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Abstract

We propose a method to efficiently index into a large database of examples according to a learned met-
ric. Given a collection of examples, we learn a Mahalanobis distance usingan information-theoretic metric
learning technique that adapts prior knowledge about pairwise distancesto incorporate similarity and dis-
similarity constraints. To enable sub-linear time similarity search under the learned metric, we show how
to encode a learned Mahalanobis parameterization into randomized locality-sensitive hash functions. We
further formulate an indirect solution that enables metric learning and hashing for sparse input vector spaces
whose high dimensionality make it infeasible to learn an explicit weighting overthe feature dimensions.
We demonstrate the approach applied to systems and image datasets, and show that our learned metrics
improve accuracy relative to commonly-used metric baselines, while ourhashing construction permits effi-
cient indexing with a learned distance and very large databases.

1 Introduction

The success of any distance-based indexing, clustering, orclassification scheme depends critically on the
quality of the chosen distance metric, and the extent to which it accurately reflects the true underlying rela-
tionships between the examples in a particular data domain.An optimal distance metric should report small
distances for examples that are similar in the parameter space of interest (or that share a class label), and con-
versely should report large distances for examples that areunrelated. General-purpose measures, such asℓp

norms, are simple to compute and are amenable to existing fast search methods, but they are not necessarily
well-suited for all learning problems with a given data representation. This is especially of concern when one
might want the learner to tend to different aspects of similarity for different problems with the same repre-
sentation. For example, given a collection of face images, in one scenario we might want a distance function
that considers images to be close if they contain the same person, whereas in another case we would prefer
that proximity reflect the similarity of two facial expressions.

Recent advances in metric learning make it possible to learndistance or kernel functions that are more
effective for a given problem, provided some partially labeled data or constraints are available [29, 28, 13, 3,
7, 11]. By taking advantage of the prior information, these techniques offer improved accuracy when indexing
or classifying examples. Analyzing large volumes of data isof great interest in computational biology, vision,
and natural language processing, making fast similarity search with learned metrics an important challenge.

However, previous approaches to metric learning have limited applicability to very large data sets, since
the specialized learned distance functions preclude the direct use of known efficient search techniques. Data
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structures for efficient exact search are known to be ineffective for high-dimensional spaces and can (de-
pending on the data distribution) degenerate to brute forcesearch [10, 27]; approximate search methods can
guarantee sub-linear time performance but are defined for general-purpose metrics, such as the Hamming
distance [18],ℓp norms [6], or an inner product [4]. As such, in order to find themost similar examples
for a given input, metric learning approaches are currently(in the worst case) forced to exhaustively scan
all previously seen examples to evaluate their similarity to the input under the learned metric; likewise, in
order to cluster a collection of data, all pairwise distances are required. This is a limiting factor that thus far
prevents the use of metric learning with very large data sets.

In this work we introduce a method for fast approximate similarity search with learned metrics. We show
how to construct randomized hash functions that integrate knowledge attained from partially labeled data or
paired constraints, so that examples may be efficiently indexed or grouped according to the learned metric
without resorting to a naive exhaustive scan of all items. Wepresent a straightforward solution for the case
of relatively low-dimensional input vector spaces, and further derive a solution to accommodate very high-
dimensional but sparse data for which explicit input space computations for both metric learning and hashing
are infeasible. The former contribution makes fast indexing accessible for numerous existing metric learning
methods [29, 28, 13, 3, 7], while the latter is of particular interest for commonly used representations in text
processing and vision. We demonstrate our approach by learning metrics and hash functions for systems and
image datasets, and analyze its performance with classification tasks.

2 Related Work

Recent work has yielded various approaches to the metric learning problem, including several techniques
to learn a combination of existing kernels given partially labeled data [19, 5], as well as a number of for-
mulations for learning the parameterization of a Mahalanobis metric given some number of class labels or
paired constraints [29, 28, 23, 13, 3, 7]. Embedding functions can be useful both to capture (as closely as
possible) a desired set of provided distances between points, as well as to provide an efficient approximation
for a known but computationally expensive distance function of interest [22, 1, 16]. However, in contrast to
learned metrics, such geometric embeddings are meant to mirror a fixed distance function and do not adapt
to reflect supervised constraints.

Xing et al. learn a Mahalanobis metric fork-means clustering by using semidefinite programming to
minimize the sum of squared distances between similarly labeled examples, while requiring a certain lower
bound on the distances between examples with different labels [29]. In related techniques, Globerson and
Roweis [13] constrain within-class distances to be zero andmaximize between-class distances [13], while
Weinberger et al. formulate the problem in a large-margink-nearest-neighbors setting [28]. In addition to
using labeled data, research has shown how metric learning can proceed with weaker supervisory information,
such as equivalence constraints [3], or relative constraints [23, 11]. For example, equivalence constraints are
exploited in the Relevant Component Analysis method of Bar-Hillel et al. [3]; the Support Vector Machine-
based approach of Schultz and Joachims [23] incorporates relative constraints over triples of examples, and
is extended by Frome et al. to learn example-specific local distance functions [11]. Davis et al. develop an
information-theoretic approach that accommodates any linear constraints on pairs of examples, and provide
an efficient optimization solution that forgoes expensive eigenvalue decomposition [7].

Multi-dimensional scaling [8], Locally-Linear Embeddings [22], and IsoMap [26] provide ways to cap-
ture known distances in a low-dimensional space, and provably low-distortion geometric embeddings have
also been explored (e.g., [2]). The BoostMap approach of Athitsos et al. learns efficient Euclidean-space
embeddings that preserve proximity as dictated by useful expensive distance measures [1].

In order to efficiently index multi-dimensional data, data structures based on spatial partitioning and
recursive hyperplane decomposition have been developed, includingk − d-trees [10] and metric trees [27].
Some such data structures support the use of arbitrary metrics. However, while their expected query time
performance may be logarithmic in the database size, selecting useful partitions can be expensive and requires
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good heuristics; worse, particular data distributions canresult in a brute force search, and in high-dimensional
spaces all exact search methods are known to provide little improvement over a naive linear scan [18].

As such, researchers have considered the problem ofapproximatesimilarity search, where a user is af-
forded explicit tradeoffs between the guaranteed accuracyversus speed of a search. Several randomized
approximate search algorithms have been developed that allow even high-dimensional data to be searched
in time sub-linear in the size of the database [18, 4, 6]. Indyk and Motwani [18] and Charikar [4] propose
locality-sensitive hashing (LSH) techniques to index examples in Hamming space in sub-linear time, and
Datar et al. extend LSH forℓp norms in [6]. Data-dependent variants of LSH have also been suggested.
Georgescu et al. select space partitions in a data-driven manner, in an effort to use more meaningful hash
functions for a given data distribution [12],

In contrast to previous work, we address the problem of sub-linear time approximate similarity search for
a learned metric. While randomized algorithms like LSH have been employed heavily to mitigate the time
complexity of identifying similar examples [24], their usehas been restricted to generic measures for which
the appropriate hash functions are already defined, i.e., direct application to learned metrics was not possible.
We instead devise a method that allows knowledge attained from partially labeled data or paired constraints to
be incorporated into the hash functions, without any additional loss in accuracy relative to the learned metric
beyond the quantified loss induced by the approximate searchtechnique.

The goals of Shakhnarovich et al. [25] are most similar to ours, since they also address both the need to
compare examples according to their “hidden” parameters aswell as the need to search for similar examples
in large databases very quickly. However, while they have shown the advantage of applying hash functions
to feature dimensions that most reveal parameter-space similarity, any examples indexed must be sorted
according to the input space (non-learned) distance. Our approach offers a seamless integration of a learned
metric, in that examples are both hashed and sorted according to learned constraints. In addition, the proposed
method stands to benefit several existing methods for metriclearning.

3 Approach

The main idea of our approach is to learn a parameterization of a Mahalanobis metric based on whatever labels
or paired constraints are provided for some training examples, and then to encode the learned information
into randomized hash functions. These functions will guarantee that the more similar inputs are under the
learned metric, the more likely they are to collide in a hash table. After constructing hash tables containing
all of the initial training (database) examples, examples similar to a new instance are found in sub-linear time
in the size of the database by evaluating the learned metric between the new example and any examples with
which it shares a hash bucket. In the following we will first give a brief background of the metric learning
approach we employ, and then we describe how to incorporate that metric into the hash functions, either for
low-dimensional (Section 3.2.1) or sparse high-dimensional data (Section 3.2.2).

3.1 Information-Theoretic Metric Learning

As in [29, 28, 13, 7, 23, 3], we are givenn points{x1, . . . ,xn}, with all xi ∈ ℜd, and wish to compute a
positive-definite (p.d.)d × d matrixA to parameterize the squared Mahalanobis distance:

dA(xi,xj) = (xi − xj)
T A(xi − xj), (1)

for all i, j = 1, . . . , n. Note that a generalized inner product (kernel) measures the pairwise similarity
associated with that distance:sA(xi,xj) = x

T
i Axj . The Mahalanobis distance is often used withA as

the inverse of the sample covariance when data is assumed to be Gaussian, or withA as the identity matrix
if the squared Euclidean distance is suitable. Given a set ofinter-point distance constraints, however, we
can directly learn a matrixA to yield a measure that is more accurate for a given classification or clustering
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problem. We adopt the information-theoretic metric learning method of Davis et al. [7], since it is efficient,
flexible in terms of the constraint specification, and fares well empirically for classification and clustering
tasks.

Given an initiald× d p.d. matrixA0 specifying prior knowledge about inter-point distances, the learning
task is posed as an optimization problem that minimizes the LogDet divergence between matrixA0 and
A, subject to a set of constraints specifying pairs of examples that are similar or dissimilar. The LogDet
divergence is a Bregman divergence and is defined over the cone of positive definite matrices:

Dℓd(A,A0) = tr(AA−1
0 ) − log det(AA−1

0 ) − d.

Given pairs of similar pointsS and dissimilar pointsD, we will require thatdA(xi,xj) ≤ u for a small value
of u for all (i, j) ∈ S, and likewise thatdA(xi,xj) ≥ l for a sufficiently large value ofl for all (i, j) ∈ D.
In semi-supervised multi-class settings, the constraintsare taken directly from the provided labels: points in
the same class must be similar, points in different classes are constrained to be dissimilar.

To computeA, the LogDet divergence is minimized while enforcing the desired constraints:

min
Aº0

Dℓd(A,A0)

s. t. dA(xi,xj) ≤ u (i, j) ∈ S,

dA(xi,xj) ≥ ℓ (i, j) ∈ D.

(2)

This optimization problem may be viewed in an information-theoretic manner as minimizing the differential
relative entropy between the equal-mean Gaussians whose inverse covariances areA0 andA [7]. In order to
guarantee the existence of a feasibleA, slack variables may be introduced into the above. The optimal solution
is obtained via repeated Bregman projections that project the current solution onto a single constraint. The
update toAt+1 from At is given by:

At+1 = At + βtAt(xit
− xjt

)(xit
− xjt

)T At, (3)

wherexit
andxjt

are the constrained data points for iterationt, andβt is a projection parameter computed
by the algorithm. When the dimensionality of the data is very high, we cannot explicitly work withA,
and so the update in (3) cannot be performed. However, we may still implicitly update the Mahalanobis
matrix A via updates in kernel space for an equivalent kernel learning problem in whichK = XT AX for
X = [x1, . . . ,xn]. If K0 is an input kernel matrix of the data, the appropriate updateis:

Kt+1 = Kt + βtKt(eit
− ejt

)(eit
− ejt

)T Kt, (4)

where the vectorseit
andejt

refer to theit-th andjt-th standard basis vectors, respectively, and the projection
parameterβt is the same as in (3). See [7] for details on the algorithm.

In Section 3.2.1 we will use theA that results at convergence to modify random hash functions, in the
event thatAt can be manipulated directly. In Section 3.2.2 we derive an implicit formulation that enables
information-theoretic learning with high-dimensional sparse inputs for whichAt cannot be explicitly repre-
sented.

3.2 Locality-Sensitive Hash Functions for Learned Metrics

A locality-sensitive hashing scheme is a distribution on a familyF of hash functions operating on a collection
of objects, such that for two objectsx,y,

Pr
h∈F

[h(x) = h(y)] = sim(x,y), (5)

wheresim(x,y) is some similarity function defined on the collection of objects [4, 18]. Whenh(x) = h(y),
x andy collide in the hash table. Because the probability that two inputs collide is equal to the similarity
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between them, highly similar objects are indexed together in the hash table with high probability. Existing
LSH functions can accommodate the Hamming distance [18],ℓp norms [6], and inner products [4].

In the following we introduce hash functions that can accommodate a learned Mahalanobis distance,
where we want to retrieve examplesxi for an inputxq for which the valuedA(xi,xq) resulting from (1) is
small, or, in terms of the kernel form, for which the value ofsA(xi,xq) = x

T
q Axi is high.

3.2.1 Explicit Formulation

Given the matrixA for a metric learned as above1, such thatA = GT G, we generate the following random-
ized hash functionshr,A which accept an input point and return a binary hash key bit:

hr,A(x) =

{

1, if r
T Gx ≥ 0

0, otherwise
, (6)

where the vectorr is chosen at random from ad-dimensional Gaussian distribution with zero mean and
unit variance. This construction leverages earlier results showing that (1) the probability of two unit vectors
having a dot products with random vectorr that are opposite in sign is proportional to the angle between
them [14], and (2) the sign ofrT

xi is therefore a locality-sensitive function for the inner product of any two
inputsxi andxj [4].

Thus by parameterizing the hash functions instead byG (which is computable sinceA is p.d.), we obtain
the following relationship:

Pr [hr,A(xi) = hr,A(xj)] = 1 −
1

π
cos−1

(

x
T
i Axj

√

|Gxi||Gxj |

)

, (7)

which sustains the requirement of (5) for a learned Mahalanobis metric, whetherA is computed using the
method of [7] or otherwise [29, 28, 13, 23, 3]. Essentially wehave shifted the random hyperplaner according
to A, and by factoring it byG we allow the random hash function itself to “carry” the information about the
learned metric. Note that (6) assumes that the input dimension d is low enough thatA can be explicitly
handled in memory, allowing the updates in (3). In Section 3.3 we describe how indexing proceeds from
these hash keys.

3.2.2 Implicit Formulation

We are also interested in the case where the dimensionalityd may be very high, but the examples{x1, . . . ,xn}
are sparse and therefore representable. For example, bag-of-words text representations for large corpora [21]
or multi-dimensional multi-resolution histogram representations used in vision [15, 16] are prime situations
where one must work with a very high-dimensional but sparse feature space. Even though the examples are
each sparse,the matrixA can be dense, with values for each dimension. Therefore, in this settingA cannot
be explicitly represented, so the update in (3) and hash functions in (6) are infeasible to compute. Thus, in
the following we show how to achieve efficient hashing without manipulatingA directly.

We denote high-dimensional sparse inputs byφ(x) to mark their distinction from the dense inputsx

handled in Section 3.2.1. In this case, we assume that implicitly A0 = I. As in the explicit formulation
above, the goal is to wrapG into the hash function, but now we must do so without working directly with G.
In the following, we will show that an appropriate hash function hr,A for inputsφ(x) can be defined as:

hr,A(φ(x)) =

{

1, if r
T φ(x) +

∑c
i=1 γr

i φ(xi)
T φ(x) ≥ 0

0, otherwise
, (8)

1In all further notation, a variable without an iterationt subscript denotes its value after convergence, thus here weare referring toA
once (3) converges.
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wherec is the total number of constrained data points inS
⋃

D, φ(xi)
T φ(x) is the original kernel function

value between constrained examplexi and the inputx, andγr
i are coefficients computed once (offline) during

metric learning, and will be defined below. Note that whileG is dense and therefore not manageable,r is by
definition as sparse as allφ(x) inputs, and we need to generate random values for the nonzeroentries only.
Thusr

T φ(x) is practical to compute.
Next we present a construction to expressG in terms of the constrained data points, and a method to

compute (8) efficiently. Our construction relies on two technical lemmas which we prove in this section.
Recall the update rule forA from (3): At+1 = At + βtAtvtv

T
t At, whereβt is the projection parameter

for iterationt, andvt equalsφ(xit
) − φ(xjt

) if points i andj correspond to the distance constraint under
consideration at iterationt. SinceAt is positive semi-definite, we can factorize it asAt = GT

t Gt, which
allows us to rewrite the update as:

At+1 = GT
t (I + βtGtvtv

T
t GT

t )Gt.

As a result, if we factorizeI + βtGtvtv
T
t GT

t , we can derive an explicit update forGt+1:

Gt+1 = (I + βtGtvtv
T
t GT

t )1/2Gt = (I + αtGtvtv
T
t GT

t )Gt, (9)

where the second equality follows from Lemma 1 usingy = Gtvt, andαt is defined accordingly.

Lemma 1. LetB = I+βyy
T be positive semi-definite. ThenB1/2 = I+αyy

T , withα = (±
√

1 + yT yβ−
1)/y

T
y.

Proof. Consider(I +αyy
T )2. Expanding yieldsI +2αyy

T +α2(yT
y)yy

T = I +(2α+α2
y

T
y)yy

T . For
the lemma to hold, we require that(I+αyy

T )2 = I+βyy
T , and this holds when2α+α2

y
T
y = β. Solving

this quadratic equation forα, we obtain the desired result. Furthermore,α is real-valued: the eigenvalues of
B are 1 and1+βy

T
y, which is greater than or equal to 0 sinceB is positive semi-definite. Thus

√

1 + yT yβ
is real, and soα is real.

Let Φ = [φ(x1)φ(x2)...φ(xc)] be thed × c matrix of all c constrained data points, and letK0 = ΦT Φ
be the kernel matrix for all constrained input pairs. We now prove the following lemma:

Lemma 2. For all t, if G0 = I andS0 = 0, then

Gt+1 = I + ΦSt+1Φ
T

St+1 = St + αt(I + StK0)(eit
− ejt

)(eit
− ejt

)T (I + K0S
T
t )(I + K0St).

Proof. We can prove this by induction. In the base case,S0 = 0, implying G0 = I andGT
0 G0 = A0 = I. In

the inductive case, expand Eqn. 9 asGt+1 = (I + αtGtvtv
T
t GT

t )Gt by plugging in the inductive hypothesis
Gt = I +ΦStΦ

T . After algebraic simplification,Gt+1 can be expressed in the formI +ΦSt+1Φ
T using the

update forS given above.

According to Lemma 2,Gt can be expressed asGt = I+ΦStΦ
T , whereSt is ac×c matrix of coefficients

that determines how much weight each pair of constrained inputs has in its contribution toG. Initially, S0 is
set to the all-zerosc × c matrix, and from there everySt+1 is iteratively updated inO(c2) time via

St+1 = St + αt(I + StK0)(eit
− ejt

)(eit
− ejt

)T (I + K0S
T
t )(I + K0St).

Note that this update ensures thatGt remains in the formGt = I + ΦStΦ
T once it is updated according to

(9).2 Using this result, at convergence of the metric learning algorithm we can computeGφ(x) in terms of
the constrained input pairs(φ(xi), φ(xj)) as follows:

Gφ(x) = φ(x) + ΦSΦT φ(x) = φ(x) +

c
∑

i=1

c
∑

j=1

Sijφ(xi)φ(xj)
T φ(x).

2We also stress that, since the dimensionality of the data is high, we compute updates implicitly using (4) when performing metric
learning; however, since the projection parameters are the same for (3) and (4), the updates forS still can be computed.
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Therefore, we have

r
T Gφ(x) = r

T φ(x) +

c
∑

i=1

c
∑

j=1

Sijr
T φ(xi)φ(xj)

T φ(x) = r
T φ(x) +

c
∑

i=1

γr
i φ(xi)

T φ(x),

whereγr
j =

∑

i Sijr
T φ(xj), and is a notation substitution for the first equality. This substitution reflects that

the values of eachγr
j rely only on known constrained inputs, and thus can be efficiently computed as soon as

the metric learning algorithm has converged, that is, priorto hashing anything into the database.
Finally, having determined this expression forr

T Gφ(x), we arrive at our hash function definition in (8).
Note the analogy between the use ofr

T Gx andr
T Gφ(x) in (6) and (8), respectively.

3.3 Searching Hashed Examples

Having defined locality-sensitive hash functions for learned metrics, we can apply existing methods [18, 4]
to perform sub-linear time approximate similarity search.Givenn data points in a Hamming space and an
inputxq, approximate near-neighbor techniques guarantee retrieval of example(s) within the radius(1+ ǫ)D
from xq in O(n1/1+ǫ) time, where the true nearest neighbor is at a distance ofD from xq.

To generate ab-bit hash key for every example, we selectb random vectors[r1, . . . , rb] to form b hash
functions. The hash key for an inputx is then the concatenation of the outputs of (6) (or similarly, the
outputs of (8) for a sparse and high-dimensional inputφ(x)). The problem of indexing into the database
with xq is reduced to hashing with these sameb functions and retrieving items corresponding to database bit
vectors having minimal Hamming distances to the query bit vector. For this step, we employ the technique
for approximate search in Hamming space developed by Charikar [4]. Given the list of database hash keys,
M = O(n1/(1+ǫ)) random permutations of the bits are formed, and each list of permuted hash keys is sorted
lexicographically to formM sorted orders. A query hash key is indexed into each sorted order with a binary
search, and the2M nearest examples found this way are the approximate nearestneighbors. See [4] for
details.

Having identified these nearest bit vectors, we then computethe actual learned kernel values between
them and the original input. The hashed neighbors are rankedaccording to these scores, and this ranked
list is used fork-nn classification, clustering, etc., depending on the application at hand. The tradeoff in the
selection ofb is as follows: larger values will increase the accuracy of how well the keys themselves reflect
the metric of interest, but will also increase computation time and can lead to too few collisions in the hash
tables. On the other hand, ifb is lower, hashing will be faster, but the key will only coarsely reflect our metric,
and too many collisions may result.

3.4 Computational Complexity Analysis

We now briefly discuss the computational complexity of each step of our algorithm. The first step, offline met-
ric learning, costsO(d2) per projection in the low-dimensional case (using (3)) andO(c2) per projection in
the high-dimensional case (using (4)). Thus, each iteration of cycling through allm constraints costsO(md2)
andO(mc2) for the low-dimensional and high-dimensional cases, respectively. In the high-dimensional case,
we must also maintain and updateS, which costsO(c2) per projection.

Once the metric learning step is complete, we must generate hash keys for each item in the database. In
the case of dense inputs, computinghr,A(x) costsO(d) time for eachr after we precomputerT G once. In
the high-dimensional case, we can computer

T φ(x) efficiently by only considering the non-zero elements of
φ(x). Theγr

i may also be computed in this way. Further, we store the non-zeros of
∑

i γr
i φ(xi) and, as a

result, computinghr,A(x) requiresO(z) time, wherez is the number of non-zeros inφ(x).
Given a new data point, after computing its hash key as above,we must compute the learned kernel values

to the2M approximate nearest neighbors. In the low-dimensional case, we computeAx once inO(d2) time,
and then each learned kernel function value can be computed in O(d) time, for a total ofO(Md + d2) time.
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Figure 1:Comparison of the accuracy (left) and time requirements (right) when hashing with the original and learned metrics for the
Latex dataset. Left plot showsk-nn classification accuracy; right plot shows the search timein terms of the percentage of database items
searched per query, both as a function of the number of hash bits b. Results are from ten runs with random query / database partitions,
with ǫ = 1.5. Our learned hash functions reduce the search to about 5% of the database, with virtually no loss in accuracy over the
exhaustive linear scan.

In the high-dimensional case, we can compute theM learned kernel values inO(Mc) total time using a
similar construction as with computinghr,A(x). Note that for similarity searches, we need not compute the
self-similarity of the query point in the learned metric, which saves computation. An alternate method leads
to O(Mz) total time, wherez is the number of non-zeros of the query point.

4 Results

We first evaluate our method for learned metric hashing on a nearest neighbor (nn) classification problem
using data from the CLARIFY system of Ha et al. [17]. CLARIFY assists a programmer in diagnosing errors
by identifying previously seen abnormal termination reports with similar program features, and pointing
the programmer to other users who have had similar problems.We experiment with a database ofn=3825
such examples collected from the Latex typesetting program. The features ared = 20-dimensional, and
so our explicit formulation for learning hash functions is most appropriate. Paired similarity constraints are
generated with information-theoretic metric learning using 20 labeled examples from each class. For 10
random partitions of the data, we extract 30 examples for each of its nine classes, and treat the remainder as
database examples. We measure thek = 4-nearest-neighbor classification accuracy and search times over
all 270 queries per run, under four settings: the “original”Euclidean distance metric and a linear scan, the
original distance with LSH, the learned metric with a linearscan, and the learned metric with LSH. For both
hashing cases we fixedǫ = 1.5.

Figure 1 shows the resulting accuracy and complexity gains.By incorporating the paired constraints, the
learned metric shows clear accuracy gains over the unconstrained Euclidean distance, yielding about 10%
higher correct classification rates. Thek-nn rates for the both associated hashed results are on average as
good as the linear scan results, and in this case, have littledependence on the number of hash functions used.
As b increases, however, the hash keys become more specific and allow larger amounts of the database to
be ignored for any given query (righthand plot). When searching only 5% of the database, our learned hash
functions suffer no loss in accuracy yet enable an average 13x speedup (maximum speedup 34x) relative
to an exhaustive scan with the learned metric (including theoverhead cost of computing the hash keys).
Interestingly, for the same values ofǫ andb, the number of examples searched with the learned hash functions
is noticeably lower than that of the generic hash functions,and has a tighter distribution. While the indexing
guarantees remain the same, we infer that just as the learnedmetric adjusts the feature space so that in-class
examples are more closely clustered, the learned hash functions better map them to distinct keys.

In a second set of experiments, we evaluate the implicit formulation of our approach using a large collec-
tion of images from 101 categories, called the Caltech101 [9]. This dataset is a commonly used benchmark
for object recognition, and poses an interesting challengefor metric learning, since there is not only a large
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Figure 2: Comparison of thek-nn classification accuracy when hashing with the original and learned PMK for Caltech101 image
data. Left plot shows the accuracy improvements over the original PMK [15] as we learn a PMK with an increasing number of paired
constraints. Middle plot shows classification accuracy as afunction of the number of hash bits, according to a linear scanor hashing
with either kernel. Right plot shows the accuracy-search time tradeoff when using the original or learned hashing functions.

number of categories, but within each category examples canbe fairly diverse in appearance. To compare
these images we consider learning a kernel based on the pyramid match kernel (PMK) of Grauman et al.[15].
The PMK uses multi-dimensional, multi-resolution histogram pyramids to estimate the correspondence be-
tween two sets of local image features. To hash with the baseline PMK, the authors embed the pyramids in
such a way that standard inner product LSH functions are applicable [16]. The pyramids and this embedding
space are very sparse but extremely high-dimensional, thusnecessitating the implicit form of our learned
metric hashing technique.

As above, we posed ak-nn classification task, and evaluated both the baseline metric (PMK in this
case) and learned metric for their accuracy when used in either a linear scan mode or with the approximate
hashing search. We represented images with sets of local SIFT [20] features as is done in [15]. We used 15
training examples per class for the database, 2454 images asqueries (at least 15 per class), and measured the
classification success in terms of the mean recognition rateper class, as is standard practice for this dataset. In
order to examine the quality of a learned PMK as a function of the number of paired constraints, we selected
varying numbers of images to constrain for kernel learning.To our knowledge, this is the first experimental
result demonstrating the performance of information-theoretic metric learning in kernel space. The left plot
of Figure 2 shows the linear scank-nn accuracy that results for increasing values ofc, and illustrates the
clear gain over the (non-learned) kernel baseline (k=1). With 15 constraints per category, our learned kernel
outperforms the baseline 52% to 32%.3 The very best reported performance on this dataset is due to Frome
et al.[11], who learn a local feature metric per-training example that yields 60% accuracy. Our single learned
kernel function yields 52% accuracy, and at test time requires comparisons to be computed with significantly
fewer examples, even if we were to search training examples with a linear scan.

In the middle plot of Figure 2, we compare the linear scan accuracies against those obtained with approx-
imate search, for varying numbers of hash bits. For both the original and learned kernels, the large search
time speedup does come at the cost of several points in accuracy. Our learned hash functions still achieve
47% accuracy, and require about 10x less computation time than the linear scan when accounting for the
hash key computation. Our research code is unoptimized, making this a rather conservative illustration of the
speedups our approach offers. The rightmost plot shows the accuracy of our learned PMK hashing compared
to the baseline as a function ofǫ. For higher values ofǫ we are guaranteed to search fewer examples, but as
expected must then sacrifice some accuracy. Overall, experiments with both datasets validate our approach
for sub-linear time hashing with learned metrics and kernels.

3Note that the accuracy reported by Grauman and Darrell is 50% using the baseline kernel, but within an SVM classifier; here we
find that withk-nn the PMK yields only 32% accuracy. Our learned PMK exceedsthe SVM accuracy with a simplek-nn classifier.
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5 Conclusions

We have introduced a method to learn randomized hash functions that reflect constraints on partially labeled
data points, in order to permit efficient approximate similarity search for learned metrics. Our experiments
with systems and image datasets demonstrate both the accuracy advantages to be had with information-
theoretic metric learning, as well as the significant computational efficiency gains that the proposed algorithm
enables. The proposed technique makes it practical to scalepowerful metric learning methods to classification
and clustering problems with large databases. In the futurewe would like to explore the active selection
of paired constraints for metric learning, and its impact onour similarity search framework. We are also
interested in considering how local learning paradigms could benefit from this faster search capability, and in
future experiments we plan to study additional datasets from alternate domains.
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