
SuperMatrix Out-of-Order Scheduling of Matrix Operations

for SMP and Multi-Core Architectures

FLAME Working Note #23

Ernie Chan∗ Enrique S. Quintana-Ort́ı† Gregorio Quintana-Ort́ı†

Robert van de Geijn∗

Abstract

We discuss the high-performance parallel implementation and execution of dense linear algebra matrix
operations on SMP architectures, with an eye towards multi-core processors with many cores. We argue
that traditional implementations, as those incorporated in LAPACK, cannot be easily modified to render
high performance as well as scalability on these architectures. The solution we propose is to arrange
the data structures and algorithms so that matrix blocks become the fundamental units of data, and
operations on these blocks become the fundamental units of computation, resulting in algorithms-by-
blocks as opposed to the more traditional blocked algorithms. We show that this facilitates the adoption
of techniques akin to dynamic scheduling and out-of-order execution usual in superscalar processors,
which we name SuperMatrix Out-of-Order scheduling. Performance results on a 16 CPU Itanium2-based
server are used to highlight opportunities and issues related to this new approach.

1 Introduction

This paper explores the benefits of storing and indexing matrices by blocks when exploiting shared-memory
parallelism on SMP and/or multi-core architectures. For dense linear algebra matrix operations, the observa-
tion is made that if blocks are taken to be the units of data, and operations on blocks the units of computation
(tasks), then techniques for dynamic scheduling and out-of-order (OO) execution in superscalar processors
can be extended, in software, to the systematic management of independent and dependent tasks. A system
that facilitates this in a transparent manner both to the library developer and user is discussed, and its
potential performance benefits are illustrated with experiments that are specific to the parallelization of the
Cholesky factorization.

It has been observed that the storage of matrices by blocks, possibly recursively, has a number of advan-
tages, including better data locality when exploiting one or more levels of memory [8, 11, 18] and compact
storage of symmetric/triangular matrices [3]. In [16], it was shown how the FLASH extension of the FLAME
Application Programming Interface (API) for the C programming language [6] greatly reduces the complex-
ity of code by viewing matrices stored by blocks as a tree structure of matrices of matrices where the leaf
nodes are blocks that can be stored as convenient. The idea of indexing matrices by blocks, recursively, was
also successfully explored in [2, 14].

The main contributions of the present paper include the following:

• Storage by blocks allows submatrices to replace scalars as the basic units of data and operations on
blocks as the basic units of computation (tasks). This greatly reduces the complexity of managing
data dependencies between, and scheduling of, tasks in a multithreaded environment. This yields
algorithms-by-blocks rather than the more customary blocked algorithms.

∗Department of Computer Sciences, The University of Texas at Austin, Austin, Texas 78712, {echan,rvdg}@cs.utexas.edu.
†Departamento de Ingenieŕıa y Ciencia de Computadores, Universidad Jaume I, Campus Riu Sec, 12.071, Castellón, Spain,

{quintana,gquintan}@icc.uji.es.

1

• Dynamic scheduling and OO execution techniques, implemented in hardware on superscalar architec-
tures, can be applied to operations on blocks and be implemented in software for matrix operations.

• A concrete example is given on how the FLASH API facilitates the development of algorithms-by-blocks
for computing the Cholesky factorization and allows analysis of data dependencies and management
of dynamic scheduling to be separated from the coding issues.

• An implementation of various statically-scheduled implementations of the algorithm-by-blocks for the
Cholesky factorization shows the potential performance benefits that can be attained.

• A long list of potential research issues that remain to be resolved is provided.

The paper is structured as follows. Section 2 provides a motivating example. A discussion of formulating
algorithms that view matrices as a collection of submatrices is in Section 3. Our approach for dynamic
scheduling and OO execution of matrix operations is explained in Section 4. Performance results are provided
in Section 5. The paper is concluded in Section 6 with directions for future work.

2 A Motivating Example: The Cholesky Factorization

The Cholesky factorization of a symmetric positive definite (SPD) matrix A is given by A → LLT where L is
lower triangular. (Alternatively, one could factorize the matrix as A → UT U , where U is upper triangular.)
We will follow this example to illustrate the main contributions of the paper.

2.1 A typical algorithm

In Figure 1 we give unblocked and blocked algorithms, in FLAME notation [7], for overwriting an SPD
matrix A, of which only the lower triangular part is stored, with its Cholesky factor L. The unblocked
algorithm on the left involves vector-vector and matrix-vector operations, which perform O(1) floating-point
arithmetic operations (flops) for every memory operation (memop). This renders low performance on current
cache-based processors as memops are considerably slower than flops in these architectures. The blocked
algorithm on the right of that figure can achieve high performance since most computation is cast in terms
of the symmetric rank-k update (syrk), A22 := A22 − tril(A21A

T
21), which performs O(b) flops for every

memop. An implementation of the blocked algorithm coded in a style similar to that employed by LAPACK,
via calls to an unblocked Cholesky factorization routines (DPOFT2) and level-3 BLAS (DTRSM and DSYRK), is
given in Figure 2 [4, 10]. Using the FLAME C API [6], the equivalent blocked algorithm can be represented
in code as presented in Figure 4 (left) [5].

2.2 The trouble with the SMP-style parallelization of blocked algorithms

In Figure 3 we depict the first two iterations of the algorithm. These pictures allow us to describe the
problems with current techniques for parallelizing traditional codes in a multithreaded environment.

Multithreaded BLAS The first technique pushes the parallelism into multithreaded (SMP-parallel) im-
plementations of the trsm and syrk operations, A21 := A21tril(A11)−T and A22 := A22 − tril(A21A

T
21),

respectively. This works well when the matrix is large, and there are relatively few processors.
However, when the ratio of the matrix dimension to the number of processors is low, there is a natural

bottleneck. The block size (variables JB and b in Figures 2 and 4 (left), respectively) has to be relatively
large (in practice, around 128) in order for the bulk of the computation, performed by syrk (routines DSYRK
or FLA Syrk), to deliver high performance. As a result, the computation of the Cholesky factorization of
A11, performed by only a single processor, keeps high performance from being achieved.

2

Algorithm: A := Chol unb var3(A)

Partition A→
ţ

ATL ?

ABL ABR

ű

where ATL is 0× 0
while m(ATL) < m(A) do

Repartition
ţ

ATL ?

ABL ABR

ű
→

0
@

A00 ? ?

aT
10 α11 ?

A20 a21 A22

1
A

where α11 is 1× 1

α11 :=
√

α11

a21 := a21/α11

A22 := A22 − tril(a21aT
21)

Continue withţ
ATL ?

ABL ABR

ű
←

0
@

A00 ? ?

aT
10 α11 ?

A20 a21 A22

1
A

endwhile

Algorithm: A := Chol blk var3(A)

Partition A→
ţ

ATL ?

ABL ABR

ű

where ATL is 0× 0
while m(ATL) < m(A) do

Determine block size b
Repartition

ţ
ATL ?

ABL ABR

ű
→

0
@

A00 ? ?

A10 A11 ?
A20 A21 A22

1
A

where A11 is b× b

A11 := Chol(A11)
A21 := A21 tril(A11)−T

A22 := A22 − tril(A21AT
21)

Continue withţ
ATL ATR

ABL ABR

ű
←

0
@

A00 ? ?
A10 A11 ?

A20 A21 A22

1
A

endwhile

Figure 1: Unblocked and blocked algorithms (left and right, respectively) for computing the Cholesky fac-
torization. There, m(B) stands for the number of rows of B while tril(B) indicates the lower triangular
part of B. The ‘?’ symbol denotes entries that are not referenced.

DO J = 1, N, NB

JB = MIN(NB, N-J+1)

CALL DPOTF2(’Lower’, JB, A(J, J), LDA, INFO)

CALL DTRSM(’Right’, ’Lower’, ’Transpose’, ’Non-unit’,

$ N-J-JB+1, JB, ONE, A(J, J), LDA,

$ A(J+JB, J), LDA)

CALL DSYRK(’Lower’, ’No transpose’, N-J-JB+1, JB, -ONE,

$ A(J+JB, J), LDA, ONE, A(J+JB, J+JB), LDA)

ENDDO

Figure 2: LAPACK-style implementation of the blocked algorithm in Figure 1 (right).

@
@

@
@

@
@

@@

A11

A21 A22

@
@

@
@

@
@

@@

A11

A21 A22

Iteration 1 Iteration 2

Figure 3: First two iterations of the blocked algorithm in Figure 1 (right).

3

FLA_Error FLA_Chol_blk_var3(FLA_Obj A, int nb_alg)

{

FLA_Obj ATL, ATR, A00, A01, A02,

ABL, ABR, A10, A11, A12,

A20, A21, A22;

int b;

FLA_Part_2x2(A, &ATL, &ATR,

&ABL, &ABR, 0, 0, FLA_TL);

while (FLA_Obj_length(ATL) < FLA_Obj_length(A)) {

b = min(FLA_Obj_length(ABR), nb_alg);

FLA_Repart_2x2_to_3x3(

ATL, /**/ ATR, &A00, /**/ &A01, &A02,

/* ************* */ /* ******************** */

&A10, /**/ &A11, &A12,

ABL, /**/ ABR, &A20, /**/ &A21, &A22,

b, b, FLA_BR);

/*---*/

FLA_Chol_unb_var3(A11);

FLA_Trsm(FLA_RIGHT, FLA_LOWER_TRIANGULAR,

FLA_TRANSPOSE, FLA_NONUNIT_DIAG,

FLA_ONE, A11, A21);

FLA_Syrk(FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE,

FLA_MINUS_ONE, A21, FLA_ONE, A22);

/*---*/

FLA_Cont_with_3x3_to_2x2(

&ATL, /**/ &ATR, A00, A01, /**/ A02,

A10, A11, /**/ A12,

/* *************** */ /* ****************** */

&ABL, /**/ &ABR, A20, A21, /**/ A22,

FLA_TL);

}

return FLA_SUCCESS;

}

FLA_Error FLASH_Chol_by_blocks_var3(FLA_Obj A, int nb_alg)

{

FLA_Obj ATL, ATR, A00, A01, A02,

ABL, ABR, A10, A11, A12,

A20, A21, A22;

FLA_Part_2x2(A, &ATL, &ATR,

&ABL, &ABR, 0, 0, FLA_TL);

while (FLA_Obj_length(ATL) < FLA_Obj_length(A)) {

FLA_Repart_2x2_to_3x3(

ATL, /**/ ATR, &A00, /**/ &A01, &A02,

/* ************* */ /* ******************** */

&A10, /**/ &A11, &A12,

ABL, /**/ ABR, &A20, /**/ &A21, &A22,

1, 1, FLA_BR);

/*---*/

FLA_Chol_unb_var3(FLASH_MATRIX_AT(A11));

FLASH_Trsm(FLA_RIGHT, FLA_LOWER_TRIANGULAR,

FLA_TRANSPOSE, FLA_NONUNIT_DIAG,

FLA_ONE, A11, A21);

FLASH_Syrk(FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE,

FLA_MINUS_ONE, A21, FLA_ONE, A22);

/*---*/

FLA_Cont_with_3x3_to_2x2(

&ATL, /**/ &ATR, A00, A01, /**/ A02,

A10, A11, /**/ A12,

/* *************** */ /* ****************** */

&ABL, /**/ &ABR, A20, A21, /**/ A22,

FLA_TL);

}

return FLA_SUCCESS;

}

Figure 4: Left: FLAME C implementation of the blocked algorithm in Figure 1 (right). Right: FLASH
implementation of the algorithm-by-blocks.

Compute-ahead and pipelining A technique that attempts to overcome such a bottleneck is to “com-
pute ahead.” In the first iteration, the update of A22 is broken down into the update of the part of A22

that will become A11 in the next iteration (see Figure 3), followed by the update of the rest of A22. This
then allows the factorization of the next A11 to be scheduled before the update of the remaining parts of the
current A22, thus overcoming the bottleneck. Extensions of this idea will compute ahead several iterations
in a similar manner.

The problem with this idea is that it greatly complicates the code that implements the algorithm [1, 15,
19]. While doable for a single, relatively simple algorithm like the Cholesky factorization, reimplementation
of an entirely library like LAPACK becomes a daunting task when these techniques are employed.

3 Algorithms-By-Blocks

Fred Gustavson (IBM) has long advocated an alternative to the blocked algorithms in LAPACK: algorithms-
by-blocks, which are algorithms that view matrices as a collection of submatrices and compute with these
submatrices.

3.1 Basic idea

The idea is simple. When moving from algorithms that cast most computation in terms of matrix-vector
operations to algorithms that mainly operate in terms of matrix-matrix computations, rather than improving
performance by aggregating the computation into matrix-matrix computations, the starting point should be
to improve the granularity of the data by replacing each element in the matrix by a submatrix (block).
Algorithms should then be as before, except with operations on scalars substituted by operations on the
blocks that replaced them. Thus, while a simple triple-nested loop for computing the Cholesky factoriza-
tion on a matrix of scalars is given in Figure 5 (left), the corresponding algorithm-by-blocks is given in
Figure 5 (right). The motivation for Dr. Gustavson’s work has been the exploitation of matrices stored by
blocks [11] as well as compact storage of triangular and symmetric matrices [3]. Our motivation is different:
the high-performance implementation and parallel execution of matrix operations on SMP and multi-core
architectures.

4

A =

0
BBB@

α00 α01 . . . α0,n−1

α10 α11 . . . α1,n−1

.

..
.
..

. . .
.
..

αn−1,0 αn−1,0 . . . αn−1,n−1

1
CCCA A =

0
BBB@

A00 A01 . . . A0,N−1

A10 A11 . . . A1,N−1

.

..
.
..

. . .
.
..

AN−1,0 AN−1,0 . . . AN−1,N−1

1
CCCA

where Aij ∈ Rb×b

for j = 0, . . . , n− 1
αj,j =

√
αj,j

for i = j + 1, . . . , n− 1
αi,j = αi,j/αj,j

endfor
for k = j + 1, . . . , n− 1

for i = k, . . . , n− 1
αi,k = αi,k − αi,jαk,j

endfor
endfor

endfor

for j = 0, . . . , N − 1
Aj,j = Chol(Aj,j)
for i = j + 1, . . . , N − 1

Ai,j = Ai,jtril(Aj,j)
−T

endfor
for k = j + 1, . . . , N − 1

Ak,k = Ak,k − tril(Ak,jAT
k,j)

for i = k + 1, . . . , N − 1
Ai,k = Ai,k −Ai,jAT

k,j

endfor
endfor

endfor

Figure 5: Left: Algorithm that computes the Cholesky factorization as a triple-nested loop, one element at
a time. Right: Algorithm that computes the Cholesky factorization as a triple-nested loop, by blocks.

3.2 Obstacles

A major obstacle to algorithms-by-blocks lies with the complexity that is introduced into the code. A
number of solutions have been proposed to solve this problem, ranging from explicitly exposing intricate
indexing into the individual elements to template programming using C++ to compiler solutions [22]. None
of these have yielded a consistent methodology that allows the development of high-performance libraries
with functionality that rivals LAPACK or FLAME.

3.3 The FLASH API for algorithms-by-blocks

Two recent efforts [14, 16] follow an approach different from those mentioned above. They view the matrix
as a matrix of matrices, just as it is conceptually described. The FLASH API [16], which is an extension of
the FLAME API used in Figure 4 (left), exploits the fact that FLAME encapsulates a matrix in an object,
making it easy to allow elements of a matrices to themselves be descriptions of matrices, thus yielding
matrices of matrices.

The unblocked algorithm in Figure 1 (left) can be turned into an algorithm-by-blocks by recognizing
that if each element in the matrix is itself a matrix, then 1)

√
α11 becomes the Cholesky factorization of the

matrix at element α11; 2) a21 represents a vector of blocks so that a21/α11 becomes a triangular solve with
multiple right-hand sides with the triangular matrix stored at element α11 and each of the blocks in vector
a21; and 3) each element of A22 describes a block that needs to be updated using blocks from the vector a21.
The FLASH code for this algorithm-by-blocks is given in Figure 4 (right).

4 Towards SuperMatrix OO Scheduling

In this section we discuss how techniques used in superscalar processors can be adopted to systematically
expose parallelism in algorithms-by-blocks.

5

Original table After first operation After third operation After sixth operation
Operation In In/out In In/out In In/out In In/out√

α0,0 α0,0
√

α1,0/α0,0 α0,0 α1,0
√

α0,0
√

α1,0
√

α2,0/α0,0 α0,0 α2,0
√

α0,0
√

α2,0
√

α1,1 − α1,0α1,0 α1,0 α1,1
√

α1,0 α1,1
√

α1,0
√

α1,1
√

α2,1 − α2,0α1,0 α1,0α2,0 α2,1
√

α1,0 α2,0 α2,1
√

α1,0
√

α2,0
√

α2,1
√

α2,2 − α2,0α2,0 α2,0 α2,2
√

α2,0 α2,2
√

α2,0
√

α2,2
√

√
α1,1 α1,1 α1,1 α1,1 α1,1

√
α2,1/α1,1 α1,1 α2,1 α1,1 α2,1 α1,1 α2,1 α1,1 α2,1

√
α2,2 − α2,1α2,1 α2,1 α2,2 α2,1 α2,2 α2,1 α2,2 α2,1 α2,2

√
√

α2,2 α2,2 α2,2 α2,2 α2,2

Figure 6: An illustration of Tomasulo’s algorithm for the Cholesky factorization of a 3× 3 matrix of scalars.
A table is built of all operations and their input and output variables. A ‘√’ check tag indicates the value
is available. When all parameters are checked, the operation is scheduled for execution. Upon completing
the operation, the output variable are checked everywhere in the table till it appears again as an output
variable. Naturally, the scheduling of operations that are ready to be performed affects the exact order in
which subsequent operations are identified as ready. In particular, one would expect some level of pipelining
to occur.

4.1 Superscalar dynamic scheduling and OO execution

Consider the Cholesky factorization of

A =




α0,0 ? ?
α1,0 α1,1 ?
α2,0 α2,1 α2,2


 .

The algorithm in Figure 5 (left) more explicitly exposes the operations in the left-most column of Figure 6.
A superscalar processor [13] allows operations to be scheduled dynamically, as operands become available,
while keeping control of data dependencies. For example, Tomasulo’s algorithm [13, 21] keeps track of the
availability of input operands (as indicated by ‘

√
’ tags in Figure 6) and schedules operations for execution

as their operands become available during the computation.
What is important to realize is that such tables can be systematically built regardless of whether the

algorithm was expressed in terms of scalar operations, as in in Figure 5 (left), or in terms higher level
expressions, as in Figure 1 (left). In both cases the operations to be performed and the data on which it
must be performed can be systematically recognized.

4.2 SuperMatrix dynamic scheduling and OO execution

Let us examine what it would take to achieve the same benefits for the algorithm-by-blocks. Consider the
partition

A →



A0,0 ? ?
A1,0 A1,1 ?
A2,0 A2,1 A2,2


 .

The code in Figure 4 (right) can be used to identify all the operations to be performed on the blocks,
generating the table in Figure 7 during a preliminary stage of the execution. Rather than having the
hardware generate the table, this can be done in software, with every call to the operations “enqueuing” the
appropriate entries in the table. For example,

FLA Chol unb var3(FLASH MATRIX AT(A11))
inserts the Cholesky factorization of block A11 in the table, while operations encountered during this initial
stage inside routines FLASH Trsm or FLASH Syrk also enqueue their corresponding entries. The table contains
the data dependencies for the matrix operation to be executed and reflects the evolution during the execution
of tasks.

6

Original table After first operation After third operation After sixth operation
Operation In In/out In In/out In In/out In In/out

Chol(A0,0) A0,0
√

A1,0tril(A0,0)−T A0,0 A1,0
√

A0,0
√

A1,0
√

A2,0tril(A0,0)−T A0,0 A2,0
√

A0,0
√

A2,0
√

A1,1 − tril(A1,0AT
1,0) A1,0 A1,1

√
A1,0 A1,1

√
A1,0
√

A1,1
√

A2,1 −A2,0A1,0 A1,0A2,0 A2,1
√

A1,0 A2,0 A2,1
√

A1,0
√

A2,0
√

A2,1
√

A2,2 −A2,0A2,0 A2,0 A2,2
√

A2,0 A2,2
√

A2,0
√

A2,2
√

Chol(A1,1) A1,1 A1,1 A1,1 A1,1
√

A2,1tril(A1,1)−T A1,1 A2,1 A1,1 A2,1 A1,1 A2,1 A1,1 A2,1
√

A2,2 − tril(A2,1AT
2,1) A2,1 A2,2 A2,1 A2,2 A2,1 A2,2 A2,1 A2,2

√
Chol(A2,2) A2,2 A2,2 A2,2 A2,2

Figure 7: An illustration of Tomasulo’s algorithm for the Cholesky factorization of a 3× 3 matrix of blocks
using the algorithm-by-blocks.

Thus, executing the algorithm in Figure 4 (right) initially enters operations on blocks to be executed in
a table. We call this the analyzer stage of the algorithm. Next, the operations on the table are dynamically
scheduled and executed in a manner similar to Tomasulo’s algorithm. We call this the scheduler/dispatcher
stage. The overhead of the mechanism, now in software, is amortized over a large amount of computation,
and therefore its cost can be expected to be within reason. Also, the entire dependence graph of the scheduled
computations can be examined since the cost of doing so is again amortized over a lot of computation.

Thus, we propose to combine dynamic scheduling and OO execution while controlling data dependencies
in a manner that is transparent to library developers and users. This approach is similar to the inspector–
executor paradigm for parallelization [17, 23]. The new approach also reflects a shift from control-level
parallelism, specified strictly by the order in which operations appear in the code, to data-flow parallelism,
restricted only by true data dependencies and availability of resources.

5 Performance

The purpose of the discussion so far has been to show that when algorithms are cast as algorithms-by-blocks
and an API is used that allows one to code such algorithms conveniently, superscalar techniques can be
borrowed to achieve systematic scheduling of operations on blocks to multiple threads.

In this section, we examine implementations that more directly schedule execution by blocks, specifically
for the Cholesky factorization, so that potential performance benefits that will result from SuperMatrix OO
scheduling can be assessed.

5.1 Target architecture

Experiments were performed on a 16 CPU Itanium2 server. This NUMA architecture consists of eight nodes
with two Intel Itanium2 (1.5 GHz) processors in each. The total RAM is 32 Gbytes, and the nodes are
connected via an SGI NUMAlink connection ring.

Performance was measured by linking to two different high-performance implementations of the BLAS:
the GotoBLAS 1.06 [12] and Intel MKL 8.1 libraries.

5.2 Implementations

We report the performance (in Gigaflops/sec.) of six different parallelizations of the Cholesky factorization.
Two extract parallelism from multithreaded BLAS implementations while the other four explicitly deal with
the creation and management of tasks, which themselves call sequential BLAS.

LAPACK dpotrf (Parallel BLAS) LAPACK 3.0.0 routine DPOTRF (Cholesky factorization) was linked
to multithreaded BLAS.

FLAME V3 (Parallel BLAS) The blocked code in Figure 4 (left) linked to multithreaded BLAS.

7

Pipelined algorithm (Serial BLAS) Our implementation of the first algorithm in [1] which includes
compute-ahead and pipelining. We made a best-effort attempt to incorporate optimizations similar to
those for other implementations.

Data-flow + NO data affinity (Serial BLAS) This implementation views the threads as forming a pool
of resources. There is a single queue of ready tasks that all threads access to acquire work. No attempt
is made to schedule tasks that are on the critical path earlier.

For this implementation, the matrices are stored in the traditional column-major order, and blocks are
references into these matrices. Thus, blocks are not contiguous in memory.

Data-flow + 2D data affinity (Serial BLAS) Same as the previous implementation, except blocks are
logically assigned to threads in a two-dimensional block-cyclic manner, much like ScaLAPACK [9] does
on distributed-memory architectures. A thread performs all tasks that write to a particular block [20]
to improve locality of data to processors.

This concept of data affinity is fundamentally different than CPU affinity where threads are bound to
specific processors. CPU affinity is done implicitly by each of our implementations.

Data-flow + 2D data affinity + contiguous blocks (Serial BLAS) Same as the previous implemen-
tation, except that now blocks are stored contiguously.

When hand-tuning block sizes, a best-effort was made to determine the best block size for all combinations
of parallel implementations and BLAS.

A number of implementations that used 1D (both row-wise or column-wise) cyclic assignment of blocks
to threads (e.g., Aij is assigned to thread j mod p where p equals the number of threads) with various storage
options were also examined. The described 2D cyclic assignment yielded the best performance.

5.3 Results

Performance results when linking to the GotoBLAS and MKL libraries are reported in Figure 8. A few
comments are due:

• The LAPACK implementation, even when the block size is hand-tuned, performs poorly. This is due
to the fact that the algorithm chosen by LAPACK is the so-called left-looking variant, which is rich in
calls to DGEMM with a small “m” dimension (in C := C − AB matrix B consists of a relatively small
number of columns). This shape of matrix-matrix multiplication does not parallelize well. We note
that when this same algorithm is coded with the FLAME API, performance is virtually identical to
that of the LAPACK implementation.

• The GotoBLAS parallel BLAS are tuned for large matrices. For this reason, asymptotically it is
FLAME V3 that performs best in Figure 8 (top). The multithreaded matrix-matrix multiply provided
by MKL performs much worse for this algorithm.

• Data affinity and contiguous storage by blocks are clear winners relative to the same algorithms that
do not employ both of these optimizations.

• The pipelined algorithm from [1] does not perform nearly as well as the data-flow algorithms proposed
in this paper.

• The level-3 BLAS provided by the MKL library perform much better for small matrices than their
counterparts from the GotoBLAS.

8

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

G
ig

af
lo

ps
/s

ec

Matrix size

LAPACK dpotrf (Parallel BLAS)
FLAME V3 (Parallel BLAS)
Pipelined algorithm (Serial BLAS)
Data-flow + NO DATA affinitiy (Serial BLAS)
Data-flow + 2D DATA affinitiy (Serial BLAS)
Data-flow + 2D DATA affinitiy + contiguous blocks (Serial BLAS)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

G
ig

af
lo

ps
/s

ec

Matrix size

LAPACK dpotrf (Parallel BLAS)
FLAME V3 (Parallel BLAS)
Pipelined algorithm (Serial BLAS)
Data-flow + NO DATA affinitiy (Serial BLAS)
Data-flow + 2D DATA affinitiy (Serial BLAS)
Data-flow + 2D DATA affinitiy + contiguous blocks (Serial BLAS)

Figure 8: Top: Performance on 16 CPUs when linking to GotoBLAS 1.06. Bottom: Performance on 16
CPUs when linking to MKL 8.1.

9

6 Conclusion

The results in Figure 8 clearly demonstrate the opportunities that arise from computing the Cholesky
factorization by blocks. When linked to a BLAS library that performs well on small submatrices, not only
very good asymptotic performance is demonstrated, but more importantly performance ramps up quickly
since parallelism is exposed at a relatively small granularity.

The implementations that yield the better performance decompose the Cholesky factorization into its
component blocked operations and manage the dependencies among those operations explicitly. Parallelism
is exploited through the inherent data flow of those matrix operations instead of being derived from the
control flow specified by the program order of operations. While this is quite doable for an individual oper-
ation, it becomes cumbersome when entire libraries with functionality similar to the BLAS or LAPACK are
to be parallelized for SMP or multi-core architectures. For this reason we introduce the FLASH API and
the analyzer–scheduler/dispatcher mechanism for scheduling operations on submatrices. This methodology
presents high-level abstractions that shield the library developer from the details of scheduling while gen-
erating the operations and dependencies. This yields a clean separation of concern between the high-level
algorithm on one hand and the scheduling/execution on the other.

Experience with the FLAME library for sequential architectures tells us that the resulting methodology
will allow libraries with functionality similar to the BLAS and LAPACK to be quickly developed. We believe
the same cannot be said when code is developed in the tradition of LAPACK (Figure 2). Clearly operations
like LU with partial pivoting and Householder QR factorization will still pose special challenges to be studied
in future work.

Since the authors interact closely with Kazushige Goto, author of the GotoBLAS, there is a further
opportunity to develop high-performance matrix computation kernels specifically in support of the operations
that are now performed on submatrices that are stored contiguously. This is part of future research, as is
the completion of the analyzer–scheduler/dispatcher and a prototype library with broad functionality.

Additional information

For additional information on FLAME visit
http://www.cs.utexas.edu/users/flame/.

Acknowledgements

This research was partially sponsored by NSF grant CCF–0540926. We thank the other members of the
FLAME team for their support.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science Foundation (NSF).

References

[1] C. Addison, Y. Ren, and M. van Waveren. OpenMP issues arising in the development of parallel blas
and lapack libraries. Scientific Programming, 11(2), 2003.

[2] Bjarne S. Andersen, John A. Gunnels, Fred G. Gustavson, John K. Reid, and Jerzy Waśniewski. A
fully portable high performance minimal storage hybrid format Cholesky algorithm. ACM Trans. Math.
Soft., 31(2):201–227, 2005.

[3] Bjarne Stig Andersen, Jerzy Waśniewski, and Fred G. Gustavson. A recursive formulation of Cholesky
factorization of a matrix in packed storage. ACM Trans. Math. Soft., 27(2):214–244, 2001.

[4] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, Jack J. Dongarra, J. Du Croz, S. Ham-
marling, A. Greenbaum, A. McKenney, and D. Sorensen. LAPACK Users’ guide (third ed.). Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1999.

10

[5] Paolo Bientinesi, Brian Gunter, and Robert van de Geijn. Families of algorithms related to the inversion
of a symmetric positive definite matrix. FLAME Working Note #19 TR-2006-20, The University of
Texas at Austin, Department of Computer Sciences, 2006.

[6] Paolo Bientinesi, Enrique S. Quintana-Ort́ı, and Robert A. van de Geijn. Representing linear alge-
bra algorithms in code: The FLAME application programming interfaces. ACM Trans. Math. Soft.,
31(1):27–59, March 2005.

[7] Paolo Bientinesi and Robert A. van de Geijn. Representing dense linear algebra algorithms: A farewell
to indices. FLAME Working Note #17 TR-2006-10, The University of Texas at Austin, Department of
Computer Sciences, 2006.

[8] S. Chatterjee, A. R. Lebeck, P. K. Patnala, and M. Thottethodi. Recursive array layouts and fast
matrix multiplication. IEEE Trans. on Parallel and Distributed Systems, 13(11):1105–1123, 2002.

[9] J. Choi, J. J. Dongarra, R. Pozo, and D. W. Walker. Scalapack: A scalable linear algebra library for
distributed memory concurrent computers. In Proceedings of the Fourth Symposium on the Frontiers of
Massively Parallel Computation, pages 120–127. IEEE Comput. Soc. Press, 1992.

[10] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain Duff. A set of level 3 basic linear
algebra subprograms. ACM Trans. Math. Soft., 16(1):1–17, March 1990.

[11] Erik Elmroth, Fred Gustavson, Isak Jonsson, and Bo Kagstrom. Recursive blocked algorithms and
hybrid data structures for dense matrix library software. SIAM Review, 46(1):3–45, 2004.

[12] K. Goto. http://www.tacc.utexas.edu/resources/software.

[13] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach. Morgan Kauf-
mann Pub., San Francisco, 2003.

[14] José Ramón Herrero. A framework for efficient execution of matrix computations. PhD thesis, Poly-
technic University of Catalonia, Spain, 2006.

[15] Jakub Kurzak and Jack Dongarra. Implementing linear algebra routines on multi-core processors with
pipelining and a look ahead. LAPACK Working Note 178 UT-CS-06-581, University of Tennessee,
September 2006.

[16] Tze Meng Low and Robert van de Geijn. An API for manipulating matrices stored by blocks. FLAME
Working Note #12 TR-2004-15, The University of Texas at Austin, Department of Computer Sciences,
May 2004.

[17] Honghui Lu, Alan L. Cox, Sandhya Dwarkadas, Ramakrishnan Rajamony, and Willy Zwaenepoel. Com-
piler and software distributed shared memory support for irregular applications. In PPOPP ’97: Pro-
ceedings of the sixth ACM SIGPLAN symposium on Principles and practice of parallel programming,
pages 48–56, New York, NY, USA, 1997. ACM Press.

[18] N. Park, B. Hong, and V. K. Prasanna. Tiling, block data layout, and memory hierarchy performance.
IEEE Trans. on Parallel and Distributed Systems, 14(7):640–654, 2003.

[19] Peter Strazdins. A comparison of lookahead and algorithmic blocking techniques for parallel matrix fac-
torization. Technical Report TR-CS-98-07, Department of Computer Science, The Australian National
University, Canberra 0200 ACT, Australia, 1998.

[20] Radhika Thekkath and Susan J. Eggers. Impact of sharing-based thread placement on multithreaded
architecture. In Proceedings of the 21th Annual International Symposium on Computer Architecture,
pages 176–186, 1994.

[21] R. Tomasulo. An efficient algorithm for exploiting multiple arithmetic units. IBM J. of Research and
Development, 11(1), 1967.

11

[22] Vinod Valsalam and Anthony Skjellum. A framework for high-performance matrix multiplication based
on hierarchical abstractions, algorithms and optimized low-level kernels. Concurrency and Computation:
Practice and Experience, 14(10):805–840, 2002.

[23] Reinhard von Hanxleden, Ken Kennedy, Charles H. Koelbel, Raja Das, and Joel H. Saltz. Compiler
analysis for irregular problems in Fortran D. In 1992 Workshop on Languages and Compilers for Parallel
Computing, number 757, pages 97–111, New Haven, Conn., 1992. Berlin: Springer Verlag.

12

