
Technical Report #TR-07-45, Department of Computer Sciences, University of Texas

DSP Extensions to the TRIPS ISA

Kevin Beckwith Bush Doug Burger

Abstract

In this paper, we propose a set of DSP extensions to the TRIPS ISA and evaluate their performance. By extend-

ing the TRIPS ISA with specialized DSP instructions, we offer an explorative look at the interaction conventional

specialization techniques (such as SIMD instructions) have with EDGE ISAs. We discuss the implementation and

its feasibility and provide non-intrusive compiler support through hand-written library functions. Finally, we
evaluate the performance benefits of our extensions with custom library-emphasizing benchmarks and compare

our results with those of the industry standard TI c6416 digital signal processor.

1 Introduction

While diminishing performance gains in conventional architectures are fueling novel designs which

more effectively extract parallelism, the demand for high performance real-time applications con-

tinues to grow. In conjunction, these two pressures are driving the need for next-generation

general-purpose architectures to perform well in the DSP domain. TRIPS, the first implementation

of an EDGE ISA, is an example of such next-generation architectures. With up to 1024 instructions

in flight and 16 redundant execution units, one expects good performance potential in the DSP

domain where regularity and concurrency are common [12, 5]. We take an explorative look at

the impact conventional DSP specialization techniques - such as SIMD instructions - have on EDGE

ISAs by proposing and evaluating a set of DSP extensions to the TRIPS ISA.

To facilitate reliable performance testing we augmented an already developed TRIPS toolchain

to support the ISA extensions [14]. A high-performance library of common DSP functions was

hand-coded to leverage the new instructions while a scheduler, linker, and assembler were extended

to provide seamless vertical support of the extensions. Both an architectural simulator (functional)

and a processor simulator (cycle-accurate) were also enhanced to provide correctness verification

and performance modeling. Additionally, to remove hand-optimization as a performance variable,

we provide a duplicate library with similar control-flow for each function without leveraging the

new instructions.

By writing simple wrapper benchmarks, we are able to isolate the library functions and measure

their performance directly. In this way, we can directly compare the performance advantage our

DSP extensions provide in all the functions our library supports. We then make a comparison of

our results with those of industry standard DSP processors.

The rest of this paper is organized as follows. Section 2 provides a brief background summary.

Section 3 provides an architectural summary of the TRIPS and TIc64x architectures. Section 4

describes the extensions proposed. Sections 5 and 6 discuss our implementation methodology and

benchmark suite. Section 7 provides an analysis of our performance results. Section 8 has some

concluding remarks and a description of future work can be found in Section 9.

1

2 Background

To facilitate discussion, below is a brief introduction to the TRIPS architecture, Digital Signal Pro-

cessing, and the nature of ISA extensions.

2.1 TRIPS

The TRIPS (Tera-op, Reliable, Intelligently adaptive Processing System) project is a multidisci-

plinary effort to develop a high performance next generation architecture at the University of Texas

at Austin. The principle investigators of the TRIPS project are Dr. Doug Burger, Dr. Steve Keckler,

and Dr. Kathryn McKinley.

The TRIPS architecture is the first of a new class of architectures called EDGE (Explicit Data

Graph Execution) architectures. EDGE architectures vary from conventional modern micropro-

cessors on multiple accounts, most notably for their block atomic execution model that exposes

parallelism by aggregating groups of instructions into atomic units [13]. the TRIPS architecture

is a general-purpose architecture which consists mostly simple RISC-like (Reduced Instruction Set

Computation) instructions. While these instructions provide the functionality necessary for any

application, they do not provide the same performance potential as specialized instructions in the

DSP domain.

2.2 Digital Signal Processing

Digital signal processors are specialized microprocessors designed specifically for DSP (Digital Sig-

nal Processing) applications. Digital signal processors characteristically have separate program and

data memories and the ability to act as direct memory access devices in host environments.

DSP applications usually measure, filter, or emulate real-world analog signals. The DSP domain

can be best characterized as possessing regular data streams or values and often is under real-time

constraints [4]. The core operations in these applications commonly have high degrees of inherent

data-level parallelism.

2.3 ISA Extensions

We can expect to improve the performance of the TRIPS architecture in the DSP domain with

specialization. By augmenting the TRIPS ISA to support high-performance DSP instructions we

effectively tune the architecture for workloads characteristic of the DSP domain.

This sort of specialization of general purpose architectures has seen significant success in the

past. High-profile examples include the 3DNow! and MMX extension for the x86 ISA, and the

AltiVec extension to the Power ISA [2, 3, 9].

3 Architectural Summary

3.1 TIc6416

The the TMS320C64x series processor is part of Texas Instruments’ TMS320C6000 DSP platform. It

is a 8-wide VLIW (Very Long Instruction Word) architecture designed for real-time DSP applications[1].

The VLIW execution model is often chosen in DSP architectures for its ability to achieve relatively

high degrees of ILP while maintaining power efficiency. This power efficiency is achieved by expos-

ing complexity to the compiler allowing for the removal of power hungry features such as a re-order

2

Feature TI64x TI67x TRIPS

Execution Model 8-wide VLIW Explicit Data-Graph Execution

Target Application Real-time DSP General Purpose

Data dependence Conditional instructions Compound predication support

Max theoretical throughput 8 IPC 16 IPC

Execution resources 2 Multipliers & 6 ALUs 16 ALUs

Registers 64 32-bits 32 32-bits 128 64-bits

Integer data support 8/16/32/40/64-bit 16/32/40-bit 64-bit only

FP data support None 32-bit & 64-bit 64-bit only

Data bandwidth Four 32-bit ports Two 32-bit ports Four 64-bit banks

Instruction bandwidth One 256-bit port 512-bits per cycle

Table 1: Summary of ISAs

buffer [4]. Even though the TIc67x architecture has floating point support analogous to the TRIPS

architecture, We chose the TIc64x architecture because of it’s comparable data bandwidth and more

complex suite of DSP-tuned instructions.

Table 1 shows an overview of the TIc6416’s architecture as compared to TRIPS. The TIc64x

series ISA features many specialized DSP instructions despite an absence for hardware floating-

point support, making it an ideal candidate for comparison of for our extensions. Application-

specific domains include cryptography, error correction, and advanced mathematics. Additionally,

SIMD support is available in many instructions, both application-specific and general purpose. A

list description of many of the supported DSP instructions can be found in Table 2.

Instruction Description SIMD Application

ADD Compute sum 2x16/4x8-bit General Purpose

MUL Compute product 2x16/4x8-bit General Purpose

ANDN Bitwise logical-and, and invert - Cryptography

BITR Bitwise reverse - Cryptography

DEAL De-interleave and pack - Cryptography

SHFL Logical shuffle bits (reverse DEAL) - Cryptography

ROTL Logical bit rotation left - Cryptography

BITC4 Packed Bit count - Error Correction

GMPY4 Packed Galios-field multiply - Error Correction

NORM Count repeating bits - Error Correction

AVG Arithmetic mean 2x16/4x8-bit Advanced Math

DOTP Dot product 2x16/4x8-bit Advanced Math

MAX/MIN Maximum/Minimum value retrieval 2x16/4x8-bit Advanced Math

Table 2: TIc64x DSP instructions

3.2 TRIPS

The TRIPS architecture is the first implementation of an EDGE (Explicit Data Graph Execution) ISA

[?]. EDGE ISAs leverage a limited data-flow execution model to expose high degrees of ILP without

3

E E

E E

E E

E E

E E

E E

E E

E E

R R R R

D

D

D

D

GI

I

I

I

I

R

G

D

E

I

Global Control Tile

Register Banks

Execution Tiles

Instruction-cache Banks

Data-cache Banks

Responsible for block fetch, flush, and commit.
Contains I-cache tags, block header state,
read & write instructions, branch predictor, and ITLB.

32 registers per bank.
64 static rename registers per bank.
Dynamically forwards inter-block values.

Single-issue ALU supporting all ISA instructions.
Buffers 84 instructions (8 instructions per block).

16KB 2-way, single ported L1 instruction cache
Injects 4 instructions / cycle.
Buffers 64 instructions per tile.

6KB 2-way, single ported.
Banks are interleaved by address.
Contains DTLB, LSQ and dependence predictor.

TRIPS Processing Core

Figure 1: Block Diagram of TRIPS Processing Core

requiring fundamental changes to the programming paradigm. In this model, instructions are

aggregated into instruction blocks which are in turn fetched, executed, and committed atomically.

Within a block, instruction communication occurs directly, thus bypassing the global register file

and supporting distributed out-of-order execution [12].

The TRIPS architecture maintains power efficiency by distributing general computing resources

and removing power hungry structures such as centralized register files. Figure 1 shows a block

diagram of a TRIPS processing core. It is a distributed tile architecture arranged in a 2-D mesh

topology. Operands are passed between tiles via an Operand Network (OPN) allowing for direct

communication within a block. Communication across blocks are carried out through the banked

data-cache and register file. The architecture maintains up to 1024 instructions in flight with

support for concurrent execution of 8 blocks (7 speculative) of at most 128 instructions each.

The execution grid consists primarily of 16 execution tiles, each contain 1 ALU and the necessary

instruction buffers, input ports, and operand buffers.

Blocks are formed and scheduled by the compiler onto the microarchitecture. These statically

scheduled blocks resemble the basic execution unit of VLIW architectures, however, the key differ-

ence is that instructions within a block are not required to be independent and are dynamically

issued. Scheduling in this context, refers to spatial location and not execution order. Additional

block constraints are required by the architecture, most significantly a maximum of 32 register

reads and writes and at most 32 memory accesses are allowed per block.

Several simplifying assumptions were made in order to produce the TRIPS hardware prototype.

These include an absence of hardware support for floating point division, square root, and 32-bit

floating point operations. The solution used by the prototype is to emulate these operations in

software and convert all 32-bit floating point variables to 64-bit. The cost of these emulations and

conversions can have a substantial impact on overall performance. Since these are prototyping

artifacts and would not be present in a full production model, our extensions will focus on other

aspects of the architecture and the benchmarks will deliberately not expose them.

4 Extensions Summary

In total, we selected 5 instructions common in specialized digital signal processors for our eval-

uation. A summary of each extension can be found below. Included is a motivational discussion

4

outlining our selection of instructions. We have organized by category: SIMD instructions in Sub-

section 4.1, and Bitwise operators in Subsection 4.2. A complete definition, format description,

and placement of each extension in the TRIPS instruction space can be found in the appendix.

We will employ the same symbolic notation and formatting conventions as the TRIPS architectural

reference manual [10]. Of particular relevance, Chapter 8 of the reference manual includes an

instruction set summary and a thorough description of notation.

4.1 SIMD

The use of SIMD (Single Instruction, Multiple Data) instructions is a well established technique to

achieve high degrees of data-level parallelism. It has seen widespread use in conventional general-

purpose architectures through ISA extensions such as MMX and AltiVec for the x86 and Power

architectures [3, 9]. We observe that even specialized DSP architectures, such as the TIc6416,

exploit data-level parallelism with this technique. A list of all the SIMD instructions available in the

TIc6416 is available in Section 3.

SIMD instructions are particularly attractive on the TRIPS architecture because of the 64-bit

data-path. TRIPS supports 64-bit payloads for all operand traffic, has 64-bit operand reservation

stations, and all of the 128 registers are 64 bits wide. Additionally, TRIPS supports accesses to

memory in double-word blocks (64 bits). In this way, TRIPS does not require data-path augmenta-

tions or specialized register files to support SIMD instructions with data-types of 32-bits or fewer.

All of the SIMD instructions proposed below require no more than full 64-bit width of the TRIPS

data-path.

By collapsing instructions, 64-bit SIMD instructions effectively more densely pack operands

improving overall OPN bandwidth utilization. Previous studies have demonstrated that contention

along the OPN can have a significant impact on overall processor performance [7, 6].

4.1.1 32-bit Data

We chose to augment the TRIPS ISA with packed 32-bit data, SIMD instructions - ADD2 and MUL2.

32-bit data operators are natural candidates for SIMD extension because of their frequent use.

Single-precision integers are common primitive data types employed in modern programming [4].

ADD2 (appendix A) performs two packed 32-bit additions in a 64-bit space. Independent single-

precision addition is commonplace in vector operations, graphics processing, and matrix calcu-

lations. By combining two operations into one, this packed addition instruction can reduce the

dynamic instruction count by up to a factor of two.

MUL2 (appendix C) performs similarly to the ADD2 instruction by computing two packed 32-bit

multiplications in a 64-bit space. The result is two 32-bit products corresponding to the upper

32-bits, and lower 32-bits of OP0 and OP1 respectively. MUL2 complements ADD2 in our SIMD study

because it allows us to precisely analyses the performance impact of instruction latency in SIMD

instructions on the TRIPS processor.

4.1.2 8-bit Data

Extending on our observation that TRIPS maintains a 64-bit data-path, we also chose to augment

the TRIPS ISA with packed 8-bit data, SIMD instructions - ADD8 and MUL8. 8-bit data, employed

mostly in digital audio stream processing, is commonly selected for use in SIMD instruction sets be-

cause of the vast data-level independence expressed in most audio processing applications. Digital

signal processors, such as the TIc6416, commonly support SIMD operation on this data size.

5

ADD8 (appendix B) performs eight packed 8-bit additions in a 64-bit space. We chose against an

instruction-encoded immediate for functional generality (such as in the TIc64x), however, such an

instruction could easily be included in a production-level extension suite.

MUL8 (appendix D) performs eight packed 8-bit multiplications in a 64-bit space. MUL8 comple-

ments ADD8 in our SIMD study in an analogous fashion to our 32-bit SIMD extensions.

4.2 Bitwise Rotate

Bitwise rotation (appendix E) is a common operation supported by specialized ISAs to improve per-

formance in cryptographic applications. Cryptographic algorithms such as AES encryption, require

rotation of blocks of bits at their core, and as such are very performance sensitive to the latency

of this operation. We observe that the TIc64x architecture has support to reduce the number of

instructions required to perform this operation by half via a rotate-left instruction [1]. We chose to

include an analogous 64-bit version in our ISA extension, ROTL (appendix E).

Functionally equivalent to two complementary bit-wise shift operations, ROTL will provide us

with a metric by which to evaluation the effect instruction reduction has on the TRIPS architecture

in the absence of data-level independence.

5 Implementation

5.1 Library

To provide an accurate performance model of the extensions without forcing undo complexity onto

the compiler, we hand-coded a suite of DSP functions which benefit from the ISA extensions and

bundled them into a library which can be linked by the compiler. We employed the Scale compiler

to provide the code foundation for our hand optimizations [11]. To provide a fair baseline for

comparison, we also hand-coded a second library with the same functional support which does not

exercise the ISA extensions but maintains the same control flow. Additionally, we augmented the

source code with directives unique to the TIc64x compiler to enable the most aggressive optimiza-

tion on that machine.

5.2 Compiler and Simulation

By leveraging a library infrastructure, we minimized the impact our extensions had on the compiler.

Still, simple modifications were necessary to handle the new instructions in the spatial scheduler,

assembler, and linker.

We employed an already developed TRIPS scheduler which statically assigns instructions to

execution units [8]. The instructions wait at these execution units for their operands to arrive

and execute as soon as possible. Scheduling up to 128 instructions is a sophisticated problem

and carries a significant portion of the responsibility for the overall performance of execution.

We observe that the latency and pipeline-ability of packed SIMD instructions is the same as their

non-SIMD counterparts and were able to duplicate the current scheduling logic already in place,

resulting in good-quality, easy-to-implement schedules of our instruction extensions.

The TRIPS assembler and linker both required only trivial enhancements to support the new

instructions such as instruction definition and opcode space assignment.

A previously developed cycle-accurate simulator, tsim proc, was chosen for our performance

modelling which has been verified against a hardware prototype design [14]. Modifications were

limited to our instruction definition and timing.

6

5.3 Feasibility

The TRIPS architecture allows for the placement of the instruction extensions within its instruc-

tion space without significant modification. All five instructions can share the primary opcode of

like-formatted G:2 instructions by occupying the last 5 spaces of the extended-opcode space. Thus

allowing for shared decoding resources and preventing unnecessary artifacts as a result of addi-

tional architectural complexity.

The packed 64-bit SIMD instructions proposed can be reasonably expected to be non-critical on

the processors cycle timing. This is primarily because they require at most as much logical depth

as their already implemented non-SIMD counter-parts. We observe that the TRIPS ADD instruction

is a 64-bit adder and thus has more depth than two 32-bit or eight 8-bit adders since the source

of serialization is the carry-over bits. The fewer bits in the effective adder, the shorter the depth.

Similarly, ROTL can be expected to be non-critical on the processors cycle timing because it is a

commonly implemented bit-wise function.

6 Benchmarking

Block 0

Stack Management

Block 2

Length > i

Block 3

Unroll-factor = 1

Block 4

Stack Management

Block 1

Unroll-factor = 10

Optimized Loop for Vector Operations

Figure 2: Control Flow for Vector Add and Vector Multiply in Optimized TRIPS Library.

To examine the peak performance potential of our extensions without contributing to the com-

plexity of an optimizing compiler, hand optimization of the benchmark kernels was necessary.

A generic loop structure was employed as a model for hyper-block construction within the

7

TRIPS assembly code for all vector-based benchmarks. A simple loop was duplicated, unrolled,

and unpredicated to optimize for long vectors and reduce the number of comparisons. A slower

predicated loop was then necessary to guarantee functional correctness along vector boundaries.

Reference figure 2 for a diagram of this generic control flow.

6.1 Vector Addition

Commonly used in a variety of DSP applications, vector-based addition was a natural selection for

benchmarking our SIMD addition extensions. Our benchmark computes the element-wise sum of

two arrays and writes the result to a third array. This operation exhibits element-wise independence

making it an excellent benchmark for our packed ADD2 and ADD8 instructions.

To insulate our performance results from initialization overhead, we chose to run vector add on

a large input size (3 arrays of 1-million elements in length).

6.2 Vector Multiplication

To complement our vector addition, we chose an analogous vector-based multiplication to bench-

mark our SIMD multiplication extensions. The element-wise product of two arrays is computed

and written to a third array. Like its vector-add counter-part, it exhibits tremendous data-level par-

allelism and is thus an excellent choice for benchmarking our packed MUL2 and MUL8 instructions.

Further, the similarities between vector-multiply and vector-add will allow us to study the impact

of static instruction latency on overall performance.

Like vector-add, we chose to run this benchmark on a large dataset size - arrays of 1-million

elements in length. This strategy will amortize the cost of initialization and expose the asymptotic

performance characterization of the benchmark.

6.3 Block Rotation

Line 0

512-bit AES Block Rotation

Line 1

Line 7

Rotate Left 0 bits

Rotate Left 8 bits

Rotate Left 56 bits

64 bits

Figure 3: Overview of Block Rotation Benchmark.

Cryptographic applications such as AES encryption require bit-wise rotations of a lines of data

in a block. We chose to benchmark our bitwise rotation extension by implementing a micro-kernel

8

of the AES encryption scheme. The micro-kernel performs 8 rotations of varying length on the lines

of a 512-bit 2D matrix. We repeat this operation in a loop to amortize any initialization overhead.

A high-level diagram of the algorithm can be seen in Figure 3.

7 Evaluation

7.1 Vector-add

ADD8 (8-bit Elements)

TIc64x TRIPS TRIPS w/ Exts.

Instructions 1,519,954 6,300,296 788,566

Blocks - 100,035 12,605

Cycles 1,770,014 2,281,186 309,475

IPC 0.85 2.76 2.55

ADD2 (32-bit Elements)

TIc64x TRIPS TRIPS w/ Exts.

Instructions 6,031,886 6,300,296 3,150,406

Blocks - 100,035 50,045

Cycles 8,467,848 2,563,735 1,318,081

IPC 0.71 2.46 2.39

Table 3: Vector Add

We first observe an expected result and find a strong correlation between the SIMD degree and

the dynamic instruction count in vector addition benchmarks. The usage of the ADD8 and ADD2

extensions resulted in dynamic instruction reductions of a factor of 8 within 0.1% variation and 2

within 0.01% variation, respectively. A similar correlation is observed in dynamic block count as

well.

Correlated, but not as strongly, proportional cycle reductions are observed in vector addition.

With fewer cycles to buffer, the performance susceptibility to network contention on the TRIPS

architecture increases. The small variation that is observed here can be accounted for through

imperfections in the critical blocks’ scheduling.

With support for a packed, 8-bit, ADD4 instruction, the TIc64x achieves a reasonable instruction

count - twice that of the TRIPS architecture with the ADD8 extension. However, the TIc64x has

support for only one half of the memory bandwidth as that of the TRIPS architecture and thus

experiences a 2x slow-down in addition to the 2x instruction count. A net 4x speedup for the

TRIPS architecture with the ADD8 extension is reasoned and observed. The TRIPS architecture

with the ADD2 extension experiences a 2x speedup over the TRIPS baseline and a 4x speedup over

the TIc64x on the 32-bit data size.

7.2 Vector-multiply

Similar to vector addition, the vector multiply benchmarks observe a tight correlation between

SIMD degree and the dynamic instruction, block, and cycle count performance on the TRIPS archi-

tecture.

9

MUL8 (8-bit Elements)

TIc64x TRIPS TRIPS w/ Exts.

Instructions 2,002,455 6,300,311 788,581

Blocks - 100,037 12,607

Cycles 2,113,151 2,256,872 309,993

IPC 0.94 2.79 2.54

MUL2 (32-bit Elements)

TIc64x TRIPS TRIPS w/ Exts.

Instructions 6,031,992 6,300,311 3,150,421

Blocks - 100,037 50,047

Cycles 7,001,032 2,575,250 1,319,428

IPC 0.86 2.45 2.39

Table 4: Vector Multiply

the TIc64x suffers from resource contention in addition to memory bandwidth saturation in

8-bit vector multiplication. MPY4, as available on the TIc64x architecture is pipelined but only

available on one half of the execution units within each data path. This accounts for the 8x perfor-

mance speedup of the augmented TRIPS architecture relative to the TIc64x. Limited only by mem-

ory bandwidth and instruction count, we observe a 4x performance improvement on the TRIPS

architecture relative to the TIc64x.

7.3 Block-rotation

ROTL (512-bit Blocks)

TIc64x TRIPS TRIPS w/ Exts.

Instructions 7,600,272 7,600,260 4,300,260

Blocks - 300,023 300,023

Cycles 4,000,330 2,452,385 2,402,387

IPC 1.90 3.10 2.00

Table 5: Block Rotation

Unique to block rotation in our study, a very tight instruction reduction factor of 2x is not mir-

rored in dynamic block count. This is because the block constraints were already reached without

the extension. While we reduced the necessary instructions to perform the task, we could not re-

duce the number of necessary blocks. Accordingly, we observe a small performance increase of

2.0%, despite a halving of the dynamic instruction count. The performance ratio across architec-

tures is a reflection of the available memory bandwidth.

8 Conclusions

In this paper we have outlined a set of DSP extensions to the TRIPS ISA and evaluated their perfor-

mance. We have reasoned about the feasibility of these extensions and modeled how they can fit in

10

the TRIPS instruction space. As an explorative study, these extensions have demonstrated that the

performance benefits of conventional DSP specialization techniques can be observed in an EDGE

ISA.

We evaluated the performance of the augmented TRIPS ISA by comparing our results to those

of an industry standard DSP architecture, the TIc64x. While both architectures demonstrated an

insensitivity to static instruction latency, we discovered bandwidth bottlenecks and observed per-

formance ratios accordingly.

By employing hand optimization and custom written microbenchmarks, we were able to observe

degree order performance gains from SIMD extensions to the TRIPS ISA. In addition, we observed

a correlation between dynamic block count and performance in the TRIPS ISA. We believe that

this demonstrates the flexibility of the TRIPS architecture to absorb excess dynamic instructions

by leveraging redundant execution units. Accordingly, extensions which simply reduce dynamic

instruction count (such as ROTL), are unable to realize any significant performance gains and

should be avoided. Further, we propose that future architectural augmentations focus on reducing

the demand on the memory system.

9 Future Work

A way of reducing the stress on the memory system is to reduce the utilization rate of the OPN.

Future work should investigate two alternative methods for doing this.

First, a new addressing mode could be defined. Such an addressing mode would push memory

addresses to small registers embedded in, and replicated across, the data-cache tiles. Fewer bits

would then be required to specify a memory access. The saved bits could then be re-employed in a

number of ways, such as to name additional operand buffer targets.

Alternatively, by redefining a store instruction to release two independent packets (target ad-

dress and value), 40 bits of the OPN could be reclaimed. A complementary, but trivial, modifica-

tion to load instructions would be necessary. The reclaimed OPN bandwidth could then be turned

around and augmented with little cost to router complexity or chip area. OPN links might then be

able to carry two packets per cycle, doubling the effective bandwidth.

References

[1] Texas Instruments, TMS320C6416 Digital Signal Processor. December 2001.

[2] AMD. 3DNow! Technical Manual, 2000.

[3] AMD. AMD Extensions to the 3DNow! and MMX Instruction Sets, 2000.

[4] J. D. Broesch. Digital Signal Processing Demystified. Newnes, March 1997.

[5] D. Burger, S. W. Keckler, K. S. McKinley, M. Dahlin, L. K. John, C. Lin, C. R. Moore, J. Burrill, R. G. McDonald, and

W. Yoder. Scaling to the End of Silicon with EDGE Architectures. IEEE Computer, pages 44–55, July 2004.

[6] K. B. Bush, M. Gebhart, D. Burger, and S. W. Keckler. A Characterization of High Performance DSP Kernels on

the TRIPS Architecture. Technical Report TR-06-62, Department of Computer Sciences, The University of Texas at

Austin, Austin, TX, November 2006.

[7] K. B. Bush, M. Gebhart, E. Wei, N. Yudin, B. Maher, N. Nethercote, D. Burger, and S. W. Keckler. Evaluation and

Optimization of Signal Processing Kernels on the TRIPS Architecture. In Proceedings of the Annual Workshop on

Optimizations for DSP and Embedded Systems (ODES), March 2006.

[8] K. Coons, X. Chen, S. Kushwaha, K. S. McKinley, and D. Burger. A Spacial Path Scheduling Algorithm for EDGE

Architectures. In The Twelth International Conference on Architectural Support for Programming Languages and

Operating Systems, October 2006.

[9] IBM. Power ISA, Version 2.04, 2007.

11

[10] R. McDonald, D. Burger, S. W. Keckler, K. Sankaralingam, and R. Nagarajan. TRIPS Processor Reference Manual.

Technical Report TR-06-62, Department of Computer Sciences, The University of Texas at Austin, Austin, TX,

November 2006.

[11] K. S. McKinley, J. Burrill, D. Burger, B. Cahoon, J. Gibson, J. E. B. Moss, A. Smith, Z. Wang, and C. Weems. The

Scale Compiler. Technical report, Department of Computer Sciences, University of Massachusetts, University of

Texas, 2005.

[12] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger, S. W. Keckler, and C. R. Moore. Exploiting

ILP, TLP, and DLP with the Polymorphous TRIPS Architecture. In Proceedings of the 30th Annual International

Symposium on Microarchitecture, May 2003.

[13] TRIPS. Department of Computer Sciences, University of Texas. http://www.cs.utexas.edu/users/trips, 2006.

[14] B. Yoder, J. Burrill, R. McDonald, K. B. Bush, K. Coons, M. Gebhart, S. Govindan, B. Maher, R. Nagarajan, B. R. K.

Sankaralingam, S. Sharif, A. Smith, D. Burger, S. W. Keckler, and K. S. McKinley. Software Infrastructure and Tools

for the TRIPS Prototype. In Third Annual Workshop on Modeling, Benchmarking, and Simulation, June 2007.

12

APPENDIX

A ADD2 - Packed Add 2

Format: G:2

Instruction Type: General

Number of Targets: 2

Primary Opcode: 23

Extended Opcode: 26

 31 24 22 17 825 23 18 9 0
23 PR 26 T1 T0

Figure 4: ADD2 Format

Description:

The OP0 value is added to the OP1 value via a 64-bit adder with carry-overs on 32-bit boundaries. The

result is two 32-bit sums corresponding to the 32-bit addition of bits 0-31 of OP0 and OP1, and of bits

32-63 of OP0 and OP1. Arithmetic overflows are ignored on 32-bit boundaries.

Operation:

T0, T1← OP0 +2x32−bit OP1

OP1 63 32

OP2 63 32

T0/T1 63 32

OP1 31 0

OP2 31 0

T0/T1 31 0

+ +

Figure 5: ADD2 Operation

Exceptions:

None.

Notes:

None.

13

B ADD8 - Packed Add 8

Format: G:2

Instruction Type: General

Number of Targets: 2

Primary Opcode: 23

Extended Opcode: 27

 31 24 22 17 825 23 18 9 0
23 PR 27 T1 T0

Figure 6: ADD8 Format

Description:

The OP0 value is added to the OP1 value via a 64-bit adder with carry-overs on 8-bit boundaries. The

result is eight 8-bit sums corresponding to the 8-bit addition of bits 0-7, 8-15, 16-23, 24-31, 32-39,

40-47, 48-55, and 56-63 of OP0 and OP1. Arithmetic overflows are ignored on 8-bit boundaries.

Operation:

T0, T1← OP0 +8x8−bit OP1

OP1 63 56 OP1 55 48 OP1 47 40 OP1 39 32 OP1 31 24 OP1 23 16 OP1 15 8 OP1 7 0

OP2 63 56 OP2 55 48 OP2 47 40 OP2 39 32 OP2 31 24 OP2 23 16 OP2 15 8 OP2 7 0

T0/T1 63 56 T0/T1 55 48 T0/T1 47 40 T0/T1 39 32 T0/T1 31 24 T0/T1 23 16 T0/T1 15 8 T0/T1 7 0

+ + + + + + + +

Figure 7: ADD8 Operation

Exceptions:

None.

Notes:

None.

14

C MUL2 - Packed Multiply 2

Format: G:2

Instruction Type: General

Number of Targets: 2

Primary Opcode: 23

Extended Opcode: 28

 31 24 22 17 825 23 18 9 0
23 PR 28 T1 T0

Figure 8: MUL2 Format

Description:

The OP0 value is multiplied by the OP1 value via two 32-bit multipliers. The result is two 32-bit prod-

uct corresponding to the 32-bit multiplication of bits 0-31 of OP0 and OP1, and of bits 32-63 of OP0

and OP1. Arithmetic overflows are ignored on 32-bit boundaries.

Operation:

T0, T1← OP0 ∗2x32−bit OP1

OP1 63 32

OP2 63 32

T0/T1 63 32

OP1 31 0

OP2 31 0

T0/T1 31 0

x x

Figure 9: MUL2 Operation

Exceptions:

None.

Notes:

None.

15

D MUL8 - Packed Multiply 8

Format: G:2

Instruction Type: General

Number of Targets: 2

Primary Opcode: 23

Extended Opcode: 29

 31 24 22 17 825 23 18 9 0
23 PR 29 T1 T0

Figure 10: MUL8 Format

Description:

The OP0 value is multiplied by the OP1 value via eight 8-bit multipliers. The result is eight 8-bit prod-

ucts corresponding to the 8-bit multiplication of bits 0-7, 8-15, 16-23, 24-31, 32-39, 40-47, 48-55,

and 56-63 of OP0 and OP1. Arithmetic overflows are ignored on 8-bit boundaries.

Operation:

T0, T1← OP0 ∗8x8−bit OP1

OP1 63 56 OP1 55 48 OP1 47 40 OP1 39 32 OP1 31 24 OP1 23 16 OP1 15 8 OP1 7 0

OP2 63 56 OP2 55 48 OP2 47 40 OP2 39 32 OP2 31 24 OP2 23 16 OP2 15 8 OP2 7 0

T0/T1 63 56 T0/T1 55 48 T0/T1 47 40 T0/T1 39 32 T0/T1 31 24 T0/T1 23 16 T0/T1 15 8 T0/T1 7 0

x x x x x x x x

Figure 11: MUL8 Operation

Exceptions:

None.

Notes:

None.

16

E ROTL - Rotate Left

Format: G:2

Instruction Type: General

Number of Targets: 2

Primary Opcode: 23

Extended Opcode: 30

 31 24 22 17 825 23 18 9 0
23 PR 30 T1 T0

Figure 12: ROTL Format

Description:

The OP0 value is rotated (logically) left by the number of bits specified by the unsigned representation

of the lowest 7 bits of OP1. All remaining bits of OP1 are ignored. A logical shift-left is performed, how-

ever, the padded low-order bits are replaced by the lost high-order bits. Maximum shift range of [0-63].

Operation:

T0, T1← OP0 Rotate− LeftOP1−bits

0 63 OP0

T0/T1 63 0

OP1

Figure 13: ROTL Operation

Exceptions:

None.

Notes:

None.

17

