tion
tion of the error) and a digitally signed script that will fix it. calling behavior of a program can be represented by an activation
tree, where each node is a dynamic instance of a function call, and
. . edges are calls between functions. We use the notatransubtree
3. Representing program behavior which means that the call teubtreeoriginated infunc We use
Navel builds a model of program behavior based on program mea- LISP style of tree representation for the subtrees where the left
surement. The accuracy of the model, and the performance of parenthesis indicates a call-depth increment and the right parenthe-
Navel-instrumented programs is directly related to Navel's behav- sis indicates a call-depth decrement. Figure 2 shows an example
ior profiles. More detailed profiling will tend to require greater CPU  of a small activation tree where function A calls function B which
and memory resources to collect, but will result in more accurate calls function D. These calls return and then function A calls func-
machine-learning models. There is a limit to this process however, tion C. Activation trees grow large for non-trivial executions (about
because machine-learning models can be “overloaded” with too 43 million nodes for one execution gtc).
much information. There are many ways to map control flow in- Call-tree profiling captures some information about the order
formation to a behavior profile, and this section explores different and relationship of function calls within a program—a rich source
choices for that mapping, elucidating those decisions with some of program behavior data. In Figure 2 the depth one CTP (CTP-
detailed examples. D1) feature value would be incremented whenever function A calls
The Navel prototype represents program behavior using infor- function B, and then function A calls function C. To limit the size
mation only related to control flow. Classification accuracy using of subtrees, Navel breaks subtrees at loop backedges. In Figure 2



the depth-one CTP feature is incremented only if A calls B and
then A calls C within a single loop iteration within A. If A calls

B in one loop iteration, then A calls C in the next loop iteration,
that increments the value of two distinct CTP-D1 features :A:(A
(B)) and A:((C)). Breaking subtrees at loop iteration boundaries
reduces subtrees from hundreds of thousands of calls to less than
hundred. At depth-zero CTP is just function counting, because no

void A(n)
if (n> 0) B();

yoid B() {}

calls made by a function will be counted. In this paper, CTP will |n'gntrnar]|n_() { /«xvaries for each run/
refer to the union of the feature spaces at depth bound of at most :nt c ; /I xar:es for each rﬂr*/
two (i.e., CTP-DO, CTP-D1, and CTP-D2). it (c) A(.r.l )

Like function counting, call-tree profiling only requires instru- ) '
mentation at function entry points. Unlike function counting, call- if ’(c) A(l—n);

tree profiling captures the dynamic calling behavior of functions,

and more context. It captures some of the path information of path return 0
profiling (although it loses information about paths without func- t
tion calls) and preserves some inter-procedural information. Figure 3. Sample C Program

Counts provide a robust profile of program execution, even if the ’ '
program executes for a long time, and repeats the same actions. For
example, if a server process executes the same recovery code five = TS0 =TT =T =1 7=0c=0
times and then writes a message to syslog, there isarobust 5:1 ratio  —zin 02 02 05
of retry code to syslog writes. Navel uses sophisticated thresholding A 04 04 0
to make sure that rare events are not swamped by common events B 04 0.4 05
even though their counts might differ by orders of magnitude. PP n=0 =11 n=1 c=1| n=0c=0

We do not consider behavior profiles of basic block counts mainyo 02 W) —0
because they would be expensive to collect, have little information main, | 0 0 05
gain over path profiling. A0 0.2 0.2 0

Apl 0.2 0.2 0

3.2 Example control-flow feature vectors Bpo 0.4 0.4 0.5
An example of Navel's program behavior profiles for the sample CTP-D2 n=0,¢=1] n=1,¢c=1| n=0,c=0
program shown in Figure 3 is shown in Table 1. All three behav- main:(main (A B A (B))) 0.2 0 0
ior profiles are fixed length feature vectors that are presented to main:(main (A (B) B A)) 0 02 0
the machine-learning models as input. Each profile uses counters E?'An)'(mam ®) Og 02 0'8
whose value is normalized by the total number of counted events A:(A ) 02 05 0
in a run. Normalization allows comparison of runs with different B;(B) 07 o7 05

input lengths, but must be done in a way that ensures rare events
are not normalized to zero, so rare events are never lost. Table 1. Behavior profiles for three different executions of the sampl
Table 1 shows the feature vectors for each of the three profiles, program in Figure 3FC stands for function countind®P stands for path
for three runs of the sample program, each with different values profiling; andCTP-D2 stands for call-tree profiling with a depth bound of
for the variablesr andc. Each row is a feature, and the column  two.
of normalized feature value counts for a given run comprises the
feature vector for that run. Feature vectors for a particular profile .
(e.g., function counting) can be compared against each other, but#-1 Experimental setup
not against vectors from another behavior profile. Note that both Each experiment executes an instrumented application with differ-
function counting and path profiling do not distinguish between ent inputs, and the application runs normally or generates a confus-
n=0,c=1,andn = 1, ¢ = 1 (the feature vectors are identical), ing or misleading error message (see Table 3 for the error message
while CTP-D2 does distinguish these cases. text). The accuracy we report is how well the machine-learning
For function counting, each function’s normalized count is a model is able to correctly classify the underlying error scenario for
feature. For path profiling, each path’s normalized count is a fea- each confusing and ambiguous error message. A perfect classifier
ture. The paths are not explicit in the program listing, but the zeroth would correctly identify each error scenario from the behavior pro-
path in main and A correspond to the conditional being taken. For file for each benchmark.
call-tree profiling, the normalized count for each depth-bounded In order to train the machine-learning model there are roughly
subtree of the activation tree is a feature. The complete feature equal numbers of instances for each error class and the non-error
space is very large for path profiling and call-tree profiling, so class. This distribution is not intended to model the frequency of
Navel represents it sparsely, i.e., missing features are assuneed ze bugs occurring in the field, but rather trains the model to distinguish
valued. among the given cases without bias to any particular bug.
Skepsis uses static and dynamic binary translation to collect
4. Evaluation traces of runtime informz_;\tion. To experiment v_vith different abstrac-

) tions of program behavior, we collected basic block traces for all
To evaluate Navel, we buikepsisthe Navel prototype. We evalu-  experiments and post-processed the trace differently for each be-
ate Skepsis on large, mature programs that run on different operat-havior profile. For example, for function counting, each function
ing systems (Linux and Windows). These programs exhibit a range entry basic block increments that function’s counter.
of behavior that can confuse an end user, including ambiguous or  For programs run on Linux we used the Pin [29] dynamic bi-
unclear error messages, crashes, and, in one case, the exéelbf as nary translation tool. For programs run on Windows we used the
due to a buffer overflow attack. Two benchmarks communicate with Phoenix compiler platform [32] to read and instrument Windows
kernel modules. binaries. Skepsis runs as a system service, providing shared mem-




App Reported error message Improved error message Recall Prec | Comments
mpg321 | Normal 68.9% 84.0% A . . .

ST |G| Wdas XAt s command e el iy et mod o conver
none ID3 tag data corrupted 95.8% 86.1% imp ortant libraries ’ 9 9 P 9 P Y
none Unsupported file format 98.7% | 100.0% P )

Z%Ep{'_?g Eg:;al g?Jrf]fir Sverfiow Taunches a shell 1?)?)8‘;), 188822 Linux. A test harness rangomly_exercisesyzg)r intf funct_ion (which is known to
have a buffer overflow), simulating normal program behavior before the crash or

none Buffer overflow exploit 1 causes crash 74.7% 86.2% overflow. Code for all exploits were found on the Internet.

none Buffer overflow exploit 2 causes crash 100.0% | 100.0% ) ’

gcc Normal 100.0% 99.4%

3.1 Syntax error on line where keyword, “elsel” Syntax error on line wherei T (...) ;" ap- 99.7% 99.3% | Linux. The GNU C compiler which contains both hand-written and automaticall
appears pears generated source code, run on 4,070 pre-processed (“.i" files) from Linux 2.6.13. A
Unexpected end of file Missing close brace on a switch statement 95.7% 99.1% | corrupter randomly modified working source code to create the errors.

Syntax error before X, where X varies A semicolon is missing. 85.0% 88.7%
Syntax error before X, where X varies Misspelled keyword 92.3% 86.7%
FoxPro Normal 100.0% | 100.0%
9.0 alpha | Access violation and quits Attempted to save a Form over a file open jn 100.0% | 100.0% | Windows 2003 Server. Microsoft Visual FoxPro is a tool for creating database
another program applications and components. We introduced the “hand induced” errors to ®mulat
Null pointer execution (hand induced) Memory corruption 100.0% | 100.0% | effects of memory corruption or extension hook misconfiguration.
Jump to invalid memory (hand induced) Extension hook misconfiguration or memory cor- 100.0% | 100.0%
ruption
latex Normal 99.5% 97.3%
teTeX 3.0 | TExtra alignment tab has been changell¢o | Extra separator character (e.g &) in table, array 97.7% | 100.0%
. or eqnarray . — Linux. | at ex is a popular typesetting system. About 215 instances of each error class
I'Extra alignment tab has been changelito | Reference to non-existent columniialine com- | 100.0% 99.5% ) ' ; . . .
mand were evaluated. Instances were formed by corrupting a suite of varied latex flles_fr m
I'LaTeX Error: There’s no line here to end. Unexpected line break command\ifiem 98.1% 97.7% mnuégellg:utch;r:ec;f academic papers. Latex prints the same error message for tiffgren
T'LaTeX Error: There’s no line here to end. Unexpected line break command inside centerjor 98.1% 96.8% | ! ying causes.
flushleft or flushright environment
I'Argument of\ @sect has an extra Usage of fragile commantifootnote inside\ 99.5% | 100.0%
section command
T'Argument of\ @sect has an extra Line break command used withimaggedright or 98.6% 98.6%
\ raggedleft environments
Missing number, treated as zero. Missing numeric argument aftef 98.6% 99.1%
None Warning:\'\ * will inhibit page break, not print 97.7% 99.1%
an asterisk (which requires {* }).

iptables Normal 96.6% 96.3%

1.3.1 iptables: Invalid argument SNAT/DNAT/SAME rule applied to wrong chaif  100.0% | 100.0% | Linux.i pt abl es is a widely used application in Linux for firewall configuration,
iptables: No chain/target/match by that name¢ Application of MARK to table other than mangle 100.0% 96.0% | network address translation (NAT), and packet filtering. It consists of user-lestel co
iptables: No chain/target/match by that name Missing kernel module 100.0% | 100.0% | and a kernel module communicating throughtied | i nk [37] interface.
iptables: No chain/target/match by that namé Attempt to add rule to non-existent chain 96.3% 96.3 %

iproute2 Normal 100.0% 97.9% | Linux.i prout e2(this version from Debian Sarge distribution) is an advanced routjng
20041019 | File exists User added colliding IP address 100.0% | 100.0% | utility in Linux. It consists of user-level code and a kernel module comigating
File exists User added duplicate rule to routing table 100.0% | 100.0% | through thenet | i nk [37] interface. The kernel returfgEXI ST for the first two error
None User changed rule to conflict 98.3% | 100.0% | classes, which is translated by the error reporting royiier or as, “File exists.”
apache Normal 100.0% | 100.0% | Linux.apache is a widely used web-server application. One instance was collected

1.3.36 No error messagapachect] conftest nod_i nf o'is missing 100.0% | 100.0% | per configuration. There are 6 normal classes: serving normal pages (HTML, image,
does not find this misconfiguration| directory), serving a missing file, and serving special status/fies ver - i nf o and
/ server - i nf o returns 404 error / server - st at us).

No error messagapachectl conftest nod_ser ver is missing 100.0% | 100.0%
does not find this misconfiguration|
/ server - st at us returns 404 error

lynx Normal 99.3% | 100.0 % A . .

2438 Alert! Unable to connect to remote host. Un- Mistyped URL. 100.0% | 100.0% \rlgldnl?:ﬁii(nﬁlegsn: Iessaetz)étwbarisriit\j,vg b :r;i\f,fv.:gﬁf ;%remnfgssﬁse ;mstlhsetfrr?;évﬁes db not
able to locate remote host communicate ges. p Y ’

Alert! Unable to connect to remote host. Un- Network Cable unplugged. 100.0 % 99.3% ’
able to locate remote host

Alert! Unable to connect to remote host. Un- DNS Server not responding. 100.0% | 100.0%

able to locate remote host

Table 3. TheApp column has the application name and version number. The taieréiports the error message given by the benchmark, and thevieaperror message that Navel would provide (or a
brief description of the underlying error cause). Many emessages are ambiguous across multiple caBsesll for each error is the number of correct instances with that éabel divided by the total
number of instances for that error claBsedsion for each error class is the number of correctly clagbifistances of that error class divided by the total numbengiiinces predicted as that error class
(correctly or incorrectly). Recall and precision are twarstard ways of thinking about prediction accuracy. The Gguresented use the CTP behavior profile.



o FC
m PP
m CTP

mpg321  gzprintf gcc foxpro latex iptables iproute2 apache lynx  Average

Figure 4. The figure shows the accuracy of the classifier used to disghghe error cases, based on behavior profiles, for eaathbenk. For each
benchmark a classifier was built using three behavior profilestion counting (FC), path profiling (PP), and call-tgrefiling for depths zero, one, and two
(CTP). The figure also presents sampled versions of functianting and path profiling with a sampling rate of 10%. The saahplccuracy is the stippled,
lower bar in the stacked FC or PP entry.

App. #of | #of FC PP CTP Table 2 shows the number of features used to build the Navel

inst. | class model for each of the behavior profiles. More features means more
mpg321 282 4 202 | 25,450 | 1,229 information about control flow, which might lead to a more ac-
gzprintf 600 4 104 | 1,489 396 curate model (if the model creation algorithm can deal with that
gce 1,582 5 | 2,293 | 40,513 | 50,623 many features). Because decision trees tend to be small relative to
FoxPro | 184 4 | 4724 17,738 | 63,383 the number of features, they do not lose accuracy as the feature
latex 1,918 9| 533] 8957 10,417 count increases, as is common in more continuous methods such
iptables | 131 S| 456 1,389] 1919 as SVMs. The number of features for function counting is bounded
g’ggg;iz 813625 g égg T Zﬁ 3‘(1]22 by the total number of functions. Feature counts for path profiling
Tynx 615 y 606 | 3483 | 4540 are usually less than for call-tree profiling, thoughg321 and

gzprintf have more paths than call subtrees. Although the time
Table 2. Navel model details for each benchmark. The second and third t0 create the model increases with the number of features, the num-

columns show the number of instances (program executionsthanalm- ber of features does not affect the time required for the end user to
ber of error classes for each benchmark. The remaining coluhuvs the run the model. For example, it takes 156 minutes to train the model
number of features for each behavior representation. for gcc when using CTP, but only takes 0.36 seconds to classify

158 execution traces.

ory buffers into which Skepsis-instrumented programs record their 4.3 Skepsis accuracy
control flow. The use of shared memory ensures the record of pro-
gram execution persists if the application abruptly terminates.

In order to generate a model that generalizes well, all experi-
ments omit information from insidei bc. Public entry points are
included because it is application behavior when the application
callsst r cpy, but internal functions are omitted, because it is not
application behavior whemal | oc calls an internal function, like
_int _nal | oc. With a large enough class of traces, the machine-
learning model will determine th&ti bc internal functions are not
relevant, but convergence of the model onto semantically meaning-
ful features is faster if i bc internals are omitted. The exception to
this principle is thegzpri nt f benchmark, which is a thin wrap-
per around i bc code.

Table 3 summarizes the benchmarks used in this study, inclu
ing the confusing error messages they produce.

Figure 4 shows the accuracy of Skepsis classifiers for a variety
of benchmarks evaluated with different behavior profiles. These
tables report accuracy using 10-fold cross validation, a standard
technique for evaluating classifiers. The dataset is partitioned into
ten sections, the classifier is trained and tested ten times; itis trained
on nine sections of the data and its accuracy tested on the remaining
tenth. The average of these ten tests is the reported accuracy of the
classifier.

Function counting generally produces the least accurate classi-
fiers, though its absolute accuracy value is surprisingly high. Path
profiling is more accurate than function counting and call-tree pro-
filing is more accurate than path profiling. Function counting for
d- npg321 produces a model that is more accurate than call-tree pro-

filing, but the difference is not statistically significant.

We present results for sampling function counting and path pro-
. . filing, with a sampling rate of 10% (which is generous for systems
4.2 Machine leamning model that use sampling [27]). For example, the sampled function counts
Skepsis uses decision trees to build its model of application be- record one of every ten function calls, uniformly at random. The
havior. Decision trees are nested if-then-else statements and eaclsampled results are the stippled part of each bar, achieving lower
leaf corresponds to a single class prediction. An advantage of deci-classification accuracy than non-sampled data in every case except
sion trees (over more continuous methods like support vector ma- path profiling forgzpr i nt f . The poor performance of sampling
chines (SVMs)) is their ease of interpretation. It is possible for a confirms our intuition that sampling is the wrong approach for an
software engineer to validate the classifier based on knowledge oferror detection system. Navel must be sensitive to rare events.
program structure. In the context of Navel, decision trees are as ac-  If different errors exercise similar code paths, we would expect
curate as other machine-learning methods. Additional details aboutNavel’s classification accuracy to degrade as the number of error
the machine-learning design of Navel are available [17]. classes increases. We trained classifiers on 2, 3,...,8 errorglasse



for | at ex’s path profiling data and found classification accuracy ~ Function counting

degraded from 99.1% to 98.3%. One important area of future work

is to test larger sets of error classes. Using the error text as a feature | mad fayer il |

for the machine-learning model will help maintain accuracy while \|y e

scaling to more error classes. [ file format error(99%) | [ id3 tag delete |
v v

| lI_freginver | | error_default |

4.4 Performance i .
We evaluated Skepsis’ performance while collecting behavior pro- [ rormal (77%‘)' | [corupted framvesm%)
files for function counting. Navel modifies executables to keep an
in-memory table of per-function counters. On Windows, we used
the Microsoft Phoenix compiler infrastructure to modify binary
programs, and on Linux we used Pin. We used a dual-processor Path profiling
Intel Xeon 3.0Ghz with 2GB of RAM running Microsoft Win-
dows 2003 Server foFoxPr o, a single-processor Intel Pentium v
4 2.4Ghz with 1GB of RAM running Microsoft Windows XP for [(eromateror@en) | [ asatagpatn |
npg321, and the same machine running the Linux ubuntu 5.10 M
distribution forgcc 3.1 and at ex. [ M_scatetectorsipatn 5] | | decod_headerlpatn_21 |
The FoxPr o test used a benchmark available as part of the :
FoxPr o package, which performs a variety of operations on a stan- R
dardized set of tables. The workload fopg321 was conversion RN v
of 89 mp3 files to wav format - audio playback was disabled for 4, [[nstasreducapatn_s) | [ comptedtags(ors)
the testgcc was used to compile a 17,874 line “.i” file from Linux Y vl
distribution, and at ex was used to process an 1,175 line input [commeavamestaory | [ nomaiczs |
file. Call-tree profiling
Phoenix function counting instrumentation slows dovag321 T _sideinfo:
by 10% androxPr o by 23%. Using Pin, function counting slows | .<"'_sidei"fo(mad_b"_fead)>|
downgcc by 0.45% and at ex by 1.0%. The Pin baseline num- \ 4
bers are run on Pin, the Phoenix baseline numbers use the pre- i (d3_get tag -
instrumented executable. Phoenix performance is lower than Pin e e o)
because the binary instrumentation process deoptimizes the exe- ftp_open open _fstat64i32 calc_length))
cutable. Figures are the average of three runs. .
Reviewer note: We are currently developing a fast online CTP A 4 v
algorithm. It is not correct enough to report in the paper, but our scan: ((mad_bit_read mad_timer_set || 1 scalefactors(mag_bt reas)
preliminary data shows a 10.6% slowdown on gcc, and a 10.9% iyttt
slowdown on latex. We expect it to be more efficient than path _ i fastsdt:()
profiling. It will be done for the final version of the paper. ’

The performance of path profiling is well documented in the lit- _

| corrupted tags(97%)

erature. Ball and Larus [3] reported an average overhead o¥414.8

for SPECINT95, and 31% for SPEC95 including floating point [ _hufidecode:(il_requantize) |
benchmarks. Their overhead varies depending on application, for e l
example SPEC95'gcc overhead is 97%. Dynamic invariant de- P < L \4
tection techniques, such as DIDUCE [19], report a performance [ nomal@o%) | | corrupted frames(87%) |

slowdown of6 x to 20 x. This slowdown prohibits using these tech-
niques in customer-deployed applications. For future work, apply- Figure 5. Decision trees produced for thgpg321 benchmark.
ing recent adaptive statistical profiling techniques [21] to path pro- Dotted lines are taken when the normalized count of the feature
filing could provide high quality control flow information to Navel  value is less than or equal to a threshold, while the solid line is
at low cost. taken when it is greater than the threshold. The threshold is deter-
mined automatically for each benchmark by the decision tree algo-
rithm, and can be different for each node in the tree. Clear boxes
. are features. Function counting features are normalized function
5. Model analysis counts, path profiling features are normalized path counts (identi-

This section examines the models built for the benchmarks evalu- fiers in brackets are path identifiers), and call-tree profiling features
ated in the previous section to validate that they are built on seman-are normalized counts of call subtrees (represented by the symbolic
tically meaningful program features. It is desirable for a model to tree names in brackets, with function names for nodes in each call
use meaningful program features because that gives confidexice th tree). Shaded boxes are error classes.
the model will generalize well, and it suggests that a programmer
can look at the Navel model and get useful debugging information.
This section shows that decision trees produced by Navel of-
ten reveal the complexity of processing along error paths. Intuition
might suggest that there is a simple bijection between error behav-Figure 5 shows the decision tree models created by the Navel
ior and functions with names liker r or , but we have found that ~ function counting, path profiling, and call-tree profiling behavior
applications are not consistent in this respect—many errors are re-profiles for the mp3 playenpg321. The different trees show
ported via the same routines. Moreover, some applications use theirhow each behavior profile provides different clues to the machine-
error reporting routines to report warnings when there is no error. learning model about the same underlying behavior. The same un-

5.1 mpg321 model example



derlying program behavior is reflected into different behavior pro-
files, and the decision tree based on the different profiles provides
more or less classification accuracy. expandstmt (THENCLAUSE (t)):
In the function counting tree we see the simplest set of rules if (ELSECLAUSE (1)) '
that depict differences in control flow across the four error classes
At the root of the tree, the functiomad_l ayer _I | | provides {
near perfect discriminative information for the wav error class: the
mad_| ayer _I || routine is part of thd i brmad library and is
called when the audio frame decoder runs. Since the wav format
is among the formats not supported by mpg321, it will not success-
fully decode any audio frames, and thiebrmad library will never t
callmad_l ayer _I I | . Thei d3_t ag-del et e routine differenti-
ates between the corrupted tag and and other classes. The ID3 ta
parserinthé i bi d3t ag library dynamically allocates memory to
represent tags and frees them with3_t ag_del et e. If tag pars-

ing fails, the memory for a tag is not allocated. Since no tag parsing and so on differentiates between normal and error conditions for
succeeds in the corrupted frames castg_t ag-del et e is never the handling of ID3 tags, while the decision tree node whose CTP
called to free the tag memory, making it's absence discriminative ryle involvesscan discriminates between successful and unsuc-
for that class. Thé i bnad audio |ibrary'3 default error handler cessful audio decoding' The h|gh level pattern exposed by these
error defaul t is used if the application does not specify one. rules is the combination of failed ID3 tag parsing with successful

npg321 does not specify its own error handler, so the presence audio decoding, which precisely describes the corrupted tag error
of the function indicates corrupted audio frames, and its absencec|ass.

indicates the corrupted id3 tags case. Findlly] freqi nver,
which performs subband frequency inversion for odd sample lines, 5.2 Gcc and the difficulty of good error reporting

is called very frequently as part of the normal process of decoding We present an example frogcc, the GNU C compiler, where

audio frame data. When there are gqrrupted framgs, th'$ function ISadding good error reporting would complicate the source code
called less frequently, and the decision tree algorithm finds an ap- unacceptably.

propriate threshold value to separate the normal from the corrupted

if (THEN.CLAUSE (t))

expandstartelse ();
expandstmt (ELSECLAUSE (t));

expandend.cond ();

Figure 6. gcc source code for functiongenrtl _i f _stnt from
9-semanti cs. c, line 397.

case. if (test); /I extra semicolon here

The path-profiling tree latches onto similar behavioral features { I do something=/ }
of the execution as function-counting tree does, but because it has else
access to intra-procedural control flow, it chooses different fea- { I do something elsex/ }
tures. For instance, it uses a path throudh _huf f decode to ) )
distinguish an unsupported file typel | _huf f decode will be The programmer has accidentally typed an extra semicolon at
called whether the input file is an mp3, or an unsupported wayv the end of an if clausgcc’s error message igparse error before
file, however; the path throughl | _huf f decode will reflect “else””, and it identifies the line on which the else keyword is

the error if the input format is wav, making it a perfect indica- located (which could be many lines away from the real problem).
tor for that error class. Thadd_t ag function is called when the ~ The compiler provides no information about the actual cause of
i bi d3t ag library tag parser succeeds. Absence of this call pro- the problem—the extra semicolon. Seasoned programmers train
vides a good heuristic for detecting the corrupted frames class. thémselves to ignore the line numbers of certain classes of errors,
Finally, 1 11 _scal ef act or s is called for every decoded audio  Put this is no justification for the compiler's behavior. We should
frame. We expect fewer successful frame decodes for themtettu ~ €XPect more from software.

frames class, making a threshold on a successful path through Figure 6 shows source code fgcc 3.1 that handles parsing
111 _scal efactors a good differentiator between the normal i f statements.When the compiler encounters the semicolon, the

and corrupted frames classes. two tests ingenrt| _i f st nt evaluate to false. While it might

The decision tree built on call-tree profiling data has the rich- be tempting to print a meaningful error message in this situation,
est combination of data sources of any of the decision trees be-it would be incorrect. This is because the C language specification
cause call-tree profiling provides the most data about different allows ani f statement with no corresponding body or else clause.
execution scenarios. Call-tree profiling uses the presence of theThe problem only exists, and is only detected, when reading the
| i bmad library function! I | _si dei nf o (which decodes frame €l se keyword. Trying to search backward from taese to the
side information from a bitstream) calling the utility function ~Problematici f (or forward from thei f to theel se) requires
mad_bi t _r ead as an indicator of successful audio frame decod- additional data structures and requires complicatiegirt | -
ing. The lack of that calling pattern reliably indicates a file format | f -stnt to update those data structures.
error. The corrupted frames class is once again differentiated from  The Navel decision tree can correlate the path thrgegir t | -

the normal class by a threshold value on a subtrekidfmad i f_stnmt where each test fails with the path that reportsehee
functions that will only be called during successful decoding of Parse error to disambiguate a particular underlying cause for this
audio frame data, such &$ | _scal ef act or s, the discrete co- error. The error case can be distinguished without adding code to
sine transform functiofi ast sdct , I I | _huf f decode, and so ~ gcc. Navel enables greater functionality for applications without
on. Thel i bmad functionscan encapsulates the process of read- changing them. o ) ]

ing mp3 files. A CTP rule whereiscan calls a function that For the program error of missing closing bracket fava t ch

calls a number of low-level stream manipulation routines such as Statement, path profiling detects paths through the automatically-
mad_bi t _r ead, andmad_t i mer _set , and so on, provides dis- generated functiolyypar se_1 due to receiving an end of file

criminative power in combination with a similarly complex control '
flow pattern inmai n for the corrupted tags error class. The deci- *In an attempt to produce as many useful error messages as passitl

sion tree node whose CTP rule involvesi n, i d3_get _t ag, singl'e ir}vqlcationgcc calls into its semantic processing routines even if
parsing fails.




token in an unexpected state. Function counting, using coarser- Benchmark | FC Cluster | FC Model

grained information, distinguishes the non-error case as one that mpg321 79% 2%
does not call the diagnostic formatting functioont ext _as_- gzprintf 66% 75%
pr efi x. gcc 59% 87%
FoxPro 98% 91%

. L latex 25% 94%

5.3 Analysis of remaining benchmarks iptables EA% 6%
latex. Theshowcont ext function is generic and displays error iproute2 N/A 99%
messages. In the case of function counting this acts as the discrim- apache 78% 100%
inative feature for non-error instances since it is not called during lynx 64% 100%

normal execution. Function counting uses the frequency of calls
to showcont ext to distinguish error cases. However, path pro-
filing extracts much more information by looking at paths within
showcont ext to discriminate between different error classes.

Similarly, fi nal i gn is called in both error and non-error
cases that use tables, but the execution path within the function )
distinguishes the error case from normal execution. One of our 6-1 Clustering errors
error class consisted of supplying a non-numeric argument to the Manually determining whether an error execution is an instance of
line break command when it was anticipating a numeric value. The a known problem is laborious. When possible, Navel should cluster
machine-learning model successfully pinpoints the error source behavior profiles of error executions without human involvement.
to the scani nt function, which is called expecting a numeric I a single profile in a cluster is labeled, Navel can speculatively use
argument. that label for the other profiles in the cluster.

One interestind at ex example is where latex support web At the core of any clustering algorithm is a function that quan-
sites offer more information than theat ex error message itself, tifies the similarity between two instances, and the clustering ob-
but do not include all possible causes for the error. If a table, jective is to find a set of clusters with high intra-cluster similar-
array oreqnar r ay has more separator characters (ampersands) ity. For example, the populdr-means algorithm uses squared Eu-
than columns] at ex prints the obscure error messagé&xtra clidean distance, which is computed as the sum of the squares of
alignment tab has been changed\tor”. Most | at ex books and  the distances between each feature value. For Navel, feature val-
mostl at ex support websites recommend checking the number of ues take on a wide range of values; some functions are called tens
ampersands if a user receives this error. Some websites and booksf thousands of times in a program instance, while other functions
are helpful enough to suggest a missing end of row sympgldgn are called only 5 or 10 times. Consequently, for most clustering
the previous line. However, the error message is not unique: misusealgorithms, the underlying similarity scores computed will reflect
of the\ cline command, a directive that draws a horizontal line in  the similarity between only a handful of highly called functions (or
the table will result in the same message if one of the arguments topaths or call subtrees).

\ cline refers to a non-existent column in the table. One approach to alleviate this problem is to represent each
Navel connects a user to the solution for their particular prob- feature value in binary 0/1 form. This can be done by giving
lem, not just the most popular cause of a given problem. Most error features with counts of zero a new value of zero and giving features
messages are intended to apply only to the most likely scenario thatwith counts larger than zero a new value of one. Although this
can cause it. method vyields significant improvement in the clustering results,

gzprintf. It is a strength of Navel that a particular library or  Navel uses a more general binarization approach by thresholding
function can be examined in isolation from the rest of an appli- at an arbitrary value because features often take on only a few
cation. Because Skepsis maps control flow in a composable way,distinct, non-zero values. Navel finds the split that (1) minimizes
small bits of code can be examined carefully. the entropy (i.e. maximize the homogeneity) of the sets induced

apache Apache is a widely used webserver. It has many config- by the split and (2) also maximizes the quality of the split by
uration parameters, complicating the task of correct configuration. preferring 50/50 splits. The exact criteria Navel uses is a standard
Apache error logging and configuration syntax checking tools are information theoretic measure called mutual information [15], and
helpful, but many important functions of Apache are implemented quantifies the similarity between two random variables (in this
in dynamically loaded modules. When apache encounters a config-case, the threshold function and the values the feature takes on).
uration error, it calls each module to check for an appropriate error Finally, Navel uses a variant of tkemeans algorithm, sphericki
handler. If no loaded module is able to handle the error, apache means [18], which has been shown to work well in other domains
ignores the error or reports it as a misspelled keyword. with large numbers of features, such as text clustering.

When nod_st at us or nod.i nf o is loaded, “SetHandler” Table 4 compares the accuracy of behavior profiles labeled
binds to a specific URL to get server status via HTTP. If modules using unsupervised clustering and classified using a model trained
are missing, even though the SetHandler was configured, apache rewith labeled profiles. The quality of clustering is erratic, with
turns a 403 error, and administrators get no hint that the error arisesFoxPr o clustering more accurate than the trained model, while
from misconfiguration. Skepsis is able to classify these behaviors the | at ex clusters distinguish different kinds of errors, but do
with 100% accuracy. no better than random at disambiguating causes of a single error

report.

. In general, clustering does significantly better than random
6. Reducing human effort guessing. Clustering allows Navel to match users with a prob-
Navel leverages the expertise of a few software users for the benefittem workaround even before other users have labeled profile of
of the entire user community, but further reducing human effort that problem. With no human involvement, a model trained with
makes Navel more attractive. This section discusses two methodsclustered labels could be useful to a developer for understanding a
to reduce human effort—unsupervised clustering of error behavior particular error behavior.
and using a model trained for one version of software on the next  Clustering is useful to allow two users to determine if they have
version. instances of the same error, or if a user has an instance of a popular

Table 4. Accuracy of error labels using unsupervised clusteringl an
machine-learning model trained using labeled instancesciBearks use
the function counting behavior profile.



Profile 3.1 3.1train, 3.2 use 3.2 Statistical bug isolation [27, 26] also correlates low-level ap-
FC 87.3%+ 1.5% | 85.9%+ 1.6% | 84.8%+ 1.7% plication behavior with application behavior (bugs) and builds a
CTP-D1 | 91.5%+ 1.3% | 90.3%-1.4% | 91.3%+ 1.3% model. The systems differ in their source of program data. Statisti-
CTP-D2 | 92.9%+1.2% | 93.5%z 1.2% | 92.6%+ 1.2% cal bug isolation samples program invariants rather than gathering

Table 5. Accuracy, along with 95% confidence intervals, for training information about program control flow. Section 4.3 demonstrates

classifier orgcc version 3.1 and using it to classify errors for version 3.2. a S_harp loss O_f accuracy if Navel uses sampling. SFat'St'cal bug iso-
For comparison accuracy results for training classifierséssion 3.1 and  lation must eliminate sub-bug and super-bug predictors; Navel has
version 3.2 are given. an analogous struggle to gain enough training instances to isolate
the program behavior created by the error condition. Navel is in-
tended to provide support to the user, while statistical bug isolation
error. Developers can use clustering to prioritize investigating er- s intended for developers; the systems are complementary.
rors that are popular in field deployments. When developers receive  podgurskiet al. [34] identify a similar motivation to Navel
error reports, they would like to know if the errors are distributed and they also investigatgcc behavior. This paper presents more
evenly over all of the erroneous classes, or are there “hot” errors alternatives for sources of program information, presents data on
cases that many users are encountering. With this information, de-more programs and problem classes, presents higher classification
velopers can prioritize the hot errors over less common ones. accuracy, and introduces extensions to apply learned models to
libraries and different versions of the same program.

Bowring et al. [8] models software behavior as Markov models
Software release schedules are tight, and it would be convenientusing control flow between basic blocks and then uses active learn-
if developers did not have to completely retrain a Navel classifier ing to cluster the models. Navel benchmarks are orders of magni-
for a minor release. Navel can generate a classifier for a new tude larger (e.g., 8,654 functions fgcc and 6,363 fofFox Pr o
application version by eliminating features that refer to functions versus 136 functions for/a\cE).
or paths that do not exist or were changed in the new version of the  Liu et al. [28] use program behavior graphs as features for a
code. Because most code does not change between versionk, Navenachine-learning model just as Navel uses data related to pro-
does not need to construct a complicated map between versions tayram control flow. The number of program behavior graphs grows
maintain an accurate model. quickly with program size, and can become computationally in-

Table 5 shows the results of this strategy using Skepsis. Sincetractable even for the small Siemens programs [23].
most code does not change between versions, the features ckosena DIDUCE [19] uses dynamic program invariants to detect pro-
discriminative forgcc 3.1 are still discriminative for version 3.2.  gram behavioral anomalies. The anomalies can indicate program
There are enough features in the Navel model that the absence of dugs, but at a performance slowdown of 6>2Mavel can clas-
particular feature usually does not significantly reduce the accuracy sify program behavior that is not anomalous. PeerPressure [40]
of the model. The mean accuracy of the classifier for version 3.1 identifies anomalous configurations in the Windows registry using
and used on 3.2 is greater than the accuracy of the classifier trainedBayesian statistics, and does not deal with program behavior.

6.2 Classifying without retraining

on 3.2, but the difference is within the 95% confidence interval. Navel classifies executions of a single program, while many
published systems classify behavior in a distributed system [14, 5,
7. Related work 12, 1]. The performance constraints in a single program are more

stringent. Most of these systems look at interactions between soft-

Integrating fmachln(i Iearnlnghwm program u_ndetrt;standmg ISan ac'hware components, and only attempt coarse-grained identification of
tive area of current research. We summarize the major researc a faulty or slow component. Navel currently uses functions or paths
threads below, but first position Navel among them. Navel uses

d b | diod > as a basic building block of behavior, but it might be able to lever-
data about program structure (contrq ow), as opposed to ynamlcage some of these published algorithms by monitoring interactions
invariants [10, 19]. Navel characterizes any kind of program be- oy veen fibraries or even object files within the program.

havior, not just crashes or program errors [10, 19, .27,.34].eNav Microsoft's Dr. Watson tool [30] and Gnome’s BugBuddy [7]
works within the scope of a single program, not a distributed sys- 5 cojject information from the end-user to find where the appli-
tem [14, 5, 12, 1]. Navel records information throughout a pro-

s hi st inf ) ilable at h ti lik cation crashed. These tools are limited to collecting information
gram's istory, not just information available at crash time, like o0 time of the crash, usually a list of loaded modules, a stack

a stack backtrace [30, 31, 7]. There are some tools that automate, . .\ trace and some stack memory contents.
some end-user support tasks, for instance performance diagnosis g point [39] characterizes the phase behavior of applications
systems [5, 14], and conflguratlc_m debL_lgglng systems [40, 24], but using basic block execution counts to maintain the accuracy of
theze systems'\fll_o not ?aée the flraet;gra]ged _rf(_esgluhtlon oszvel.f_ architectural simulation while executing fewer instructions. The
group at Microsoft Research has identified the same benefits types of program behavior it detects occur over much longer time

that we have from correlating low-level system events with error re- windows than the errors that Navel detects.
ports to automate pro_blem diagnosis [43, 44], because_the problem Program paths [3] have been used to analyze runtime program
is important and practical. They ;urrently focus on bqulng models behavior. Path profiling techniques [3, 33] pinpoint the “hot paths®
from sequences of system calls instead of compller/runtlme SYSteM\yhich are frequently executed, as well as those with variable ex-
instrumentation. Our methods for feature selection and model train- ecution times. They are effective for optimizing program perfor-
Ing differ, and it WOl.“'ld be interesting to directly compare the tech- mance, as well as identifying areas requiring more test coverage.
_nlqﬁes. Our paper includes novel methods to reduce human effortp i, gpecira [36] approximate an execution’s behavior with the oc-
int esyr?tem. lassi K back h d currence (or frequency) of the individual paths. Spectral diffees

IBM has a system to classify stack backtraces harvested on @y a6 peen used to identify the portions of a program’s execution
crash [9], and the technology has been deployed in tier TrapFindery,,; giter with different inputs, notably, during Y2K testing [20].

;OOL Thzir dmotivatio;: is sglnilar th Na\ée#s_reduce the human ef- - pay, spectra focused on identifying path differences between sev-
ort needed to maich problems irom diiterent program executions. g program runs, whereas Navel's novel use of path profiling use

Navel diagnoses a wider range of problems than crashes, and it 0D+ 5 ohine learning to identify which paths aemmorto each error
erates on behavior profiles, which are a richer source of data than

. i techni that
ctack backiraces. class. Whole program paths [25] is a more recent technique tha



uses a lossless compression of the program’s control flow, which  If bug descriptions were augmented with behavior profiles and
is able to capture loop and inter-procedural information. Although Navel models, duplicate entries could be detected without humans
Navel’s call-tree profiling and whole program paths have similar reasoning about the text of error descriptions. When a new bug
aims—obtaining a compact abstraction of program control flow report is entered, the system can check to see if there is a bug with
while preserving time-series information, the two differ in two key a similar behavior profile, whether or not the human who entered
aspects. First, CTP operates at a function-level granularity, insteadthe bug used the same words to describe it. Administrators can
of individual paths (and thus may permit lower overhead profil- review the database for entries with similar profiles that might be
ing). Second and more importantly, CTP’s compression results in duplicates.

rules that are directly comparable from one program execution to  Searching bug databases with a behavior profile has advantages
the next. Whole program paths use a compression scheme to re-over keyword searches because the Navel system will generate the
duce overhead, with no concern for whether the grammar rules thatbehavior profile for the user, and the profile does not suffer from
allow the compression change from run to run—a key requirement the imprecision of language. Searching for “outlook crash” returns
for Navel. 8.7 million hits on Google, which indicates how a simple textual

Context sensitive profiling [2] uses calling context trees that description of a computer problem can be highly ambiguous.
contain more calling context than a call graph, but are much smaller
than the program’s full activation tree (dynamic call tree). Calling 9. Conclusion
context trees ignore loops, and so are not directly useful for Navel.
They also include less ordering information than CTP, but might be
useful as an alternate behavior profiling technique.

Several systems have been proposed that automatically recove
from software problems. Chronus [41] uses user-provided softwa
probes to search through previous system states to find the point a
which the system first failed due to misconfiguration. The Rx [35]
system relies on a set sensorge.g., OS signals) to detect that
a program is behaving abnormally. To recover, Rx rolls back the
application state to one which was captured by a previous check-
point, and changes the application’s environment before allowing
it to proceed. Both Chronus and Rx attempt to detect failures and
correct them, while minimizing the user-visible effects. Navel ad- 10.  Acknowledgements
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