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Abstract: This paper is motivated by a simple obser-
vation: although recently developed BFT state machine
replication protocols are quite fast, they don’t actually
tolerate Byznatine faults very well. In particular a single
faulty client or server in PBFT, Q/U, HQ, and Zyzzyva
can render each of these systems effectively unusable for
many applications by reducing their throughput by two
orders of magnitude or more, from thousands of requests
per second to fewer than 10 requests per second. The
problem comes not because these systems fail to meet
the guarantees they promise, but because the guarantees
they promise are insufficient for the high assurance sys-
tems for which BFT techniques are likely to be of most
interest.

In this paper, we describe Aardvark, a new BFT repli-
cation protocol that guarantees good performance during
uncivil periods, when the network is reliable but when up
to f servers and any number of clients are faulty. Aard-
vark gives up some performance compared to protocols
that focus on optimizing for the best case, but Aardvark’s
peak throughput of 40527 requests per second seems suf-
ficient for many applications. Because Aardvark is less
aggressively tuned for the fault free case, it is guaranteed
to remain within a constant factor of 40527 when faults
occur. We observe throughputs of between 11706and
40527for a broad range of injected faults.

1 Introduction
This paper is motivated by a simple observation: al-
though recently developed BFT state machine replica-
tion protocols have driven the costs of BFT replication
to remarkably low levels [8, 11, 1, 21], the reality is that
they don’t actually tolerate Byzantine faults very well. In
fact, a single faulty client or server can render these sys-
tems effectively unusable by inflicting multiple orders of
magnitude reductions of throughput and even long peri-
ods of complete unavailability. Such degradation or un-
availability is unacceptable in many of the high assurance
environments where BFT replication might otherwise be
an attractive option.

For example, Figure 1 shows the measured perfor-
mance of a variety of systems both in the absence of fail-
ures and when a single faulty client submits a carefully
crafted series of requests. These slowdowns and crashes
are caused by two distinct factors: (i) the protocol de-
signs handle faults through alternate execution paths that
are complex and can be an order of magnitude or more
slower than the optimized best-case path and (ii) the im-
plementations fail to cover several of the intricate corner
cases that can arise along these slow paths. As we show
later, a wide range of other behaviors—a faulty primary,
a recovering replica server, etc.—can have similar im-
pacts on performance.

The problem comes not because current BFT sys-
tems fail to meet the guarantees they promise, but be-
cause they promise insufficient guarantees for many high
value systems. In particular, although these systems pro-
vide strong safety guarantees, they promise extremely
weak liveness guarantees. For example, PBFT promises
only that “clients eventually receive replies to their re-
quests.” [8]

We introduce Aardvark, a new BFT state machine
replication protocol that continues to provide the strong
safety guarantees of existing protocols but that also re-
mains usable even when faults occur. In particular, Aard-
vark ensures strong liveness guarantees not only during
gracious intervals—synchronous network, timely and
fault-free replicas, correct clients—but also during un-
civil execution intervals in which network links and cor-
rect servers are timely, but up to f = b n−1

3 c servers and
any number of clients are faulty.

Aardvark is a simple protocol that avoids introducing
fragile optimizations. A fragile optimization is one that
can improve best-case performance but that introduces
expensive alternative protocol paths down which faulty
nodes can send the system. More specifically,

1. Aardvark limits vulnerability to disruption by
clients by using a hybrid signature/MAC authenti-
cation construct that safeguards request submission
against manipulation by faulty clients and by iso-
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lating client request processing so that load from
clients cannot prevent progress by servers.

2. Aardvark limits vulnerability to disruption by a pri-
mary by defining an autonomous view change con-
dition that determines when a server may unilater-
ally vote for a view change. Subject to this condi-
tion, Aardvark servers then implement a self-tuning
view change protocol to keep performance near
what would be provided during periods led by a fast,
correct primary.

3. Aardvark limits vulnerability to disruption by any
server by limiting the extra work servers can impose
on each other by (a) only processing catch-up mes-
sages from slow servers when such processing can-
not interfere with progress and (b) using dedicated
physical links between each pair of servers and de-
activating links from servers imposing excess load.

To eliminate fragile optimizations, Aardvark takes a
number of steps that previous high-performance BFT
systems have been wary of. In Aardvark, clients use
signatures instead of MACs, and servers trigger fre-
quent view changes. Surprisingly, these controversial
choices impose only a modest cost on Aardvark’s peak
performance. As Figure 1 illustrates, Aardvark sus-
tains peak throughput of 40527 requests/second, which
is good enough for many interesting services. Notably,
this throughput is within a factor of 3 of PBFT and 4 of
Zyzzyva, comparable to QU and better than HQ. At the
same time, Aardvark’s fault tolerance is dramatically im-
proved: for a broad range of client, primary, and server
misbehaviors, Aardvark’s performance remains between
11706and 40527requests/second.

In Section 2 we describe our system model and the
guarantees appropriate for high assurance systems. In
Section 3 we explore the limitations of existing systems
and the root causes that preclude their use in high assur-
ance environments. In Section 4 we present the Aardvark

System Peak Performance Big MAC Attack
PBFT [8] 36350 0
QU [1] 26786 0∗

HQ [11] 15873 SAFETY VIOLATION†

Zyzzyva [21] 48253 0
Aardvark 40527 40527

Figure 1: Observed Peak throughput of BFT systems in
fault-free case and when a single faulty client submits a
carefully crafted series of requests. We detail our mea-
surements in Section 3. * is reported from [1]. † The
HQ prototype does not allow servers to use distinct MAC
keys.

protocol. In Section 5 we present an analysis of Aard-
vark’s expected performance. In Section 6 we present
our experimental evaluation. In Section 7 we discuss re-
lated work.

2 A new problem statement
This section defines our system model and argues that
the demands of high assurance systems require us to re-
think the liveness and performance objectives that BFT
services should attempt to deliver.

To provide context, we first revisit the standard sys-
tem model and safety guarantees, which Aardvark adopts
as well. We then describe the liveness goals adopted
by published BFT service replication protocols, dis-
cuss the limitations of these goals, and define new live-
ness/performance goals that we argue are a better match
for most BFT services.

2.1 System model and safety guarantees
We take our basic model for the system’s safety prop-
erties directly from prior work [21]. We assume the
Byzantine failure model where faulty nodes (servers or
clients) may behave arbitrarily [24]. We assume a strong
adversary that can coordinate faulty nodes to compro-
mise the replicated service. We do, however, assume
the adversary cannot break cryptographic techniques like
collision-resistant hashes, message authentication codes,
encryption, and signatures. We denote a message X
signed by principal Y ’s public key as 〈X〉σY . Our sys-
tem ensures its safety and liveness properties if at most
f = b n−1

3 c replicas are faulty. We assume a finite client
population, any number of which may be faulty.

Our system implements a BFT service using state ma-
chine replication [8, 23, 22, 34]. Traditional state ma-
chine replication techniques can be applied only to de-
terministic services. We cope with the non-determinism
present in many real-word applications (such as file sys-
tems [28] and databases [38]) by abstracting the ob-
servable application state at the replicas and using the
agreement stage to coordinate all nondeterministic deci-
sions [31].

Services limit the damage done by Byzantine clients
by authenticating clients, enforcing access control to
deny clients access to objects they do not have a right
to, and (optionally) by maintaining multiple versions of
shared data (e.g., snapshots in a file system [33, 32]) so
that data can be recovered from older versions if a faulty
client destroys data that it is authorized to access [20].

Our system’s safety properties hold in any asyn-
chronous distributed system where nodes are connected
by a network that may fail to deliver messages, corrupt
them, delay them, or deliver them out of order.

Under these assumptions, the safety property offered
by Aardvark is a form of linearizability [17], modified,
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similar to [26] and [8], to account for Byzantine clients:
the replicated service behaves as a single correct replica
that executes requests atomically one at a time.

2.2 Standard liveness and performance
properties

Since Aardvark attempts to provide useful performance
despite faults, it is important to carefully define the tim-
ing model. Liveness and performance guarantees can not
be made without assumptions that limit worst-case mes-
sage delivery delays [14]. Given this fundamental limi-
tation and given the initial presumption that BFT replica-
tion would be extremely expensive, published BFT state
machine replication protocols have focused on two ex-
treme cases, providing weak guarantees during intervals
where weak assumptions hold and maximizing perfor-
mance during intervals where strong assumptions about
both timing and machine behavior hold [8, 1, 11, 21].

On the weak end, these systems focus on some vari-
ation of eventual synchrony, which can be defined with
respect to a synchronous interval:

Definition 1 (Synchronous interval). During a syn-
chronous interval any message sent between correct pro-
cesses is delivered within a bounded delay T if the sender
retransmits according to some schedule until it is deliv-
ered.

If we assume that network faults are eventually re-
paired, then it is a relatively weak assumption to presume
that the time to deliver a message will not grow with-
out bound and that eventually there will be an arbitrar-
ily long synchronous interval for some bound T . Under
such weak assumptions, systems can make the following
(weak) liveness guarantee:

L1 If a correct client submits a request r, and if eventu-
ally there is a sufficiently long synchronous interval,
then the service eventually executes r.

Although details vary, many systems attempt to provie
some guarantee similar to L1 [4, 1, 8, 11, 21].

At the other extreme, systems have demonstrated ex-
cellent peak performance during gracious intervals and
semi-gracious intervals.

Definition 2 (Gracious interval). An interval is gra-
cious iff (a) the interval is synchronous with some
implementation-dependent short bound on message de-
lay and (b) all clients and servers behave as if they were
correct.

Definition 3 (Semi-gracious interval). An interval is
semi-gracious iff (a) the interval is synchronous with
some implementation-dependent short bound on mes-
sage delay, (b) up to f servers crash, and (c) all clients
and all remaining servers behave as if they were correct.

This assumption yields the second “standard” perfor-
mance property:

L2std Maximize performance during sufficiently long gra-
cious or semi-gracious intervals.

Resulting efforts to maximize the best case perfor-
mance have been important in combating the presump-
tion that BFT is too expensive for practical use. These
efforts have also been extremely successful—state of the
art protocols can execute tens of thousands of requests
per second and approach the performance of an unrepli-
cated, non-BFT service [1, 8, 11, 21].

2.3 A case for a new goal
We argue that as important as properties L1 and L2std
are, designing protocols around them has yielded sys-
tems that cannot meet the needs of many high-assurance
systems. In particular, for many high assurance services,
ensuring high availability may be nearly as important as
ensuring integrity [12], so to truly be regarded as tolerat-
ing Byzantine faults, systems must continue to be useful
even when faults occur and the system shows minimal
graciousness.

Given that it is only possible to provide meaningful
guarantees when the network is well behaved [14], we
are interested in the performance of systems during un-
civil intervals that impose significantly fewer restriction
on the behavior of clients and servers.

Definition 4 (Well-behaved network). The network is
well-behaved when messages sent by a correct node i to
correct node j are received within a small time interval
δ.

Definition 5 (Uncivil interval). During uncivil intervals
the network continues to be well-behaved, but an arbi-
trary number of clients and faulty servers can be Byzan-
tine and renounce any pretension of graciousness.

We then define a new requirement for our BFT repli-
cated service:

L3 Provide useful performance during sufficiently long
uncivil intervals.

Note that the threshold for what constitutes useful per-
formance will depend on a service’s anticipated demand,
so our task is to design a protocol with good performance
during uncivil intervals so as to maximize the range of
workloads for which the system is of use. Addition-
ally, we must engineer Aardvark to achieve long inter-
vals where the network is well-behaved even if servers
are faulty, so our prototype physically isolates servers’
network connections.

In order to achieve L3, we are willing to relax the goal
of L2std—from maximizing best case performance, to
providing adequate best case performance:
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L2 Provide good performance during sufficiently long
gracious and semi-gracious intervals

Discussion We argue that many BFT systems should be
willing to give up some best case performance in order
to provide good performance over a wider range of situ-
ations for two reasons.

First, in current systems the best case is fragile, so
building a system around its best case performance may
be dangerous. In particular, (1) the best case is achieved
only when very strong assumptions hold and (2) depart-
ing from the best case can devastate performance because
the system then provides at best the weak guarantee L1.
This fragility is not just a theoretical problem. We ob-
serve both of these issues in existing protocols: as we
show in Section 3, any server or client can knock the
system off the best case and the resulting performance
degradation can be enormous.

Second, many systems may be insensitive to modest
reductions in peak agreement throughput because of lim-
ited demand or other bottlenecks.

In particular, many services’ peak demands are far un-
der the best case throughput offered by existing BFT
replication protocols. For such systems, good enough is
good enough, and modest reductions in best case agree-
ment throughput will have little effect on end to end sys-
tem performance. In such systems, increased robustness
may come at effectively no cost.

Similarly, when systems have other bottlenecks, Am-
dahl’s law limits the impact of changing the performance
of agreement. For example, Zyzzyva can execute about
85,000 null requests per second [21], suggesting that
agreement consumes 11.8µs per request. If, rather than
a null service, we replicate a service for which execut-
ing an average request consumes 100µs of processing
time, then peak throughput with Zyzzyva would be about
8945 requests per second. If, instead, agreement were
accomplished via a protocol with double the overhead
of Zyzzyva (e.g., 23.6µs per request), peak throughput
would still be about 8090 requests/second. In this hypo-
thetical example, doubling agreement overhead reduces
peak end-to-end throughput by less than 10%.

Thus, Aardvark seeks to provide eventual progress
(L1), good performance during gracious and semi-
gracious intervals (L2), and useful performance during
uncivil intervals (L3).

A non-goal. We deliberately reject an alternate goal—
maximizing average performance.

One could imagine arguing that if a system spends a
fraction g of its time in gracious intervals with through-
put tg and most of the rest of its time (1-g) in uncivil inter-
vals with throughput tu, then a system should be designed
to maximize gtg ∗ (1− g)tu. If one assumes g� 1− g,
then one would focus on maximizing tg and one would

REQUEST        PRE−PREPARE        PREPARE         COMMIT        REPLY

0

1

2

3

C

Figure 2: Basic communication pattern in PBFT [8].

largely ignore tu. I.e., one would focus on L1 and L2std
and ignore L3 as in past systems.

We do not believe such a formulation of average per-
formance captures the requirements of many of the high-
assurance systems for which BFT replication might oth-
erwise be attractive. The premise of BFT replication
is that an important service might be willing to pay for
replication to ensure integrity despite the presumably
rare case of server failures. We similarly believe that at
least some high-assurance services might be willing to
pay some modest additional overheads to protect avail-
ability and performance.

3 Challenges
To understand the challenges BFT state machine repli-
cation systems face when trying to deliver good perfor-
mance in the presence of faulty nodes, we look at each
of the participants in turn: the clients, the primary (if
present), and the replicas.

One might hope that in some high-assurance environ-
ments, servers might be well-enough controlled that ex-
otic “malicious server” behaviors could be considered a
tolerably low risk. Unfortunately, even if one were will-
ing to give up the promise of BFT replication to toler-
ate arbitrary server failures, many existing protocols are
sufficiently high-strung that they can be significantly dis-
rupted by decidedly non-exotic behaviors including mal-
formed requests from a single faulty client or catch-up
messages from a slow or recently rebooted correct server.

As we note below, some of the individual challenges
have been identified in the past; other challenges, once
identified, have obvious solutions. Given the standard
objective of maximizing best case performance, how-
ever, it is not surprising that existing systems retain a
wide range of vulnerabilities to performance degradation
by faulty nodes.

3.1 Basic operation of existing protocols
For review, Figure 2 illustrates the basic communication
patterns in Castro and Liskov’s PBFT protocol [8]. A
set of n ≥ 3 f + 1 servers select one of their number to
be the primary. A client sends its REQUEST message
to the primary, and the primary assigns the request a se-
quence number and sends a PRE-PREPARE message to
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the other servers. The servers then do an all-to-all ex-
change of PREPARE messages and then of COMMIT
messages. Once a sufficient number of servers agree on
the request’s order in a linearizable total order of all re-
quests, they execute the request and send a REPLY mes-
sage to the client. A clients acts on the REPLY once it
has at least f +1 matching replies.

To ensure progress, a client retransmits a request to
all replicas if it does not receive a reply by a timeout,
and the replicas forward the request to the primary. Each
replica then expects the request to complete execution
of a request by a timeout. If no requests complete ex-
ecution in time, the replica assumes that the primary is
faulty and initiates a view change by stopping all pro-
cessing of messages in the current view and sending a
VIEW-CHANGE message to all servers. Once a suffi-
cient number of replicas initiate a view change, they are
able to start the next view with a different primary. Ad-
ditionally, if a server falls behind in this asynchronous
system, it is able to catch up by fetching a recent check-
point and recent messages from its peers.

A key performance optimization is the use of message
authentication codes (MACs) for authentication rather
than digital signatures. In particular, REQUEST, PRE-
PREPARE, PREPARE, and COMMIT messages contain
an authenticator—an array of n MACs, one for each
server. For practical values of n, generating n MACs is
at least an order of magnitude faster than verifying a sig-
nature. For example, on a 2.0GHz Pentium-M, openssl
0.9.8g can compute over 500,000 MACs per second for
64 byte messages, but it can only verify 6455 1024-bit
RSA signatures per second or produce 309 1024-bit RSA
signatures per second.1

Other representative protocols are similar in princi-
ple, but vary their message patterns. For example,
Zyzzyva [21] speculatively executes requests, replies to
clients after the PRE-PREPARE phase, and can skip the
subsequent steps if enough replies match. Q/U [1] elim-
inates the primary and uses client retransmissions to re-
solve conflicting updates. HQ [11] is a hybrid protocol
that resembles Q/U in the absence of contention and re-
lies on a protocol like PBFT rather than client backoff to
resolve conflicts.

3.2 Clients
The clients’ basic role in replicated services is quite
simple—they are expected to transmit messages to the
servers so the servers can act. Client behaviors can thus
be understood in two dimensions: message contents and
message frequency.

1Elliptic curve algorithms have faster signature generation (e.g.,
2275 per second for 160-bit signatures, which are believed to be ap-
proximately equivalent in strength to 1024-bit RSA signatures) but
slower signature verification (e.g., 499/s for 160-bit signatures); most
PBFT messages are generated once and verified n−1 times.

For message contents, we distinguish three classes
of message. First, correct messages are properly con-
structed protocol messages that can be authenticated by
all correct servers if they are accurately conveyed to their
destinations. Second, unfaithful messages are protocol
messages that would fail to be authenticated at one or
more correct servers. Third, other messages do not pur-
port to be protocol messages; other messages can be re-
jected by a server without any cryptographic processing.

Note that a correct (properly authenticated) message
might contain a request that the underlying replicated
service rejects due to an access control list (ACL) or
other service-specific security violation. From the point
of view of the replication protocol, such messages are
still correct: the associated request should be executed
at some well-defined point in the linearizable execution
of the underlying state machine, which may choose to
execute the request by generating an error code.

For message frequency, we must consider the load
from correct, unfaithful, and other messages.
3.2.1 Unfaithful messages

Systems are vulnerable if they allow unfaithful messages
to generate disproportionate amounts of work for servers.
Although the use of MAC authenticators for client mes-
sages reduces the cost of processing correct messages,
this technique can significantly increase the cost of han-
dling unfaithful messages.

The problem with MACs arises because they fail to
provide non-repudiation. As a result, even after check-
ing a message’s MAC, the recipient cannot be sure that
any other node in the system will also consider the mes-
sage and associated MAC to be valid. This fundamen-
tal limitation of MAC semantics is problematic because
replicated services require correct replicas to ultimately
make the same decision with respect to the validity of
messages.

Note that if a message contains incorrect or inconsis-
tent MACs, the fault may lie with the (purported) origina-
tor of the message, the network, any node through which
the message was relayed, or (in the case of a message
with no verifiable MACs) any other party. This frustrates
many simple approaches to limiting the disruption from
unfaithful messages. For example, if a PBFT or Zyzzyva
replica receives a client request that it cannot authenti-
cate, it faces a he-said/she-said problem: the replica can-
not easily know if the fault lies with the client, primary,
or network.

In existing protocols, clients send one or both of two
classes of MAC-authenticated messages: (1) initial re-
quest transmission and (2) certificates that the client is
expected to gather and retransmit to replicas. In both
cases a faulty client can force the system down expen-
sive paths by modifying a MAC authenticator to cause
some servers to succeed in authenticating the message
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while others fail.

Request Transmission. Clients are responsible for
sending requests to the servers. Because clients act alone
and request submission is a necessary part of replicated
services, this step presents an obvious chance for faulty
clients to disrupt the system.

For example, in PBFT, as Castro notes in his thesis
([7], pp. 42–43), a single faulty client can transmit an un-
faithful request that can force the system down execution
paths that prevent progress for any client’s request until
a timeout and view change occur. In one such behav-
ior, the client sends a request with a good MAC for the
primary but a bad MAC for all other replicas. After au-
thenticating the request, the primary assigns a sequence
number s to the request and sends a PRE-PREPARE mes-
sage to the replicas. The replicas, however, are unable to
authenticate the request and refuse to generate a PRE-
PARE message for sequence number s. At this point,
no request with sequence number s′ > s can be executed,
and progress stops until a timeout triggers a view change.
The client can repeat its behavior in the new view.

Similar scenarios arise in Zyzzyva and HQ, which at-
tempt to avoid suffering a view change by introducing a
request validation sub-protocol that can require all-to-all
communication and can require servers to generate sig-
natures to combat the he-said/she-said problem.

Q/U avoids using the primary to order requests, but
this omission allows the faulty client to frustrate servers
by talking to them directly. In particular, a client can
send a request that some replicas will accept and some
will refuse, putting the system in an inconsistent state.
Q/U relies on correct clients to eventually resolve such
inconsistencies by reading state and the associated MAC
authenticators from a quorum and then writing new state
including MAC authenticators to a quorum. However, as
Abd-El-Malek et al. note [1], progress is only ensured
when clients follow an exponential backoff strategy [9].

Certificate Gathering. In addition to having clients issue
requests, Q/U, HQ, and Zyzzyva require clients to gather
certificates of replica responses before entering into the
second phase of their protocols. Certificates generally
consist of a threshold number of replica responses that
the replicas must authenticate in order to decide what ac-
tion to take in the next step of the protocol. When these
replica messages are authenticated by MACs, a faulty
client can produce unfaithful certificates that different
subsets of replicas can authenticate.

Protocols respond to such situations by falling back
on more expensive paths. For example, in HQ this client
behavior results in the replicas signing a message as a
token for the client to use in order to enter the conflict
resolution phase of the protocol; in Q/U additional bar-
rier operations and backoff is required; and in Zyzzyva

an extended version of its slower 2-phase execution path
is required.

Measured performance. As Figure 12 in Section 1
shows, a single client’s big MAC attack can devastate
performance in several representative existing systems.
In this and all subsequent experiments, we use the most
recent implementations provided by the systems’ authors
and run these systems on machines with dual-core 3GHz
Intel Pentium-IV Xeon processors, 1GB of memory, and
six 1Gb/s Ethernet NICs. We enable multicast for PBFT
and Zyzzyva; multicast is not exploited by HQ or Q/U.

When we subject these systems [1, 8, 11, 21] to a load
of 255 correct clients issuing back-to-back 1-byte re-
quests that require no processing by the execution phase
and one client that sends a series of faithless requests
with inconsistent MACs, the throughput of the PBFT and
Zyzzyva prototypes fall to zero. A big MAC attack can-
not be implemented in the HQ prototype without violat-
ing safety as all clients and replicas share the same set of
symmetric keys and the initial client request is authen-
ticated by a single MAC. We were unable to replicate
the expected performance of Q/U so rely on an analytic
model discussed in [21]; we base the expected through-
put on the authors’ admission that the system “ensures
safety, but not progress, in the face of malevolent com-
ponents” [1].

The disparity between predicted and measured results
arises from incomplete design and implementations. In
particular, a big MAC attack stresses corner cases of the
protocols that are not always fully specified and are fre-
quently either left unimplemented or not fully tested to
verify that they behave as expected. PBFT and Zyzzyva,
for example, thrash on these poisoned requests, failing
to either make progress in the current view or initiate
a view change. The HQ prototype, for example, was
constructed to faithfully model system performance for
fault-free executions, and it expressly does not attempt
to handle other cases; the HQ protocol design, in con-
trast with the implementation, is expected to be safe but
the design does not help in understanding the system’s
performance in the presence of failures.

Design Principles Although it is perhaps not surprising
that intricate alternative protocol paths fail to perform
as expected, this experience suggests a second motiva-
tion for Aardvark’s KISS approach: eliminating alternate
protocol paths not only avoids the risk that clients can
drive the system to use expensive paths, but it also makes
it easier to produce a protocol that works as expected.

2For the moment, please ignore the intruding Aardvark; we discuss
Aardvark’s design and resilience in Section 4, but we include this line
here to avoid repeating the table.
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System Peak Performance Faulty Retransmission
PBFT [8] 36350 crash
HQ [11] 15873 0
Zyzzyva [21] 48253 crash
Aardvark 40527 7873

Figure 3: Observed peak throughput of BFT systems in
the fault free case and under heavy client retransmission
load.

3.2.2 Load from correct, unfaithful, and other mes-
sages

Performance is affected when correct or faulty clients
send correct messages, when faulty clients send unfaith-
ful messages, and when faulty clients send other mes-
sages. Figure 3 shows the impact of a single client that
spams the replicas. In the case of PBFT and Zyzzya
a single faulty client spams the replicas with 9kB mes-
sages; in HQ a faulty cliet spams the replicas with TCP
connection requests.

The implementation decision that makes these proto-
cols vulnerable to thrashing under high client load is that
client requests and intra-server messages share a single
FIFO network queue. As a result, increasing client re-
quest rate reduces the resources available for processing
server requests.

Similarly, note that unfaithful (inauthentic) and other
(non-protocol) messages can load the servers, crowd out
legitimate client requests, or both. For example, if a
client can spoof its source IP address, it can send large
volumes of requests purporting to be from other clients,
forcing the receiving server to cryptographically check
and then reject these requests. Or, if an attacker controls
a botnet, she can impose almost arbitrarily high levels of
load.

Design Principles Such volume-based brute-force DoS
behaviors are a potential problem for both BFT and non-
BFT services, and solving the general DoS problem is
beyond the scope of this paper. Formally, we will re-
strict our attention to periods when some fraction g of
incoming packets carry good (non-DoS) requests and we
will try to ensure that our throughput is within a factor
of (1− g) of our throughput if all requests were good.
Other research efforts aimed at the volume-based DoS
problem [6, 29] may help systems keep g high.

Aardvark’s design goal is to avoid introducing vulner-
abilities that make it significantly more susceptible to
DoS or DDoS than non-replicated services. For exam-
ple, requiring all client messages to be authenticated with
a digital signature rather than a MAC [5] might increase
vulnerability to DoS behaviors if verifying a signature is
much more expensive than generating a message with a

System Peak Throughput 1 ms 10 ms 100 ms
PBFT 36350 5396 4635 1097
Zyzzya 48253 14547 5141 crash
Aardvark 40527 38084 39089 37903

Figure 4: Throughput during intervals in which the pri-
mary delays sending PRE-PREPARE message (or equiv-
alent) by 1, 10, and 100 ms.

bogus signature.

3.3 Primary Disruption
Employing a primary to order requests enables batch-
ing [8, 15] and avoids the need to trust clients to obey a
backoff protocol [1, 9]. However, because primaries are
responsible for selecting which requests to execute, the
system throughput is at most the throughput of the pri-
mary. The primary is thus in a unique position to control
both overall system progress [4, 5] and the throughput
observed by individual clients.

The fundamental challenge to safeguarding perfor-
mance against a faulty primary is that a wide range of pri-
mary behaviors can hurt performance. For example, the
primary can delay processing requests, discard requests,
corrupt clients’ MAC authenticators, introduce gaps in
the sequence number space, unfairly delay or drop some
clients’ requests but not others, etc. To illustrate some of
these challenges, we discuss two specific ways in which
a primary can adversely impact system performance.
3.3.1 Delaying requests

A slow primary can significantly reduce system through-
put by delaying requests. In particular, existing systems
rely on a timer to initiate view changes when progress
in the current view is not sufficient. Unfortunately, this
timer is easily abused by a faulty primary that sends
PRE-PREPARE messages late and that limits the rate at
which it sends PRE-PREPARE messages. In Figure 4
we show the maximal throughput that can be achieved
in a view where the primary delays sending the PRE-
PREPARE message by varying times. We note that since
the default view change timeout in PBFT and Zyzzyva is
on the order of 500ms, the throughput of both systems is
severely limited by the slow primary.

The Prime system [5] limits its vulnerability to slow
primaries and inconsistent MACs by adding a pre-
agreement stage that servers use to ensure that all servers
have seen a request before it is ordered, by changing all
MAC authenticators into signatures, and by enforcing a
short timeout from when a server sees a request until it
expects the leader to issue a pre-prepare message for that
request. Unfortunately, as noted in Section 3.2.2, authen-
ticating client requests with signatures may make it eas-
ier for clients or attackers to overload the system. Fur-
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System Peak Throughput Faulty Throughput
HQ [11] 15873 0
PBFT [8] 36350 0
Zyzzyva [21] 48253 0
Aardvark 40527 11706

Figure 5: Observed peak throughput and observed
throughput when one replica floods the network with 9k
byte messages.

thermore, the signatures and extra phases come at a sig-
nificant cost to throughput: Amir et al. measure a peak
throughput of about 800 requests per second. The ben-
efit of the approach is the ability to maintain a through-
put of 400 requests per second despite a slow-primary.
Aardvark’s goal is to enjoy a similar ratio of best-case
to uncivil throughput without paying such heavy costs in
absolute performance.
3.3.2 Fairness Violation

A faulty primary might deny service to a victim client
c by refusing to order requests from c. For example, in
PBFT a client whose request is not satisfied retransmits
the request to all replicas, and they set a timer and ex-
pect to see progress before a timeout. However, in accor-
dance with liveness goal L1, replicas are satisfied with
any progress, so they clear the timer when a retransmit-
ted request for any client is processed.

3.4 Non-Primary Replica Load
The main avenue for a non-primary replica to limit per-
formance is by imposing extra load. In particular, in
BFT protocols, non-primary replicas do not initiate work
and because the protocols are designed to tolerate faults,
these systems typically continues to make rapid progress
if a faulty replica is arbitrarily slow or omits sending one
or more messages.

However, non-primary replicas can significantly slow
their peers in two ways.

First, correct requests must be authenticated and pro-
cessed, so retransmitted or extra correct request can in-
crease load on peers. For example, even a correct server
may sometimes impose significant extra load because, in
an asynchronous system, it may fall behind in process-
ing requests and then need to ask other servers to send a
checkpoint of the system’s state and recent requests. [18]

Second, faithless (inauthentic) or other (non-protocol)
messages impose verification or I/O costs, even if they
don’t trigger protocol actions. While we might hope that
network flooding behaviors by servers are rare, they do
happen and they can allow one faulty node to bring down
a collection of servers. For example, a faulty network
card flooded the network and disabled a large group of
immigration computers at LAX for 8 hours in 2007 [10,

36].
Figure 5 shows that one faulty server flooding the net-

work with junk messages of 9k bytes has a significant
impact on overall system throughput.

Design Principles Faulty replicas wreck havoc on sys-
tem performance by imposing additional work on the
non-faulty replicas in the system and interfering with the
communication between non-faulty replicas. Aardvark’s
design goal is to limit the ability of faulty replicas to in-
troduce extraneous work and interfere with the actions of
non-faulty replicas.

4 Aardvark
The design and implementation of Aardvark emphasizes
simplicity: we explicitly aim at a protocol that offers the
same execution path during both gracious and uncivil in-
terval with the dual goals of achieving good, predictable
performance in all circumstances and of avoiding ob-
scure corner cases. The prototype we have implemented
is an extension of the recent new release of PBFT, which
is currently the most stable of the BFT code bases, and
follows the basic three round structure of Figure 2. In
Section 4.4 we discuss how these principles can be ap-
plied to other protocols, including Zyzzyva. We now
discuss how Aarwark addresses the challenges posed by
clients, primary, and replicas that were identified in the
previous section.

4.1 Trusting the Client
Clients can negatively affect the performance of correct
replicas in two ways. First, they can craft unfaithful re-
quests that force replicas to utilize execution paths that
are slow, not carefully tested execution paths, or simply
cause replicas to undertake a disproportionate amounts
of work. Second, they can flood servers with their mes-
sages, drowning communication between replicas.

The second problem is easy to solve: Aardvark repli-
cas simply listen to client requests and replica traffic on
different network devices so that messages from clients
and servers are placed in distinct network queues.

Aardvark addresses the first problem in two steps.
First, it explicitly avoids relying on clients for anything
other than just sending their requests. In particular, un-
like Q/U, HQ, or Zyzzyva, Aardvark does not involve
clients with gathering certificates of replica responses
that can serve as input to the system. This “just the
facts” approach eliminates a faulty client’s ability to in-
fluence the execution path that the system will choose.
Second, Aardvark requires clients to authenticate their
requests using a hybrid MAC/signature construct. As
we saw in Section 3.2.1, MAC-based authentication of
requests leaves the system vulnerable to unfaithful mes-
sages; worse, it does not allow the system to determine
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where the blame for them lies. To gain non repudia-
tion, we depart from the current BFT orthodoxy and rein-
troduce, judiciously, signatures in our protocol. Start-
ing with PBFT, signatures have been (rightly) consid-
ered too expensive for practical use in BFT and have
been relegated to the role of pedagogical tools for sim-
plifying the exposition of a BFT protocol’s structure.
Aardvark limits the performance impact of signatures in
three ways. First, it uses signatures only for authenticat-
ing client requests (all communication between replicas
continues to be authenticated using MACs). Second, it
uses the SFS implementation of the Rabin-Williams sig-
nature scheme [27] which places disproportionally the
computational load on the signature generator (the client)
rather than on the verifier (the server). Third, it combines
signature with MAC authentication to defend against a
potential denial of service attack that exploits the fact
that, even with Rabin-Williams, signature verification is
at least two order of magnitude slower than MAC ver-
ification. A faulty client could significantly slow down
the system by intentionaly submitting requests with the
wrong signature, which a servers would have to nonethe-
less verify.

The MAC portion of our hybrid MAC/signature con-
struct protects Aardvark from this vulnerability. In Aard-
vark, a client who submits a request is expected to first
sign the request and then to authenticates the signed re-
quest using a MAC. On receipt of a request, the server
first uses the MAC to authenticate the sender. If the MAC
is not valid, the server simply discards the request with-
out further processing. Only if the MAC is successfully
verified does the server proceed to verify the signature.
If it finds the signature to be invalid, the server discards
all future messages from that sender, preventing it from
creating further spurious load.

4.1.1 Implementation Details

We leverage the increasing availability of multiple cores
on commodity machines to mitigate the additional costs
of using signatures to authenticate client requests by pro-
cessing client requests on one core and messages re-
ceived from replicas on the second core of our dual core
machines. By doing this we are able to completely de-
vote one core to the task of authenticating signatures,
bringing our effective overheads more in line with ex-
isting systems (PBFT, Zyzzyva).

4.1.2 Experimental Evaluation

As Figures 1 and 3 show, the steps taken by Aardvark to
mitigate faulty client behaviors are effective in increasing
the attained throughput of the system.

4.2 Primary vulnerability
Aardvark orders requests using a primary. By enabling
batching, this choice offers significant performance ad-

vantages, and by providing a single point of request se-
rialization, it does not leave the system’s liveness at the
mercy of a client-driven backoff protocol during periods
of contention. It does, however, risk leaving the system
at the mercy of a faulty primary.

As we noted in Section 3.3, the fundamental challenge
for primary-based BFT protocols is to somehow defend
against the wide range of threats to both safety and live-
ness that can be brought by a faulty primary.

Hence, rather than designing specific mechanism to
defend against each of these threats, past BFT sys-
tems [8, 21] have relied on view changes to replace an
unsatisfactory primary with a new, hopefully better, one.
Past systems trigger view changes conservatively, only
changing views when it becomes apparent that the cur-
rent primary is unlikely to allow the system to make even
minimal progress.

Aardvark takes a more aggressive stance on view
changes, regularly changing views following even mi-
nor indications that the system progress could improve.
Aardvark relies on an adaptive throughput requirement
to ensure that adequate long term progress is made dur-
ing a view and a PRE-PREPARE heartbeat to ensure that
once progress starts it continues.

These additional constraints on the primary result in
regular view changes by the system. Surprisingly, these
view changes do not have a significant negative impact
on system performance. By changing views regularly,
we prevent any individual primary from achieving tenure
and encourage the current primary to work hard in order
to stay in power as long as possible. We construct our
view change guidelines to ensure that a primary provid-
ing adequate throughput remains primary for at least 5
seconds, and that a primary is allowed to make inade-
quate progress for at most 5 seconds.
4.2.1 Adaptive Throughput

When a new view starts, Aardvark defines a minimum
acceptable throughput that the primary must maintain in
order to remain in charge of the view. Aardvark measures
the throughput of the system every time a checkpoint is
taken, in our prototype this is every 128 batches. In or-
der to measure throughput, Aardvark counts the number
of requests executed since the last checkpoint was taken
and records the time between checkpoints. These values
define the observed throughput for that checkpoint in-
terval; this observed throughput is compared against the
required throughput, and if the primary is found lacking
then the replicas call for a view change.

We impose an initial grace period during which the
screws are not tightened and the required throughput
does not increase. This ensures that well behaved pri-
maries remain in charge for long enough to make useful
progress during their view. In our prototype implemen-
tation, the grace period is 5 seconds.
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In order to define the initial acceptable throughput
we record the maximum throughput we observe in each
view. We select the maximum value in the previous n
views, and set our base initial required throughput to be
90% of this value. Every checpoint interval after the
grace period expires, we increase the throughput require-
ment by 0.1% of the current required throughput.
4.2.2 PRE-PREPARE Heartbeat

The PRE-PREPARE heartbeat ensures that a primary
makes nominal progress in the current view. A replica
starts the heartbeat timer is sent following the first PRE-
PREPARE received during the current view. If the timer
expires before a checkpoint occurs, then the replica ini-
tiates a view change; otherwise the replica restarts the
heartbeat timer at ech checkpoint interval. The heartbeat
timer guarantees that, once a view is started, a primary
makes consistent progress towards the next checkpoint
interval and ocrresponding throughput check. We set the
heartbeat timer to ensure that the maximum time between
a pair of checkpoint intervals is identical to the grace pe-
riod. This step bounds the amount of time that a primary
can provide throughput that is considered unacceptable
before a view change occurs.
4.2.3 Fairness

When replicas receive a request from a client that they
have not seen in a PRE-PREPARE message, they add
the message to their request queue and record the se-
quence number k of the most recent PRE-PREPARE that
they have received during the current view before for-
warding the request to the primary. The replica monitors
future PRE-PREPARE messages for that request, and if
it receives a PRE-PREPARE for sequence number k + c
where c is the number of clients before receiving a PRE-
PREPARE that includes a request from that client then it
declares the current primary to be unfair and initiates a
view change.
4.2.4 Experimental Evaluation

Figure 4 demonstrates that the adaptive throughput tech-
niques employed by Aardvark effectively diffuse any at-
tempts by the primary to delay ordering of batches.

4.3 Spurious Servers
Replicas impose load on each other based on the mes-
sages that they send. This load can come in the form of
legitimate requests allowed by the protocol, possibly to
account for network failures or reconcile inconsistencies
introduced by faulty clients and servers, and generic net-
work flooding.

We limit the impact of catch up messages required
in the former case by de-prioritizing catch up work. If
the system is making adequate progress, then processing
catch up messages is unnecessary. The key observation
here is that it is OK for f replicas to be arbitrarily far

Client

Primary

Replica

Replica

Replica

Request Order 
Request

Speculative
Response

Local
Commit Commit

Figure 6: Basic communication pattern in Zyzzyva [21].

behind and not participate as long as the system is in
fact making progress. It is only necessary to bring this
replicas up to speed when their participation is needed
in order to ensure that adequate progress continues. No-
tice that if a replica’s participation is needed for progress,
other messages stop, and these catchup messages are pro-
cessed.

We limit the load imposed by generic network flood-
ing by relying on distinct network devices to communi-
cate with each replica. This step takes our decision to
explicitly separate the clients from the replicas to its nat-
ural conclusion. By handling traffic from each replica
on separate devices, we prevent replicas from drowning
each other out as each device relies on its own network
queue. We are also able to handle incoming messages
fairly, selecting incoming messages from replicas in a
round robin fashion when necessary. This is especially
convenient in Aardvark as each instance of consensus re-
quires a server to receive exactly two messages from each
other server.

4.3.1 Experimental Evaluation

Figure 5 shows that the steps taken by Aardvark effec-
tively isolate replicas from eath other and mitigate the
impact of faulty replica behaviors on system throught-
put.

4.4 Zyzzyva Operation
While the structure of current Aardvark prototype more
closely resembles PBFT, the principle that guides our
design—eliminate fragile optimization—can be equally
applied to other BFT systems. Specifically, Aardvark
could be adapted to incorporate Zyzzyva style specula-
tive execution.

For review, the communication pattern for Zyzzyva
is included in Figure 6. In Zyzzyva, the client sends
a request to the primary who in turn forms a batch and
sends an ORDER-REQUEST for that batch to the repli-
cas. Upon receipt of an ORDER-REQUEST, replicas ex-
ecute each request specified by the ORDER-REQUEST
and send a SPECULATIVE-RESPONSE to the client.
The client gathers SPECULATIVE-RESPONSES from
replicas until it has received 3 f + 1 matching responses
indicating that the request has executed and is stable.
If the client does not receive 3 f + 1 SPECULATIVE-
RESPONSES in a timely manner and has received a
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certificate of 2 f +1 SPECULATIVE-RESPONSES, then
the client can initiate the slow path of the protocol cor-
responding to the PBFT PREPARE phase. Replicas re-
ceive the LOCAL-COMMIT certificate from the clients
and, if it is complete, reply with a COMMIT message;
clients accept a response after having received 2 f + 1
matching COMMIT messages.

The most obvious step in Zyzzyva-izing Aardvark is
to incorporate speculative execution and require replicas
to execute requests and send responses to clients imme-
diately after receiving a PRE-PREPARE message. The
more subtle steps relate to how we address the slow path
through the protocol and I-HATE-THE-PRIMARY mes-
sages during view changes.

As we saw in Section 3.2.1, relying on clients to gather
and faithfully relay certificates is tenuous and can require
complicated conflict resolution. Rather than requiring
clients to initiate the second phase, a Zyzzyva-ized Aard-
vark would execute only the speculative phases for the
vast majority of instances of consensus. Every check-
point interval, Zyzzyva-ized Aardvark would execute the
full PBFT agreement protocol: PRE-PREPARE, PRE-
PARE, COMMIT. Executing the third phase ensures that
clients can eventually act on f + 1 matching responses,
and the Aardvark PRE-PREPARE heartbeat ensures that
requests are committed promptly, either by reaching the
checkpoint interval quickly or through the view change
process.

A second benefit of scheduling the full PBFT execu-
tion path on a regular basis is that replicas that suspect the
primary to be faulty are no longer required to stay active
in the current view in order to maintain progress. Re-
call that a replica initiates a view change in Zyzzyva by
first stating I-HATE-THE-PRIMARY; only after hearing
that f other replicas are also interested in changing views
can the replica drop out of the view. Until that happens
the replica must stay up to date in the view, a prospect
that can impose signficant load on all servers when the
primary is faulty.

5 Analysis
We explicitly design Aardvark to reduce the number of
execution paths that the system can take, whether it is
operating during gracious or uncivil intervals. This sim-
plicity not only increases Aardvark’s robustness, but also
makes it possible to model its behavior analytically.

In this section, we analyze the throughput character-
istics of Aardvark when the number of client requests is
enough to saturate the system and a fraction g of those
requests is correct. We show that Aardvark’s throughput
during long enough uncivil intervals is within a constant
factor of its throughput during gracious intervals of the
same length.

For simplicity, we restrict our attention to an Aard-
vark implementation on a single core machine with a
processor speed of κ GHz. We consider only the compu-
tational costs of the crypto operations—verifying signa-
tures, generating MACs, and verifying MACs, requiring
θ, α, and α respectively. Since these operations track
closely message transmission and reception, we expect
similar results when modeling network costs explicitly.

We begin by computing Aardvark’s peak throughput
during a gracious view, i.e. a view that executes within
a gracious interval. To assess the loss in throughput in-
curred by Aardvark during uncivil intervals, we proceed
in two steps. First, we bound the throughput during un-
civil views in which the primary is correct. Then, we
show that Aardvark limits the additional drop in through-
put that can be caused by faulty primaries.

Theorem 1. Consider a gracious view during which
the system is saturated, all requests come from correct
clients, and the primary generates batches of requests of
size b. Aardvark’s throughput is then at least κ

θ+ (4n−2b−4)
b α

operations per second.

Proof. We examine the actions required by each server
to process one batch of size b. For each request in the
batch, every server verifies one signature. The primary
also verifies one MAC per request. For each batch, the
primary generates n− 1 MACs to send the PrePrepare
and verifies n−1 MACs upon receipt of the Prepare mes-
sages; replicas instead verify one MAC in the primary’s
PrePrepare, generate (n− 1) MACs when they send the
Prepare messages, and verify (n− 2) MACs when they
receive them. Finally, each server first sends and then
receives n− 1 Commit messages, for which it gener-
ates and verifies a total of n− 2 MACs, and generates
a final MAC for each request in the batch to authenti-
cate the response to the client. The total computational
load per request is thus θ + (4n+2b−4)

b α at the primary,
and θ + (4n+b−4)

b α at a replica. The system’s through-
put at saturation during a sufficiently long view in a gra-
cious interval is thus at least κ

θ+ (4n+2b−4)
b α

requests per

second.

Lemma 1. Consider an uncivil view in which the pri-
mary is correct and at most f replicas are Byzantine.
Suppose the system is saturated, but only a fraction of
the requests received by the primary are correct. The
throughput of Aardvark in this uncivil view is within a
constant factor of its throughput in a gracious view in
which the primary uses the same batch size.

Proof. Let θ and α denote the cost of verifying, respec-
tively, a signature and a MAC. We show that if g is the
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fraction of correct requests, the throughput during un-
civil views with a correct primary approaches g of the
gracious view’s throughput as the ratio α/θ tends to 0.

In an uncivil view, faulty clients may send unfaith-
ful requests to every server. Before being able to
form a batch of b correct requests, the primary may
have to verify b/g signatures and MACs, and correct
replicas b/g signatures and an additional (b/g)(1− g)
MACs. Because a correct server processes messages
from other servers in round robin order, it will pro-
cess at most two messages from a faulty server per
message that it would have processed had the server
been correct. The total computational load per re-
quest is thus 1

g (θ + b(1+g)+4g(n−1+ f )
b α) at the primary,

and 1
g (θ + b+4g(n−1+ f )

b α) at a replica. The system’s
throughput at saturation during a sufficiently long view
in an uncivil interval with a correct primary thus at least

gκ

θ+ (b(1+g)+4g(n−1+ f )
b α

requests per second: as the ratio α/θ

tends to 0, the ratio between the uncivil and gracious
throughput approaches g.

Theorem 2. For sufficiently long uncivil intervals and
for small f the throughput of a properly configured Aard-
vark is within a constant factor of its throughput in a
gracious interval in which primaries use the same batch
size.

Proof. First consider the case in which all the uncivil
views have correct primaries. Assume that in a properly
configured Aardvark tbaseViewTimeout is set so that during
an uncivil interval, a view change to a correct primary
completes within tbaseViewTimeout . Since a primary’s view
lasts at least tgracePeriod , as the ratio α/θ tends to 0, the
ratio between the throughput during a gracious view and
an uncivil interval approaches g tgracePeriod

tbaseViewTimeout+tgracePeriod

Now consider the general case. If the uncivil inter-
val is long enough, at most f /n of its views will have
a Byzantine primary. Aardwark’s PrePrepare heartbeat
provides two guarantees. First, a Byzantine server that
does not produce the throughput that is expected of a
correct server will not last as primary for longer than
a grace period. Second, a correct server is always re-
tained as a primary for at least the length of a grace pe-
riod. Furthermore, since the throughpiut expected of a
primary at the beginning of a view is a constant fraction
of the maximum throughput achieved by the primaries
of the last f + 1 views, faulty primaries cannot arbitrar-
ily lower the throughput expected of a new primary. Fi-
nally, since the view change timeout is reset after a view
change that results in at least one request being executed
in the new view, no view change attempt takes longer
then tmaxViewTimeout = 2 f tbaseViewTimeout . It follows that,
during a sufficiently long uncivil interval, the through-
put will be within a factor of tgracePeriod

tmaxViewTimeout+tgracePeriod

n− f
n
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Figure 7: The throughput of various RSMs as the number
of clients increases.

of that of Lemma 1, and, as α/θ tends to 0, the ratio
between the throughput during uncivil and gracious in-
tervals approaches g tgracePeriod

tmaxViewTimeout+tgracePeriod

(n− f )
n .

6 Evaluation
All experiments are carried out on machines with dual
3GHz Intel Pentium-IV Xeon processors, 1GB of mem-
ory, and 1Gb/s Ethernet.

All numbers reported are based on executig the code-
bases provided by the respective systems’ authors in our
environment. Note that because we could not acquire
measurements consistent with those reported by Q/U [1]
in our environment, here we report peak throughput val-
ues scaled from [1] based on CPU frequency.

We note that the peak throughput numbers we have
observed for PBFT and Zyzzyva are consistently 1

2 the
throughput we observe on the same machines in Septem-
ber 2007 as we prepared [21]. For reference, we in-
clude Figure 7 which reports the numbers from [21]. To
date we have been unable to identify the precise cause
of the performance degredation; the known changes in
the experimental set up are (1) enabling the machines as
full emulab [37], (2) transition from Debian to Red Hat
Linux, and (3) replacement of the SFS library with SFS-
lite. We are continuing our efforts to identify the source
of the difference, but believe that the relative results we
record are accurate as Zyzzyva and Aardvark are both
based on the PBFT code base.

As noted in the figures in Section 3, existing systems
perform poorly in the presence of faults but aardvark per-
forms well. Aardvark’s robustness comes largely from
avoiding fragile optimizations that both complicate de-
signs and that provide ways for unexpected node behav-
iors to drive the system down expensive paths.
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System Peak Performance
Aardvark 40527
PBFT 36350
PBFT w/ client signatures 23361
Aardvark w/o signatures 50852
Aardvark w/o adaptive throughput 39771
Aardvark w/o separate replica NICs xx30000

Figure 8: Peak throughput of Aardvark and incremental
versions of the Aaarvark protocol

Surprisingly, this robustness comes at only a mod-
est cost to peak throughput. The peak throughput of
Aardvark is 80% of the peak throughput we observe for
Zyzzyva and outperforms our observed throughput for
PBFT, HQ, and Q/U. For the higher throughputs of PBFT
and Zyzzyva reported in [21], we are within a factor of
1.5 and 2.5 respectively. The absolute performance pro-
vided by Aardvark appears sufficient to be useful in many
environments.

The rest of this section dissects the cost of each of Aar-
vark’s key design decisions. Figure 8 reports the peak
throughput of PBFT, Aardvark, and several conceptually
intermediate steps between the two systems.

While requiring clients in PBFT to sign requests re-
duces throughput by 50%, we find that the cost of requir-
ing Aardvark clients to use the hybrid MAC-signature
scheme imposes a modest 20% hit to system throughput.
Aardvark pays a smaller cost for incorporating signatures
thanks to the usage of the second core on the machine.
Utilizing the second core masks the additional computa-
tional costs associated with verifying signatures.

Peak throughput for Aardvark with and without the
adaptive throughput timers is equivalent and within the
experimental error. The reason for this is rather straight-
forward: when both the new and old primaries are non-
faulty, a view change requires the same amount of work
as a single instance of consensus. Each view in Aardvark
consists of 6000 instances of consensus, so the addi-
tional costs associated with view changing are minimal.

We observe a moderate performance boost by isolating
the replicas to their own NICs. This performance boost
results from our ability to better schedule incoming re-
quests and ensure that we get the most relevant messages
next.

7 Related work
We are not the first to notice significantly reduced per-
formance for BFT protocols during periods of failures or
bad network performance or to explore how timing and
failure assumptions impact performance and liveness of
fault tolerant systems.

Singh et al. [35] show that PBFT [8], Q/U [1],
HQ [11], and Zyzzyva [21] are all sensitive to network
performance. They provide a thorough examination of
the gracious executions of the four canonical systems
through a ns2 [30] network simulator. Singh et al. ex-
plore performance properties when the participants are
well behaved and the network is faulty; we focus our at-
tention on the dual scenario where the participants are
faulty and the network is well behaved.

Aiyer et al. [4] and Amir et al [5] note that a slow
primary can result in dramatically reduced throughput.
We discuss the details of Amir et al. in Section 3.3.1.
Aiyer et al. combat this problem by frequently rotating
the primary.

PBFT [8], Q/U [1], HQ [11], and Zyzzyva [21] all in-
clude at least on graph covering the behavior under the
systems in the presence of up to f failed replicas. The
failures considered in these cases are benign crash fail-
ures in which the server does not participate in the pro-
tocol. These experiments demonstrate that the systems
require only n− f servers to make progress. We instead
look at faulty behaviors that stress paths of the protocol
that are considered to be corner cases and outside of the
“common case” execution path. We show that it is pos-
sible to maintain good performance in both the presence
and absence of failures. Hendricks et al. [16] explore
the use of erasure coding to make BFT replicate stor-
age more efficient; their work emphasizes increasing the
bandwidth and storage efficiency of a replication proto-
col similar to Q/U and not the fault tolerance of the un-
derlying protocol.

A number of researchers have explored the impact of
weakening or strengthening timing assumptions for dis-
tributed protocols. Keidar and Shraer [19] propose a
general approach for evaluating the impact of different
timing assumptions on consensus performance. Aguil-
era et al. [2] and Malkhi et al. [25] explore the limits
of what assumptions are needed for liveness for consen-
sus and leader election. Conversely, Aguilera et al. [3]
explore how small strengthenings on timing assump-
tions can yield algorithms more suitable for real-time,
mission-critical systems, and Dutta et al. [13] explore
how quickly consensus can be achieved under eventual
synchrony.

8 Conclusion

We claim that high assurance systems require BFT pro-
tocols that are more robust to failures than existing sys-
tems. Specifically, BFT protocols suitable for high as-
surance systems must provide adequate throughput dur-
ing uncivil intervals in which the network is well behaved
but an unknown number of clients and up to f servers are
faulty. We present Aardvark, the first BFT state machine
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protocol designed and implemented to provide good per-
formance in the presence of Byzantine faults. Aardvark
gives up some throughput during gracious executions,
but provides several orders of magnitude improvement
in throughput during uncivil intervals.
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