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I BACKGROUND1

Reliability may be obtained by redundant computation and voting in
eritical hardware systems. What is the best way to determine the
majority, if any, of a multiset of n votes? An obvious algorithm scans
the votes in one pass, keeping a running tally of the votes for each
candidate encountered. If the number of candidates is fixed, then this
obvious algorithm can execute in order n. However,‘if the number of
candidates is not fixed, then the storage and retrieval of the running

tallies may lead to execution time that is worse than linear in the

2
number of votes —- such an algorithm could run in order n .

If the votes can be simply ordered, an algorithm with order n
execution time can be coded first to find the median using the Rivest-
Tar jan algorithm [7] and then to check whether the median received more
than half the votes. The Rivest-Tarjan algorithm is bounded above by

5.43 n - 163 comparisons, when n>32.

In this paper we describe an algorithm that requires at most 2n

comparisons. The algorithm does not require that the votes can be

ordered; only comparisons of equality are performed.




I1 THE ALGORITHM

Imagine a convention center filled with delegates (i.e., voters)
each carrying a placard proclaiming the name of his candidate. Suppose
a floor fight ensues and delegates of different persuasions begin to
knock one another down with their placards. Suppose that each delegate
who knocks down a member of the opposition is simultaneously knocked
down by his opponent. Clearly, should any candidate field more
delegates than all the others combined, that candidate would win the
floor fight and, when the chaos subsided, the only delegates left
standing would be from the majority block. Should no candidate field a
clear majority, the outcome is less clear; at the conclusion of the
fight, delegates in favor of at most one candidate, say, the nominee,
would remain standing--but the nominee might not represent a majority of
all the delegates. Thus, in general, if someone remains standing at the
end of such a fight, the convention chairman is obliged to count the
nominee's placards (including those held by downed delegates) to

determine whether a majority exists.

Thus our algorithm has two parts. The first part pairs off
disagreeing delegates until all remaining delegates agree. We call this
the "pairing" phase. Perhaps nonobviously, pairing can be done with n
comparisons. If pairing leaves any delegates standing then those
delegates unanimously favor a single candidate--the nominee--who must be
in the majority if a majority exists. The second part of the algorithm,
called the "counting" phase, determines whether the nominee received
more than half the votes. The counting phase obviously requires at most

n comparisons. The focus of this paper is on the pairing phase.

Here is a bloodless way the chairman can simulate the pairing

phase. He visits each delegate in turn, keeping in mind a current




candidate CAND and a count K, which is initialized to O. Upon visiting
each delegate, the chairman first determines whether K is 0; if it is,
the chairman selects the delegate's candidate as the new value of CAND
and sets K to 1. Otherwise, the chairman asks the delegate whether his
candidate is CAND. If so, then K is incremented by 1. If not, then K
is decremented by 1. The chairman then proceeds to the next delegate.
When all the delegates have been processed, CAND is in the majority if a

majority exists.

Proof: Suppose thére are N delegates. After the chairman visits
the Ith delegate, 1 < I < N, the delegates he has processed can be
divided into two groups: a group of K delegates in favor of CAND, and a
group of delegates that can be paired in such a way that paired
delegates disagree. From this invariant we may conclude, after
processing all of the delegates, that CAND has a majority, if there is a
majority. For suppose there exists an X different from CAND with more
than N/2 votes. Since the second group can be paired, X receives at
most (N-K)/2 votes from that group. Thus, X must have received a vote
from the first group, contradicting the fact that all votes in the first

group are for CAND.

Here is a proof by simple induction on I that the delegates polled
may always be divided into two such groups after the chairman has
processed the first I delegates. After the chairman has processed the
first delegate, K and I are both 1: the group of delegates passed has 1
vote for CAND. So suppose the invariant holds after the Ith candidate,
and suppose the I delegates processed so far may be divided into two
groups, U and P, with the aforementioned properties. If after
processing the Ith delegate K is 0, then CAND is reset to the candidate
preferred by the I+1st delegate and K is set to 1. But when K is 0 the

invariant tells us that P contains all the first I delegates. Thus the

first I+1 delegates may be divided into two groups: one containing only
the I+1st delegate and one that is P. If after processing the Ith
delegate K is not 0, there are two cases: the I+1st delegate votes for

or against CAND., If the I+1st delegate votes for CAND, K is




incremented; the first I+1 delegates may be divided into two groups: U
plus the I+1st delegate and P. If the I+1st delegate votes against
CAND, K is decremented; the first I+1 delegates may be divided into Lwo
groups as follows. Let J be any cone of the delegates in U. Let the
first group be U minus J, and let the second group be P together with
both J and the I+1st delegate.
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EXAMPLES

Suppose there are three candidates, A, B, and C, and suppose that

the delegates are polled by the chairman in the following order:

AAACCBBCCCBCC

After the chairman has visited the 3rd delegate, candidate A is

leading with 3 votes:
Votes CAND K

AAACCBBCCCBCC 4 3

In processing the next three delegates, the chairman pairs off the
three A votes against three other votes (two for C and one for B).
After the sixth delegate has been visited, K is O and the vote of the
seventh delegate makes B the leading candidate.

Votes CAND K

AAACCBBCCCBCC B 1

However, the next delegate cancels out B's short-lived ascendancy and
the ninth and tenth delegates give C the lead by two votes.
Votes CAND K

AAACCBBCCCBCC C 2

The next delegate diminishes C's lead by one, but the last two raise it
to 3 by the time the pairing phase terminates. The claim is that if any

candidate has a majority, it is C.




Here is a simple example of the final state of the pairing phase on
a ballot in which no candidate has a majority:
Votes CAND K

AAABBBC c 1

The votes for A and B cancel one another out and C wins the pairing
phase by default. Had the delegates been polled in a different order, A

or B might have won.




and CAND ¢
- BOOLE Will pe Set either to .TRUE, or to
FALSE If BooLg 1s set tq - TRUE, , there jig one (ang only one)
majority element in 4 ang CAND ig Set to that element If BooLg is set
to .FALSE » there jg no majority element in A
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SUBROUTINE MJRTY(A, N, BOOLE, CAND)
INTEGER N

INTEGER A

LOGICAL BOOLE

INTEGER CAND

INTEGER I

INTEGER K

DIMENSION A(N)

K=oy

Do 100 Iz 1, N
IF ((k -EQ. 0)) GOTO 5p

IF ((canp .EQ. A(I))) GOTO 75

K = (g . )

GOTO 100

CAND - A(I)

K =1

GOTO 100

K= (g 4 1)

CONTINUE

IF ((x .EQ. 0)) GOTO 300

BOOLE - - TRUE,

IF ((x -GT. (N , 2))) RETURN

WE Now ENTER THE COUNTING PHASE, BOOLE IS SET TO TRUE IN

IF ((canp .NE, A(I))) GOTO 200
1

IF ((k -GT. (N , 2))) RETURN
CONTINUE

BOOLE - -FALSE,

RETURN

END




Indeed, one coulg make sycp a test every time K is incremented in the




V  THE FORTRAN VERIFICATION SYSTEM

bProcessors. There are many potential Sources of error in the code that
are completely ignored by the "proofn above. Is the program really gz
legal ANSI FORTRAN program? Does it violate any of the rules about
aliasing and Second level definition? Have We correctly analyzed the
flow of control? Have we considered al}l the possibilities at run time?
For example, ANSIT FORTRAN permits individual elements of an array to be
"undefined" (é.g., uninitialized). 1p Such cases, even the meaning of
an equality test ig left unspecified by ANSI, A more obvious run time
Wworry is that N might be so large that one of the arithmetic operations
causes an overflow. Furthermore, the proors are very informal, Are
they correct? Have cases been ignored? Have false or unwarranted

Properties about "unanimity" and "majority" been assumed?

have implemented 2 mechanical verification System for FORTRAN, That

System has been used to verify MJRTY and other Subprograms., Before

The systen handles a subset of both ANSI FORTRAN 66 [9] and ANSI
FORTRAN 77 [11. The Subset is described precisely in [4]. Informally
stated, the Subset includes all the statements of FORTRAN 66 except the
1/0, EQUIVALENCE, DATA, andg BLOCK DATA Statements, However, certain
restrictions are placed on Some of the remaining statements. For

€Xample, we allow only named COMMON blocks, we require that all
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arithmetic statements bpe fully Parenthesized to permit Straightforward

overflow analysis,?2 and we prohibit REAL arithmetic because we do not

This statement is made more bprecise in [4],

Our FORTRAN verifier is a standard Floyd-King-style System [5],
[61, [2], [8] consisting of two parts: a FORTRAN analyzer (syntax
checker and verification condition generator) and g mechanical theorem-
prover. For those readers unfamiliar With Floyd—King-style

verification, we briefly describe our system below.

Input to the analyzer consists of the FORTRAN Subprogram (function
or subroutine) to be verified, the mathematical Specification of the
subprogram, and all the Subprograms somehow referenced by the candidate
program. Each referenced Subprogram must have been previously verified
by the System, A Specification consists of two mathematica] formulas,
called the "input assertion® and the "output assertion.” The first

describes those states in which the program may be pProperly invoked.

11




The analyzer checks that the brogram satisfies all our Syntactic
requirements and then generates mathematical formulas called
"verification conditions.”" If these can be proved--i.e., derived
symbolically from a certain set of axioms using certain rules of ’
inference~—then, whenever the program is invoked in an input state
Satisfying the input assertion it produces a state satisfying the output

assertion.

In general, there is one such formula for each assertion-free path
between any two assertions. The formula for such a path requires
proving that, if the assertion at the beginning of the path is true and
one is led down the path by the tests, then the assertion at the end of
the path is true. 1In addition, formulas are generated to establish that
no array bound eérrors, overflows, or other run time errors occur, and
that the program terminates. (See [47.)

To permit consideration of arithmetic overflow, our verification
System permits formal talk about the "least inexpressible positive
integer" and the "greatest inexpressible negative integer" on the host
FORTRAN processor. Typical input assertions for programs must specify
the relations between the input variables and these otherwise
unspecified constants. We assume that ANST FORTRAN processors compute
the correct results and cause no arithmetic overflow on primitive
INTEGER arithmetic operations (i.e., +, -, ¥, /, and *#%) ip which the
inputs and the mathematically defined result are all strictly between

the least ang greatest inexpressible integers.3

prover that attempts to prove the formulas generated by the analyzer,
The theorem-prover, which is described in [3]1, is entirely responsible

for the eorrectness of each proof.

12




VI FORMAL 3PECIFICATION

The precise input assertion for MJRTY is that N is a positive
integer, that N+1 is strictly less than the least inexpressible positive
integer, and that every element of A is defined. N+1, rather than
merely N, must be expressible because the ANSI standard permits I to
obtain the value N+1 immediately before the termination of the DO-loop:

DO 100 I = 1, N

The output assertion for MJRTY is

®* The final version of BOOLE is .TRUE. or LFALSE. (that is,
BOOLE may not be returned "undefined").

* The elements of A are not changed.

¥ If BOOLE is set to .TRUE., then the final value of CAND is
defined, and the number of times CAND occurs in A is more
than N/2.4

¥ If BOOLE is set to .FALSE., then for all X, the number of
times X occurs in A is less than or equal to N/2.

We phrase these requirements in terms of the mathematical function,
CNT(X,A,I,J), which may be read as "the number of times X occurs in A
from I through J inclusive." CNT is a typical example of a concept that
must be introduced into one's underlying logical theory to specify a
program. CNT may be defined recursively for all I>0 and J>0 as follows:

CNT(X,4,1,J)

(if J=0 or J<I, then 0
otherwise, (if X=A{J), then T+CNT(X,A,I,J-1)
otherwise, CNT(X,A,I,J-1)))

Our mechanical theorem-prover verifies that there exists a function
satisfying the above equation before the equation is added as a new
axiom. Without such a check, the user of a verification system might
inadvertently "overspecify" a concept and permit correctness proofs

based on contradictions in the underlying specification.
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We cut the first DO-loop in MJRTY with an invariant at the bottom
of the loop, just before I is incremented and tested against N. In our
informal proof the invariant required that the I delegates processed
thus far could be divided into a unanimous group for CAND of size K and
a group that could be paired into disagreeing delegates. Since the
algorithm does not explicitly keep track of any such division of the
delegates, we reformulated the invariant in a slightly weaker fashion.
The reformulation is based on the observation that, if a collection of
delegates can be paired in such a way that paired delegates disagree,

then the collection has no majority.S Here is the actual invariant used:

(1) 0<I&0<KKLCILN

(2) CAND is always defined.

(3) The number of times CAND occurs in A from 1
through I is at least K. :

(4) The number of times CAND occurs in A from 1
through I, minus K, is no greater than (I-K)/2.

(5) For all X other than CAND, the number of times
X occurs in A from 1 through I is no greater
than (I-K)/2.

Although conjuncts (1) and (2) were ignored in our informal proof,
they are essential in a careful proof. Conjunct (3) establishes that we
have at least K votes for CAND. Let those K delegates constitute the
"unanimous group." The I-K remaining delegates are the "majority-free
group." Conjunct (4) says that CAND does not have a majority in the
majority-free group; ignoring the K votes in the unanimous group, the
number of votes for CAND thus far encountered is less than (I-K)/2.
Conjunct (5) says that no other candidate has a majority in the
majority-free group. We count the votes for candidates other than CAND
over the entire interval processed, rather than just over the majority-
free group, since we do not really know where the majority-free group
is. But we know that the unanimous group contributes nothing to the
tally of a candidate other than CAND.6

14




As the counting phase ig trivial, We shall not discuss it,

VII THE FORMaL PROOF3

integers ip terms or the Peano Numbers), from the definition of CNT
(e.g., if x is A(I+1) and I>0 then CNT(X,A,?.I+1) is 1+CNT(X.A,1,I)), or
from elementary arithmetioe lemmas (e.g., the theoren that fopr all
naturals M and N, N/2 < Miffy < 2M), Several of the baths to the

proofs, Thus, by bringing to the theorem—prover's attention Previously
unrecognized truths, the Well-trained user of oyr System can get the

be trusted, The machine--not the human--ig responsible for the validity
of the final Proof; the user cannot maliciously or inadvertently cause

the System to accept falsehoods, because the System Proves for itselr
every fact used,

To get all 61 theorenms proved, ye had to instruct the theorep-
Prover o Prove five lemmas about CNT, The two most interesting ones
Were gas follows: ‘

15



¥ CNT is monotonic: the number of times X occurs from 1
through I is less than or equal to the number of times it
occurs from 1 through J if 0 < I < J. Without knowing
this, the theorem-prover could not approve our exiting from
the counting phase as soon as K exceeds N/2 lest subsequent
processing of the remaining delegates decrease K.

* The number of times X occurs from i through I (I>0) is no
greater than I. This ensures that K in the second loop
will never exceed I (and thus incrementing K will never
cause an overflow). )

These two lemmas are proved by the system with mathematical induction on

the length of the interval scanned.

The other three lemmas we proved were required because of
inadequacies in the theorem-prover itself. For example, when MJRTY
exits because K is 0 at the end of the counting phase, the theorem-
prover knows that CAND has no majority and that no X other than CAND has
a majority. It must prove that no X has a majority. The proof is
obvious if one merely asks, "Is X equal to CAND or not?" and considers
the two cases. Without an explicit theorem stated by the user, the
theorem-prover failed to consider such a case split. The other two
lemmas were necessary for similar reasons and indicate inadequacies in

our system that we hope to repair in the future.

The entire effort of specifying MJRTY and getting the 61
verification conditions proved required about 20 man hours. Most of the
time was spent identifying problems caused by incorrectly written
invariants, overcoming inadequacies in the theorem-prover by identifying
appropriate lemmas, and struggling with the still awkward interface to
our FORTRAN verification condition generator. It requires about 55
minutes of computer time to prove the final list of 66 theorems. The
time was measured on a Foonly F2 Computer (about 30% as fast as a DEC
2060) running INTERLISP-10. A total of 42 minutes was required for
theorem-proving, 8 minutes for garbage collection, and 5 minutes for

printing out the proofs.

Readers interested in obtaining the system's complete English

description of its proofs may contact the authors.
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FOOTNOTES

1 Robert S. Boyer and J Strother Moore are with the Computer Science
Laboratory of SRI International, Menlo Park, California, 94025. The
research reported here was supported in part by NASA Contract NAS1-
15528, NSF Grant MCS-7904081, and ONR Contract NOOO14-75-C-0816.

2 ANSI permits the compiler to associate A+B+C to either the left or
right. The overflow analysis is different for the two cases. We
therefore require the programmer to write (A+(B+C)) or ((A+B)+C), which
according the ANSI standard, determines the run time association. We
have implemented this requirement in a simple but conservative way: all
arithmetic expressions must be fully parenthesized. Thus the code for
MJRTY contains unnecessary parentheses, e.g., in K=(K+1). A more
elaborate expression grammar could eliminate the unnecessary
parentheses.

3 In addition, for division we require that the denominator be nonzero.
4 By "/" we denote the integer "floor" of the real quotient.
5 The converse also holds for collections with an even number of members.

6 It is easy to see by the construction of a counterexample that (4) and
(5) do not imply (3). Nevertheless, if one modifies the code so that K
is not tested against N/2 before entering the counting phase, one can
omit conjunct (3) of this invariant. That is, unless the program exits
early when K exceeds N/2, a demon within the first loop is permitted to
raise K above the count of CAND (within the constraint imposed by (5))
without causing the algorithm to perform incorrectly. We do not know
how to interpret this lack of constraint. '
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