
Predicting and Tuning the Performance of
Multicore Systems

Donald E. Porter, Owen S. Hofmann, and Emmett Witchel
Department of Computer Sciences, The University of Texas at Austin, Austin, TX 78712

{porterde, osh, witchel}@cs.utexas.edu
February 29, 2007

ABSTRACT

This paper introduces a novel method and a tool called Syncchar for
understanding and modeling the performance of shared memory
parallel programs. Syncchar helps programmers choose the type
of synchronization they need and focuses their attention on which
critical regions would benefit most from reorganization. Conserva-
tive synchronization (e.g., a spinlock) performs best for highly con-
tended data structures, whereas optimistic synchronization (e.g.,
transactional memory or a sequence lock) performs best for lightly
contended data structures.

Syncchar uses data independence and conflict density to model
the performance of parallel programs. A pair of critical regions are
data independent if the memory written by one critical region (its
write set) does not intersect the memory read or written by the other
critical region (its address set). When critical regions are not data
independent, conflict density measures the degree to which there
is a single “problem” thread that is conflicting with many other
threads, or whether all conflicting threads conflict with each other.
By sampling the address sets of a lock-based program, the Syncchar
algorithm predicts the speedup of the program if it were converted
to use optimistic concurrency. Syncchar also identifies contention
hot-spots in critical sections, which helps focus programmer effort
in the areas of greatest performance gains.

The paper measures and validates the Syncchar model using sev-
eral microbenchmarks, and provides a case study of performance
tuning critical regions in the Linux kernel. The Syncchar tool un-
covers opportunities to increase the performance of the Linux ker-
nel by as much as 4.8% and the transactional Linux kernel (TxLinux)
by up to 8%.

1. INTRODUCTION
Multicore architectures are now the norm, and most processor

manufacturers plan to scale the number of cores on a die with suc-
cessive processor generations. The end-user benefit of these sys-
tems will be limited by how well average software developers can
effectively leverage the parallel hardware provided by these new
processors. Scaling the concurrent performance of irregular end-
user applications remains difficult despite nearly fifty years of re-

TR-08-10 Department of Computer Sciences, The University of Texas at
Austin
Copyright 2008 ...$5.00.

search and product development. Determining the optimal size and
structure of critical sections remains a black art.

Concurrent programming in a shared memory system requires
primitives such as locks to synchronize threads of execution. Locks
have many known problems, including deadlock, convoying, and
priority inversion that make concurrent programming in a shared
memory model difficult. In addition, locks are a conservative syn-
chronization primitive—they always assure mutual exclusion, re-
gardless of whether threads actually need to execute a critical sec-
tion sequentially for correctness. Consider modifying elements in
a binary search tree. If the tree is large and the modifications are
evenly distributed, most modifications can safely occur in parallel.
A lock protecting the entire tree will needlessly serialize modifica-
tions.

One solution for the problem of conservative locking is to syn-
chronize data accesses at a finer granularity–rather than lock an
entire binary search tree, lock only the individual nodes being mod-
ified. This presents two problems. First, data structure invariants
enforce a lower bound on the locking granularity. In some data
structures, this bound may be too high to fully realize the available
data parallelism. Second, breaking coarse-grained locks into many
fine-grained locks significantly increases code complexity. As the
locking scheme becomes more complicated, long-term correctness
and maintainability are jeopardized.

An alternative to conservative locking is optimistic concurrency.
An optimistic system allows accesses to shared data to proceed
concurrently, dynamically detecting and recovering from conflict-
ing accesses. Transactional memory provides hardware or soft-
ware support for designating arbitrary regions of code to appear
to execute with atomicity, isolation and consistency [9, 11]. Trans-
actions provide a generic mechanism for optimistic concurrency
by allowing critical sections to execute concurrently and automat-
ically rolling back their effects on a data conflict. Coarse-grained
transactions are able to reduce code complexity while retaining the
concurrency of fine-grained locks.

The problem for the average programmer is the difficulty of know-
ing what kind of concurrency control to use. A lock-based program
might not see any speedup upon conversion to use transactions—a
fact software engineers and managers would like to know in ad-
vance. Understanding concurrent performance is difficult and tools
are needed to make good decisions for software development. An
application’s parallel speedup might be just around the corner—if
you look around the right corner.

This paper presents Syncchar, a tool and methodology for un-
derstanding and performance tuning concurrent programs. Sync-
char samples the sets of addresses read and written while locks are
held. It then builds a model of the program’s execution that can
predict the performance of the application if it were converted to

use optimistic synchronization. The model has two parts, the data
independence and conflict density of the critical regions. Data inde-
pendence measures how likely it is that threads will access disjoint
data, while conflict density measures how many threads are likely
to be involved in a data conflict should one occur.

Concurrent performance tuning is complicated by the fact that
the intuitions and techniques that programmers have developed in
tuning lock-based code will not be sufficient to identify and correct
data access patterns that throttle the performance of optimistic sys-
tems. For instance, common lock-based programming techniques,
such as walking a linked list or incrementing a shared counter in-
side a critical region, can negatively impact optimistic performance.
Syncchar focuses programmer attention on code and data structures
where reorganization will increase concurrent performance.

This paper presents background on optimistic concurrency (Sec-
tion 2) and describes the need for a performance prediction and
tuning tool (Section 3). The paper then presents novel techniques
and a tool for investigating the potential of optimistic concurrency
by measuring the data independence and conflict density of critical
regions that are protected by the same lock (Section 4). The paper
then validates the model with a set of microbenchmarks (Section 5),
and applies the methodology and tool to tune the performance of
the TxLinux kernel [26, 27] (Section 6). Section 7 presents related
work, and Section 8 concludes.

2. BACKGROUND ON OPTIMISTIC

CONCURRENCY
This section presents definitions and terminology for discussing

conservative and optimistic concurrency.
Optimistic concurrency control (e.g., transactional memory) of-

ten relies on conflict serializability as its safety condition. We call
the set of addresses read during a critical section, the read set, the
set of addresses written the write set and the union of read and write
set the address set. For critical sections A and B, A conflicts with
B if:

AW ∩ (BR ∪ BW) 6= ∅

Informally, conflict serializability says that the write set of one crit-
ical region must be disjoint from the other’s address set to guarantee
safety. Conflict serializability is efficient to compute so it is used
widely in transactional memory systems.

Conflict serializability is a pessimistic model because two criti-
cal sections can conflict, yet safely execute concurrently. For ex-
ample, if two critical sections conflict only on their final write, they
can still safely execute concurrently if one finishes and commits be-
fore the other issues the conflicting write. Some data structures and
algorithms make stronger guarantees that allow critical sections to
write concurrently to the same locations safely, but these are rela-
tively rare and beyond the scope of this paper.

As an example of conflict serializability, consider the simple bi-
nary tree in Figure 1. Three different critical sections that operate
on this tree, along with their address sets are listed in Table 1. Crit-
ical sections 1 and 2 read many of the same memory locations, but
only write to locations that are not in the other’s address sets. They
are, therefore, data independent and could safely execute concur-
rently. This makes sense intuitively because they modify different
branches of the tree. Critical section 3, however, modifies the left
pointer in the root of the tree, which cannot execute concurrently
with critical sections that operate on the left branch of the tree.
This is reflected in the address sets: 0x1032 is in Critical Section
3’s write set and in the read sets of Critical Sections 1 and 2.

Critical regions are data independent if their write set is disjoint
from the other’s address set. If critical sections concurrently mod-

Figure 1: A simple binary tree.

ify the same data, or have data conflicts1, optimistic concurrency
control will serialize access to critical sections. In such cases opti-
mistic control can perform much worse than conservative locking
due to the overhead required to detect and resolve conflicts.

In our simple example, we can determine the data independence
of the critical sections by inspection. In most cases, however, this is
insufficient because functions that modify a data structure generally
determine what to modify based on an input parameter. Thus, the
data independence of critical section executions largely depends on
the program’s input, requiring investigation of the common case
synchronization behavior in order to determine whether to employ
optimistic concurrency.

In converting lock based code to use optimistic concurrency, one
must be aware that many common idioms in lock-based program-
ming can needlessly limit concurrency under optimistic synchro-
nization. For example, if two critical regions operate on completely
separate data except for updating some shared performance statis-
tics at the end of the critical section, these critical regions will have
to serialize on their updates shared statistics fields. These conflicts
are not related to the data structure, and can be avoided by remov-
ing or restructuring the statistics data.
Conflict density is a measure of the connectedness of the graph

for a data conflict. Assume a conflict among N threads. In the
best case, a single thread might write a datum read by N − 1 other
threads. This is a low density conflict that produces a short se-
rialized execution schedule (N − 1 readers commit, and then the
writer). In the worst case, each thread can write a datum written
by every other of the N − 1 threads, yielding a high density con-
flict that necessitates a completely sequential schedule (the threads
must run serially, one after the next).

The discussion of optimistic concurrency in this paper primarily
focuses on transactional memory, as transactions are the most gen-
eral purpose optimistic programming model. There are, however,
other forms of optimistic concurrency, discussed in Section 7.2.

3. TUNING CONCURRENT

PERFORMANCE IS DIFFICULT
This section motivates a tool for understanding the performance

of concurrent systems by discussing the difficulty of performance
tuning concurrent programs.

Although a conversion from locks to transactional memory can
be straightforward, there are a number of pitfalls that can require

1We selected the term data conflicts over data dependence to avoid
confusion with other meanings.

Critical Section 1 Critical Section 2 Critical Section 3

begin critical section; begin critical section; begin critical section;
node = root→right; node = root→left; node = root;
node→left = root→left→right; node→left = root→left→right; node→left = node→right;
end critical section; end critical section; end critical section;

r w r w r w
0x1000 0x2064 0x3032 0x1000 0x2064 0x2032 0x1000 0x1032*
0x1032* 0x3000 0x1032* 0x3000 0x1064
0x1064 0x3064 0x1064 0x3064
0x2000 0x2000

Table 1: Three critical sections that could execute on the tree in Figure 1 and their address sets. The read entries marked with an

asterisk (*) are conflicting with the write in Critical Section 3.

substantial engineering effort to resolve. Predicting the benefits
of such a conversion before a single line of code is modified will
allow engineers and product managers to make a more informed
decision about adopting a transactional memory system. Further,
if performance of a converted system does not meet expectations,
a predicted speedup helps assess whether the problem lies with
the application or the transactional memory implementation. The
transactional memory programming community can also benefit
from a predictor of performance in developing standard bench-
marks for transactional memory implementations and reasoning
about the performance of a particular system.

Tuning the performance of lock-based programs generally in-
volves either identifying highly contended locks and breaking them
down into smaller locks, or restructuring the data to avoid synchro-
nization (e.g., per-thread data structures and read-copy update).
Tuning optimistic synchronization, on the other hand, requires a re-
duction in conflicting memory operations. Although there are some
known techniques for avoiding memory conflicts, it can be a diffi-
cult and non-obvious process. The following subsections illustrate
three key challenges that require Syncchar’s quantitatively driven
approach to performance tuning is needed for the programmer to
most efficiently use her time.

3.1 Data sharing hot-spots
A common optimization in lock-based programming is caching

attributes such as the number of elements in a data structure. Since
the lock protecting the data structure is already held, there is no
synchronization overhead to updating these integer fields—with the
added benefit of saving work when this information is needed later.
In an optimistic model, however, concurrent execution must be se-
rialized on these fields. This can be particularly prone to conflict
and wasted work if updates are made late in the critical section and
values are read early in others.

One solution for avoiding conflicts on counters that cannot be
eliminated is splitting them into per-thread counters. This solution
avoids conflicts on writes, but introduces conflicts on reads, as each
CPU’s value must be read to provide a correct sum. Per-CPU coun-
ters thus work well if they are updated more frequently than they
are read, but are pointless otherwise.

Linked lists are commonly used as a generic container because
they are simple to implement, have low memory overhead, and
don’t have problems with resizing. Operating systems use linked
lists extensively. For optimistic synchronization, however, they can
be pathologically bad, as each thread traverses the exact same path
of pointers inside of a critical region. Any pointer update will con-
flict with all other critical regions that have walked further down
the list, despite the fact that concurrent execution of the operations
should be semantically safe.

The Syncchar tool can identify data sharing hot-spots that will
limit optimistic concurrency, focusing programmer effort on where
the potential returns are the greatest.

3.2 Logical isolation vs. physical isolation
A common solution for avoiding low-level conflicts in the data-

base literature is open nesting [19]. When an open nested transac-
tion commits, the transactional memory system no longer retains
physical isolation on the nested transaction. The onus of providing
logical isolation at a higher level is shifted to the programmer. By
releasing physical isolation on low-level, conflict prone operations,
the restart rate can be substantially lowered in some cases. Open
nested transactions may require the programmer to write special
handlers for commit and abort of the parent transaction to release
the logical isolation or roll back the open nested transaction, re-
spectively. Open nesting implementations have been proposed for
hardware transactional memory systems [18]. There are also hard-
ware proposals for transactional suspension mechanisms that sus-
pend physical isolation altogether, requiring that operations be syn-
chronized through other means such as locks [31]. The Galois sys-
tem [10] and Transactional Boosting [7] provide more structured
variants of open nesting in software that require sophisticated rea-
soning by the data structure implementer about properties of the
operations such as associativity and linearizability. These variants
are easier for other programmers to incorporate into a transaction
than writing open nested transactions.

The primary disadvantage to techniques such as open nesting
and transactional suspension is that it is difficult for programmers
to reason about the correctness of the logical isolation mechanisms
and commit and abort handlers. For this reason, these techniques
should only be attempted when there is a strong indication that they
will substantially improve performance. By identifying data hot-
spots in low-level data structures, Syncchar helps the programmer
estimate the benefits of releasing physical isolation.

3.3 Fighting the compiler
A final challenge to optimizing code for optimistic concurrency

is compiler optimizations for deeply pipelined machines. Figure 2
illustrates a simple conditional statement the programmer would
expect to reduce conflicting accesses to a shared variable. Yet if
one inspects the code generated by gcc, it always reads the value
from memory and always writes it back. It only uses the condi-
tion to determine whether to update the register before writing it
back. The compiler is trying to avoid branching around the load and
store, which makes sense on a superscalar platform. On a hardware
transactional memory system, however, the performance lost to a
coherence conflict is much larger than that lost to a mispredicted
branch.

if(a < threshold){

shared_variable = new_value;

}

mov 0x8(%ebp),%edx

cmp 0xc03e6008,%edx

mov %edx,%eax

cmovge 0xc03e600c,%eax

mov %eax,0xc03e600c

Figure 2: A simple code sequence and the x86 assembly pro-

duced by gcc.

For a critical section such as the one above, Syncchar would
identify it as having no data independence and flag the shared vari-
able as a contention hot-spot. When the programmer sees results
like this that are contrary to his intuition, they serve as a hint to
inspect the code generated by the compiler.

Despite a seemingly straightforward appearance, tuning the mem-
ory access patterns of an optimistically synchronized system can be
subtle and nonintuitive. Even simple rules like making per-thread
counters can be pointless or counterproductive when applied by
rote. In a large, complicated system, programmers will need tools
like Syncchar to identify where their tuning effort is best spent.

4. THE SYNCCHARMODEL
This section explains the intuitions behind the Syncchar algo-

rithm, and then provides a rigorous treatment of how the algorithm
predicts the performance of an optimistically synchronized pro-
gram based on address sets of critical regions from a conservatively
synchronized program.

4.1 Syncchar approach
Assessing the likelihood that critical regions will conflict is at

the heart of the Syncchar approach. As discussed above, the perfor-
mance improvement of a move from lock-based code to optimistic
synchronization hinges on the number of critical sections that can
successfully execute concurrently.

On one end of the spectrum, data independent critical regions can
always execute concurrently, yielding a perfect linear speedup rela-
tive to a conservative lock (assuming the regions are equal length).
Applications with this characteristic are usually regular enough to
attain linear speedup through means other than optimistic concur-
rency. Thus, the target domain for optimistic concurrency is gener-
ally irregular applications that have some measure of data indepen-
dence. The Syncchar framework provides a way to quantify and
measure the data independence of such applications.

Syncchar estimates the data independence and conflict density
of critical regions by sampling their address sets. Syncchar col-
lects sample sets of critical regions that could potentially execute
concurrently in an optimistic model and determines which of them
can conflict and which cannot. This process, described in detail be-
low, is effectively a direct application of the definition of conflict
serializability.

By only comparing lock-based critical sections that execute within
a limited time window, Syncchar ensures insensitivity to schedul-
ing details and avoids comparisons between samples from entirely
different phases of the program’s execution. The temporal proxim-
ity of critical regions in the lock-based program provides Syncchar
with a hint for the temporal proximity of critical regions in an op-
timistically synchronized version of the program. Because critical

section executions that were previously sequential can overlap un-
der optimistic concurrency, the thread schedules are very likely to
be different from a lock-based version.

Syncchar only compares critical regions protected by the same
lock, across different threads. Critical regions protected by differ-
ent locks can already execute concurrently in lock-based programs,
so they are not the target of the greater concurrency enabled by op-
timistic synchronization. Because Syncchar does not model thread-
level speculation [28], we assume a single thread cannot execute its
critical regions in parallel. A single thread might be scheduled on
different processors over its lifetime, but this does not affect Sync-
char’s results.

To avoid spurious conflicts, Syncchar filters a few types of mem-
ory accesses from the address sets of critical sections. First, it filters
out addresses of lock variables, which are by necessity modified in
every critical section. It filters all lock addresses, not just the cur-
rent lock address, because multiple locks can be held simultane-
ously and because optimistic synchronization eliminates reads and
writes of lock variables. Syncchar also filters stack addresses to
avoid conflicts due to reuse of the same stack address in different
activation frames.

Syncchar needs to know about dynamically allocated lock vari-
ables. If a lock is dynamically allocated, it is a new lock. Some
kernel objects, like directory cache entries, are recycled through a
cache. The locks in these objects reside at the same address every
time they come off the free list, but it is a new lock from a con-
currency perspective (critical regions protected by different incar-
nations of the lock can already execute in parallel). For example,
when a directory cache entry emerges from the free pool, its lock is
reinitialized and Syncchar considers it a new, active lock. The lock
is considered inactive when the object is released back to the free
pool. If the lock is reactivated, its address set history is cleared,
even though it resides at the same address as in its previous incar-
nation.

Finally, some spinlocks in the Linux kernel protect against con-
current attempts to execute I/O operations, but do not actually con-
flict on non-I/O memory addresses. When run on the Linux kernel,
Syncchar detects I/O operations, and marks those critical regions as
performing I/O. This annotation ensures that these critical regions
will not be incorrectly reported as non-conflicting.

4.2 Scheduling model
To predict the speedup of using optimistic concurrency, Sync-

char must estimate what critical regions can execute concurrently.
Syncchar collects samples of the address sets of each lock. For a
given target number of CPUs, Syncchar randomly samples critical
regions that executed close to each other in time during the lock-
based execution. This method is described below, and pseudocode
is presented in Figure 3.

Syncchar tracks all loads and stores executed while a lock is held.
When the lock is released, it chooses a random number between
zero and one hundred. If the random number is below a certain
threshold it records the address set into a buffer, discarding it oth-
erwise. In our experiments we used a sampling rate of 10%. When
we compared the results of this to a more exhaustive method, the
results varied by less than 1%.

Syncchar also tracks the number of thread identifiers it has col-
lected samples from. Once Syncchar either has samples from its
target number of threads, or a full buffer, it performs the data inde-
pendence and conflict density calculations, described below.

This approach respects the schedule of the original execution,
but generalizes it significantly. Determining the exact size of the
buffer is somewhat heuristic based on the length of the critical sec-

def process_unlock(addressSet, buffer, pids) :

’’’Called after each lock is released’’’

if randint(0,100) < SAMPLE_RATE :

buffer.append(addressSet)

if addressSet.pid not in pids:

pids.append(addressSet.pid)

if len(buffer) >= BUFFER_MAX \

or len(pids) == MAX_CPUS :

compare_addressSets(buffer)

buffer = []

pids = []

Figure 3: Pseudocode for the Syncchar sampling algorithm.

tions and the scheduling quantum length—one wants a buffer small
enough to mostly sample reasonable choices for concurrent critical
sections, yet large enough to include critical sections from enough
threads to get a good sample. In our microbenchmark experiments,
we use a buffer size of 512 address sets.

One advantage of the limited address set buffer is that it limits
the complexity of the concurrency model that Syncchar needs. For
instance, a newly forked thread cannot execute concurrently with
critical region executions that occurred before its creation. Sync-
char’s sliding window approximates a timeout, restricting which
critical sections can be compared. This allows Syncchar to ignore
forks and joins, substantially simplifying the scheduling model. By
comparing sample critical section executions over a sliding win-
dow, Syncchar captures many executions that are likely to be con-
current, while minimizing exposure to error from synchronization
through other mechanisms.

4.3 Data independence
Data independence of a lock, In, is formally defined as the mean

number of threads that will not conflict when n threads are concur-
rently executing critical sections protected by the same lock.

Note that data independence is a function of the number of threads
that can execute concurrently, and not a simple mean. Intuitively,
one expects the probability of conflict when only a single thread is
scheduled to be zero (data independence of 1), and the likelihood
of conflict to increase as the number of threads grows (unless all
threads access completely disjoint data). Further, when one has
enough CPUs that all possible threads are scheduled, adding more
CPUs will not speed up the application any further.

Because data independence varies with the number of CPUs,
each data independence calculation must be performed for a tar-
get number of CPUs, which we call n. Returning to the sampling
methodology described above, Syncchar randomly samples address
sets until it obtains n sets from different threads (or it fills its buffer
if the maximum available is less than n). This group of address sets
is called the sample from the current window. Syncchar assumes
that at most n threads will be executing critical regions concur-
rently. Syncchar does not select more than one critical section per
thread for the sample, because it assumes no thread-level specula-
tion occurs.

Syncchar then compares each address set in the sample to all
other address sets in the sample, determining which are involved in
a conflict Cn and which are not. It keeps a running mean of the
number of data independent threads, In = n − |Cn|. Psuedocode
is given in Figure 4.

In the special case that all threads are conflicting, we define
data independence to be one rather than zero. Under any reason-
able contention management scheme, at least one critical section

def compare_addressSets(buffer) :

sample = choose_n_pids_from(buffer)

independent = 0

conflicting = 0

density = 0

conflictingAddressSets = []

Calculate data independence of sample

for a in sample :

for b in (sample - a) :

if a.compare(b) :

conflicting += 1

conflictingAddressSets.append(b)

break

if for loop didn’t break:

independent += 1

Special case all conflicting threads

if independent == 0 : independent = 1

Calculate conflict density of sample

for x in conflictingAddressSets :

local_conflicts = 0.0

for y in (conflictingAddressSets - x):

if x.compare(y) :

local_conflicts += 1

local_conflicts /= conflicting - 1

density += local_conflicts

updateAvg(dataIndependence[n], independent)

updateAvg(conflictDensity[n], density)

Figure 4: Pseudocode for the Syncchar data independence and

conflict density calculation.

should be able to complete even in the worst case. By insuring a
minimum speedup of one, projections for high-contention work-
loads under optimistic concurrency approach lock-based perfor-
mance rather than infinity.

An interesting property of data independence is that one can use
it to calculate the probability a thread will be involved in a con-
flict on the same number of CPUs, pc,n. If we treat the number
of non-conflicting critical sections as a binomial random variable
with parameters (n, 1 − pc,n), and the data independence as the
expected value, then pc,n = 1 − In

n
.

Although data independence alone does not directly translate to
speedup, it provides a high-level profile of the likelihood of conflict
of a set of critical regions.

4.4 Conflict density
One component of the projected speedup is the expected number

of data independent critical section executions. A second compo-
nent is the density of the conflicts. If one thinks of the conflicts
as a graph, with critical regions as nodes and conflicts as edges,
the density of the conflict is the number of edges per node. Intu-
itively, if every conflicting critical section execution conflicts with
every other, one expects each conflicting critical section to execute
serially, which means lower performance for optimistic synchro-
nization. On the other hand, if one thread writes memory read by

31 other threads, all readers should complete once the writer com-
pletes, resulting in a performance gain that is commonly experi-
enced in practice. This scenario would have a star topology if rep-
resented as a graph; removing the most connected node causes all
others to become disconnected (and able to proceed concurrently).
Hence, modeling this phenomenon is crucial to the accuracy of pre-
dicting performance.

Syncchar calculates the conflict density of a sample of address
sets as follows. For each address set in Cn, we measure the number
of conflicts with other address sets in Cn and divide it by (|Cn|−1).
The sum of each of these terms is the density (Dn). Formally, this
is expressed as

Dn =
X

x∈Cn

P

y∈{Cn−x} conflicts(x, y)

|Cn − x|

where conflicts(x, y) evaluates to 1 if address sets x and y can
conflict and 0 otherwise. In the case where all conflicting address
sets conflict with all others, Dn == |Cn|. In the star topology
case, this should equal 2.

The expected speedup of n concurrent threads produced by this
model is (In) + (|Cn| − Dn), or the number of data independent
threads plus the difference of the conflicting threads and their con-
flict density. According to Amdahl’s law, the overall speedup ob-
tained from optimistic execution of the critical sections associated
with a given lock is constrained by the amount of time associated
with that lock in the sequential execution. Thus, the projected ex-
ecution time will be the time not associated with the lock plus the
time associated with the lock divided by the speedup.

4.5 Limitations
Like any model, Syncchar makes certain simplifying assump-

tions that balance complexity against accuracy. This section lists
some key cases where the Syncchar predictions can deviate from
the measured performance using optimistic synchronization.

High contention and conflicts generally reduce the performance
of transactional memory systems. While performance degrades un-
der high contention, the degree of degradation depends on the im-
plementation details of the transactional memory system. Bobba et
al. [2] list a number of cases where certain hardware transactional
memory design decisions can have performance pathologies under
certain workloads. Because performance under high contention is
largely the result of hardware features such as cache behavior and
back-off strategy, which can vary substantially across implementa-
tions, Syncchar elects to model them as a simplification.

In many high-contention microbenchmarks, hardware transac-
tional memory can achieve a substantial speedup over locking sim-
ply by eliminating cache coherence misses on the lock. In larger
critical regions, however, the cost of the cache miss to acquire the
lock is amortized over a long period. In larger programs, such
as the Linux kernel, locks tend to be placed in the cache-aligned
data structures that they protect to avoid these needless coherence
misses. For instance, Ramadan et al. show a 2× speedup on the
shared counter benchmark but no substantial speedup from a rote
conversion of the Linux kernel to use hardware transactions [26].
Syncchar does not attempt to evaluate the quality of lock placement
or its effects on optimistic performance.

4.6 Implementation details
The Syncchar prototype was developed as a module for the Sim-

ics full-system, execution-driven simulator [14] with a post-processing
phase. By implementing Syncchar in the machine simulator, we are
able to measure the Linux kernel as a lock-based, concurrent appli-
cation par excellence. Nearly all instrumentation was performed

using simulator breakpoints, minimally affecting the behavior of
the kernel itself. The primary code changes required in the ker-
nel itself were simulator notification via “magic instructions” when
cached objects were reallocated.

The requirements of the Syncchar model are modest enough that
it could be implemented for user-level applications using a binary
instrumentation tool such as Pin [13], or potentially in a virtual
machine monitor for kernel instrumentation on a live machine.

5. MODEL VALIDATION
To validate our model of optimistic synchronization behavior, we

compared the transactional performance of three microbenchmarks
to the predictions made by Syncchar. Each of the microbenchmarks
has different patterns of access to shared data, described below:

• Prob - In each critical region, a single shared variable is writ-
ten with 50% probability. Otherwise, work is performed on
private data.

• RW - A single thread writes to a shared data structure in each
critical region. All other threads read the updates in their
critical regions and use the values to perform work on private
data.

• RB-Tree - In each thread’s critical region, a random value
is inserted into or deleted from an RB-Tree. The range of
values and probability of insert vs. delete are configurable.
For this experiment we used a 75% probability of insertion
and a maximum value of 200. The RB-Tree implementation
is taken from the Linux kernel.

All benchmarks have 32 threads that execute an equal number of
critical sections.

All experiments are performed using Virtutech Simics [14], mod-
eling 8, 16, and 32 1GHz x86 processors. As Simics supports only
a fixed IPC, the simulations used an IPC of 1, which is a reasonable
choice for a moderate superscalar implementation. Each processor
has a 16 KB, 4-way set associative private L1 cache with 64 byte
lines and an access time of zero cycles. L2 caches are also private,
with 64K 64-byte lines and 8-way set associativity. L2 cache ac-
cesses cost 16 cycles, and are kept coherent using a MESI snooping
protocol, modeled by the gcache Simics module. Main memory is
a single, shared 1 GB, with an access time of 200 cycles.

All lock-based experiments run on Linux version 2.6.16.1. We
downloaded the MetaTM hardware transactional memory model
and TxLinux version 2.6.16.1 for the transactional memory exper-
iments [26, 27]. Main memory access latency is pseudo-randomly
perturbed to account for performance variability, as described by
Alameldeen et al. [1]. Measurements from transactional memory
simulations are thus presented as a mean of 4 simulated executions.

Figure 5 shows the execution time of each microbenchmark as
projected by Syncchar and the measured execution time of each
benchmark using transactional memory. The predictions show a
mean error of 10%, validating the effectiveness of the Syncchar
model. In general, the predictions are slightly conservative, as they
don’t account for “lucky” interleavings, where one transaction that
would have conflicted commits just before the other transaction
performs the conflicting memory operation.

The model can also be more optimistic in the case of high con-
tention. In these results, the predicted execution time for Prob at
32 CPUs was 31% worse than the measured performance. This is
largely because the transactional case eliminates all cache misses
on the lock variable, which dominates performance of high-contention
workloads at greater CPU counts. Hardware transactional memory

8 16 32 8 16 32 8 16 32

E
x

ec
u

ti
o

n
 T

im
e

(s
)

0

0.5

1

1.5

2

2.5

3

Workload

Prob RW RB Tree

Projected

Measured

Figure 5: The projected execution time of each microbench-

mark, compared with the measured execution time of the

benchmark using transactions.

8 16 32 8 16 32 8 16 32

P
ro

je
ct

ed
 S

p
ee

d
u
p

0

5

10

15

20

25

30

Workload

Prob RW RB Tree

Data
Independence

Conflict
Density

Figure 6: The projected speedups of each benchmark, decom-

posed into the portion attributable to data independence and

conflict density.

systems can be better at backing off of a hot cache line under con-
tention than simple spinlocks, and this reduction in cache traffic can
have a substantial effect on performance that is beyond the scope
of our model.

Figure 6 shows the projected speedup of each benchmark, bro-
ken down into the portion attributable to data independence and
the portion attributable to conflict density. The Prob benchmark’s
projection, on one end of the spectrum, is entirely due to data in-
dependence. Given that all conflicting threads will be performing
a write to the same location, all conflicting threads will form a se-
rial schedule, yielding no concurrency beyond the threads that are
data independent. On the other extreme, every critical section in
the RW benchmark should conflict at least once, yet the measured
speedup is still substantial. As discussed in Section 4.4, this is the
motivating example for adding conflict density to the model. The
RB-tree benchmark shows a reasonable mix of both data indepen-
dence and non-dense conflicts, which we expect to be the case with
more realistic workloads.

These experiments show that the Syncchar model strikes a good
balance between accuracy and complexity.

acquire_lock();

while(!mylist.empty()){

item = mylist.get_next_item();

data_structure.put(item);

}

release_lock();

while(!mylist.empty()){

item = mylist.get_next_item();

begin_tx();

data_structure.put(item);

end_tx();

}

release_lock();

Figure 7: Pseudocode for the common idiom of holding a lock

across otherwise independent work to avoid the overhead of

contention, followed by an example of splitting each iteration

into a separate transaction.

6. SYNCCHAR AS A TUNING TOOL
In addition to predicting the performance of an optimistic sys-

tem, the Syncchar model can provide clues as to which critical sec-
tions are likely to have performance problems after a conversion.
This section demonstrates the utility of Syncchar for tuning opti-
mistic synchronization, using the (Tx)Linux kernel as case study.

6.1 Keys to tuning optimistic concurrency
Tuning the performance of optimistically synchronized code con-

sists of increasing data independence and minimizing conflict den-
sity through careful management of address sets. In contrast, lock-
ing requires shared data to be accessed with the right locks held for
correctness, but there is no performance penalty to touching addi-
tional shared data once a lock is held. In many cases, such as stor-
ing the size of a list, updating additional data can increase overall
code efficiency. Under optimistic concurrency, however, minimiz-
ing access to shared data is a first-order performance concern.

Per-CPU data structures are the kernel analog to per-thread data
structures in user-level programming. Memory allocators, for in-
stance, typically reserve per-CPU caches of memory to avoid con-
tention for the common pool of free memory. Similarly, if a data
structure contains an integer field that is mostly written, having a
per-CPU copy can eliminate a conflicting element from the address
sets of many transactions.

The downside to these approaches is that they introduce extra
work and conflict exposure for aggregation or redistribution. If one
can eliminate conflicts on shared fields and increase data indepen-
dence, however, the extra work in the single threaded case can be
offset by additional concurrency.

Reorganizing data structures that have a single access point (e.g.
a linked-list) into ones that uniformly distribute the data over a
number of entry points (e.g. a hash table) is another method for
avoiding data conflicts. By replacing a list’s single head pointer
with an array of hash buckets, the probability that an insertion will
conflict is reduced to 1 over the number of buckets. Not all linked-
lists can be replaced with hash tables, as some rely on the specific
semantics of a list, such as ordering. In these cases, other data
structures that provide multiple access paths to the data should be
explored.

Another optimization technique for optimistic concurrency is split-
ting longer critical sections into shorter ones. Consider a function

that does a bulk insertion of items into a data structure, as illus-
trated in Figure 7. After inserting any given item, all data structure
invariants hold. In a locking environment, holding the lock across
all iterations is generally most efficient because it avoids bus lock-
ing and cache traffic on the lock variable itself (potentially at the
cost of fairness). Under optimistic synchronization, however, one
should avoid touching larger amounts of data for longer periods of
time and instead should commit after each iteration. This is de-
picted in the second half of Figure 7 by the reduced scope of the
transaction relative to the scope of the lock. In addition to limiting
exposure to conflicts, reducing the live range of a transaction also
limits the amount of work lost in the event of a rollback.

In cases where critical regions have dense conflicts that cannot
be optimized, the best course of action may be to fall back on lock-
ing. In some cases, a highly contended shared pointer or variable
is integral to the algorithm and cannot be changed. Ideally, opti-
mistic synchronization would do no worse than locking when criti-
cal regions have dense conflicts. In transactional memory systems,
however, retrying a transaction incurs the overhead costs including
cache interference and back-off periods that can make overhead of
acquiring a lock cheaper under high contention.

6.2 Where to start tuning Linux?
The Linux kernel, like other real-world parallel programs, is a

large and complicated piece of software with hundreds of critical
sections that could be tuned after a rote conversion to use optimistic
concurrency. Targeting effort on the critical sections that are most
likely to benefit from tuning is a major challenge.

In particular, the best opportunity is for coarser-grained locks
that represent a substantial portion of execution time and protect
data structures that can be easily reorganized to avoid conflicts. The
problem with further tuning fine-grained locks is that they will have
low data independence and there is very little that optimistic con-
currency has to offer such a situation.

We profiled the kernel using the Syncchar tool, with Table 2
showing the data independence and conflict density of some of the
longest held locks during the MAB workload on 16 processors.
This sample is representative of all of our workloads; relative posi-
tions and length held vary but these locks are generally in the top 15
on all workloads. The locks that tend to be held the longest tend to
be coarse-grained, global locks, so it shouldn’t come as a surprise
that these dominate the table.

Overall, the Linux kernel has fairly low data independence—less
than 2%, weighted by the time each lock is held. The conflict den-
sity is more moderate, accounting for just over a fourth of potential
conflicts. This indicates that there is a good deal of opportunity for
tuning the optimistic performance of the kernel, by changing data
structures to increase data independence and changing the scope
of critical regions to reduce conflict density. The absolute perfor-
mance increases will be small as all spinlocks only account for 2%
of the runtime in this workload.

We can gain further insight into a lock’s potential for optimiza-
tion by looking at the distribution of conflicts within Syncchar’s
sampled worksets. Table 3 shows the distribution of conflicting
addresses for the zone allocator locks listed in Table 2. For in-
stance, the zone.lru lock shows a single conflict on a hot-spot
address, and a large number of unique addresses that are rarely in-
volved in conflicts. On the other hand, if a larger portion of the
address set is involved in most of the conflicts, or if a highly con-
flicting address is critical to maintaining data structure invariants,
the critical section may not be amenable to further tuning, or may
perform better under conservative synchronization.

Lock Time Data Indep. Confl. Dens.
Held 16 32 16 32

dcache lock 0.34% 8.12 12.54 2.30 3.43

zone.lru lock 0.31% 1.15 1.23 15.04 29.48

inode.i data- 0.26% 4.87 6.85 6.09 10.24
.i mmap lock

files lock 0.20% 5.76 9.21 7.42 13.06

zone.lock 0.08% 1.00 1.00 16.00 32.00

kernel flag 0.08% 7.98 13.06 3.75 6.68

journal t.j state lock 0.07% 1.01 1.04 15.82 31.46

inode lock 0.07% 3.02 5.47 9.83 18.58

Weighted Average 2.00% 1.38 1.93 4.11 7.45

Table 2: A sample of the longest held spin locks during the

MAB workload on a 16 CPU machine. Each entry is for one

instance of a lock. The percentages of time held are of total

execution time. Data independence and conflict density mea-

surements are given for each lock at 16 and 32 CPUs. The final

row gives the total percent of the execution time spent holding

any spin lock, and then provides an average data independence

and conflict density measurement for the kernel, weighted by

the length of time each lock is held.

Lock zone.lru lock zone.lock

0-19% 4,012 2,188

20-39% 1 3

40-59% 0 0

60-79% 0 0

80-99% 1 1

100% 0 2

Avg. Workset Size 4,012 2,188

Total Conflicts Sampled 225,482 28,938

Table 3: Distribution of conflicting addresses for the zone locks.

The range of percentages shows the number of workset ad-

dresses involved in that percentage of conflicts.

6.3 Zone allocator case study
We selected the Zone allocator for our case study because its

critical sections are highly likely to conflict, its locks are among
the longest held in the kernel, and its conflict profile indicates only
a few “hot” memory locations out of an otherwise well-distributed
address set. Linux divides physical memory into zones (3 on the
x86 architecture), and uses these zone structures to manage the
allocation and freeing of physical memory.

There are two locks in each zone structure that protect differ-
ent structures. The zone.lock protects the lists of free pages,
which are used to implement a buddy allocation algorithm. The
zone.lru lock protects the least-recently-used (LRU) lists, which
are used to select pages that can be reclaimed or swapped out on de-
mand. Both lists have a similar conflict profiles—shared list point-
ers and size counters.

The data structures protected by the zone.lru lock are amenable
to reorganization to avoid conflict. The first issue with the LRU
data is that it is stored in linked-lists. To solve this problem, we
converted the single lists to hash tables with chaining, as described
in Section 6.1. The page frame reclaiming algorithm (PFRA) does
require a rough ordering for performance, but neither performance
nor overall effectiveness are compromised if items aren’t exactly
ordered. The original PFRA scans the free lists starting at the tail

configure Run several parallel instances of the configure script
for a large software package, one for each processor.

find Run 32 instances of the find command, each in a
different directory, searching files from the Linux
2.6.16 kernel for a text string that is not found. Each
directory is 4.6–5.0MB and contains 333–751 files
and 144–254 directories.

MAB File system benchmark simulating a software devel-
opment workload [20]. Runs one instance per
processor of the Modified Andrew Benchmark,
without the compile phase.

pmake Runs make -j 2 * number of procs to compile 27
source files totaling 6,031 lines of code from the
libFLAC 1.1.2 source tree in parallel.

Table 4: Parallel applications used to exercise the concurrency

in Linux and TxLinux.

pointer, which we replace with the index of the last hash bucket
scanned. This index is updated with atomic instructions outside of
the critical regions to avoid conflicts and allow parallel scanning of
the list.

The zone.lru lock also protects integers that track statistics
such as the number of pages scanned. Some of these counters are
accessed both inside and outside of critical regions, implying no
strict consistency requirement. These updates are moved outside of
the critical regions. The integers that had consistency requirements,
however, were converted into per-CPU counters.

The zone.lock, however, is less amenable to reorganization
because the buddy allocator algorithm is concerned with both per-
formance and avoiding memory fragmentation—these concerns can
work at cross purposes in optimistic systems. Early results indicate
that partitioning the free lists into per-CPU lists is not as effective as
one might expect. In order to maintain the same aggressive level of
fragmentation avoidance, a CPU often has to search another CPU’s
free list for a block of the right size before splitting a larger one.
Changing this behavior requires evaluation not only of execution
time but also of the change in memory fragmentation. Developing
a higher-performance optimistic zone allocator is ongoing work.

One opportunity we found in the the code protected by the zone-
.lock is decomposing each iteration of the bulk allocation and
free operations into smaller critical regions, as described in Sec-
tion 6.1. Because the zone.lock shows such poor data indepen-
dence and conflict density, we also optimized it by converting its
critical regions from transactions back into spinlocks.

6.4 Experimental Results
To evaluate these optimizations, measurements of both 16 and 32

CPU systems were taken as described in Section 5. Because Linux
simply idles when left undisturbed, we need a set of parallel appli-
cations to exercise the concurrency within the Linux subsystems,
such as the file system and memory allocator. The applications
used for this study are listed in Table 4.

Figures 8 and 9 present the speedup in kernel time at 16 and 32
CPUs, respectively. Kernel time is presented because our tuning ef-
forts are for the kernel qua parallel program and cannot be expected
to improve the non-kernel portions of the execution time. Further,
this approach eliminates noise introduced by load imbalance in the
workloads.

These graphs compare the optimizations against the TxLinux
baseline kernel. “zone coarse tx” represents the LRU optimizations
and the zone transactions unmodified. “zone fine tx” includes both

TxLinux Default TxLinux kernel

zone coarse tx The lru lock optimizations and the
zone.lock transactions unmodified

zone fine tx The lru lock optimizations and the
bulk zone.lock transactions shortened

zone coarse lock The lru lock optimizations, while the
zone.lock transactions are reverted back
to locks. The bulk zone critical
sections are not shortened.

Table 5: Summary of zone optimizations evaluated.

Workload

find pmake mab config

S
p
ee

d
u
p

0.9

0.95

1

1.05

1.1
TxLinux

zone coarse tx

zone fine tx

zone coarse lock

Figure 8: Speedup of time spent in the kernel for each bench-

mark at 16 CPUs, compared to the TxLinux baseline (larger is

better).

Workload

find pmake mab config

S
p
ee

d
u
p

0.9

0.95

1

1.05

1.1
TxLinux

zone coarse Tx

zone fine Tx

zone coarse lock

Figure 9: Speedup of time spent in the kernel for each bench-

mark at 32 CPUs, compared to the TxLinux baseline (larger is

better).

the LRU optimizations and the shortened zone bulk allocations
and free transactions. “zone coarse lock” reverts the zone.lock
back to a spinlock and does not shorten the bulk critical regions.
Table 5 summarizes the optimizations described above and their
mapping onto labels in the figures.

At 16 CPUs, the optimized kernels perform worse than the un-
optimized in all but the find benchmark, whereas at 32 CPUs, they
do better than the baseline (except config). Only config performs
worse than the baseline, but within 1% of the baseline. Our modifi-
cations add work to each critical section in order to avoid conflicts.
Thus, each critical section is longer, but more of the work can be
done in parallel, ameliorating this cost at higher CPU counts.

Optimization

TxLinux zone coarse
tx

zone fine
tx

zone coarse
lock

M
il

li
o

n
s

o
f

cy
cl

es

0

50

100

150

200
spin

restarts

Figure 10: Breakdown of synchronization time between spin-

ning on a lock and restarting transactions for each kernel opti-

mization, running pmake at 32 CPUs.

Figure 10 shows the distribution of synchronization time across
each kernel optimization. It turns out that the zone transactions
dominate most of the transaction restarts, and that this pattern closely
matches the execution time of pmake. Unlike the other bench-
marks, pmake generates enough contention for the data structures
protected by the zone.lock that the “zone fine tx” optimization
performs worse than the others. This is largely the result of backing
off many times in an exponential back-off scheme. While this op-
timization reduces the likelihood of conflict, it does not eliminate
it. Under higher contention workloads, these long back-off peri-
ods can waste a lot of time. can waste a lot of time due to long
back-offs.

The “zone coarse lock” optimization reverts the zone transac-
tions back to using spinlocks for isolation. This optimization elim-
inates nearly all of the aborted cycles in the TxLinux kernel and
performs the best under highest contention. This sets the standard
for an optimistically synchronized, data independent zone allocator
to beat.

Figure 11 shows the data independence for the zone LRU list
optimizations, and Figure 12 shows the change in conflict density.
Making counters per-CPU is a clear win, but adding the hash ta-
ble replacement alone actually lowers the data independence and
raises conflict density because it adds more work to many code
paths without removing the conflicts on the counters. When com-
bined with the counter optimization, however, the hash table in-
creases data independence and lowers conflict density more than
the counter optimization alone.

The data independence and conflict density data for these LRU
optimizations indicate that the likelihood that a critical section will
restart more than once is lowered much more than the likelihood
that it will not restart at all. While data independence is improved
in these optimizations, the more dramatic improvement comes from
a reduction in conflict density.

Data independence and conflict density measurements for the
zone optimizations are not listed, as they were not restructured in a
way that would affect these quantities.

This case study indicates that tuning the performance of opti-
mistic synchronization can be tricky and nonintuitive; program-
mers facing this challenge will benefit immensely from tools that
help them understand their system with quantitative rigor.

6.5 Application to the Linux Kernel
In addition to tuning the performance of TxLinux, we found that

Figure 11: Change in data independence for each LRU opti-

mization at 32 CPUs (larger is better). Base is TxLinux. Both

is the combination of the changes. Configure (combined) data

were unavailable at time of submission.

Figure 12: Change in conflict density for each LRU optimiza-

tion (smaller is better) at 32 CPUs. Base is TxLinux. Both is the

combination of the changes. Configure (combined) data were

unavailable at time of submission.

decomposing the bulk operations of the zone.lock into shorter
critical sections improves the performance of Linux as well. Our
intuition is that this patch prevents smaller requests from waiting on
larger ones. While grabbing and releasing the lock within the loop
adds a few instructions, it can lower the latency for a particular
thread’s allocation which is often on the workload’s critical path.
Lowering the average latency for allocation can increase system
throughput. This change has been submitted to the Linux kernel
developers, who are interested in incorporating the change with the
upcoming addition of ticket spinlocks.

We verified these results by applying this change to the 2.6.23.1
kernel and ran various parallel workloads on a Dell PowerEdge
2900 with two Quad-core Xeon chips, each core operating at 2.66
GHz. The test system has 8 GB of RAM. The test benchmarks are
listed in Table 6.

Figure 13 shows the performance for each benchmark on the tar-
get system, normalized to the unmodified performance. In all cases
except for the larger compilation (with only an .8% loss), the op-
timized version outperformed the baseline Linux kernel. The best
performance was on the shorter compile, with a 4.8% improvement.

In this example, Syncchar shows its versatility by finding oppor-
tunities for performance improvements both in optimistically syn-
chronized code as well as conservatively synchronized code.

configure Run several parallel instances of the configure script
for a large software package, one for each processor.

hdparm Execute hdparm -t /dev/sda1 to check for
regressions on the IO processing path. Unlike the
others, which report seconds, this reports MB/s.

Kernel Execute make -j 16 on the 2.6.23.1
Compile kernel source with default Kconfig options.

Kernel Execute make -j 16 on the TxLinux kernel
Compile source, which has many fewer Kconfig
(fast) options selected.

MAB File system benchmark simulating a software devel-
opment workload. [20] Runs one instance per
processor of the Modified Andrew Benchmark,
without the compile phase.

objdump Execute objdump -d -l vmlinux | grep

mov >/dev/null on the 2.6.23.1 kernel image.

Table 6: Parallel applications used to evaluate the Linux kernel

patch.

Workload

config MAB objdump compile fastComp hdparm

S
p
ee

d
u
p

0.9

0.95

1

1.05

1.1
Unmod

Optimized

Figure 13: Speedup for each benchmark on both the unmod-

ified Linux kernel (unmod) and the kernel with the split zone

bulk operations (Optimized).

7. RELATEDWORK
This paper employs techniques from parallel programming tools

to evaluate the limits of optimistic concurrency. There is a large
body of previous work on debugging and performance tuning tools
for lock-based programs [5, 30]. Our work is distinguished from
other tools because it augments these techniques with novel meth-
ods for reasoning about performance issues in optimistic systems.

Porter et al. introduce the definition of data independent criti-
cal sections and a tool for measuring data independence of critical
regions, but provide no concrete application of the metric or experi-
mental evaluation of its utility [22]. This paper substantially revises
the data independence metric to be more practical (both in measure-
ment and utility), introduces the new metric of conflict density, and
provides empirical evaluation of its application to prediction and
tuning.

When memory performance became a big issue in the early 90’s,
programmers needed tools like memspy [15] to reason about per-
formance problems related to memory behavior. Now that par-
allel architectures are unavoidable, programmers will need tools
to assist in tuning the performance of optimistically synchronized
systems. Lev and Moir discuss the necessity for and challenges
of debugging tools for transactional memory systems [12]. This
paper is distinguished by addressing performance, whereas their

work addresses correctness problems. Perfumo et al. introduce a
Haskell runtime with transactional memory instrumentation sup-
port for performance profiling [21]. This work is complementary
to the Syncchar model, which provides limits that are not tied to
specific schedules.

7.1 Transactional memory
Transactional memory is a general form of optimistic concur-

rency that allows arbitrary code to be executed atomically. Herlihy
and Moss [9] introduced one of the earliest transactional memory
systems. More recently, Speculative Lock Elision [23] and Trans-
actional Lock Removal [24] optimistically execute lock regions
transactionally. Several designs for fully-functional transactional
memory systems have been proposed [4,17,25]. Larus and Rajwar
provide a more complete survey of transactional memory litera-
ture [11].

Welc et al. show that the Java monitor abstraction can be adap-
tively changed between mutual exclusion and transactions [29].
Their work is limited to this programming model and, while po-
tentially applicable to others, is not a general purpose solution to
the problem of deciding whether to convert an application to use
transactions.

7.2 Alternative forms of optimism
Lock-free (and modern variants like obstruction-free) data struc-

tures are data-structure specific approaches to optimistic concur-
rency [6, 8]. Lock-free data structures attempt to change a data
structure optimistically, dynamically detecting and recovering from
conflicting accesses. Lock-free data structures, while optimistic,
are not a general purpose solution. Lock-free data structures re-
quire that each data structure’s implementation meets certain non-
trivial correctness conditions. There is also no general method to
atomically move data among different lock-free data structures.

The Linux kernel employs a form of optimistic concurrency with
the seqlock, or sequence lock [3]. Seqlocks allow readers to exe-
cute optimistically by reading a sequence number before and after
reading the protected data. Writers similarly write the sequence
number before and after writing a data structure, and writers lock
each other out. If the sequence number has the same, even value
before and after reading, the readers are assured the data they read
was consistent. If the value changes, or is odd (indicating the pres-
ence of a writer) the readers simply retry until they read a consistent
value.

The Linux kernel’s Read-Copy Update technique [16] is also a
variant on lock-free data structures that uses compare-and-swap in-
structions to atomically replace pointers to complex data structures.
Old copies of data structures are cleaned up by the process sched-
uler after all reader processes have left the kernel.

8. CONCLUSION
This paper introduces a novel method and tool for reasoning

about the performance of optimistic synchronization, based on mea-
surements from lock-based code. We have validated its effective-
ness at performance prediction and demonstrated its usefulness in
guiding performance tuning on both the Linux and TxLinux ker-
nels. We see Syncchar as one in an array of profiling and debug-
ging tools that will help application developers leverage multicore
systems more effectively.

9. REFERENCES

[1] A. Alameldeen and D. Wood. Variability in architectural
simulations of multi-threaded workloads. In HPCA, 2003.

[2] J. Bobba, K. E. Moore, H. Volos, L. Yen, M. D. Hill, M. M.
Swift, and D. A. Wood. Performance pathologies in
hardware transactional memory. SIGARCH Comput. Archit.
News, 35(2):81–91, 2007.

[3] D. Bovet and M. Cesati. Understanding the Linux Kernel.
OŔeilly Media, Inc., 3rd edition, 2005.

[4] L. Hammond, V. Wong, M. Chen, B. Carlstrom, J. Davis,
B. Hertzberg, M. Prabhu, H. Wijaya, C. Kozyrakis, and
K. Olukotun. Transactional memory coherence and
consistency. In ISCA, 2004.

[5] J. Harrow. Runtime checking of multithreaded applications
with visual threads. In SPIN, pages 331–342, 2000.

[6] M. Herlihy. Wait-free synchronization. In TOPLAS, January
1991.

[7] M. Herlihy and E. Koskinen. Transactional boosting: A
methodology for highly-concurrent transactional objects.
Technical Report: CS07-08, Brown University Computer

Science, pages 1–17, July 2007.

[8] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free
synchronization: Double-ended queues as an example. In
ICDCS, 2003.

[9] M. Herlihy and J. E. Moss. Transactional memory:
Architectural support for lock-free data structures. In ISCA,
May 1993.

[10] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan,
K. Bala, and L. P. Chew. Optimistic parallelism requires
abstractions. In PLDI ’07: Proceedings of the 2007 ACM
SIGPLAN conference on Programming language design and

implementation, pages 211–222, New York, NY, USA, 2007.
ACM Press.

[11] J. R. Larus and R. Rajwar. Transactional Memory. Morgan &
Claypool, 2006.

[12] Y. Lev and M. Moir. Debugging with transactional memory.
In TRANSACT, 2006.

[13] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: Building
customized program analysis tools with dynamic
instrumentation. In PLDI, 2005.

[14] P. Magnusson, M. Christianson, and J. E. et al. Simics: A full
system simulation platform. In IEEE Computer vol.35 no.2,
Feb 2002.

[15] M. Martonosi, A. Gupta, and T. A. Anderson. Memspy:
Analyzing memory system bottlenecks in programs. In
Measurement and Modeling of Computer Systems, pages
1–12, 1992.

[16] P. E. McKenney. Exploiting Deferred Destruction: An
Analysis of Read-Copy Update Techniques in Operating

System Kernels. PhD thesis, 2004.

[17] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A.
Wood. LogTM: Log-based transactional memory. In HPCA,
2006.

[18] M. J. Moravan, J. Bobba, K. E. Moore, L. Yen, M. D. Hill,
B. Liblit, M. M. Swift, and D. A. Wood. Supporting nested
transactional memory in logtm. In ASPLOS-XII. 2006.

[19] J. E. B. Moss. Nested Transactions: An Approach to Reliable
Distributed Computing. PhD thesis, 1981.

[20] J. K. Ousterhout. Why aren’t operating systems getting faster
as fast as hardware? In USENIX Summer, 1990.

[21] C. Perfumo, N. Sonmez, A. Cristal, O. Unsal, M. Valero, and
T. Harris. Dissecting transactional executions in haskell. In
TRANSACT, 2007.

[22] D. Porter, O. Hofmann, and E. Witchel. Is the optimism in
optimistic concurrency warranted? In HotOS, 2007.

[23] R. Rajwar and J. Goodman. Speculative Lock Elision:
Enabling highly concurrent multithreaded execution. In
MICRO, 2001.

[24] R. Rajwar and J. Goodman. Transactional lock-free
execution of lock-based programs. In ASPLOS, October
2002.

[25] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing transactional
memory. In ISCA. 2005.

[26] H. Ramadan, C. Rossbach, D. Porter, O. Hofmann,
A. Bhandari, and E. Witchel. MetaTM/TxLinux:
Transactional memory for an operating system. In ISCA,
2007.

[27] C. Rossbach, O. Hofmann, D. Porter, H. Ramadan,
A. Bhandari, and E. Witchel. Using and managing
transactional memory in an operating system. In SOSP, 2007.

[28] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. A
scalable approach to thread-level speculation. In ISCA, 2000.

[29] A. Welc, A. L. Hosking, and S. Jagannathan. Transparently
reconciling transactions with locking for java
synchronization. In ECOOP, 2006.

[30] Y. Yu, T. Rodeheffer, and W. Chen. Racetrack: Efficient
detection of data race conditions via adaptive tracking. In
SOSP, 2005.

[31] C. Zilles and L. Baugh. Extending hardware transactional
memory to support non-busy waiting and non-transactional
actions. In ACM SIGPLAN Workshop on Languages,
Compilers, and and Hardware Support for Transactional

Computing, Jun 2006.

