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Abstract

We propose a method to efficiently index into a large database of exanoglesleng to a learned met-
ric. Given a collection of examples, we learn a Mahalanobis distance asiirgormation-theoretic metric
learning technique that adapts prior knowledge about pairwise distemaesorporate similarity and dis-
similarity constraints. To enable sub-linear time similarity search under thegleéanetric, we show how
to encode a learned Mahalanobis parameterization into randomized Is=iijtive hash functions. We
further formulate an indirect solution that enables metric learning artdrigafor sparse input vector spaces
whose high dimensionality make it infeasible to learn an explicit weighting theefeature dimensions.
We demonstrate the approach applied to systems and image datasetspwrttiag our learned metrics
improve accuracy relative to commonly-used metric baselines, whilbaslting construction permits effi-
cient indexing with a learned distance and very large databases.

1 Introduction

The success of any distance-based indexing, clusteringassification scheme depends critically on the
quality of the chosen distance metric, and the extent to lwhiaccurately reflects the true underlying rela-
tionships between the examples in a particular data domairoptimal distance metric should report small
distances for examples that are similar in the parameteespfanterest (or that share a class label), and con-
versely should report large distances for examples thatram&ated. General-purpose measures, suéh as
norms, are simple to compute and are amenable to existingdasch methods, but they are not necessarily
well-suited for all learning problems with a given data esg@ntation. This is especially of concern when one
might want the learner to tend to different aspects of sintyidor different problems with the same repre-
sentation. For example, given a collection of face imagesne scenario we might want a distance function
that considers images to be close if they contain the sans®pewhereas in another case we would prefer
that proximity reflect the similarity of two facial expresas.

Recent advances in metric learning make it possible to ld&tance or kernel functions that are more
effective for a given problem, provided some partially l@ioedata or constraints are available [29, 28, 13, 3,
7, 11]. By taking advantage of the prior information, thesghhiques offer improved accuracy when indexing
or classifying examples. Analyzing large volumes of dataf igreat interest in computational biology, vision,
and natural language processing, making fast similariyckewith learned metrics an important challenge.

However, previous approaches to metric learning haveditréipplicability to very large data sets, since
the specialized learned distance functions preclude tieetdise of known efficient search techniques. Data



structures for efficient exact search are known to be in#fedor high-dimensional spaces and can (de-
pending on the data distribution) degenerate to brute feeeech [10, 27]; approximate search methods can
guarantee sub-linear time performance but are defined fogrgepurpose metrics, such as the Hamming
distance [18],(,, norms [6], or an inner product [4]. As such, in order to find thest similar examples
for a given input, metric learning approaches are currefiiythe worst case) forced to exhaustively scan
all previously seen examples to evaluate their similagtyhe input under the learned metric; likewise, in
order to cluster a collection of data, all pairwise distanaee required. This is a limiting factor that thus far
prevents the use of metric learning with very large data sets

In this work we introduce a method for fast approximate sanitiy search with learned metrics. We show
how to construct randomized hash functions that integrateviedge attained from partially labeled data or
paired constraints, so that examples may be efficientlyxiedi®r grouped according to the learned metric
without resorting to a naive exhaustive scan of all items. piésent a straightforward solution for the case
of relatively low-dimensional input vector spaces, andHer derive a solution to accommodate very high-
dimensional but sparse data for which explicit input spasemutations for both metric learning and hashing
are infeasible. The former contribution makes fast indgxocessible for numerous existing metric learning
methods [29, 28, 13, 3, 7], while the latter is of particulaerest for commonly used representations in text
processing and vision. We demonstrate our approach byihegammetrics and hash functions for systems and
image datasets, and analyze its performance with claggificasks.

2 Related Work

Recent work has yielded various approaches to the metninitgaproblem, including several techniques
to learn a combination of existing kernels given partialipeled data [19, 5], as well as a number of for-
mulations for learning the parameterization of a Mahal@afetric given some number of class labels or
paired constraints [29, 28, 23, 13, 3, 7]. Embedding fumstioan be useful both to capture (as closely as
possible) a desired set of provided distances betweenspaisitvell as to provide an efficient approximation
for a known but computationally expensive distance fumctibinterest [22, 1, 16]. However, in contrast to
learned metrics, such geometric embeddings are meant torraifixed distance function and do not adapt
to reflect supervised constraints.

Xing et al. learn a Mahalanobis metric férmeans clustering by using semidefinite programming to
minimize the sum of squared distances between similarkglémbexamples, while requiring a certain lower
bound on the distances between examples with differentddB8]. In related techniques, Globerson and
Roweis [13] constrain within-class distances to be zeroraagimize between-class distances [13], while
Weinberger et al. formulate the problem in a large-mafgimearest-neighbors setting [28]. In addition to
using labeled data, research has shown how metric learaimgroceed with weaker supervisory information,
such as equivalence constraints [3], or relative congg§#8, 11]. For example, equivalence constraints are
exploited in the Relevant Component Analysis method of Bitlel et al. [3]; the Support Vector Machine-
based approach of Schultz and Joachims [23] incorporals/eeconstraints over triples of examples, and
is extended by Frome et al. to learn example-specific locthdce functions [11]. Davis et al. develop an
information-theoretic approach that accommodates amaficonstraints on pairs of examples, and provide
an efficient optimization solution that forgoes expensigervalue decomposition [7].

Multi-dimensional scaling [8], Locally-Linear Embeddm{P2], and IsoMap [26] provide ways to cap-
ture known distances in a low-dimensional space, and phpval-distortion geometric embeddings have
also been explored (e.g., [2]). The BoostMap approach oftgdh et al. learns efficient Euclidean-space
embeddings that preserve proximity as dictated by usepgesive distance measures [1].

In order to efficiently index multi-dimensional data, dateustures based on spatial partitioning and
recursive hyperplane decomposition have been developelddingk — d-trees [10] and metric trees [27].
Some such data structures support the use of arbitraryasetlowever, while their expected query time
performance may be logarithmic in the database size, sgjacteful partitions can be expensive and requires



good heuristics; worse, particular data distributionsresult in a brute force search, and in high-dimensional
spaces all exact search methods are known to provide litfhedvement over a naive linear scan [18].

As such, researchers have considered the problempmximatesimilarity search, where a user is af-
forded explicit tradeoffs between the guaranteed accuvacgus speed of a search. Several randomized
approximate search algorithms have been developed tlat ellen high-dimensional data to be searched
in time sub-linear in the size of the database [18, 4, 6]. knalyd Motwani [18] and Charikar [4] propose
locality-sensitive hashing (LSH) techniques to index eghas in Hamming space in sub-linear time, and
Datar et al. extend LSH fof, norms in [6]. Data-dependent variants of LSH have also beggested.
Georgescu et al. select space partitions in a data-drivemenain an effort to use more meaningful hash
functions for a given data distribution [12],

In contrast to previous work, we address the problem of Bwdat time approximate similarity search for
a learned metric. While randomized algorithms like LSH hagerbemployed heavily to mitigate the time
complexity of identifying similar examples [24], their ubas been restricted to generic measures for which
the appropriate hash functions are already defined, iregtdpplication to learned metrics was not possible.
We instead devise a method that allows knowledge attaioed artially labeled data or paired constraints to
be incorporated into the hash functions, without any addii loss in accuracy relative to the learned metric
beyond the quantified loss induced by the approximate séacbiique.

The goals of Shakhnarovich et al. [25] are most similar tspsince they also address both the need to
compare examples according to their “hidden” parametevgetisas the need to search for similar examples
in large databases very quickly. However, while they hawashthe advantage of applying hash functions
to feature dimensions that most reveal parameter-spadtasiyy any examples indexed must be sorted
according to the input space (non-learned) distance. Canoaph offers a seamless integration of a learned
metric, in that examples are both hashed and sorted acgdadi@arned constraints. In addition, the proposed
method stands to benefit several existing methods for metraing.

3 Approach

The main idea of our approach is to learn a parameterizatiad@ahalanobis metric based on whatever labels
or paired constraints are provided for some training exasy@nd then to encode the learned information
into randomized hash functions. These functions will gntea that the more similar inputs are under the
learned metric, the more likely they are to collide in a hadid. After constructing hash tables containing
all of the initial training (database) examples, exampieslar to a new instance are found in sub-linear time
in the size of the database by evaluating the learned mettieden the new example and any examples with
which it shares a hash bucket. In the following we will firsteya brief background of the metric learning
approach we employ, and then we describe how to incorpdratentetric into the hash functions, either for
low-dimensional (Section 3.2.1) or sparse high-dimeralidata (Section 3.2.2).

3.1 Information-Theoretic Metric Learning

As in [29, 28, 13, 7, 23, 3], we are givenpoints{z,, ..., z,}, with all z; € R?, and wish to compute a
positive-definite (p.d.¥ x d matrix A to parameterize the squared Mahalanobis distance:

da(z;,z;) = (x; — ;)" Az — ), 1)

foralli,7 = 1,...,n. Note that a generalized inner product (kernel) measuregd#irwise similarity
associated with that distancey(z;, ;) = =] Az;. The Mahalanobis distance is often used withas
the inverse of the sample covariance when data is assumedGassian, or withl as the identity matrix
if the squared Euclidean distance is suitable. Given a séttef-point distance constraints, however, we
can directly learn a matrid to yield a measure that is more accurate for a given classificar clustering



problem. We adopt the information-theoretic metric leagninethod of Davis et al. [7], since it is efficient,
flexible in terms of the constraint specification, and faredl wmpirically for classification and clustering
tasks.

Given an initiald x d p.d. matrixA4, specifying prior knowledge about inter-point distanchs, learning
task is posed as an optimization problem that minimizes thgDlet divergence between matri and
A, subject to a set of constraints specifying pairs of examghat are similar or dissimilar. The LogDet
divergence is a Bregman divergence and is defined over treeafqositive definite matrices:

Dya(A, Ag) = tr(AA; ") — logdet(AA; ) — d.

Given pairs of similar point§ and dissimilar point®, we will require thatl4 (x;, ;) < u for a small value
of u for all (,7) € S, and likewise thatl4 (x;, ;) > [ for a sufficiently large value dffor all (i, j) € D.
In semi-supervised multi-class settings, the constrairedaken directly from the provided labels: points in
the same class must be similar, points in different classesanstrained to be dissimilar.

To computeA, the LogDet divergence is minimized while enforcing theidsbconstraints:

min Dya(A, Ap)

s.t. da(ziz;)<u (i,j) €S, @)

This optimization problem may be viewed in an informatibedretic manner as minimizing the differential
relative entropy between the equal-mean Gaussians wheseséicovariances aré, and A [7]. In order to
guarantee the existence of a feasillelack variables may be introduced into the above. The @bgiution

is obtained via repeated Bregman projections that projecttrrent solution onto a single constraint. The
update toA,; from A; is given by:

A = A + B Ay(x, — xj,) (x4, — wjt)TAt7 (3

wherez;, andx;, are the constrained data points for iteratipandg; is a projection parameter computed
by the algorithm. When the dimensionality of the data is veghhwe cannot explicitly work withA,
and so the update in (3) cannot be performed. However, we tilainglicitly update the Mahalanobis
matrix A via updates in kernel space for an equivalent kernel legrpioblem in whichK = XTAX for

X = [x1,...,z,]. If Kyis aninput kernel matrix of the data, the appropriate upiate

K1 =K+ 5th(eit - ejt)(eit - ejt)TKt7 4)

where the vectors;, ande;, refer to thei;-th andj;-th standard basis vectors, respectively, and the projecti
parametep; is the same as in (3). See [7] for details on the algorithm.

In Section 3.2.1 we will use thd that results at convergence to modify random hash functionthe
event that4; can be manipulated directly. In Section 3.2.2 we derive goliait formulation that enables
information-theoretic learning with high-dimensionabsge inputs for whichd, cannot be explicitly repre-
sented.

3.2 Locality-Sensitive Hash Functionsfor Learned Metrics

A locality-sensitive hashing scheme is a distribution oaraify 7 of hash functions operating on a collection
of objects, such that for two objects v,

Pt [h(@) = h(y)] = sim(z, y), (5)

wheresim(x, y) is some similarity function defined on the collection ofetfs [4, 18]. Whek(x) = h(y),
x andy collide in the hash table. Because the probability that twguts collide is equal to the similarity



between them, highly similar objects are indexed togetheéhé hash table with high probability. Existing
LSH functions can accommodate the Hamming distance f],8jprms [6], and inner products [4].

In the following we introduce hash functions that can accamate a learned Mahalanobis distance,
where we want to retrieve examples for an inputx, for which the valuei 4 (x;, x,) resulting from (1) is
small, or, in terms of the kernel form, for which the valuesaf(x;, z,) = quAgci is high.

3.21 Explicit Formulation

Given the matrixA for a metric learned as abovesuch thatd = G7'G, we generate the following random-
ized hash functiona,. 4 which accept an input point and return a binary hash key bit:

1, if rTGx >0
i a (@) = { 0, otherwise ©6)

where the vector is chosen at random from @&dimensional Gaussian distribution with zero mean and
unit variance. This construction leverages earlier ressiiowing that (1) the probability of two unit vectors
having a dot products with random vectethat are opposite in sign is proportional to the angle betwee
them [14], and (2) the sign of” x; is therefore a locality-sensitive function for the inneoghuct of any two
inputsx; andx; [4].

Thus by parameterizing the hash functions insteadl§which is computable sincd is p.d.), we obtain
the following relationship:

Prlhp a(x;) = hyp a(x))] =1— lcos*1 (%TA%> @)
r, A\l r, A\Lj = /7|GJI1HG$]‘ )

which sustains the requirement of (5) for a learned Mahddenmetric, whetherd is computed using the
method of [7] or otherwise [29, 28, 13, 23, 3]. Essentiallyhage shifted the random hyperplanaccording
to A, and by factoring it byG we allow the random hash function itself to “carry” the infation about the
learned metric. Note that (6) assumes that the input diroansis low enough thatd can be explicitly
handled in memory, allowing the updates in (3). In Sectid8e describe how indexing proceeds from
these hash keys.

3.2.2 Implicit Formulation

We are also interested in the case where the dimensiodatigy be very high, butthe examplgs,, ..., z,

are sparse and therefore representable. For example fivagyas text representations for large corpora [21]
or multi-dimensional multi-resolution histogram repnetsgions used in vision [15, 16] are prime situations
where one must work with a very high-dimensional but spagaéufe space. Even though the examples are
each sparsehe matrixA can be densewith values for each dimension. Therefore, in this settingannot

be explicitly represented, so the update in (3) and hashifumxin (6) are infeasible to compute. Thus, in
the following we show how to achieve efficient hashing withimanipulatingA directly.

We denote high-dimensional sparse inputsdfy) to mark their distinction from the dense inputs
handled in Section 3.2.1. In this case, we assume that iithplid;, = I. As in the explicit formulation
above, the goal is to wraf into the hash function, but now we must do so without workiivgatly with G.

In the following, we will show that an appropriate hash fuot,. 4 for inputs¢(z) can be defined as:

hr,A<¢<x)):{ Lo i (@) + S bl d(x) > 0 o

0, otherwise ’

1In all further notation, a variable without an iteratibsubscript denotes its value after convergence, thus hesgeveferring tad
once (3) converges.



wherec is the total number of constrained data pointsSin) D, ¢(z;)” ¢(x) is the original kernel function
value between constrained examgpleand the inpute, andy; are coefficients computed once (offline) during
metric learning, and will be defined below. Note that wifilés dense and therefore not manageablis,by
definition as sparse as al(x) inputs, and we need to generate random values for the noanéies only.
Thusr® ¢(x) is practical to compute.

Next we present a construction to expréssn terms of the constrained data points, and a method to
compute (8) efficiently. Our construction relies on two taichl lemmas which we prove in this section.
Recall the update rule fad from (3): A,y = A; + B:Asvwl Ay, wherep, is the projection parameter
for iterationt, andv, equals¢(x;,) — ¢(x;,) if pointsi andj correspond to the distance constraint under
consideration at iteration Since A, is positive semi-definite, we can factorize it 4 = G G, which
allows us to rewrite the update as:

Arp = GT(I + BGroww! GTHG,.

As a result, if we factorizd + 3,Gyv,v] GT', we can derive an explicit update f6f , 1 :

G = (I + BGrowl GIHY2G, = (I + uGiopw! GT)Gy, 9)
where the second equality follows from Lemma 1 using G, v,, andq; is defined accordingly.
Lemmal. LetB = I+Byy” be positive semi-definite. Thél/? = I+ayy”, witha = (++/1 + yTyB—
1/y"y.
Proof. Consider(I +ayy”)?. Expanding yieldd +2ayy” +a?(yTy)yy” = I+ (2a+a*yTy)yy”. For
the lemma to hold, we require th@t+ayy”)? = I+ pyy?, and this holds wheda +a?y”?y = 3. Solving
this quadratic equation far, we obtain the desired result. Furthermards real-valued: the eigenvalues of

B are 1 and +By”Ty, which is greater than or equal to 0 sinBés positive semi-definite. Thug'1 + yT y
is real, and sav is real.

Let ® = [¢(x1)d(x2)...0(x.)] be thed x ¢ matrix of all c constrained data points, and &t = 7@
be the kernel matrix for all constrained input pairs. We noawvp the following lemma:

Lemma?2. Forall ¢, if Go = I andSy = 0, then

Gt+1 = I + @St+1q)T

Ser1 = Se+al(I+ Seko)(ei, —ej,)(ei, —ej,)" (I + KoS{ ) (I + KoSy).
Proof. We can prove this by induction. In the base ca&e= 0, implying Go = I andGE Gy = Ag = 1. In
the inductive case, expand Eqn. 9&s. 1 = (I + o Gvv! GT)G, by plugging in the inductive hypothesis
Gy = I+ S, ®T. After algebraic simplification(s; . ; can be expressed in the foda- ®5,, 1 ®7 using the
update forS given above. O

According to Lemma 2(7, can be expressed 85 = I+®S5,®7, whereS, is acx c matrix of coefficients
that determines how much weight each pair of constraineat$ipas in its contribution t6r. Initially, Sy is
set to the all-zeros x ¢ matrix, and from there every,, ; is iteratively updated i) (c?) time via

Sey1 =S+ ar(I + SeKo)(ei, — ej,)(ei, — ej,)" (I + KoS7) (I + KoSy).

Note that this update ensures tidatremains in the fornG, = I + ®5,®T once it is updated according to
(9)2 Using this result, at convergence of the metric learningritigm we can computé&'¢(z) in terms of
the constrained input paitg(x;), ¢(x;)) as follows:

Go(x) = () + ©SPT () +ZZSU¢ ;) p(x;)" o ().

=1 j=1

2We also stress that, since the dimensionality of the datagts, ie compute updates implicitly using (4) when performing ioetr
learning; however, since the projection parameters arestime $or (3) and (4), the updates i§rstill can be computed.



Therefore, we have

! Go(x) )+ Z Z Siyr’ o(@)o(z;)" d(z) = r7o(@) + 3 7o) o(x),

=1 j=1

wherey] = >, S;irT¢(x;), and is a notation substitution for the first equality. Thibstitution reflects that
the values of each; rely only on known constrained inputs, and thus can be effilsieomputed as soon as
the metric Iearmng algorithm has converged, that is, gadrashing anything into the database.

Finally, having determined this expression fdrG¢(x), we arrive at our hash function definition in (8).
Note the analogy between the userdfGz andr” G¢(x) in (6) and (8), respectively.

3.3 Searching Hashed Examples

Having defined locality-sensitive hash functions for leatmetrics, we can apply existing methods [18, 4]
to perform sub-linear time approximate similarity sear@ivenn data points in a Hamming space and an
inputz,, approximate near-neighbor techniques guarantee ratoéexample(s) within the radiug + ¢) D
from x, in O(n'/1*<) time, where the true nearest neighbor is at a distande fobm z,.

To generate &-bit hash key for every example, we seléaandom vectors$ry, . .., 7] to form b hash
functions. The hash key for an inputis then the concatenation of the outputs of (6) (or similattie
outputs of (8) for a sparse and high-dimensional inpat)). The problem of indexing into the database
with x, is reduced to hashing with these sabrfanctions and retrieving items corresponding to databése b
vectors having minimal Hamming distances to the query litare For this step, we employ the technique
for approximate search in Hamming space developed by Girgdk Given the list of database hash keys,
M = O(n"/(*+9)) random permutations of the bits are formed, and each listohpted hash keys is sorted
lexicographically to form\/ sorted orders. A query hash key is indexed into each sortit avith a binary
search, and theé M nearest examples found this way are the approximate naa&gtbors. See [4] for
details.

Having identified these nearest bit vectors, we then comih@teactual learned kernel values between
them and the original input. The hashed neighbors are raakedrding to these scores, and this ranked
list is used fork-nn classification, clustering, etc., depending on theiegfibn at hand. The tradeoff in the
selection ofb is as follows: larger values will increase the accuracy af lnell the keys themselves reflect
the metric of interest, but will also increase computatiometand can lead to too few collisions in the hash
tables. On the other hand pifs lower, hashing will be faster, but the key will only codyseflect our metric,
and too many collisions may result.

3.4 Computational Complexity Analysis

We now briefly discuss the computational complexity of edep sf our algorithm. The first step, offline met-
ric learning, cost€)(d?) per projection in the low-dimensional case (using (3)) éx{d*) per projection in
the high-dimensional case (using (4)). Thus, each iteratf@ycling through alhn constraints cost® (md?)
andO(mc?) for the low-dimensional and high-dimensional cases, resgy. In the high-dimensional case,
we must also maintain and updafgwhich costsO(c?) per projection.

Once the metric learning step is complete, we must genegaste keys for each item in the database. In
the case of dense inputs, computing (z) costsO(d) time for eachr after we precompute” G once. In
the high-dimensional case, we can comptite)(x) efficiently by only considering the non-zero elements of
¢(x). The~! may also be computed in this way. Further, we store the nowsz# ) . v/ ¢(x;) and, as a
result, computingy,. 4(x) requiresO(z) time, wherez is the number of non-zeros if(x).

Given a new data point, after computing its hash key as alveepust compute the learned kernel values
to the2 M approximate nearest neighbors. In the low-dimensiona,aas computelx once inO(d?) time,
and then each learned kernel function value can be compute¢d) time, for a total ofO(Md + d?) time.



Latex dataset
Latex dataset

=== Original distance hashing
—=— Learned metric hashing

50 = = =Original distance linear scan || 1
=== Original distance hashing
= = =Learned metric linear scan 90
45 === Learned metric hashing

40

35

% of database searched
for 10 runs
@
g

30

k-NN classification accuracy (%)
for 10 runs

25

5 6 7 8 9 10 11 1 2 3 4 5 6 7 8
Number of hash bits Number of hash bits

Figure 1:Comparison of the accuracy (left) and time requirements (righen hashing with the original and learned metrics for the
Latex dataset. Left plot showksnn classification accuracy; right plot shows the search imterms of the percentage of database items
searched per query, both as a function of the number of hash. iResults are from ten runs with random query / databasdipadij

with € = 1.5. Our learned hash functions reduce the search to aB6uif3he database, with virtually no loss in accuracy over the
exhaustive linear scan.

In the high-dimensional case, we can compute Mdearned kernel values i@(Mc) total time using a
similar construction as with computirig. 4(z). Note that for similarity searches, we need not compute the
self-similarity of the query point in the learned metric,ialihsaves computation. An alternate method leads
to O(M z) total time, where: is the number of non-zeros of the query point.

4 Results

We first evaluate our method for learned metric hashing onaaesé neighbor (nn) classification problem
using data from the CARIFY system of Ha et al. [17]. CARIFY assists a programmer in diagnosing errors
by identifying previously seen abnormal termination répawvith similar program features, and pointing
the programmer to other users who have had similar problékesexperiment with a database0£3825
such examples collected from the Latex typesetting prograire features aré = 20-dimensional, and
so our explicit formulation for learning hash functions isshappropriate. Paired similarity constraints are
generated with information-theoretic metric learningngsR0 labeled examples from each class. For 10
random partitions of the data, we extract 30 examples fdn e&is nine classes, and treat the remainder as
database examples. We measureithe 4-nearest-neighbor classification accuracy and searcls tower

all 270 queries per run, under four settings: the “origirtaliclidean distance metric and a linear scan, the
original distance with LSH, the learned metric with a lineaan, and the learned metric with LSH. For both
hashing cases we fixed= 1.5.

Figure 1 shows the resulting accuracy and complexity g&gsncorporating the paired constraints, the
learned metric shows clear accuracy gains over the uneanstt Euclidean distance, yielding about 10%
higher correct classification rates. Thenn rates for the both associated hashed results are orgavasa
good as the linear scan results, and in this case, havedigiendence on the number of hash functions used.
As b increases, however, the hash keys become more specific landlalger amounts of the database to
be ignored for any given query (righthand plot). When seagloinly 5% of the database, our learned hash
functions suffer no loss in accuracy yet enable an averagesp8edup (maximum speedupaz34elative
to an exhaustive scan with the learned metric (includingaberhead cost of computing the hash keys).
Interestingly, for the same values«fndb, the number of examples searched with the learned hashdnact
is noticeably lower than that of the generic hash functiansi has a tighter distribution. While the indexing
guarantees remain the same, we infer that just as the leareit adjusts the feature space so that in-class
examples are more closely clustered, the learned hashidoadietter map them to distinct keys.

In a second set of experiments, we evaluate the implicit bation of our approach using a large collec-
tion of images from 101 categories, called the Caltech1D1TRis dataset is a commonly used benchmark
for object recognition, and poses an interesting challdagenetric learning, since there is not only a large
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number of categories, but within each category examplesedairly diverse in appearance. To compare
these images we consider learning a kernel based on the joynaaich kernel (PMK) of Grauman et al.[15].
The PMK uses multi-dimensional, multi-resolution histagr pyramids to estimate the correspondence be-
tween two sets of local image features. To hash with the mesBIMK, the authors embed the pyramids in
such a way that standard inner product LSH functions ardcgipé [16]. The pyramids and this embedding
space are very sparse but extremely high-dimensional, tbasssitating the implicit form of our learned
metric hashing technique.

As above, we posed k-nn classification task, and evaluated both the baselingion@MK in this
case) and learned metric for their accuracy when used ipredttinear scan mode or with the approximate
hashing search. We represented images with sets of local[30f features as is done in [15]. We used 15
training examples per class for the database, 2454 imagpsesigs (at least 15 per class), and measured the
classification success in terms of the mean recognitiorpetelass, as is standard practice for this dataset. In
order to examine the quality of a learned PMK as a functiomefrtumber of paired constraints, we selected
varying numbers of images to constrain for kernel learnif@your knowledge, this is the first experimental
result demonstrating the performance of information-thgo metric learning in kernel space. The left plot
of Figure 2 shows the linear scannn accuracy that results for increasing valueg,odind illustrates the
clear gain over the (non-learned) kernel baselitwel]. With 15 constraints per category, our learned kernel
outperforms the baseline 52% to 32%F.he very best reported performance on this dataset is duetoeg™
et al.[11], who learn a local feature metric per-trainingmmple that yields 60% accuracy. Our single learned
kernel function yields 52% accuracy, and at test time reguiomparisons to be computed with significantly
fewer examples, even if we were to search training exampitisaninear scan.

In the middle plot of Figure 2, we compare the linear scan mmies against those obtained with approx-
imate search, for varying numbers of hash bits. For both tiggnal and learned kernels, the large search
time speedup does come at the cost of several points in aycutaur learned hash functions still achieve
47% accuracy, and require aboutzll@ss computation time than the linear scan when accountinghé
hash key computation. Our research code is unoptimizeding#his a rather conservative illustration of the
speedups our approach offers. The rightmost plot showsctheacy of our learned PMK hashing compared
to the baseline as a function af For higher values of we are guaranteed to search fewer examples, but as
expected must then sacrifice some accuracy. Overall, expets with both datasets validate our approach
for sub-linear time hashing with learned metrics and kexnel

3Note that the accuracy reported by Grauman and Darrell is 5ifiguhe baseline kernel, but within an SVM classifier; heee w
find that withk-nn the PMK yields only 32% accuracy. Our learned PMK exceed<sSVM accuracy with a simple-nn classifier.



5 Conclusions

We have introduced a method to learn randomized hash funsctiwat reflect constraints on partially labeled
data points, in order to permit efficient approximate sinitjyasearch for learned metrics. Our experiments
with systems and image datasets demonstrate both the eganaantages to be had with information-
theoretic metric learning, as well as the significant corafpianal efficiency gains that the proposed algorithm
enables. The proposed technique makes it practical togoalerful metric learning methods to classification
and clustering problems with large databases. In the futigevould like to explore the active selection

of paired constraints for metric learning, and its impactoom similarity search framework. We are also

interested in considering how local learning paradigmddbanefit from this faster search capability, and in
future experiments we plan to study additional datasets faliernate domains.
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