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Abstract
End-user software problems take too much time to resolve, in part
due to unclear or ambiguous error messages. The quality of error
messages embedded within software is unlikely to improve given
the variety of contexts in which errors can occur, the programming
complexity of sophisticated error reporting, and the modular struc-
ture of modern applications. While vendors supply documents, help
systems and websites to support end users, it is still difficult for
users to figure out how to resolve their problems.

Navel improves error reporting by monitoring software execu-
tion and determining if a particular execution is an instance of a
known error. As a program executes, Navel builds a compact ab-
straction of the program’s behavior (a behavior profile) using con-
trol flow information. Navel classifies behavior profiles using a ma-
chine learning model trained on known errors by vendors, support
organizations or other users, enabling them to better disseminate
error workarounds by matching user behavior profiles with known
problems. Navel provides a way for an average user to get solutions
to software problems with less effort.

A prototype implementation, Skepsis, demonstrates the effi-
cacy of the Navel approach. Skepsis collects three behavior pro-
files based on program control flow: function counting, path pro-
filing, and a new technique, call-tree profiling. We evaluate Skep-
sis on confusing error messages currently emitted by large, mature
programs including thegcc compiler and Microsoft’s Visual Fox-
Pro database. Using call-tree profiling, Skepsis achieves an average
classification accuracy of 97% across a range of nine benchmarks
on two operating systems, while function counting and path pro-
filing achieve average classification accuracies of 92% and 94%
respectively.

Categories and Subject Descriptors D [2]: 5

General Terms Reliability, Verification, Experimentation

Keywords error reporting, profiling, software support, machine
learning
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1. Introduction
Bad error messages have been around as long as software. Despite
decades of improvements in languages, static analysis [4, 11, 38],
program verification [16], testing methodologies [42, 13], and de-
velopment tools, bad error messages show no signs of abating. The
cost of administering, configuring and updating a machine’s soft-
ware is surpassing the cost of its hardware [22], and a large portion
of modern software support cost comes from time wasted with bad
error messages. A bad error message is any message that does not
provide sufficient information for a user to fix the problem in a
timely fashion. One recent study concluded that up to 25 percent
of a system administrator’s time may be spent following blind al-
leys suggested by poorly constructed and unclear messages [6]. If
IT professionals struggle to administer systems, home users prob-
ably fare worse, since they do not have the time and expertise to
successfully diagnose many of their problems.

There are several reasons why error messages embedded in soft-
ware are difficult to improve. First, since the text of the error mes-
sages are written at the same time as the code itself, the useful-
ness of the text is limited by the foresight of the developer. Second,
modular programming style hinders the quality of error reporting.
Modules are designed as building blocks to be re-used in multiple
disparate contexts, so they often abstract away the precise context
that makes a good error message possible. Third, communication
between protection boundaries prohibits a good error message. Pro-
grams such asiptables andiproute2 consist of user code and
a kernel module, and the error reporting interface from the kernel to
user space is constrained to a simple list of overloaded error codes.

Due to the limitations of program error reporting, software
vendors provide other support channels such as help files, support
websites, and user forums. However, end-users suffer from the
arduous task of ferreting out the exact solution they need from this
barrage of information. Delivering the correct and exact solution to
the end-user is the crucial problem of error reporting system.

Navel is an error reporting system that classifies program be-
havior, enabling matching an erroneous execution with a solution
already found by others. By framing the problem of software sup-
port in term of program behavior classification, Navel can provide
diagnostic help for a wide range of symptoms, including unclear
error messages, crashes, hangs, and poor performance. This paper
focuses on improving error reporting.

Figure 1 shows the Navel process. A program is instrumented
to produce a profile of its behavior (e.g., function call counts, or
a path profile). A small groups of users and/or developers train a
machine-learning classifier on the behavior profile by labeling er-
ror executions. The label is a solution to the underlying problem for
that error case. Users can then use the classifier to get the solution
for their own error behavior. While diagnosing a software problem



today might involve typing the error text into a web search engine
and winnowing the responses with human intelligence, Navel re-
duces the task of an average user finding the advice of the expert to
running a classifier on a program profile. The residual complexity
of running a classifier on a program profile can be hidden by a sim-
ple interface we call, “hitting the Navel button” when something
goes wrong. Applications can be instrumented by users or software
distributors. A software distributor would use Navel as a common
support infrastructure for all of its applications or as a way to of-
fload its support burden. Open source developers would use Navel
to simplify the process by which the average user gains wisdom
from more experienced users.

Navel is trained by a community of users. Theexpertsare peo-
ple who currently diagnose problems and develop work-arounds,
and post their solutions to software support websites. They pro-
vide the improved error messages reported by Navel.Informed
users search software support websites, and implement the solu-
tions they read about. They provide the labeled executions used to
train the Navel classifiers by giving feedback that they experienced
the same problem that was identified by an expert (e.g., similar to
the feedback form provided by some support websites). Themasses
can follow directions, but do not have the ability or interest to di-
agnose their computer problems. They use the Navel system. As
the name implies, the masses vastly outnumber the experts and in-
formed users. A small number of users train the system for a much
larger group of non-expert users, and the system will continue to
adapt as the support needs of the user community change. Navel
takes the manual work already being done by a user community
and makes it more accessible to the average user.

The contributions of this paper are:

• We present Navel, a design for a system that disambiguates
different root causes of an error message by using a machine-
learning model. Ours is the first such system to deal with this
problem by monitoring program control flow. (Sections 3 and 5)

• We designed a new technique,call-tree profiling, that represents
software behaviors more accurately, on average, than existing
profiling techniques such as function counting, or path profil-
ing. (Section 3.1)

• We evaluate a Navel prototype, Skepsis, on large, mature pro-
grams that currently produce unclear error messages and con-
fusing behavior, such asgcc and Microsoft’s database program
FoxPro. Our study is the most comprehensive in terms of
number of benchmarks, and benchmark size and maturity for
any system that builds a machine-learning model from program
behavior. (Section 4)

• The machine-learning models built by Skepsis require human
labeling effort. We present two novel methods to minimize the
amount of human effort: unsupervised clustering of errors, and
using a model trained for one version of the software on the
next version without retraining. (Section 6)

In Section 2 we present the motivation for Navel and how a
prototype would be used to improve error reporting. Section 3
describes how Navel abstracts program behavior. In Section 4 we
evaluate Skepsis in terms of the accuracy of its models, and its run-
time overhead. Section 5 examines the models built by Skepsis to
understand how they can achieve such high accuracy. Section 6
describes how to reduce the amount of human effort with Navel.
We position Navel with respect to related work in Section 7. We
outline future work in Section 8 and conclude in Section 9.

2. Navel motivation and use
There is a natural temptation to believe that bad error reporting is a
simple matter for programmers to fix. The peril of succumbing to
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Figure 1. An overview of the Navel workflow. The rectangles represent
processes consuming and producing data. Section A shows the steps that
generate a behavior profile. Behavior profiles are labeled and used to gen-
erate machine-learning models (B), which are ultimately used to diagnose
behaviors for users (C).

such temptation is to require each software project individually to
expend scarce developer resources on error reporting. A common
error reporting framework is more efficient and desirable. Navel is
a common error reporting system that can be used by unmodified
program binaries.

Complexity is the bane of software development, and reporting
useful error messages is a complex problem. The problem space of
what can possibly go wrong with a program is large, so testing all
possibilities is extremely difficult. Because only a small subset of
what could go wrong actually does, clarifying the error reports that
actually occur in a software deployment can minimize the work
required for error reporting while providing the most benefit to
users.

Instead of burdening the application developer with the task of
properly correlating application behavior with a proper error report,
Navel correlates error reports with low-level details of application
behavior that can be collected automatically. Sometimes a program
can easily report a clear error, but as the following example, the
example in Section 5.2, and the variety of cases in Table 3 demon-
strate, this is not always the case for a variety of reasons. A solution
beyond better programming is required.

2.1 NFS mount: when good error reporting goes bad

Using Linux 2.6.12, an unsuccessful attempt to mount an NFS file
system can result in this error message.

NFSv3 not supported!
mount: wrong fs type, bad option,

bad superblock on hostname:/tmp,
missing codepage or other error
In some cases useful info is found
in syslog - try

dmesg | tail or so

The program output is actually two error messages from two
locations in the mount code: the first location prints the message
that NFSv3 is not supported, the second prints the verbose message
with the suggestion to rundmesg. The server supports NFSv3, and
there is no useful information in the syslog. What went wrong?

Everything after the first line is printed in response to the er-
ror number returned from the kernel. The kernel’s error reporting
interface is quite limited and completely fixed. Adding text about
dmesg is a shot in the dark by the error writer, trying to give the
user more specific context to understand the error report.

The line about NFSv3 not being supported is the result of a
collision between two attempts at helpfulness on the part of the
programmer.



1. If an NFS mount fails, there is an automatic attempt to retry
with a lower protocol version. This is useful, especially when
servers are migrating to new protocol versions.

2. There is an attempt to catch obviously bad configurations early
with sanity checks before too many computational resources are
expended. These sanity checks provide an opportunity for more
specific error reports.

The message comes from a sanity check that is intended to
catch attempts to mount with a higher protocol version than the
kernel is compiled with. The retry attempt (1) decrements the
version counter, causing the sanity check to think 2 is the maximum
allowed protocol version. At the same time, the retry attempt will
still use the version specified on the command line if present (in
this case the command line specified version 3). Mount, therefore,
retries with v3 instead of v2, and the sanity check fails.

This can be fixed from within the program, but only to replace
an incorrect message with a generic, useless one. Two isolated at-
tempts at better error messages actually yield a worse error mes-
sage: the whole can be less than the sum of its parts. This exam-
ple shows some of the inherent limitations of error reporting from
within a program.

2.2 End-user support

We plan to use Navel to build a distributed support service for
non-commercial software. When something goes wrong that a user
does not understand, the user can download the latest machine-
learning models from a server machine (much like users download
virus definitions for anti-malware software today). The model will
determine the error based on the behavior profile. The behavior
profile can be collected by reproducing the error, or leaving the
Navel instrumentation “always on” (at some cost to performance
that is quantified in Section 4.4). When the user presses the Navel
button, Navel presents the user with a solution or work-around for
their problem if the user community has found one. The following
scenario illustrates how a complete software support system based
on Navel will work.

1. A user experiences a software error that she or he cannot fix
while running a Navel-instrumented program on their machine.

2. Program help menus do not provide sufficient help to the user.
3. The user activates the Navel monitor (probably already running

as a system service) on the machine to read the behavior profile
from the Navel-instrumented program and help diagnose the
problem.

4. The Navel monitor classifies the problem, possibly consulting
other machines on the Internet which contain repositories of
trained machine-learning models and problem solutions.

5. The Navel system possibly returns a diagnosis (clear descrip-
tion of the error) and a digitally signed script that will fix it.

3. Representing program behavior
Navel builds a model of program behavior based on program mea-
surement. The accuracy of the model, and the performance of
Navel-instrumented programs is directly related to Navel’s behav-
ior profiles. More detailed profiling will tend to require greater CPU
and memory resources to collect, but will result in more accurate
machine-learning models. There is a limit to this process however,
because machine-learning models can be “overloaded” with too
much information. There are many ways to map control flow in-
formation to a behavior profile, and this section explores different
choices for that mapping, elucidating those decisions with some
detailed examples.

The Navel prototype represents program behavior using infor-
mation only related to control flow. Classification accuracy using
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CTP-D0: A:(A)
CTP-D1: A:(A (B C))
CTP-D2: A:(A (B (D) C))

Figure 2. An example of call-tree profiling. The left side of the
diagram is the function activation tree (the dynamic call graph) with
arrows pointing in the direction of the function call. The right side
are the subtrees for function A generated by the CTP algorithm
for depth bounds from zero to two. Each subtree has parentheses
indicating the depth of the function call in the tree.

only control flow information is high (see Section 4.3), and using
control flow information minimizes the possibility of leaking sen-
sitive user data.

The most successful machine-learning methods today (e.g., de-
cision trees, support vector machines, boosting, etc.) classify based
on a fixed-length vector representation of the data, called feature
vectors by the machine-learning community. Navel builds behavior
profiles that are fixed-length feature vectors, with the same number
of features for every execution (though some features values might
be zero for a particular execution). For instance, a feature vector
could have an entry for every function, with the value of the entry
is the number of times the function was executed.

3.1 Representation

This paper explores three approaches to behavior profiles that have
different tradeoffs for performance overhead and level of execution
detail. The first method usesfunction counting(sometimes called
function call profiling [34]). Each function has a counter that is
incremented when the function is executed. The order in which the
functions are called is not retained. Function counting is efficient
and tends to be accurate when each behavior has a set of unique
functions associated with it.

Navel’s second behavior profiling method ispath profiling as
presented by Ball and Larus [3]. Each program path (unique se-
quence of basic blocks) has a counter that is incremented when
the path is executed. Path profiling distinguishes well amongst pro-
gram behaviors that result in different control flow within a function
(intra-procedural control flow), something that function counting
cannot do.

Navel’s third behavior profiling technique is new—call-tree
profiling (CTP). Call-tree profiling associates a counter with a
depth-bounded subtree of the program’s activation tree, and incre-
ments the counter when the subtree executes. The dynamic function
calling behavior of a program can be represented by an activation
tree, where each node is a dynamic instance of a function call, and
edges are calls between functions. We use the notationfunc:subtree
which means that the call tosubtreeoriginated infunc. We use
LISP style of tree representation for the subtrees where the left
parenthesis indicates a call-depth increment and the right parenthe-
sis indicates a call-depth decrement. Figure 2 shows an example
of a small activation tree where function A calls function B which
calls function D. These calls return and then function A calls func-
tion C. Activation trees grow large for non-trivial executions (about
43 million nodes for one execution ofgcc).

Call-tree profiling captures some information about the order
and relationship of function calls within a program—a rich source
of program behavior data. In Figure 2 the depth one CTP (CTP-
D1) feature value would be incremented whenever function A calls
function B, and then function A calls function C. To limit the size
of subtrees, Navel breaks subtrees at loop backedges. In Figure 2,



the depth-one CTP feature is incremented only if A calls B and
then A calls C within a single loop iteration within A. If A calls
B in one loop iteration, then A calls C in the next loop iteration,
that increments the value of two distinct CTP-D1 features :A:(A
(B)) and A:((C)). Breaking subtrees at loop iteration boundaries
reduces subtrees from hundreds of thousands of calls to less than a
hundred. At depth-zero CTP is just function counting, because no
calls made by a function will be counted. In this paper, CTP will
refer to the union of the feature spaces at depth bound of at most
two (i.e., CTP-D0, CTP-D1, and CTP-D2).

Like function counting, call-tree profiling only requires instru-
mentation at function entry points. Unlike function counting, call-
tree profiling captures the dynamic calling behavior of functions,
and more context. It captures some of the path information of path
profiling (although it loses information about paths without func-
tion calls) and preserves some inter-procedural information.

Counts provide a robust profile of program execution, even if the
program executes for a long time, and repeats the same actions. For
example, if a server process executes the same recovery code five
times and then writes a message to syslog, there is a robust 5:1 ratio
of retry code to syslog writes. Navel uses sophisticated thresholding
to make sure that rare events are not swamped by common events
even though their counts might differ by orders of magnitude.

We do not consider behavior profiles of basic block counts
because they would be expensive to collect, have little information
gain over path profiling.

3.2 Example control-flow feature vectors

An example of Navel’s program behavior profiles for the sample
program shown in Figure 3 is shown in Table 1. All three behav-
ior profiles are fixed length feature vectors that are presented to
the machine-learning models as input. Each profile uses counters
whose value is normalized by the total number of counted events
in a run. Normalization allows comparison of runs with different
input lengths, but must be done in a way that ensures rare events
are not normalized to zero, so rare events are never lost.

Table 1 shows the feature vectors for each of the three profiles,
for three runs of the sample program, each with different values
for the variablesn andc. Each row is a feature, and the column
of normalized feature value counts for a given run comprises the
feature vector for that run. Feature vectors for a particular profile
(e.g., function counting) can be compared against each other, but
not against vectors from another behavior profile. Note that both
function counting and path profiling do not distinguish between
n = 0, c = 1, andn = 1, c = 1 (the feature vectors are identical),
while CTP-D2 does distinguish these cases.

For function counting, each function’s normalized count is a
feature. For path profiling, each path’s normalized count is a fea-
ture. The paths are not explicit in the program listing, but the zeroth
path in main and A correspond to the conditional being taken. For
call-tree profiling, the normalized count for each depth-bounded
subtree of the activation tree is a feature. The complete feature
space is very large for path profiling and call-tree profiling, so
Navel represents it sparsely, i.e., missing features are assumed zero
valued.

4. Evaluation
To evaluate Navel, we builtSkepsis, the Navel prototype. We evalu-
ate Skepsis on large, mature programs that run on different operat-
ing systems (Linux and Windows). These programs exhibit a range
of behavior that can confuse an end user, including ambiguous or
unclear error messages, crashes, and, in one case, the exec of a shell
due to a buffer overflow attack. Two benchmarks communicate with
kernel modules.

vo id A( n ) {
i f ( n > 0) B ( ) ;

}

vo id B ( ) {}

i n t main ( ) {
i n t n = . . . /∗ v a r i e s f o r each run∗ /
i n t c = . . . /∗ v a r i e s f o r each run∗ /
i f ( c ) A( n ) ;
B ( ) ;
i f ( c ) A(1−n ) ;
re turn 0 ;

}

Figure 3. Sample C Program.

FC n=0 c=1 n=1 c=1 n=0 c=0
main 0.2 0.2 0.5
A 0.4 0.4 0
B 0.4 0.4 0.5

PP n=0, c=1 n=1, c=1 n=0,c=0
mainp0 0.2 0.2 0
mainp1 0 0 0.5
Ap0 0.2 0.2 0
Ap1 0.2 0.2 0
Bp0 0.4 0.4 0.5

CTP-D2 n=0, c=1 n=1, c=1 n=0, c=0
main:(main (A B A (B))) 0.2 0 0
main:(main (A (B) B A)) 0 0.2 0
main:(main (B)) 0 0 0.5
A:(A) 0.2 0.2 0
A:(A (B)) 0.2 0.2 0
B:(B) 0.4 0.4 0.5

Table 1. Behavior profiles for three different executions of the sample
program in Figure 3.FC stands for function counting;PP stands for path
profiling; andCTP-D2 stands for call-tree profiling with a depth bound of
two.

4.1 Experimental setup

Each experiment executes an instrumented application with differ-
ent inputs, and the application runs normally or generates a confus-
ing or misleading error message (see Table 3 for the error message
text). The accuracy we report is how well the machine-learning
model is able to correctly classify the underlying error scenario for
each confusing and ambiguous error message. A perfect classifier
would correctly identify each error scenario from the behavior pro-
file for each benchmark.

In order to train the machine-learning model there are roughly
equal numbers of instances for each error class and the non-error
class. This distribution is not intended to model the frequency of
bugs occurring in the field, but rather trains the model to distinguish
among the given cases without bias to any particular bug.

Skepsis uses static and dynamic binary translation to collect
traces of runtime information. To experiment with different abstrac-
tions of program behavior, we collected basic block traces for all
experiments and post-processed the trace differently for each be-
havior profile. For example, for function counting, each function
entry basic block increments that function’s counter.

For programs run on Linux we used the Pin [29] dynamic bi-
nary translation tool. For programs run on Windows we used the
Phoenix compiler platform [32] to read and instrument Windows
binaries. Skepsis runs as a system service, providing shared mem-



App Reported error message Improved error message Recall Prec Comments
mpg321 Normal 68.9% 84.0%

Windows XP.mpg321 is a command-line mp3 player run in batch mode to convert
mp3 files to WAV format. Program ignores error reporting interfaces exported by
important libraries.

0.2.10 none Audio frames frame data corrupted 87.3% 82.7%
none ID3 tag data corrupted 95.8% 86.1%
none Unsupported file format 98.7% 100.0%

gzprintf Normal none 88.0% 77.6%
Linux. A test harness randomly exercises thegzprintf function (which is known to
have a buffer overflow), simulating normal program behavior before the crash or
overflow. Code for all exploits were found on the Internet.

zlib 1.1.3 none Buffer overflow launches a shell 100.0% 100.0%
none Buffer overflow exploit 1 causes crash 74.7% 86.2%
none Buffer overflow exploit 2 causes crash 100.0% 100.0%

gcc Normal 100.0% 99.4%
Linux. The GNU C compiler which contains both hand-written and automatically
generated source code, run on 4,070 pre-processed (“.i” files) from Linux 2.6.13. A
corrupter randomly modified working source code to create the errors.

3.1 Syntax error on line where keyword, “else”
appears

Syntax error on line where “if(...) ;” ap-
pears

99.7% 99.3%

Unexpected end of file Missing close brace on a switch statement 95.7% 99.1%
Syntax error before X, where X varies A semicolon is missing. 85.0% 88.7%
Syntax error before X, where X varies Misspelled keyword 92.3% 86.7%

FoxPro Normal 100.0% 100.0%
Windows 2003 Server. Microsoft Visual FoxPro is a tool for creating database
applications and components. We introduced the “hand induced” errors to simulate
effects of memory corruption or extension hook misconfiguration.

9.0 alpha Access violation and quits Attempted to save a Form over a file open in
another program

100.0% 100.0%

Null pointer execution (hand induced) Memory corruption 100.0% 100.0%
Jump to invalid memory (hand induced) Extension hook misconfiguration or memory cor-

ruption
100.0% 100.0%

latex Normal 99.5% 97.3%

Linux. latex is a popular typesetting system. About 215 instances of each error class
were evaluated. Instances were formed by corrupting a suite of varied latex files from
multiple authors of academic papers. Latex prints the same error message for different
underlying causes.

teTeX 3.0 ! Extra alignment tab has been changed to\cr Extra separator character (e.g &) in table, array
or eqnarray

97.7% 100.0%

! Extra alignment tab has been changed to\cr Reference to non-existent column in\cline com-
mand

100.0% 99.5%

! LaTeX Error: There’s no line here to end. Unexpected line break command in\item 98.1% 97.7%
! LaTeX Error: There’s no line here to end. Unexpected line break command inside center or

flushleft or flushright environment
98.1% 96.8%

! Argument of\@sect has an extra} Usage of fragile command\footnote inside\
section command

99.5% 100.0%

! Argument of\@sect has an extra} Line break command used within\raggedright or
\raggedleft environments

98.6% 98.6%

Missing number, treated as zero. Missing numeric argument after\\ 98.6% 99.1%
None Warning:\\* will inhibit page break, not print

an asterisk (which requires\\{*}).
97.7% 99.1%

iptables Normal 96.6% 96.3%
Linux. iptables is a widely used application in Linux for firewall configuration,
network address translation (NAT), and packet filtering. It consists of user-level code
and a kernel module communicating through thenetlink [37] interface.

1.3.1 iptables: Invalid argument SNAT/DNAT/SAME rule applied to wrong chain 100.0% 100.0%
iptables: No chain/target/match by that name Application of MARK to table other than mangle 100.0% 96.0%
iptables: No chain/target/match by that name Missing kernel module 100.0% 100.0%
iptables: No chain/target/match by that name Attempt to add rule to non-existent chain 96.3% 96.3 %

iproute2 Normal 100.0% 97.9% Linux. iproute2(this version from Debian Sarge distribution) is an advanced routing
utility in Linux. It consists of user-level code and a kernel module communicating
through thenetlink [37] interface. The kernel returnsEEXIST for the first two error
classes, which is translated by the error reporting routineperror as, “File exists.”

20041019 File exists User added colliding IP address 100.0% 100.0%
File exists User added duplicate rule to routing table 100.0% 100.0%
None User changed rule to conflict 98.3% 100.0%

apache Normal 100.0% 100.0% Linux. apache is a widely used web-server application. One instance was collected
per configuration. There are 6 normal classes: serving normal pages (HTML, image,
directory), serving a missing file, and serving special status files/server-info and
/server-status).

1.3.36 No error message.apachectl conftest
does not find this misconfiguration.
/server-info returns 404 error

mod info is missing 100.0% 100.0%

No error message.apachectl conftest
does not find this misconfiguration.
/server-status returns 404 error

mod server is missing 100.0% 100.0%

lynx Normal 99.3% 100.0 %
Windows XP.lynx is a text based web browser. Error message consists of two
redundant messages, each printed by a different code module, and the modules do not
communicate.

2.4.8 Alert! Unable to connect to remote host. Un-
able to locate remote host

Mistyped URL. 100.0% 100.0%

Alert! Unable to connect to remote host. Un-
able to locate remote host

Network Cable unplugged. 100.0 % 99.3%

Alert! Unable to connect to remote host. Un-
able to locate remote host

DNS Server not responding. 100.0% 100.0%

Table 3. TheApp column has the application name and version number. The table then reports the error message given by the benchmark, and the improved error message that Navel would provide (or a
brief description of the underlying error cause). Many error messages are ambiguous across multiple causes.Recall for each error is the number of correct instances with that error label divided by the total
number of instances for that error class.Precision for each error class is the number of correctly classified instances of that error class divided by the total number of instances predicted as that error class
(correctly or incorrectly). Recall and precision are two standard ways of thinking about prediction accuracy. The figures presented use the CTP behavior profile.
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Figure 4. The figure shows the accuracy of the classifier used to distinguish the error cases, based on behavior profiles, for each benchmark. For each
benchmark a classifier was built using three behavior profiles: function counting (FC), path profiling (PP), and call-treeprofiling for depths zero, one, and two
(CTP). The figure also presents sampled versions of function counting and path profiling with a sampling rate of 10%. The sampled accuracy is the stippled,
lower bar in the stacked FC or PP entry.

App. # of # of FC PP CTP
inst. class

mpg321 282 4 202 25,450 1,229
gzprintf 600 4 104 1,489 396
gcc 1,582 5 2,293 40,513 50,623
FoxPro 184 4 4,724 17,738 63,383
latex 1,918 9 533 8,957 10,417
iptables 131 5 456 1,389 1,919
iproute2 146 4 146 392 475
apache 8192 8 605 1,611 3,052
lynx 615 4 696 3,483 4,540

Table 2. Navel model details for each benchmark. The second and third
columns show the number of instances (program executions) andthe num-
ber of error classes for each benchmark. The remaining columns show the
number of features for each behavior representation.

ory buffers into which Skepsis-instrumented programs record their
control flow. The use of shared memory ensures the record of pro-
gram execution persists if the application abruptly terminates.

In order to generate a model that generalizes well, all experi-
ments omit information from insidelibc. Public entry points are
included because it is application behavior when the application
callsstrcpy, but internal functions are omitted, because it is not
application behavior whenmalloc calls an internal function, like
int malloc. With a large enough class of traces, the machine-

learning model will determine thatlibc internal functions are not
relevant, but convergence of the model onto semantically meaning-
ful features is faster iflibc internals are omitted. The exception to
this principle is thegzprintf benchmark, which is a thin wrap-
per aroundlibc code.

Table 3 summarizes the benchmarks used in this study, includ-
ing the confusing error messages they produce.

4.2 Machine learning model

Skepsis uses decision trees to build its model of application be-
havior. Decision trees are nested if-then-else statements and each
leaf corresponds to a single class prediction. An advantage of deci-
sion trees (over more continuous methods like support vector ma-
chines (SVMs)) is their ease of interpretation. It is possible for a
software engineer to validate the classifier based on knowledge of
program structure. In the context of Navel, decision trees are as ac-
curate as other machine-learning methods. Additional details about
the machine-learning design of Navel are available [17].

Table 2 shows the number of features used to build the Navel
model for each of the behavior profiles. More features means more
information about control flow, which might lead to a more ac-
curate model (if the model creation algorithm can deal with that
many features). Because decision trees tend to be small relative to
the number of features, they do not lose accuracy as the feature
count increases, as is common in more continuous methods such
as SVMs. The number of features for function counting is bounded
by the total number of functions. Feature counts for path profiling
are usually less than for call-tree profiling, thoughmpg321 and
gzprintf have more paths than call subtrees. Although the time
to create the model increases with the number of features, the num-
ber of features does not affect the time required for the end user to
run the model. For example, it takes 156 minutes to train the model
for gcc when using CTP, but only takes 0.36 seconds to classify
158 execution traces.

4.3 Skepsis accuracy

Figure 4 shows the accuracy of Skepsis classifiers for a variety
of benchmarks evaluated with different behavior profiles. These
tables report accuracy using 10-fold cross validation, a standard
technique for evaluating classifiers. The dataset is partitioned into
ten sections, the classifier is trained and tested ten times; it is trained
on nine sections of the data and its accuracy tested on the remaining
tenth. The average of these ten tests is the reported accuracy of the
classifier.

Function counting generally produces the least accurate classi-
fiers, though its absolute accuracy value is surprisingly high. Path
profiling is more accurate than function counting and call-tree pro-
filing is more accurate than path profiling. Function counting for
mpg321 produces a model that is more accurate than call-tree pro-
filing, but the difference is not statistically significant.

We present results for sampling function counting and path pro-
filing, with a sampling rate of 10% (which is generous for systems
that use sampling [27]). For example, the sampled function counts
record one of every ten function calls, uniformly at random. The
sampled results are the stippled part of each bar, achieving lower
classification accuracy than non-sampled data in every case except
path profiling forgzprintf. The poor performance of sampling
confirms our intuition that sampling is the wrong approach for an
error detection system. Navel must be sensitive to rare events.

If different errors exercise similar code paths, we would expect
Navel’s classification accuracy to degrade as the number of error
classes increases. We trained classifiers on 2, 3,. . . ,8 error classes



for latex’s path profiling data and found classification accuracy
degraded from 99.1% to 98.3%. One important area of future work
is to test larger sets of error classes. Using the error text as a feature
for the machine-learning model will help maintain accuracy while
scaling to more error classes.

4.4 Performance

We evaluated Skepsis’ performance while collecting behavior pro-
files for function counting. Navel modifies executables to keep an
in-memory table of per-function counters. On Windows, we used
the Microsoft Phoenix compiler infrastructure to modify binary
programs, and on Linux we used Pin. We used a dual-processor
Intel Xeon 3.0Ghz with 2GB of RAM running Microsoft Win-
dows 2003 Server forFoxPro, a single-processor Intel Pentium
4 2.4Ghz with 1GB of RAM running Microsoft Windows XP for
mpg321, and the same machine running the Linux ubuntu 5.10
distribution forgcc 3.1 andlatex.

The FoxPro test used a benchmark available as part of the
FoxPro package, which performs a variety of operations on a stan-
dardized set of tables. The workload formpg321 was conversion
of 89 mp3 files to wav format - audio playback was disabled for
the test.gcc was used to compile a 17,874 line “.i” file from Linux
distribution, andlatex was used to process an 1,175 line input
file.

Phoenix function counting instrumentation slows downmpg321
by 10% andFoxPro by 23%. Using Pin, function counting slows
downgcc by 0.45% andlatex by 1.0%. The Pin baseline num-
bers are run on Pin, the Phoenix baseline numbers use the pre-
instrumented executable. Phoenix performance is lower than Pin
because the binary instrumentation process deoptimizes the exe-
cutable. Figures are the average of three runs.

Reviewer note: We are currently developing a fast online CTP
algorithm. It is not correct enough to report in the paper, but our
preliminary data shows a 10.6% slowdown on gcc, and a 10.9%
slowdown on latex. We expect it to be more efficient than path
profiling. It will be done for the final version of the paper.

The performance of path profiling is well documented in the lit-
erature. Ball and Larus [3] reported an average overhead of 44.8%
for SPECINT95, and 31% for SPEC95 including floating point
benchmarks. Their overhead varies depending on application, for
example SPEC95’sgcc overhead is 97%. Dynamic invariant de-
tection techniques, such as DIDUCE [19], report a performance
slowdown of6× to20×. This slowdown prohibits using these tech-
niques in customer-deployed applications. For future work, apply-
ing recent adaptive statistical profiling techniques [21] to path pro-
filing could provide high quality control flow information to Navel
at low cost.

5. Model analysis
This section examines the models built for the benchmarks evalu-
ated in the previous section to validate that they are built on seman-
tically meaningful program features. It is desirable for a model to
use meaningful program features because that gives confidence that
the model will generalize well, and it suggests that a programmer
can look at the Navel model and get useful debugging information.

This section shows that decision trees produced by Navel of-
ten reveal the complexity of processing along error paths. Intuition
might suggest that there is a simple bijection between error behav-
ior and functions with names likeerror, but we have found that
applications are not consistent in this respect—many errors are re-
ported via the same routines. Moreover, some applications use their
error reporting routines to report warnings when there is no error.

Function counting

Path profiling

Call-tree profiling

Figure 5. Decision trees produced for thempg321 benchmark.
Dotted lines are taken when the normalized count of the feature
value is less than or equal to a threshold, while the solid line is
taken when it is greater than the threshold. The threshold is deter-
mined automatically for each benchmark by the decision tree algo-
rithm, and can be different for each node in the tree. Clear boxes
are features. Function counting features are normalized function
counts, path profiling features are normalized path counts (identi-
fiers in brackets are path identifiers), and call-tree profiling features
are normalized counts of call subtrees (represented by the symbolic
tree names in brackets, with function names for nodes in each call
tree). Shaded boxes are error classes.

5.1 mpg321 model example

Figure 5 shows the decision tree models created by the Navel
function counting, path profiling, and call-tree profiling behavior
profiles for the mp3 playermpg321. The different trees show
how each behavior profile provides different clues to the machine-
learning model about the same underlying behavior. The same un-



derlying program behavior is reflected into different behavior pro-
files, and the decision tree based on the different profiles provides
more or less classification accuracy.

In the function counting tree we see the simplest set of rules
that depict differences in control flow across the four error classes.
At the root of the tree, the functionmad layer III provides
near perfect discriminative information for the wav error class: the
mad layer III routine is part of thelibmad library and is
called when the audio frame decoder runs. Since the wav format
is among the formats not supported by mpg321, it will not success-
fully decode any audio frames, and thelibmad library will never
call mad layer III. Theid3 tag delete routine differenti-
ates between the corrupted tag and and other classes. The ID3 tag
parser in thelibid3tag library dynamically allocates memory to
represent tags and frees them withid3 tag delete. If tag pars-
ing fails, the memory for a tag is not allocated. Since no tag parsing
succeeds in the corrupted frames case,id3 tag delete is never
called to free the tag memory, making it’s absence discriminative
for that class. Thelibmad audio library’s default error handler
error default is used if the application does not specify one.
mpg321 does not specify its own error handler, so the presence
of the function indicates corrupted audio frames, and its absence
indicates the corrupted id3 tags case. Finally,III freqinver,
which performs subband frequency inversion for odd sample lines,
is called very frequently as part of the normal process of decoding
audio frame data. When there are corrupted frames, this function is
called less frequently, and the decision tree algorithm finds an ap-
propriate threshold value to separate the normal from the corrupted
case.

The path-profiling tree latches onto similar behavioral features
of the execution as function-counting tree does, but because it has
access to intra-procedural control flow, it chooses different fea-
tures. For instance, it uses a path throughIII huffdecode to
distinguish an unsupported file type.III huffdecode will be
called whether the input file is an mp3, or an unsupported wav
file, however; the path throughIII huffdecode will reflect
the error if the input format is wav, making it a perfect indica-
tor for that error class. Theadd tag function is called when the
libid3tag library tag parser succeeds. Absence of this call pro-
vides a good heuristic for detecting the corrupted frames class.
Finally, III scalefactors is called for every decoded audio
frame. We expect fewer successful frame decodes for the corrupted
frames class, making a threshold on a successful path through
III scalefactors a good differentiator between the normal
and corrupted frames classes.

The decision tree built on call-tree profiling data has the rich-
est combination of data sources of any of the decision trees be-
cause call-tree profiling provides the most data about different
execution scenarios. Call-tree profiling uses the presence of the
libmad library functionIII sideinfo (which decodes frame
side information from a bitstream) calling the utility function
mad bit read as an indicator of successful audio frame decod-
ing. The lack of that calling pattern reliably indicates a file format
error. The corrupted frames class is once again differentiated from
the normal class by a threshold value on a subtree oflibmad
functions that will only be called during successful decoding of
audio frame data, such asIII scalefactors, the discrete co-
sine transform functionfastsdct, III huffdecode, and so
on. Thelibmad functionscan encapsulates the process of read-
ing mp3 files. A CTP rule whereinscan calls a function that
calls a number of low-level stream manipulation routines such as
mad bit read, andmad timer set, and so on, provides dis-
criminative power in combination with a similarly complex control
flow pattern inmain for the corrupted tags error class. The deci-
sion tree node whose CTP rule involvesmain, id3 get tag,

. . .
i f (THEN CLAUSE ( t ) )

expand s tm t (THENCLAUSE ( t ) ) ;
i f (ELSE CLAUSE ( t ) )

{
e x p a n d s t a r t e l s e ( ) ;
expand s tm t (ELSECLAUSE ( t ) ) ;

}
expand end cond ( ) ;

}

Figure 6. gcc source code for functiongenrtl if stmt from
c-semantics.c, line 397.

and so on differentiates between normal and error conditions for
the handling of ID3 tags, while the decision tree node whose CTP
rule involvesscan discriminates between successful and unsuc-
cessful audio decoding. The high level pattern exposed by these
rules is the combination of failed ID3 tag parsing with successful
audio decoding, which precisely describes the corrupted tag error
class.

5.2 Gcc and the difficulty of good error reporting

We present an example fromgcc, the GNU C compiler, where
adding good error reporting would complicate the source code
unacceptably.

i f ( t e s t ) ; / / e x t r a semi−co lon here
{ /∗ do someth ing ∗ / }
e l s e
{ /∗ do someth ing e l s e∗ / }

The programmer has accidentally typed an extra semicolon at
the end of an if clause.gcc’s error message is “parse error before
“else” ”, and it identifies the line on which the else keyword is
located (which could be many lines away from the real problem).
The compiler provides no information about the actual cause of
the problem—the extra semicolon. Seasoned programmers train
themselves to ignore the line numbers of certain classes of errors,
but this is no justification for the compiler’s behavior. We should
expect more from software.

Figure 6 shows source code forgcc 3.1 that handles parsing
if statements.1 When the compiler encounters the semicolon, the
two tests ingenrtl if stmt evaluate to false. While it might
be tempting to print a meaningful error message in this situation,
it would be incorrect. This is because the C language specification
allows anif statement with no corresponding body or else clause.
The problem only exists, and is only detected, when reading the
else keyword. Trying to search backward from theelse to the
problematicif (or forward from theif to the else) requires
additional data structures and requires complicatinggenrtl -
if stmt to update those data structures.

The Navel decision tree can correlate the path throughgenrtl -
if stmt where each test fails with the path that reports theelse
parse error to disambiguate a particular underlying cause for this
error. The error case can be distinguished without adding code to
gcc. Navel enables greater functionality for applications without
changing them.

For the program error of missing closing bracket for aswitch
statement, path profiling detects paths through the automatically-
generated functionyyparse 1 due to receiving an end of file

1 In an attempt to produce as many useful error messages as possible on a
single invocation,gcc calls into its semantic processing routines even if
parsing fails.



token in an unexpected state. Function counting, using coarser-
grained information, distinguishes the non-error case as one that
does not call the diagnostic formatting functioncontext as -
prefix.

5.3 Analysis of remaining benchmarks

latex. Theshowcontext function is generic and displays error
messages. In the case of function counting this acts as the discrim-
inative feature for non-error instances since it is not called during
normal execution. Function counting uses the frequency of calls
to showcontext to distinguish error cases. However, path pro-
filing extracts much more information by looking at paths within
showcontext to discriminate between different error classes.

Similarly, finalign is called in both error and non-error
cases that use tables, but the execution path within the function
distinguishes the error case from normal execution. One of our
error class consisted of supplying a non-numeric argument to the
line break command when it was anticipating a numeric value. The
machine-learning model successfully pinpoints the error source
to the scanint function, which is called expecting a numeric
argument.

One interestinglatex example is where latex support web
sites offer more information than thelatex error message itself,
but do not include all possible causes for the error. If a table,
array oreqnarray has more separator characters (ampersands)
than columns,latex prints the obscure error message, “!Extra
alignment tab has been changed to\cr”. Most latex books and
mostlatex support websites recommend checking the number of
ampersands if a user receives this error. Some websites and books
are helpful enough to suggest a missing end of row symbol (\\) on
the previous line. However, the error message is not unique: misuse
of the\cline command, a directive that draws a horizontal line in
the table will result in the same message if one of the arguments to
\cline refers to a non-existent column in the table.

Navel connects a user to the solution for their particular prob-
lem, not just the most popular cause of a given problem. Most error
messages are intended to apply only to the most likely scenario that
can cause it.

gzprintf. It is a strength of Navel that a particular library or
function can be examined in isolation from the rest of an appli-
cation. Because Skepsis maps control flow in a composable way,
small bits of code can be examined carefully.

apache.Apache is a widely used webserver. It has many config-
uration parameters, complicating the task of correct configuration.
Apache error logging and configuration syntax checking tools are
helpful, but many important functions of Apache are implemented
in dynamically loaded modules. When apache encounters a config-
uration error, it calls each module to check for an appropriate error
handler. If no loaded module is able to handle the error, apache
ignores the error or reports it as a misspelled keyword.

When mod status or mod info is loaded, “SetHandler”
binds to a specific URL to get server status via HTTP. If modules
are missing, even though the SetHandler was configured, apache re-
turns a 403 error, and administrators get no hint that the error arises
from misconfiguration. Skepsis is able to classify these behaviors
with 100% accuracy.

6. Reducing human effort
Navel leverages the expertise of a few software users for the benefit
of the entire user community, but further reducing human effort
makes Navel more attractive. This section discusses two methods
to reduce human effort—unsupervised clustering of error behavior
and using a model trained for one version of software on the next
version.

Benchmark FC Cluster FC Model
mpg321 79% 72%
gzprintf 66% 75%
gcc 59% 87%
FoxPro 98% 91%
latex 25% 94%
iptables 54% 86%
iproute2 N/A 99%
apache 78% 100%
lynx 64% 100%

Table 4. Accuracy of error labels using unsupervised clustering, and a
machine-learning model trained using labeled instances. Benchmarks use
the function counting behavior profile.

6.1 Clustering errors

Manually determining whether an error execution is an instance of
a known problem is laborious. When possible, Navel should cluster
behavior profiles of error executions without human involvement.
If a single profile in a cluster is labeled, Navel can speculatively use
that label for the other profiles in the cluster.

At the core of any clustering algorithm is a function that quan-
tifies the similarity between two instances, and the clustering ob-
jective is to find a set of clusters with high intra-cluster similar-
ity. For example, the populark-means algorithm uses squared Eu-
clidean distance, which is computed as the sum of the squares of
the distances between each feature value. For Navel, feature val-
ues take on a wide range of values; some functions are called tens
of thousands of times in a program instance, while other functions
are called only 5 or 10 times. Consequently, for most clustering
algorithms, the underlying similarity scores computed will reflect
the similarity between only a handful of highly called functions (or
paths or call subtrees).

One approach to alleviate this problem is to represent each
feature value in binary 0/1 form. This can be done by giving
features with counts of zero a new value of zero and giving features
with counts larger than zero a new value of one. Although this
method yields significant improvement in the clustering results,
Navel uses a more general binarization approach by thresholding
at an arbitrary value because features often take on only a few
distinct, non-zero values. Navel finds the split that (1) minimizes
the entropy (i.e. maximize the homogeneity) of the sets induced
by the split and (2) also maximizes the quality of the split by
preferring 50/50 splits. The exact criteria Navel uses is a standard
information theoretic measure called mutual information [15], and
quantifies the similarity between two random variables (in this
case, the threshold function and the values the feature takes on).
Finally, Navel uses a variant of thek-means algorithm, sphericalk-
means [18], which has been shown to work well in other domains
with large numbers of features, such as text clustering.

Table 4 compares the accuracy of behavior profiles labeled
using unsupervised clustering and classified using a model trained
with labeled profiles. The quality of clustering is erratic, with
FoxPro clustering more accurate than the trained model, while
the latex clusters distinguish different kinds of errors, but do
no better than random at disambiguating causes of a single error
report.

In general, clustering does significantly better than random
guessing. Clustering allows Navel to match users with a prob-
lem workaround even before other users have labeled profile of
that problem. With no human involvement, a model trained with
clustered labels could be useful to a developer for understanding a
particular error behavior.

Clustering is useful to allow two users to determine if they have
instances of the same error, or if a user has an instance of a popular



Profile 3.1 3.1 train, 3.2 use 3.2
FC 87.3%± 1.5% 85.9%± 1.6% 84.8%± 1.7%
CTP-D1 91.5%± 1.3% 90.3%± 1.4% 91.3%± 1.3%
CTP-D2 92.9%± 1.2% 93.5%± 1.2% 92.6%± 1.2%

Table 5. Accuracy, along with 95% confidence intervals, for traininga
classifier ongcc version 3.1 and using it to classify errors for version 3.2.
For comparison accuracy results for training classifiers forversion 3.1 and
version 3.2 are given.

error. Developers can use clustering to prioritize investigating er-
rors that are popular in field deployments. When developers receive
error reports, they would like to know if the errors are distributed
evenly over all of the erroneous classes, or are there “hot” errors
cases that many users are encountering. With this information, de-
velopers can prioritize the hot errors over less common ones.

6.2 Classifying without retraining

Software release schedules are tight, and it would be convenient
if developers did not have to completely retrain a Navel classifier
for a minor release. Navel can generate a classifier for a new
application version by eliminating features that refer to functions
or paths that do not exist or were changed in the new version of the
code. Because most code does not change between versions, Navel
does not need to construct a complicated map between versions to
maintain an accurate model.

Table 5 shows the results of this strategy using Skepsis. Since
most code does not change between versions, the features chosen as
discriminative forgcc 3.1 are still discriminative for version 3.2.
There are enough features in the Navel model that the absence of a
particular feature usually does not significantly reduce the accuracy
of the model. The mean accuracy of the classifier for version 3.1
and used on 3.2 is greater than the accuracy of the classifier trained
on 3.2, but the difference is within the 95% confidence interval.

7. Related work
Integrating machine learning with program understanding is an ac-
tive area of current research. We summarize the major research
threads below, but first position Navel among them. Navel uses
data about program structure (control flow), as opposed to dynamic
invariants [10, 19]. Navel characterizes any kind of program be-
havior, not just crashes or program errors [10, 19, 27, 34]. Navel
works within the scope of a single program, not a distributed sys-
tem [14, 5, 12, 1]. Navel records information throughout a pro-
gram’s history, not just information available at crash time, like
a stack backtrace [30, 31, 7]. There are some tools that automate
some end-user support tasks, for instance performance diagnosis
systems [5, 14], and configuration debugging systems [40, 24], but
these systems do not have the fine-grained resolution of Navel.

A group at Microsoft Research has identified the same benefits
that we have from correlating low-level system events with error re-
ports to automate problem diagnosis [43, 44], because the problem
is important and practical. They currently focus on building models
from sequences of system calls instead of compiler/runtime system
instrumentation. Our methods for feature selection and model train-
ing differ, and it would be interesting to directly compare the tech-
niques. Our paper includes novel methods to reduce human effort
in the system.

IBM has a system to classify stack backtraces harvested on a
crash [9], and the technology has been deployed in tier TrapFinder
tool. Their motivation is similar to Navel’s—reduce the human ef-
fort needed to match problems from different program executions.
Navel diagnoses a wider range of problems than crashes, and it op-
erates on behavior profiles, which are a richer source of data than
stack backtraces.

Statistical bug isolation [27, 26] also correlates low-level ap-
plication behavior with application behavior (bugs) and builds a
model. The systems differ in their source of program data. Statisti-
cal bug isolation samples program invariants rather than gathering
information about program control flow. Section 4.3 demonstrates
a sharp loss of accuracy if Navel uses sampling. Statistical bug iso-
lation must eliminate sub-bug and super-bug predictors; Navel has
an analogous struggle to gain enough training instances to isolate
the program behavior created by the error condition. Navel is in-
tended to provide support to the user, while statistical bug isolation
is intended for developers; the systems are complementary.

Podgurskiet al. [34] identify a similar motivation to Navel
and they also investigategcc behavior. This paper presents more
alternatives for sources of program information, presents data on
more programs and problem classes, presents higher classification
accuracy, and introduces extensions to apply learned models to
libraries and different versions of the same program.

Bowring et al. [8] models software behavior as Markov models
using control flow between basic blocks and then uses active learn-
ing to cluster the models. Navel benchmarks are orders of magni-
tude larger (e.g., 8,654 functions forgcc and 6,363 forFoxPro
versus 136 functions for SPACE).

Liu et al. [28] use program behavior graphs as features for a
machine-learning model just as Navel uses data related to pro-
gram control flow. The number of program behavior graphs grows
quickly with program size, and can become computationally in-
tractable even for the small Siemens programs [23].

DIDUCE [19] uses dynamic program invariants to detect pro-
gram behavioral anomalies. The anomalies can indicate program
bugs, but at a performance slowdown of 6–20×. Navel can clas-
sify program behavior that is not anomalous. PeerPressure [40]
identifies anomalous configurations in the Windows registry using
Bayesian statistics, and does not deal with program behavior.

Navel classifies executions of a single program, while many
published systems classify behavior in a distributed system [14, 5,
12, 1]. The performance constraints in a single program are more
stringent. Most of these systems look at interactions between soft-
ware components, and only attempt coarse-grained identification of
a faulty or slow component. Navel currently uses functions or paths
as a basic building block of behavior, but it might be able to lever-
age some of these published algorithms by monitoring interactions
between libraries or even object files within the program.

Microsoft’s Dr. Watson tool [30] and Gnome’s BugBuddy [7]
can collect information from the end-user to find where the appli-
cation crashed. These tools are limited to collecting information
at the time of the crash, usually a list of loaded modules, a stack
backtrace and some stack memory contents.

SimPoint [39] characterizes the phase behavior of applications
using basic block execution counts to maintain the accuracy of
architectural simulation while executing fewer instructions. The
types of program behavior it detects occur over much longer time
windows than the errors that Navel detects.

Program paths [3] have been used to analyze runtime program
behavior. Path profiling techniques [3, 33] pinpoint the “hot paths“
which are frequently executed, as well as those with variable ex-
ecution times. They are effective for optimizing program perfor-
mance, as well as identifying areas requiring more test coverage.
Path Spectra [36] approximate an execution’s behavior with the oc-
currence (or frequency) of the individual paths. Spectral differences
have been used to identify the portions of a program’s execution
that differ with different inputs, notably, during Y2K testing [20].
Path Spectra focused on identifying path differences between sev-
eral program runs, whereas Navel’s novel use of path profiling uses
machine learning to identify which paths arecommonto each error
class. Whole program paths [25] is a more recent technique that



uses a lossless compression of the program’s control flow, which
is able to capture loop and inter-procedural information. Although
Navel’s call-tree profiling and whole program paths have similar
aims—obtaining a compact abstraction of program control flow
while preserving time-series information, the two differ in two key
aspects. First, CTP operates at a function-level granularity, instead
of individual paths (and thus may permit lower overhead profil-
ing). Second and more importantly, CTP’s compression results in
rules that are directly comparable from one program execution to
the next. Whole program paths use a compression scheme to re-
duce overhead, with no concern for whether the grammar rules that
allow the compression change from run to run—a key requirement
for Navel.

Context sensitive profiling [2] uses calling context trees that
contain more calling context than a call graph, but are much smaller
than the program’s full activation tree (dynamic call tree). Calling
context trees ignore loops, and so are not directly useful for Navel.
They also include less ordering information than CTP, but might be
useful as an alternate behavior profiling technique.

Several systems have been proposed that automatically recover
from software problems. Chronus [41] uses user-provided software
probes to search through previous system states to find the point at
which the system first failed due to misconfiguration. The Rx [35]
system relies on a set ofsensors(e.g., OS signals) to detect that
a program is behaving abnormally. To recover, Rx rolls back the
application state to one which was captured by a previous check-
point, and changes the application’s environment before allowing
it to proceed. Both Chronus and Rx attempt to detect failures and
correct them, while minimizing the user-visible effects. Navel ad-
dresses error messages that do not represent a failure of the pro-
gram, but the messages do not provide enough information to the
user to fix their problem. An ideal system would combine the two
approaches by first attempting to automatically correct errors and
then using a Navel-like service when an application must report an
error to the user.

8. Future work
Navel creates machine-learning models from program behavior.
This section discusses ways to extend Navel’s reach into the op-
erating system. It also discusses Navel’s use for management of
bug databases.

8.1 Behavior profile of the operating system

Some error cases cannot be classified with only user-space behav-
ior profiles. For instance, when an application fails to look up a
hostname in DNS, it cannot distinguish between an incorrect DNS
server name and an unplugged network cable without further in-
formation from the operating system. Other classes of problems
requiring OS behavior profiles include problems that arise from the
interaction of more than one process and applications that are split
between user and kernel space, such asiptables which consists
of a user-mode program and a kernel module. One advantage of get-
ting a behavior profile for the OS is that monitoring certain classes
of OS events, such as system calls, is less resource intensive than
monitoring application control flow.

8.2 Bug databases

Duplicate entries in bug databases are common. As an example, one
in six resolved bugs in thegcc bug database was closed by finding
that it is a duplicate of a previous entry (3,288 out of 20,459).
The twenty most reported issues accounted for 434 entries, and
duplication is common even among less popular bugs. Duplicate
bugs waste the time of developers who are assigned to investigating
filed issues, as well as the time of users who are trying to search the
database.

If bug descriptions were augmented with behavior profiles and
Navel models, duplicate entries could be detected without humans
reasoning about the text of error descriptions. When a new bug
report is entered, the system can check to see if there is a bug with
a similar behavior profile, whether or not the human who entered
the bug used the same words to describe it. Administrators can
review the database for entries with similar profiles that might be
duplicates.

Searching bug databases with a behavior profile has advantages
over keyword searches because the Navel system will generate the
behavior profile for the user, and the profile does not suffer from
the imprecision of language. Searching for “outlook crash” returns
8.7 million hits on Google, which indicates how a simple textual
description of a computer problem can be highly ambiguous.

9. Conclusion
We present Navel, a system that can improve error reporting by
classifying behavior profiles. Navel monitors program execution,
creating the behavior profile which is a summary of the program’s
behavior. It trains a machine learning model to discriminate be-
tween different behavior profiles. Classification with the model al-
lows an average user easily to determine if the problem they just
experienced is one for which the vendor or support organization
has a fix or workaround. Our prototype implementation, Skepsis,
accurately and efficiently classifies behavior of large, mature appli-
cations that demonstrate baffling error behavior.
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