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1. Introduction

The generalized Hough transform (GHT) is a fast point
pattern matching procedure which has applications in computer
vision - e.g., shape recognition. In its most general form,
the GHT solves the following point pattern matching problem.

Given a set of object points O c Rn, a set of feature
points, P E.Rm and a set of functions, F, with £ ¢ F being
a mapping f: rR" - Rm, find the £ ¢ F such that v(f) = |P- £(0)|
is minimal. Here |S| is the size of the set S, and if
0= {Ol,...,q{} then F(0O) = {f(Ol):...,f(Qk)}. By minimizing
v (f) we guarantee that the maximal number of points in O are
mapped onto points in P by f.

In all applications of the GHT considered to date,
n=m= 2 and F contains translation, rotation and scaling maps from
R” -+ RZ, The set F is thus ordinarily determined
by a set of parameters T = {tl,...,tr}; for example, if F
is the set of translation operators, then T = {tl,tz} where
t. is the x-translation and tz is the y-translation. We will
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let ft £ denote the function in F determined by the
1ot

parameters tl""'tr'

In general, to apply the GHT, one must construct an
r-dimensional array of accumulators, HT, (one dimension for
each parameter in T) and impose a quantization and range
restriction on that parameter space (which can be determined

by an inspection of the points in P and 0) so that HT is a
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discrete structure of finite size. The GHT procedure then
assigns values to the array elements such that HT(tl""’tr)
is the count of the number of point pairs (Oi,pj), Oi e O.

py € P and Ift (0;) - pj|< e. The value of £ is

‘..t
1 r
determined by the gquantization of T.

The GHT procedure operates by considering all point
pairs (Oi,pj), and computing all tl,...,tr such that

lft £ (Oi) - p.| <e. This is ordinarily accomplished
r
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by considering all fixed quantized values of tl,...,tr_2 and
then computing the values of tr-l and tr (which are determined

J= 0;

by the two points, Oi’pj in Rz) for which lft 5

(0,) - p
l...tr i
finally the nearest gquantization levels for tr-l and

il ¢ ] ¥ .
tr(t t r) are computed and HT(tl""'tr—z't r—l’t }y is

r-1"' r

incremented by unity. After all point pairs have been considered,
the array HT must be searched for above-threshold peaks. The
locations of those peaks indicate the possible instances of

0 in P.

Merlin and Farber[l] reported a GHT where F was
restricted to translations. Ballard [2] noticed that F could
also include rotations and scale changes, and contains a
detailed discussion of the application of GHTs to computer
vision. He points out that the manner in which both the
feature point set, P, is ordinarily computed (by applying
an edge detector to a digital picture)and the object point set
is computed(by digitizing the boundary of a share) can

lead to drastic reductions in the number of elements in OxP




which actually need to be compared when constructing HT,
since in both cases orientation information can be associated
with the elements of O and P.

Davis and Yam [3] suggested a similar GHT procedure
to the one originally suggested by Ballard. However, they
were concerned with the problems introduced by the size of
the array HT, namely:

1) the storage requirements of HT, and
2) the computational requirements of searching HT for peaks.

To overcome these problems they suggested computing
only an r' dimensional projection of HT, r' < r. So, in
their GHT procedure, all pairs (Oi,pj) are considered, and
all r-tuples (t;,...,t ) for which ‘fti...tr(oi) - pj] < €
are computed. However, rather than incrementing HT(tl,...,tr)
in an r-dimensional array, one increments HT(tl""’tr')'

r' < r, in an r' dimensional array. They found that the GHT
was still a robust shape matcher even in the projected para-
meter space, and discussed ways of recovering the parameter
values lost due to projections by computing multiple GHT's
in projected parameter spaces.

For example, if T = (Ax, Ay, ®) signifying transforma-
tions which translate and rotate, one can compute the GHT, HTl' of P
and O in an Ax, Ay parameter space, and a second GHT, HTZ' of

a translated version of O with P in the same AX, AY parameter




space. The relative location of the highest peak in HT, with
respect to the highest peak:huHTzcan be used to recover the
projected parameter, 6.

In this paper we will consider two extensions to the
GHT. The first is to hierarchical GHTs (HGHT), where the
hierarchy is specified by a grammar. The advantage of the
HGHT is added control over the distribution of O in P, i.e.
rather than simply counting how many points in O match a
point in P under f ¢ F, we can break O into pieces and addi-
tionally require that each piece match sufficiently. Of course,
the pieces can be decomposed into pieces, etc. HGHTs are
described in Section 2.

In Section 3 we consider a GHT procedure where P
and O are not point patterns, but line segment patterns.
This has obvious applications in computer vision where edges
can be grouped into line segments (thus forming P) and planar
shapes can have their boundaries well approximated by line
segments (forming O). Thus, O x P may be much smaller for
line segment patterns than point patterns, making the GHT

+hat much more efficient.




2. Hierarchical GHTs

In general, there are two types of hierarchies which
can be imposed on a shape representation: we will call them struc-
tural decompositionhierarchies (SDH) and resolution reduction hierarchies
(RRH). The most prevalent SDH's are grammars. A shape grammar
determines a hierarchical decomposition of a shape into finer
and finer pieces, and specifies the geometfical and topological
relationships between the pieces. A simple example of an
RRH is a "pyramid."” The pyramid is a set of regularly red;ced
resolution versions of the shape; each version represents a
"snapshot" of the shape at some level of resolution.

The GHT can be extended to operate on the basis of
both SDH and RRH shape representations. The principal advan-
tage of using hierarchical representation is increased control
over the shape recognition process. We will describe an SDH
shape representation which will naturally lead to a hierarchical
GHT algorithm.

If we are given a set of points, § = {(xi,yi)};ll,

then a Hough representation based on S will be an ordered

pair (S,c), where C =(xc,yc) is an arbitrarv point called

the center point. It turns out that a convenient choice for

¢ is the centroid of S, i.e. X = 1/n ¢t Ko Y = 1/n ¢ Y-

Now, suppose that we have the following:

1) a collection, S of sets of points, Sj’ j=l,...,1,

and



2) a set synthesis grammar (SSG), G, defined over the set R =

{1,...,r}. A set synthesis grammar G(R) is a 5 tuple,

< VN’ VT’ s, P, M > where

1) VN is a set of nonterminal symbols,

2) Vg is a set of terminal symbols, Vi n Vg =g, Vol = ¢

3) s € VN is the start state
4) P is a set of productions of the form
0 + x
with Q ¢ VN’ X € (VN U VT)*, 0 does not occur in x.

5) M is a 1-1 map from VT onto {1,...,r}

Let x e I{G), where L(G) is the language of the SSG, G.
Consider a syntax tree representation for a derivation of x
in G. We will describe how to associate a Hough representation
H(n), with each node, n, in the syntax tree. Tip nodes in
the syntax tree are labeled with terminal symbols. If n is
a tip node labeled with the terminal symbol v, then H(n) =
G vy uv))

Suppose that n is not a tip node, and that the sons
of n are labeled with vocabulary symbols VyrVorees Ve If
H(Vi) is the Hough representation associated with node Vi with

center point Cy,. v then H(n) is defined as follows:
i
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a) c =
n i=1 Vi
by H() = (e, 1X. ., c
vj j=1 n

Thus, the point set associated with node n is the set
of centers for the Hough representations of the immediate
descendants of node n.

Figure 1 contains a simple example with

.. 10 ., 10 ‘ 10
s, = {4,100 4, S, = {(10,i)};_;, 83 = ((i,1)_, and
, 10
s, = {(1,4)} ;_ 47 also ¢ = (5.5,10), ¢, = (10,5.5), ¢3 = (5.5,1)
and ¢, = (1,5.5).

Now, given S, G (and, by construction, Hn), n € VNt;VT),

a string x € L(G) and a set of points, P, we next describe
how to detect instances of the pattern represented by x in P.

First, a syntax tree, T'(x) for x in G must be constructed.
The syntax tree will specify a partial order for the compu-
tation of Hough transforms at each node in the syntax tree.
The GHT algorithm is as follows:

1) For each tip node, Vi compute the Hough transform of

H(vi) with respect to P. Let F, = {fi,l’fi,Z"‘°'fi,ri}

be the locations of all above-threshold peaks of that

Hough transform. Then Pi = {fi,l(cvi)'fi,Z(CVi)""’fi,ri(cvi)}:
{P. L,+c04P; } is the set of potential locations of v,

i1 i,r5 e i
in P.

2) Let n be a non-tip node whose Hough transform has not
yet been computed, but whose immediate descendants in

T(xX}, vl,...,vq, have had their Hough transforms computed.




Let Pi' i=1l,...,q be the sets of above threshold peaks for the
Hough transforms of Vi i=1,...,q. We will write H(n) = (Cn,cn)
with Cn = {Cv.};il . The Hough transform of n, HT, is computed
as follows: *

For each c_ ¢ C_ do
vy n

For each P. . ¢ P, do
i3 i

for all ft g € F such that

1 r
£ P .) - d
fe e, Bay) CV1|< e do
(*) HT(tl,---,tr) i= HT(tl,...,tr) + 1
end

end.

Notice, that unlike the Hough transform for the tip
nodes where every point in Cn is compared to every point in
P, for non-tip nodes a point c,. € Cn need only be compared with
the possible locations of the igg son, i.e. the set of points
Pi. Also note that at line (*) one could have incremented
HT(tl,...,tr) by the value at fi,j in the Hough transform of Ve

In [2], Ballard described a procedure for building

the Hough representations of composite shapes, i.e. given
two point patterns, Sl and 82' H(S1 U Sz) can be trivially

constructed from H(Sl), H(Sz), cq and ¢, since one can simply

compute a weighted average of <y and <, to obtain a center point

for the set Sl U SZ'

s e




In contrast to Ballard's approach for building composite
shapes, our hierarchical GHT provides for additional control
over the detection of instances of a "composite shape" in a
point set P, since using the grammatical approach described
above, one must detect an instance of Sl and an instance of
S, before one can detect an instance of Sl u S, If one simply
detects Sl u 82 using a single composite Hough representation,
then that degree of control is lost. We should also point
out, however, that the price one must pay for that control is
added computational cost. Computing the GHT of H(Sl U 52)
requires the same number of operations as computing the GHT's
of H(Sl) and H(Sz). However, in the former case, only a single
transform needs to be searched for above threshold peaks,
while in the second case not only do two such transforms need
to be searched, but the third, hierarchical transform {({corres-
ponding to x = 5152) needs to be computed and searched.

As an example of the application of hierarchical GHT's
to image analysis we will consider an image registration problem.
Figure 2 a-b contains two terrain model images, f; and f,. An
edge detector is applied to these images to produce the edge
arrays €, and e, shown in Figures 2 c-d. ©Next, an "interest

operator” is applied to the edge array in Figure 2c to detect

10, non-overlapping 11 x 11 interest areas. (See Figure 2e.)



The set of edge points in these interest areas constitute

the point sets Si’ i=1,...,10. The centroid, i of each

of these point sets is then used to construct the Hough
representations, H(Si). The hierarchical GHT is then

defined by the collection § = {Sl,...,SlO} of point sets and

the trivial SSG, Gr = <{S8}, {Sl,...,SlO}, S, P, M> where:
1) P = {5 ~» Sl...Slo} ; and

2} M: Si -+ 1

The center point for the Hough representation for S,
then, is the centroid of the centroids of the cy (although the
actual choice of the center point, recall, is arbitrary),
and its point set is {Cl""’clo}'

Once the Hough representations of the Si are computed,
each is used to construct a Hough transform for the edge array

in Figure 2d. The transform is computed with respect to the

set of functions F = {f }  where fa

(x,v) = x+a,, v + a,.
a;,a, 1 2
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Thus, we only allow pattern translations. Five peaks are then
chosen from the Hough transform of each interest point. Figure 2g
shows the locations of the 5 best matches chosen for each interest
area in Figure 2c. Let {ti,j};il ;, be the locations of the 5
peaks for the ith interest area.

At this point, a variety of techniques can be chosen
for assigning each interest area to a unique peak. However,

computing another Hough transform is a particularly efficient

technique for constructing this mapping. The transform we




next compute will actually match the pattern of the cy in
Figure 2e against the pattern of Hough transform peaks in

Figure 2f. Thus, we compute the Hough transform HT(S), of

}10 5

i=1, j=1° Note that

H(S) with respect to the points {tij
7-
in computing this transform as discussed previously, a point

tij only needs to be compared with the point c, € H(E)
7.

since prior information is available concerning to which

point in S any point tij can correspond. If c¢', 1is the
£,

S
location of the maximum of HI'(S), then the vector CS - cé
indicates the displacement of frame f2 from fl' This

displacement vector can be used to choose a best tij for each
each c;» OF to predict that the interest area surrouding
c, has either disappeared from the field of view, or has
changed so substantially from fl to f2 that it can no longer
be seen in f2. Figure 2g shows the final mapping of interest

points to peaks. Yam and Davis [4 ] contain more details

of the overall registration system, along with more examples.



3. GHTs for Line Segment Patterns

In this section we bPresent extensions to the GHT
procedure for point patterns which will allow for the matching
of line segment patterns.

Let L = {Ll,...,Ln} be a set of line segments

which represent the pattern of interest. I, corresponds to

the object point set, O. Each Li is an ordered pair (Ps ’Pt )
i i
where P = (x Y. ) is the initial end point of L,, and
S. S.," 8. 1
i i i
Pt = (xt 'Yy ) is the terminal end point of Li’ We will let
i i i
xsi+ Xti ysi+ yti
c. = ( ’ ) denote the midpoint of L.,
i i
2 2
8, = tan_l (Yo -y, )/ (x_ -x. ) denote the orientation of L.,
1 s. “t. s, t. i
i i i i
= - 2 -+ - 2
and %, /(xSi xti) (ysi yti) denote the length of L, .

L', } be a second set of

Let L' = {L'i P Lt n’

T RARRE,
line segments which corresponds to the feature point set, P,
Here, each L}_ is an ordered pair (pg. , p}h ), and c} ,
83. and ng are the midpoint, orient;lion ;hd length of
LE_, respectively.

Let F be a set of functions R2 - R2 which map line
segments to line segments, and let the functions in F be
parameterized by the set T = {tl,...,tr}.

Given two line segments, Li and Lj’ we define their

difference, Li - Lj as follows:




1) if Lj is a subsegment of Li’ then L. - Lj =8, - 2..

2) otherwise, L. - L. = &.
i 3 i

Now, we can state the line segment matching problem
as:
Given L,L' and F , find £ ¢ F such that
v(f) = ) ) L, - f(L'j)
LieL LBEL'
is minimal; i.e., f maps the maximal total length of line segments
in L' onto subsegments of line segments in L.

The f ¢ F which minimizes v can be computed using Hough
transform procedures. For each pair of line segments (Li’LE) ;
Li e L, LE e L', we determine all £ ¢ F such that f(LE) is a
subsegment of Li and then increment the appropriate location
in the Hough transform by the length of f(LE) . Thus, when
the computation of the Hough transform is completed, the loca-
tion of maximal value will specify the function, £, with minimal

v(f) since ] %, is independent of f.
LieL

Let us consider, as an example, the computation of the

GHT for F = {fa }, with fa b(x,y) = (x+a,y+b). Now, given

b

g [

Li ¢ L and L'js L', we must determine all f e F such that Li- f(L'j) # S’,i.
Notice that if 23 > zi, or if Si # 63 , then no such f exists.

If, on the other hand, ei = 65 and 23 < Ri then there will

be (Qi - 23 }/y such funcfions f, where v is a constant which

determines the quantization of the parameters a,b. In the




algorithm which follows, Fij is that subset of F satisfying

f e Fij if and only if L, - f(LE) #ﬁjf A simple digital
difference analyzer (DDA) of the sort used in computer graphics
to generate line segments can be used to compute Fij'

The GHT algorithm is then:

1 Procedure HLl(L,L')
2 for each Li e L do
3 for each LHE:L' do
4 if 2. <« 2, and 6'. = 6. then
- "i | i
5 begin
6 compute F, .
ij
7 for each fa,b € Fij do
8 HT(a,b) := HT(a,b) + 13
9 end
10 end
11 end
12 end

As a simple example, consider Figure 3a-3c. Figure 3a
contains a rectangle whose sides constitute the set L. The
line segments in Figure 3b constitute the set L'. Figure 3c
contains the transform of Figure 3b with respect to the rec-
tangle in Figure 3a.

Consider H( 3,0) = 4. Which pairs of lines from L and

L' contributed to H( 3,0)? First, when L', is compared to L

3 4

then £ maps 133 into a subsegment of L, (in which their left

3,0 4




end-points coincide); second, when Iﬂ4 is compared to L, f3 0
7

maps 134 into a subsegment of L, (in which their right end-

points overlap). These are the only pairs of line segments,
) ¥ H 2 ¥

(Lj ,Ll), I,jeIJ, Ij‘e L, with f3,0 (Lj) a subsegment of Li'

Thus H(3,0) = 2'3 +-2‘4 = 341 = 4

Algorithm HL, can be easily extended to perform

1
rotation invariant matching. One simply deletes the test

63 = ei at line 4 of the previous algorithm, and adds an

inner loop surrounding lines 6-8 which first rotates Li through
an angle, ¥, before computing Fij' More precisely, let F again
be the set of translations, let LB (¢) be the result of rota-
ting LB through ancgle ¥, and let Fij (¢) be the subset of F
which maps LH (¥) onto a segment of Li' Then the GHT algorithm

for rotation and position invariant line segment pattern

matching is:

1 Procedure HL2(L,L‘)

2 for each Li ¢ L do
.3 for each LBE:L' do

4 if 23 < 2i then

5 for ¥ = 0, 27, 4 ¥ do

6 begin

7 compute Fij(w)

8 for each fa,b € Fij(w) do
9 HT(a,b) := HT(a,b) + 23
10 end |
11 end
12 end

13

end



1)

2)

3)

Conclusions

This paper has attempted to make three points:
That the Hough transform shape matching algorithms recently
proposed by Ballard [2] and Davis and Yam [3] are instances
of a general point pattern matching algorithm;
That the point pattern matching algorithms can be usefully
extended to match hierarchical point patterns, and
That the GHT can be further generalized to match patterns
of geometric objects other than points, e.g. line segments.
Clearly, the patterns can also include objects such as
circular arcs, etc., and may even contain a mixture of

geometric objects.
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Frame 1

Figure 2a.



Frame 2

Figure 2b.
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Figure 2c. Edge map for frame 1
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Edge map for frame 2

Figure 24.
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Figure 2e. Interest points for frame 1
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Figure 2f.
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