TEACHING OPERATING SYSTEMS
WITH MODULA-2

Jeffrey A. Brumfield

Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712

TR-85-13 July 1985

Abstract. Programming projects in an operating systems course expose students to
issues involved in the design and implementation of operating systems. The Modula-2
language provides features needed in such projects. This paper overviews the
capabilities of Modula-2 and describes a programming project in which students imple-
ment a process manager for an operating system. The process manager supports concur-
rent processes and provides operations for their synchronization and communication.

1. INTRODUCTION

A course in operating systems has become an important part of an undergraduate
computer science curriculum. Many schools now require that all computer science

majors complete an operating systems course as part of their upper division course

work.

s

Ideally, an operating systems course not only familiarizes students with the impor-
tant concepts but also gives them an appreciation of the issues involved in the design
and implementation of an operating system. There seems to be widespread agreement
on the concepts that should be covered in an operating systems course. This is evident
from the similarities in the tables of contents of recent operating systems texts le.g., 2
and 4]. There is more diversity in how students are exposed to design and implementa-

tion issues. Most texts provide an inadequate treatment of these topics.

Programming projects give students the opportunity to apply ideas discussed in
class and to deal with implementation issues that may have been omitted from lectures.
Two major problems are faced by the instructor who wants to assign programming pro-

jects in an operating systems course.

The first problem is devising challenging yet tractable projects. Certainly, imple-
menting several components of an operating system would be valuable experience for
the students. But, the time involved may be prohibitive even if students are allowed to

work in teams. Such an ambitious project may be better handled in a separate labora-

tory course or in an advanced course on operating systems. Many interesting projects
require access to single-user systems on which a student’s program can interact directly

with the hardware. Limited computing resources may preclude this type of project at

some schools.

The second problem is choosing a programming language with which the students
will work. Most students taking an operating systems course will be experienced Pascal
programmers. Unfortunately, Pascal is not well suited to operating systems applica-
tions. While several languages contain the necessary facilities, it is not reasonable to

expect the students to learn an entirely new programming language at the beginning of

the course.

This paper will discuss the use of the Modula-2 language in teaching operating sys-
tems. We believe that Modula-2 provides the needed features and can be learned easily
by students familiar with Pascal. A sample programming project is presented that
involves the implementation of a process manager. The assignment does not require

single-user systems or any special software environment.

2. THE LIMITATIONS OF PASCAL

When selecting a language for use in an operating systems course, Pascal will
likely be considered because of its widespread success in universities. Pascal has proved

to be an ideal language for use in introductory programming courses. It encourages dis-

ciplined programming using a limited number of language features. Unfortunately, Pas-

cal does not provide several capabilities that might be needed in an operating systems

course.

Pascal does not support data abstraction or separate compilation. This makes the
implementation of large and complex software systems difficult. The Pascal language
does not include primitives for concurrent (or pseudo-concurrent) programming. Con-
current processes are the building blocks in many operating systems and represent one
of the fundamental concepts taught in operating systems courses. When designing
operating systems components, it is sometimes necessary to include code that is depen-
dent on hardware characteristics such as the word size or the special use of certain

memory locations by the hardware. The ability to write hardware dependent code was

not among the design goals of Pascal.

There are several languages that provide the facilities that Pascal lacks. Among
them are Ada, C, Modula-2, and various extended versions of Pascal. It is beyond the
scope of this paper to compare and contrast these languages. We simply note that our

choice of Modula-2 was motivated by its simplicity, elegance, and similarity to Pascal.

3. THE MODULA-2 LANGUAGE

Modula-2 [5] was invented by Niklaus Wirth, the same person who designed the
Pascal language. One of the advantages of Modula-2 is that it can be learned quickly
and easily by students who already know Pascal. A large subset of Modula-2 is almost
identical to Pascal. There have been a few changes in syntax to make Modula-2 more
consistent, and therefore more easily learned by beginning programmers. Fer example,
every language structure that begins with a keyword also ends with a keyword. The
FOR, WHILE, and IF statements are always terminated by the word END, whether

they control a single statement or a compound statement.

A number of the restrictions of Pascal have been relaxed. An identifier may be
referenced before it is declared, allowing declarations to appear in any order. An expres-

sion involving constants may appear anywhere 2 constant is allowed.

The most significant features of Modula-2 are those that extend Pascal. Modula-2
allows data objects and procedures to be grouped together into modules. A module is
the fundamental unit for program decomposition and separate compilation. A
separately compiled module consists of a definition module, which includes declarations
of the objects and operations visible to the user, and an implementation module, which
contains the executable statements for the operations. The only objects declared within
o module that can be accessed outside the module are those whose names are specified
in an ezport list. Similarly, objects declared outside a module must be named in an

import list to accessible within the module. These facilities allow modules to be used to

implement abstract data types.

In Pascal, the primary unit of program execution is the procedure. In addition to
procedures, Modula-2 also provides coroutines . Coroutines differ from procedures in
the flow of control and the allocation of variables. When control is transferred to a
coroutine, execution begins at the statement following the last one executed by that
coroutine. When a coroutine transfers control, it always specifies which coroutine will
receive control next. Although a coroutine begins execution in a procedure specified
when the coroutine is created, the coroutine may call other procedures. Each coroutine

has its own set of local variables. Therefore, two coroutines may execute within the

same procedure without interfering.

Modula-2 also provides low-level facilities that allow the programmer to subvert
type checking and to write machine dependent programs. Such facilities might be
needed when writing memory management routines or accessing memory locations used

for specific purposes by the hardware.

Modula-2 is not without some drawbacks. The most noticeable of these is the lack
of a standard set of powerful input/output operations. To keep Modula-2 simple,
input/output procedures are not included as part of the language. Instead, they must
be provided by library modules. Wirth has defined a rather primitive set of

input /output operations that are included with many compilers. Other compiler imple-

¥ Coroutines are incorrectly called processes in the Modula-2 language. We will use the
correct terminology throughout this paper.

mentors have chosen to provide libraries with input/output operations patterned after
those in other languages. Until a powerful set of input/output operations becomes

available with all compilers, it will be difficult to write completely portable Modula-2

programs.

4. CONCURRENT PROGRAMMING

The Modula-2 language does not directly support concurrent processes. However,
coroutines can be used to implement pseudo-concurrency. The design of a library

module to support concurrent processes closely parallels the design of a process manager

for an operating system.

A process manager typically provides three types of abstract objects: processes,
semaphores, and message links. Processes are the fundamental unit of work in the sys-

tem. Semaphores are used to synchronize the execution of processes; message links are

used for inter-process communication.

Figure 1 shows a definition module specifying one possible interface for a process
manager. There exist operations for dynamically creating and destroying each type of
object. The Suspend operation prevents a process from being executed; Resume allows
the process to again compete for service. Terminate provides a simple way for a process
to destroy itself. The semaphore operations Wait and Signal are identical to Dijkstra’s

P and V operations. ReceiveMsg and SendMsg provide the same synchronization as

DEFINITION MODULE ProcessManager ;

EXPORT QUALIFIED
process, semaphore, link,

CreateProcess, Suspend, Resume, Terminate, DestroyProcess,
CreateSem, Wait, Signal, DestroySem,

CreateLink, SendMsg, ReceiveMsg, DestroyLink;

TYPE

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

process; semaphore; link;

CreateProcess
Suspend
Resume
Terminate
DestroyProcess

CreateSem
Wait

Signal
DestroySem

CreateLink
SendMsg
ReceiveMsg
DestroyLink

END ProcessManager .

(e : PROC; wspsize : CARDINAL) : Process ;
(p : process) ;

(p : process) ;

()3

(p : process) ;

(InitCount : CARDINAL) : semaphore ;
(s : semaphore) ;
(s : semaphore) ;
(s : semaphore) ;

(from, to : process) : link ;

(1:link; msg: ARRAY OF CHAR);
(1:link; VAR msg : ARRAY OF CHAR);
(1 : link) ;

Figure 1. An interface to a process manager.

Wait and Signal, and additionally allow a sequence of characters to be transmitted from

one process to another. A complete specification of the workings of these operations

depends upon a multitude of design decisions.

Using the objects and operations provided by the process manager, programs can
be written to solve the cla,ssicalvproblems involving concurrency. Figure 2 shows a solu-
tion to the bounded buffer producer-consumer problem that uses semaphores. In this
problem, a producer process sends data to a consumer process via a shared buffer. The
producer and consumer can theoretically operate at different (and possibly varying)
speeds. So, the producer may sometimes have to wait for a free slot in the buffer, and

the consumer may sometimes have to wait for a full slot. Additional synchronization

problems are described in [1].

5. PROCESS MANAGER IMPLEMENTATION

Implementing a process manager gives students an understanding of concurrent
processes, synchronization, and inter-process communication that is difficult to achieve
through classroom lectures alone. Students see how each type of abstract object is real-

ized using data structures, and how each operation is implemented as a procedure that

manipulates these data structures.

MODULE BoundedBuffer;

FROM ProcessManager IMPORT process, semaphore, CreateProcess, Terminate,
CreateSem, Wait, Signal;

FROM InOut IMPORT Read, Write;
CONST
BufferSize = Uk; (% number slots in buffer %)
TYPE
BufferIndex = [0..BufferSize-11]; (* index into buffer %)
VAR
prod, cons : process; (# producer and consumer *)
empty, full : semaphore; (¥ synchronization sems *)
buffer : ARRAY BufferlIndex OF CHAR; (*# shared circular buffer *)
(*—a—u~——m—-«~~m«w——«~———~—M—~—~~—~n~«~«n-*m«-m—u~——~~-———~ua~~—~av~~«*)
(* producer process - produces values and stores them in buffer ¥)
(# o= om or m m m f m m %)
PROCEDURE producer;
VAR
i : BufferlIndex; (*¥ producer buffer pointer ¥)
ch : CHAR; (¥ local storage for value ¥)
BEGIN
i = 0O
LOOP
Read (ch); (¥ produce a value *)
Wait (empty); (¥ wait for empty slot #)
buffer{i] := ch; (¥ store value in buffer %)
i := {(i+1) MOD BufferSize; (¥ increment buffer ptr %)
Signal (full); (¥ signal full slot ®)
END;
END producer;
(K s %)
(# consumer process - retrieves values from buffer and consumes them ¥)
(% o o %)
PROCEDURE consumer;
VAR
i : BufferlIndex; (¥ consumer buffer pointer ¥).
ch : CHAR; (*¥ local storage for value ¥)
BEGIN
i 1= 0y
LOOP
Wait (full); (¥ wait for full slot %)
ch := bufferli]; (# get value from buffer %3
i := (i+1) MOD BufferSize; (¥ increment buffer ptr ®)
Signal (empty); (*# signal empty slot #)
Write (ch); (¥ consume the value ®)
END:

END consumer;

(*—--—--—-~—--=——«-~‘— ——— *)

(*¥ main process - creates semaphores and other processes *)
(*---—-—-——--—«—-—-——-M“M—-»----——--—-~—-'—-«~‘-—----—-—---""*-~'-~*-—<-M-ﬂ----*—'—~—'~'—‘~'———*—--‘--“¢-=- ——————————— *)
BEGIN

full = CreateSem (0);

il

empty CreateSem (BufferSize);
prod CreateProcess (producer, 1000);
cons := CreateProcess (consumer, 1000);
Terminate;

END BoundedBuffer.

]

Figure 2. Solution to the bounded buffer problem.

11

The possible variations in the user interface and in the specifications and imple-
mentation of the operations are enormous. For this reason, we do not attempt to give a
concise statement of a programming project in this paper. Instead, we discuss in this
section some issues relevant to the design of any process manager. In the next section

we describe more sophisticated features of process managers.

Before any operations are implemented, a preliminary format for the «data struc-
tures must be decided. Each process, semaphore, and message link is represented by a
record that can be allocated dynamically or from a static array of such records. The
fields needed in these records depend upon the features supported. A process record
(sometimes called a process control block) must include information about the coroutine
associated with the process. It must also contain a link field so that processes can be
put into lists. One such list is the ready list, which contains all processes that are eligi-
ble to be executed. A semaphore record must include a count and pointers to the head
and tail of the list of processes waiting on the semaphore. Reference [3] provides more

details about process manager data structures and operations.

Each operation that creates an object returns to the user a unique identifier for
the object. This identifier is passed to the process manager each time the user wishes to
manipulate the object. If storage for objects is allocated from arrays, an array index
can be used to identify an object. If storage is allocated dynamically, a pointer to the
internal representation of an object serves the same purpose. To prevent the user from

directly modifying an object, the pointer type can be exported opaquely by the process

12

manager.

Operations that destroy objects are surprisingly difficult to implement. Decisions
must be made regarding in which states an object can be destroyed. For example, des-
troying a semaphore on which processes are waiting may not be practical. When an
object is destroyed, the state of other objects may need to be updated. For example, if

a process waiting on a semaphore is destroyed, the internal representation of the sema-

phore must be adjusted.

Error detection and recovery is an important part of the process manager. Invalid
operations, such as attempting to create a semaphore with a negative initial count, must
be detected to ensure the consistency of the process manager data structures. The pro-
cess manager can refuse to perform an invalid operation and return an error code to the

requesting process. Alternatively, an error message can be written to an output file and

the process can be terminated.

Debugging a process manager can be tedious. To facilitate this task, the process
manager should include a trace facility that outputs descriptive messages when
significant events occur. These messages should clearly identify the processes, sema-
phores, and links that are involved. Figure 3 lists some possible trace messages. Pro-
duction of these messages could be enabled or disaled at compile time by selecting the

appropriate value for a Boolean constant.

13

Process p creates process q
Process p made ready

Process p selected to run

Process p terminated

Process p creates semaphore s
Process p waits on semaphore s
Process p delayed on semaphore s
Process p signals semaphore s
Process p destroys semaphore s

Figure 3. Sample messages for tracing program execution.

The Appendix contains an implementation of a very simple process manager that
supports only a subset of the operations shown in Figure 1. In this implementation, a
process executes until it waits on a semaphore or terminates. The ready list and the
semaphore lists are managed as FIFO queues. The procedures include no error checking
and no output statements to trace execution. Although none of the operations require a
process as input, the CreateProcess operation returns an identifier of the newly created
process. This process manager is sufficiently complete to be used with the bounded

buffer program in Figure 2. The code can be extended to include any of the features

described in this paper.

14

6. ADVANCED FEATURES

Several features can be added to the process manager to make it more closely
resemble the process manager in an actual operating system. These enhancements can
be used in various combinations to create programming projects illustrating the desired

concepts and being of appropriate difficulty.

&

Instead of all processes receiving equal service, a priority can be specified for each
process at the time of its creation. The process manager should ensure that at all times
the highest priority ready process is running. This will require that the ready list be
maintained as a priority queue. Additionally, a process switch may be necessary in any

of the routines in which a process is made ready.

Restrictions may be placed on the use of certain operations. For example, it may
be unreasonable for any process to be able to destroy any other process in the system.
One way of limiting access is to associate an owner with each object and to allow only

the owner to perform certain operations. The owner may be the creator of the object,

or ownership may be transferable.

A new object, called a private semaphore, can be added to the process manager.
A private semaphore is a semaphore on which only one process can wailt. Most imple-
mentations also specify that signals cannot accumulate on a private semaphore.
Because of this, the internal representation of a private semaphore is much simpler than

that of a general semaphore. Instead of dynamically allocating and deallocating private

15

semaphores, each process can have one or more private semaphores automatically allo-
cated in its process control block when the process is created. Operations Pwalt and

Psignal can function in a way analogous to Wait and Signal.

Usually, if there are no processes eligible to execute, then all processes have ter-
minated or a deadlock has occurred. In either case, execution of the entire program
should halt. An exception to this rule occurs if a process can wait for an external event,
such as the expiration of a timer or the occurrence of an I/O interrupt. In this case, a
null process must be built into the process manager. The null process is selected only if
no other process is ready. If process priorities are available, the null process can simply
be an infinite loop process having the lowest priority. Otherwise, the null process must

constantly check the ready list for the appearance of another process.

7. RANDOMIZING PROCESS EXECUTION

In a concurrent program, execution of the statements in the individual processes
can be interleaved in any way, except as restricted by synchronization operations. In
the process manager we have described, a process executes until it terminates or is
delayed on a semaphore or message link. This severely limits the way in which
processes interact. For example, in the bounded buffer program presented earlier, the
produces always fills the entire buffer before the consumer begins execution. The consu-
mer the empties the entire buffer before the producer receives control again. These res-

trictions may prevent flaws in the design of a concurrent program from being detected.

16

Variations in process execution can be introduced into the process manager in two
ways. The first way is to time-slice the execution of processes. When a process begins
execution, a timer is set to generate an interrupt at the end of the time slice. The inter-
rupt handler forces a process switch. Because setting timers and handliﬁg interrupts are

operating system dependent, we will not further elaborate on this idea.

An alternative is to maintain the collection of ready processes as an unordered set
instead of a FIFO queue. Every time a process manager operation is invoked, a random
number is generated to select a process to execute. Because the currently running pro-
cess is among those processes eligible to execute, a process switch may not always be
necessary. When the process manager is modified in this way, the producer (or consu-

mer) in the bounded buffer example will fill (or empty) a random number of slots in the

buffer each time it is executed.

8. DISCUSSION

Programming assignments involving process management can be incorporated into
an operating systems course in several ways. Initially, a compiled version of a process
manager can be provided to the students so they can learn to design concurrent pro-
grams. Students can be required to develop solutions to several of the classical problems
using shared variables protected by semaphores and using message links. When the stu-
dents thoroughly understand the use of processes, semaphores, and message links, they

can be required to implement their own process manager.

17

When formulating a description of this project, the instructor must decide how
rigid the specifications will be. Certainly, it is easier to evaluate a student’s solution to
an assignment that has very specific requirements. The definition module for the pro-
cess manager can serve as a partial specification of the assignment. This allows the

instructor to prepare one set of programs that can be used to test all students’ process

managers.

We believe that students learn more when they are given the opportunity to
experiment with design alternatives. This may involve modifying the process manager
interface and, consequently, the programs that use the process manager. To ensure that
students do not miss any of the basic objectives of the project, we require all students to
develop process managers that satisfy a set of minimal requirements before enhancing
their programs with features they find interesting. Students are expected to completely

document and thoroughly test all extensions to the basic process manager.

18

Acknowledgments

The design of the process manager presented in this paper was inspired by a
design used by Peter Denning in operating systems courses at Purdue University.
Modula-2 code appearing in this paper was tested using the DEC Western Research

Laboratory compiler developed by Michael Powell.

References

1. M. Ben-Ari, Principles of Concurrent Programmang, Prentice-Hall International,
Englewood Cliffs, N.J., 1982.

2. H. M. Deitel, An Introduction to Operating Systems, Addison-Wesley Publishing
Company, Reading, Mass., 1984.

3. P. J. Denning, T. D. Dennis, and J. A. Brumfield, “‘Low Contention Semaphores and

Ready Lists,” Communications of the ACM, Vol. 24, No. 10, October 1981, pp. 687-
699.

4. J. L. Peterson and A. Silberschatz, Operating Systems Concepls, Addison-Wesley
Publishing Company, Reading, Mass., 1983.

5. N. Wirth, Programming in Modula-2, Second Edition, Springer-Verlag, Berlin, 1983.

19
APPENDIX

DEFINITION MODULE ProcessManager;

EXPORT QUALIFIED process, semaphore,

TYPE

CreateProcess, Terminate,
CreateSem, Wait, Signal, DestroySem;

process;
semaphore;

PROCEDURE CreateProcess (e : PROC; wspsize : CARDINAL) : process;

PROCEDURE Terminate)

PROCEDURE CreateSen (InitCount : CARDINAL) : semaphore;
PROCEDURE Wait (s : semaphore);

PROCEDURE Signal (s : semaphore);

PROCEDURE DestroySemn (s : semaphore);

END ProcessManager.

IMPLEMENTATION MODULE ProcessManager;

(% o S o i e g a0 o o K}

(% In this minimal function process manager, a process executes until it ¥)

(% waits on a semaphore or terminates. The ready 1list and semaphore %)

(* lists are managed as fifo queues. Note that coroutine, newcoroutine, *3

(# and switch are aliases for PROCESS, NEWPROCESS, and TRANSFER. *)

(*-—w—--——-—-——--———-—-—r—--—-—--—---——-—-—--s-\—«—-——-—-—-w-———-—-u-«-—u—-—w-—-—--«-----—--“-—-—-—---——«-—-—--—u—--—-«--—-‘—-—-—-——-*)

FROM coroutines IMPORT corocutine, newcoroutine, switch;

FROM Storage IMPORT ALLOCATE, DEALLOCATE;

FROM SYSTEM IMPORT ADDRESS;

TYPE

process = POINTER TO RECORD
cortn : coroutine; (*# coroutine variable for process ¥)
WSD : ADDRESS; (¥ workspace for coroutine %)
wspsize : CARDINAL; (# size of workspace in stg units ¥)
link : process; (# next process on list *)
END;
semaphore = POINTER TO RECORD

count : INTEGER; (*# neg value gives queue length *)
head : process; (*# first process on waiting gueue *)
tail : process; (# last process on waiting queue %)

END;

VAR

RL : RECORD (* ready list ®3
head : process; (¥ first process on list *3
tail : process; (# last process on list *)

END;

dummy : coroutine; (* for switching from a terminated process ¥)

self : process; (*# the currently running process *)
(% oo o S S ST S ST mm S om s %)
(* add process p to the tail of the ready list #)
((F oo o S S S S S Sm S oo ————)
PROCEDURE ready (p : process); :
BEGIN

IF RL.head = NIL THEN RL.head = D

FELSE RL.tailf.link := p

END;

pT.link = NIL;

RL.tail = D3

END ready;

(F e S S S m S S m S S mm oo s %)
(* remove a process from the head of the ready list LS
(% o e o e o o o ko o e o o o B o o B o £ o e %)

PROCEDURE nextproc () : process;
VAR
P : process;
BEGIN
IF RL.head = NIL THEN HALT END;
p := RL.head;

RL.head := RL.headf.link;

pT.link := NIL;

RETURN p;
END nextproc;
(% = o 5 O %)
(* create a ready process having starting point at procedure e %)
(*-—-—-——-——«-—--—-—--——-—--—~»-—-«---—-—-—-—-—--—-—-——-—-—--——«-—-—-—--—--——------—---»—--—-«»—-'-—-——--—-u-—-—-—-—-—«--—-—-—-—-—-—--—n-—-a-—-*}

PROCEDURE CreateProcess (e : PROC; wspsize : CARDINAL) : process;
VAR

p : process;

BEGIN ,
NEW (pJ3 (%# allocate storage for process ¥)
ALLOCATE (pT.wsp, wspsize); (¥ allocate coroutine workspace ¥)
pf.wspsize := wspsize;
newcoroutine (e, pt.wsp, pT.wspsize, pl.cortn); (* create coroutine ¥
ready {(pJ); (* make process ready ¥)
RETURN p;

END CreateProcess;

(# destroy the vurrently running process *)

PROCEDURE Terminate ();
BEGIN
" IF selfl.wspsize <> O THEN DEALLOCATE (sel1ft.wsp, selfl.wspsize) END;
DISPOSE (self);

self := nextproc(); (# get a ready process ¥*)
switch (dummy, selfl.cortn); (# and switch to it *)
END Terminate; ' :
(* ~~ a-«*)
(* create a semaphore havzﬁg the sgethzeé iﬂltlai count *)
(% m e e oS — S S S mm o mee L e o o o *)

PROCEDURE CreateSem (InitCount : CARDINAL) : semaphore;

VAR
s : semaphore;
BEGIN
NEW (s);
stT.count := InitCount;
st.head = NIL;
sfT.tail = NIL;
RETURN s;
END CreateSem;
R tutattt ettt tlloleblel %)
(* walt on semaphore s *)
{ % o S S S ST S oSS S S S Smmmm s mmmmees %)
PROCEDURE Wait (s : semaphore);
VAR
previous : process;
BEGIN
sT.count := sT.count - 1;
IF sT.count < O THEN
IF sT.head = NIL THEN sT.head := self (# attach running process ¥)
ELSE sfT.tailf.link := self (# to tail of sem queue %)
END;
sT.tail := self;
selft.link := NIL;
previous := self
self := nextproc{(); (*¥ get a ready process ¥)
switch (previoust.cortn, selft.coreny; (*¥ and switech to 1t *)
END;
END Wait;
T hiutattett bbbt bbbl hefsebeiebeli %)
(* S?gnal semaphore s *)
(Fmmmmmm RS e o o o o 2 o 2 2y I S %)

PROCEDURE Signal (s : semaphore);
VAR

p : process;

BEGIN
st.count := sT.count + 1;
I¥ sT.count <= 0 THEN
p := sf.head; (* remove a process from the
sT.head := sl.headf.link; {* head of the sem queue
ready (p); (* and make it ready
END;
END Signal;
(* “““““““““““““““““““““““ - e ot g Moy e G Gt et e ek b G Men T G e e e OHS S S o e e Dok ek ey ood W G e s i ol g . m wm mn w k n we o
(* destroy semaphore s 1f no processes are waiting on it
(* ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ TR oA e S o e A B e o K ek G G Gk et T, A A W e e G S WL G W G S0d Ged SR G Mt ek S G e T B TR G Srm O S TR T en e e G e e e
PROCEDURE DestroySem (s semaphore) ; ’
BEGIN
IF sf.head = NIL THEN DISPOSE (s) END;
END DestroySem;
(* ““““““““““ P e m wars wnd O S B S e R Gem e Rk e ok e o wew DR G e mem S S G R WL Tee Ga e AR T Wd M Al S S tew el sher s BOR W A e N G WAT W MW G GG N G DR B G e e
(# 1n1t1allzatlon of process manager
(o o o g o i o o 2 o o ok G o 2 2 o
BEGIN (% initialization ¥)
RL.head := NIL;
RL.tail := NIL;
NEW (self): (*# fake entry for main process
selflT.wspsize := O;
selffT.1link := NIL;

END ProcessManager.

*)

*)

