PROBLEMS CONCERNING FAIRNESS
AND TEMPORAL LOGIC FOR
CONFLICT-FREE PETRI NETS

Rodney R. Howell and Louis E. Rosier
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712-1188

TR-87-19 May 1987

Problems Concerning Fairness and Temporal Logic
for Conflict-Free Petri Nets'

Rodney R. Howell and Louis E. Rosier

Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712-1188

Abstract

In this paper, we examine the complexity of the fair nontermination problem for conflict-free Petri nets
under several definitions of fairness. For each definition of fairness, we are able to show the problem to
be complete for either NP, PTIME, or NLOGSPACE. We then address the question of whether these
results extend to the more general model checking problem with respect to the temporal logic for Petri
nets introduced by Suzuki. Since many of the model checking problems concerning finite state systems
can be reduced to a version of the fair nontermination problem, it would seem plausible that the model
checking problem for conflict-free Petri nets would be decidable. However, it turns out that unless the
logic is severely restricted, model checking is undecidable for conflict-free Petri nets. In particular, the
problem is undecidable even when formulas are of the form Gf ("invariantly ") where { contains no
temporal logic operators. On the other hand, we show that model checking for conflict-free Petri nets is

NP-complete for L(F,X) — the logic restricted to the operators F (eventually), X (next time), A, and V,
with negations allowed only on the predicates.

1. Introduction

For some time now, temporal logic has been considered an appropriate formalism for reasoning about
systems of concurrent programs [28, 36]. Research in this area seems to emphasize two directions. The
first concentrates on the proof-theoretic paradigm of manual program verification [33], while the second
concerns itself with algorithmically solving special cases, such as the case where the system is finite state

l9, 12, 26, 37, 38, 39, 40, 44]. The latter strategy usually involves viewing the global state transition
graph of a finite state concurrent system as 2 finite structure over which témp“oral logic formulas are
interpreted. For many temporal logics there exist efficient "model checking® algorithms for determining
if a given structure defines a model of a correctness specification expressed in the temporal logic. (See,
e.g., 9, 26, 40, 44].) An automata-theoretic viewpoint is often used. There, the model checking problem
for {inite state programs is recast in terms of testing emptiness for an w-automaton; i.e., the global state
transition graph is viewed as a finite state automaton which accepts an infinite string iff it corresponds to
a computation of the concurrent system. To check that some computation of the system meets the

specification f, one checks that the automaton with acceptance condition f accepts some input. This

zThis work was supported in part by U.8. Office of Naval Research Grant No. NO0014-86-0763. A summary of the results will be
presented at the 8th European Workshop on Applications and Theory of Peiri Nets.

problem, which we refer to as model checking, is actually a restricted version of the model checking

problem examined in [9], and is referred to as » Jetermination of truth in a structure® in [40].

A problem closely related to model checking is the fair nontermination problem. For a concurrent
system a fairness constraint is a property that is either true or false of an infinite computation. For a
given fairness constraint, the fair nontermination problem is to determine if an infinite computation exists
which satisfies the fairness constraint. For many of the model checking problems concerning {inite state

systems, model checking can be reduced to a version of the fair nontermination problem. See, e.g.,
9, 26, 44].

An obvious limitation of the above strategy is that it only applies to finite state systems. One reason
for this is that model checking is, in general, undecidable for infinite state systems [1, 3, 5, 41]. The work

of |7, 35], however, seems to suggest that there are cases where model checking can be done for certain

types of infinite state systems.

Petri nets constitute a powerful automata theoretic formalism that is often employed to model
concurrent systems [34]. Although the formalism can not be utilized to model (arbitrary) Turing
machines, it can readily model many infinite state systems. Furthermore, many decision problems with
respect to Petri nets are known to be decidable. See, e.g., [20, 22, 29]. As a result, one might hope that a
reasonably expressive temporal logic could be designed around this formalism such that model checking
would be decidable. Now certain versions of fairness were defined (or adapted) for Petri nets in
[2, 3, 5, 6, 37]. Decidability issues were considered in [3, 5, 43]. Results here include the fact that for
two definitions of fairness, the fair nontermination problem is decidable. This might seem to suggest that
model checking with tespect to Petri nets is decidable for some reasonably expressive temporal logic.
However, Carstensen [5] shows that for a stronger definition of fairness, the fair nontermination problem
is undecidable. This latter result virtually assures us that even for very restricted temporal logics, model
checking with respect to general Petri nets is destined to be undecidable. For example, a rather modest

temporal logic for Petri nets was described by Suzuki in [41] for which model checking is shown to be

undecidable.

For model checking to be decidable with respect to Petri nets, we must lower our expectations. The
best one could hope for would be for model checking to be decidable for very powerful subclasses of Petri
nets. During the last decade or so, many subclasses of Petri nets have been studied. In many cases,
decision problems can be solved more efficiently for the restricted classes than for arbitrary Petri nets
(see, e.g., [8, 10, 11, 13, 14, 15, 16, 20, 24, 30, 32, 42, 45]). One of the simplest such classes is that of

conflict-free Petri nets [8, 16, 15, 24]. (Conflict-free Petri nets are equivalent to the controls of decision-

free flow-chart schemata studied in [20].)

In this paper, we examine various fair nontermination problems for conflict-free Petri nets. For the
notions of fairness considered in (2, 3, 5, 6, 23, 25, 37, 43], we are able to show that the nontermination
problems are all decidable. In fact, we provide a much stronger result by establishing the nontermination
problem for each of these definitions of fairness to be complete for NLOGSPACE, PTIME, or NP. Now

since a number of these problems have efficient solutions, one might conjecture efficient solutions also

exist for the more general model checking problem. So, we start by defining a simple version of the

linear-time temporal logic utilized by Suzuki in [41]. The temporal operators include F (eventually), G
(invariantly), X (next time), and U (until). We then examine the model checking problem for the various
logics that result from restricting the use of temporal operators in a similar fashion as was done by Sistla
and Clarke in [40]. Although we expected each of these problems to be decidable, we found that most
were not. Specifically, we found that for formulas of the form Gf, where f contains no temporal logic
operators, the problem is undecidable. This result immediately implies that the problem is undecidable

for arbitrary formulas using only the F temporal logic operator. (This is analogous to the subset of

temporal logic called L(F) in [40].) Furthermore, it is not hard to extend our proof to safety properties or
any of three types of liveness properties defined in [27, 46]. The major difficulty in model-checking seems
to be that the simplest temporal logics are so expressive that unleashing their power on even the most
simple infinite state computing structures enables one to construct temporal logic formulas that can only
be satisfied by the structure emulating computations of much more powerful automata. However, we are
able to show that for E(F,X), the logic comprised of only the operators F, X, A, and V, with negations
allowed only on the predicates (see also [40]), the problem is NP-complete. Thus, the main contribution
of this paper is to show that unless a very restricted subset of temporal logic is used, model checking is

undecidable even for conflict-free Petri nets, one of the simplest classes of Petri nets.

The remaining portion of the paper is organized as follows. In Section 2, we define the formalisms
we will be using. Throughout the paper, we will use the notion of a vector replacement system, which is
simply a succinct notational variant of the Petri net formalism [21]. In Section 3, we give completeness

results for the liveness problem and the various fair nontermination problems. Finally, in Section 4, we

give our results concerning model checking.

2. Definitions

Let Z (N, R) denote the set of integers (nonnegative integers, rational numbers, respectively), and let
VA (Nk, Rk) be the set of vectors of k integers (nonnegative integers, rational numbers), and gkxm (kam,
kam) be the set of kX m matrices of integers (nonnegative integers, rational numbers). For a vector
vez¥ let v(i), 1 €i <k, denote the i component of v. For a matrix V€ ZKXm et V(j), 1 <1<k,
1 < j < m, denote the element in the i*" row and jih column of V, and let Vs denote the jth column of

V. For a given value of k, let 0 in 7% denote the vector of k zeros {i.e., O(i)==0 for i=1,....k). Now given

: k
vectors u,v, and W in Z~ we say:

e v=w iff v(i}==wl(i) for i==1,... k;
e v > w iff v{i) > w(i) for i=1,... k;
e v>w iff v > w and v 55 w; and

e u=v+w iff u(i)=v(i)}+w(i) for i=1,.. k.

A kXm wector replacement system (VRS), is a triple (v,U,V), where VOENk, UeNX™ and
Ve Z¥%™ such that for any i,j, 1 <i<k, 1 <j<m, U@Ej)+V(i,j) = 0. v, is known as the start vector,
U is known as the check matriz, and V is known as the addition matriz. A column u, of Uis called a
check vector, and a column L of V is called an addition rule. For any X ENk, we say addition rule v, is
enabled at x iff x = u;. A sequence <y,,...¥ > of rules in V is enabled at a vector x iff for each j,
1<j<n, ¥ is enabled at x+y,+ - - - +yj—1' If a sequence ¢ is enabled at v, then we say that 6 is a valid
sequence in (VG,U,V). The reachability set of the VRS V=(v,,U,V), denoted by R(VO,U,V) (or R(V)), is
the set of all vectors z, such that z=v +y,+ - +y, for some n > 0, where each ¥ (1<j<n)isa
column of V, and LY gree¥ > is enabled at Vo Let o=<W,.., W, > be a sequence of vectors in NE.If
W=V and for every r, 1 <r <t, there is a j such that W =W Y and w_, > u,, then we say
LWyeery W, > 15 @ path in (VO,U,V). If there exist r and s, 0<r<{s<t, such that w <w_, then we say that

o= W,y W > is a loop. Let ¥ denote the Parikh mapping, such that if § is a sequence of rules in v,

then ¥(f) € N™, and ¥(6)(j) is the number of occurrences of v in §. Let () denote the displacement of 6.

A VRS (VO,U,V) is said to be con flici-free iff (1) no number in U is greater than 1; (2) no number in
V is less than -1; (3) no row in V has more than one -1; and (4) if V(i,j)=-1, then U(@,j) = 1, and all
other elements in row i of U are 0. Conflict-freedom guarantees that whenever any two rules v, and v,
are enabled at a vector v, L is also enabled at v+vj,. (Note that this must hold even when v is not in
R(v,,UV).) For a given kXm addition matrix V, the minimal check matriz is 2 kXm matrix U in
which U(i,j)=1 if V(i,j)==-1, and U(i,j}==0 otherwise. It is easy to see that the set of kXXm conflict-free
VRSs with minimal check matrices is equivalent to the set of kXm conflict-free VASs (see [8]).
Furthermore, there is an obvious translation from a conflict-free Petri net (see [24]) with k places and m
transitions to a kXm conflict-free VRS whose addition rules and check vectors have no elements larger
than 1. Thus, our definition is general enocugh to include both previous definitions. In addition, all lower
bounds shown in this paper are shown using VRSs having minimal check matrices and no elements larger

than 1. Thus, all of our completeness and undecidability results hold for conflict-free VRSs, conflict-free

VASs, and conflict-free Petri nets.

An addition rule VjEV is said to be live in (VG,U,V} if for any WER(VG,U,V), there is a path o in
{w,U,V) that enables Vi The transition liveness problem for VRSs is to determine, for a given VRS
(vyU,V) and an addition rule v, € V, whether v, is live in (v,,U,V). The VRS (v/U,V) is said to be live if

every transition v}.EV is live in (VO,U,V). The liveness problem for VRSs is to determine whether a given
VRS is live. A VRS is said to be bounded (unbounded) if its reachability set is finite (infinite). The

boundedness problem for VRSs is to determine whether a given VRS is bounded.

Several of the problems studied in this paper have to do with various notions of fairness. The first
three types of fairness we consider were introduced by Lehman, Pnueli, and Stavi [25]. Let o be an
infinite path in (v, UV). o is said to be impartial if every addition rule \f €7V is executed infinitely
often. o is said to be just if every addition rule Vs €V that is enabled continuously after some point in &
is executed infinitely often. o is said to be fair if every addition rule \f €V that is enabled infinitely
often in o is executed infinitely often. {Note that in a conflict-free VRS, an enabled rule remains enabled
until it is executed; hence, justice and fairness are equivalent for conflict-free VRSs.) The remaining

definitions of fairness come from Landweber (23] and Carstensen and Valk [6]. These definitions concern
reachable markings rather than addition rules, and are interesting because they yield different complexity
results than the definitions concerned with addition rules. Let A be a finite set of finite nonempty subsets
of NK. ¢ is said to be

o 1-fair for A if there is an A € A such that some vector reached by o is in A.

e 1'-fair for A if there is an A € A such that every vector reached by o is in A.

o 2-fair for A if there is an A € A such that some vector reached infinitely often by o is in A.
o Z-fair for A if there is an A € A such that every vector reached infinitely often by ¢ is in A.
e 9-fair for A if the set of vectors reached infinitely often by o is an element of A.

o §-fair for A if there is an A € A such that every vector in A is reached infinitely often by o.

We refer to these six types of fairness collectively as i-fairness, where 1 is understood to be an element of
{1,12,2",3,3'}. The impartial (just, fair, i-fair) nontermination problem is the problem of determining
whether there is an infinite impartial {just, fair, i-fair, respectively) path in a given VRS for a given set A
(if applicable). (Many other definitions of fairness have been proposed. See, e.g., [2, 5, 6, 37, 43].

Although we do not formally discuss all of these types, we do, in the text, mention how our results can be

extended to encompass them.)

Other problems that we examine in this paper have to do with temporal logic. Formulas in temporal
logic are formed from predicates, Boolean connectives, and temporal operators. The predicates we use
are ge(i,c), en(j), and fi(j), where c,i,j€EN. Intuitively, if 6 is a given sequence of rules enabled at a given
vector w, ge(i,c) means that w(i)>c, en(j) means that Vs is enabled at w, and fi(j) means that \F is the
first Tule used in #. One might wonder why we need ge(i,c) in addition to en(j). The reason for this is
that although for arbitrary VRSs we can express ge(i,c) using en(j), doing so may destroy conflict-

freedom. For example, we cannot simulate geli,c) for ¢>1 using en(j), because the check matrix n a

conflict-free VRS can contain no numbers larger than 1. The Boolean connectives we use are —, A, V,
and D, and the temporal operators are X, U, F, and G. A well-formed formula is either a predicate or

of the form —f, fAg, Xf, or f U g where { and g are well-formed formulas. We also use the following

abbreviations:
o fvg = —(~fA—g);
e fOg = —fvg;
o Ff == true U {; and
s Gf == —-F-f.

Let (VO,U,V) be a VRS, and let 6’=<w1,w2,‘..> be a finite or infinite valid sequence in (VD,U,V). The

following define the semantics of our logie:
e <V,0,n> F ge(ic) iff vo+3 ?xle.(i)zc;

o <V,0,n> F en(j) iff v+2_ 1 V25

j:

<Von> k() i W =V

<Von> EIAg il <V,fn> Efand <V,fn> Fg;

<V,6,n> k —f iff not (<V,8,n> Ef);
e <V,n>EXIiff <VIn+1>FT;

e <V,0n> kU giff 3s>n such that <V,0,s> F g and Vt, n<t<ls, <V,0,t> F {.

Note that the above semantics defines a linear-time temporal logic. Also note that the present is not
considered to be a part of the future. We define the length of a temporal logic (TL) formula as the sum
of the number of predicates, Boolean connectives, and temporal operators in the formula. We say that a
TL formula [is saiisfiable if there is an infinite valid sequence 9=<W1,W2,...> in some VRS
Vz(vO,U,V) such that < V,0,0> £ f. We then say that V is a2 model for {. The model checking problem

is the problem of determining whether a given VRS V is a model for a given TL formula {.

3. Liveness and Fairness

The first problems we would like to examine are the liveness and transition liveness problems for
conflict-free VRSs. In [16] we gave an O(nl‘5 algorithm for determining boundedness for a conflict-free
VRS, where n is the number of bits needed to encode the VRS. One portion of this algorithm was
devoted to determining which addition rules could be used infinitely often. Call the set of these rules I.
In what follows, we will show that the set L of all live rules is identical to J. This fact yields an O(ni‘s)

upper bound for the liveness problem--the first polynomial upper bound for the problem. From this

result, we will be able to show the liveness and transition liveness problems to be PTIME-complete. We

first reproduce the following lemma from [16]:

Lemma 3.1: (From [16].) For any kXm conflict-free VRS V==(v,,U,V) that is described by n bits, we

can construct in time O(nl's) a path ¢ in which no rule in V is used more than once, such that if some

rule v, is not used in o, then there is no path in which v, is used.

Proof: We construct o as follows. First, we execute all rules enabled at v,. Then we repeatedly cycle
through U (or V), executing all those rules which are enabled but have not yet been executed. We
continue until a complete pass is made through U, during which no position increases in value. (Note
that this is a sufficient condition to conclude that no new rules are enabled.) Clearly, no more than m-+1
passes are made through U. On each pass except the last, there is at least one rule (say Vj) enabled that
was not enabled the previous pass; i.e., some position (say p) which was zero the previous pass is now
positive. Furthermore, since V is conflict-free, if some rule subtracts from position p, that rule must be
Vi Therefore, position p must have never previously been positive. Thus, on each pass except the last
some position becomes positive for the first time, so the number of passes is no more than

min(k,m)+1=0(no'5). Therefore, the entire procedure operates in time O(n’®).

Now suppose there is a path o' using rules not in 0. Let v_be the first such rule executed in o
Then all rules used before v_ in ¢ are used in o. Since v, is not executed in o, no position from which v,
subtracts ever decreases in value in ¢; hence, these positions are at least as large as they are at the point

at which v, is executed in ¢/, Then v, is enabled by o, a contradiction. Therefore, if v, is not used in o,

then there is no path in which v _is used. O

Lemma 3.2: For any kXm conflict-free VRS (v, U, V), the set I = {Vj PV is used infinitely often in

some path o} is the same as the set L of live rules.

Proof: Clearly LC 1. Assume IC L, and let we N¥ be such that in some path, w is the last point from
which there exists for each rule in I, a path that enables that rule. Thus, there are rules A ev (ul < w),
v, € I, and a path ¢ in (w,U,V) such that v, is used in o, but v, can never be used after w+v, is reached.
From Lemma 3.1, there is a path o' enabled at w that uses v, and all rules in 7. Note from the proof of
Lemma 3.1 that without loss of generality, we can assume that any arbitrary rule enabled at w is used
first in o'; thus, we may assume v, is used first in ¢'. Since VZEI but v, cannot be used after w-+v, is

reached, V=V, Now since V2€I, for every position from which v, subtracts, there must be a rule in 7

that adds to that position. Since every rule in I is executed in o/, & is enabled by o'--a contradiction.

Hence, L=1. O

Theorem 3.1: The liveness and transition liveness problems for conflict-free VRSs are PTIME-complete.

Furthermore, there is an O(nl's) algorithm to decide each problem.

Proof: Since the set of live rules can be computed in time O(n!®) (see [16]), we can clearly decide both

problems in time O(nl's). The PTIME-hard proofs are similar to Lemma 4.1 in [16]. The details are left

to the reader. O

We now consider the various fair nontermination problems defined in Section 2. It is often the case
that problems in verification of parallel computations can be phrased as fair nontermination problems
concerning various formal models of computation. Most work of this sort to date has been concerned
with finite state models (see, e.g., [9, 12, 26, 38, 39, 44]). Hence, the reason that we now examine fair
nontermination problems for conflict-free VRSs is that perhaps some of the problems in verification of
parallel computations can be modelled as a type of fair nontermination problem for conflict-free VRSs. It
turns out that some of the fair nontermination problems we examine have efficient solutions. Therefore,
it may be the case that the algorithms presented here will be useful in the verification of parallel systems.
However, we will show in the next section that these results do not extend to general temporal logic

formulas, as one might hope. The first three problems we will consider are the impartial, just, and fair

nontermination problems.

Theorem 3.2: The impartial, just, and fair nontermination problems for conflict-free VRSs are all

PTIME-complete. Furthermore, there is an O(n'*®) algorithm to decide each problem.

Proof: We first claim that there is an infinite impartial path iff the VRS is live. If there is an infinite
impartial path, the VRS is clearly live. Conversely, if the VRS is live, from Lemma 3.1, there is a path
from any reachable marking which uses one occurrence of each rule; hence, there is an infinite impartial
path. Thus, from Theorem 3.1, the impartial nontermination problem for conflict-free VRSs is PTIME-

complete, and there is an O(nl's) algorithm to solve the problem.

Next, we claim that there is an infinite just (fair) path iff there is an infinite path. To see this, note
that from any reachable marking, we can execute a path using every live rule. Now from Lemma 3.2, the
set of live rules is exactly the set of rules which can be enabled infinitely often. Thus, from [16], there is
an O(nl‘s) algorithm to decide just (fair) nontermination. The VRS constructed in Lemma 4.1 of [18] to
show the boundedness problem to be PTIME-hard has an infinite path iff it is unbounded; thus, the just
(fair) nontermination problem is PTIME-hard. 0
Remark: Prof. Vidal-Naquet has pointed out to us yet another definition of fairness, namely, an infinite

path o is fair in (v, U,V}) if for every rule VjE{Vi vy is live in (w,U,V) for all w&o}, v is executed

infinitely often. See also Best [2] and Queille and Sifakis [37]. Clearly, the above result holds for this
type of fairness as well. In addition, the fair nontermination problem has been shown to be decidable in
[5, 43] for general Petri nets with respect to two other definitions of fairness. The first is defined in
[43] as requiring a certain transition to appear infinitely often. The second is defined in [5] as requiring a
group of transitions to have the finite delay property; that is, infinitely often all transitions in the group
are simultaneously not enabled or some of them appear infinitely often. These results are in contrast to
another result in [5] concerning our definition of fairness, but applied to general Petri nets. The
corresponding fair nontermination problem was shown in [5] to be undecidable; however, it follows from
the above proof that for all three of these definitions of fairness, there is an O(nl"r’) algorithm to decide
fair nontermination for conflict-free VRSs. Other types of fairness were defined in [2]. The above proof
works for these types as well. Finally, if we define i-fairness on addition rules rather than on reachable
vectors, we have the transitional i-behavior introduced by Carstensen and Valk [6].

It also follows that
these types of fair nontermination can be decided in O(nl's) time.

Now of the six remaining fair nontermination problems, four are NP-complete, one is PTIME-
complete, and one is NLOGSPACE-complete.

Theorem 3.3: The i-fair nontermination problem for conflict-free VRSs is NP-complete for i€{1,2,3,3}.

Proof: The reachability problem for conflict-free VRSs (i.e., the problem of determining for a given
weNY and a given VRS V, whether weR(V)) was shown in [19] to be NP-hard. We therefore show that
all four of the problems are NP-hard by reducing reachability to each of them. Let (VO,U,V) be an
arbitrary kX m conflict-free VRS, and let w be an arbitrary vector in NE. Let V' {U"} be V (U) with an
additional column of zeros, and let A={{w}}. It is now easy to see that for each i€{1,2,3,3'}, there is an
i-fair path for A in (v ,U" V') iff w€R(v,U,V). Thus, the four problems are NP-hard.

We now describe an NP algorithm for each problem. In each of these algorithms, we use a result

shown in {15] that the reachability problem for conflict-free VRSs is NP-complete. Let (v, U,V) be a
kX m conflict-free VRS, and let A be a finite set of finite nonempty subsets of N,
e 1-fair: Cuess a vector w in some set AEA; verify that WGR(VO,U,V), and that there is some
live rule in {w, U, V).

e 2-fair: Guess a vector w in some set AEA, verify that WER{VWU,V), then verify that for some
w' reachable in one step from w, weR(w',U, V).

o 3-fair: Cuess some set AEA, verify that some element w of A is reachable, then guess a

sequence f of |A| rules. Verify that the set of vectors reached in the execution of ¢ {from w 1is
A, and that §(#)==0.

e 3fair: Cuess some set AEA, verify that the first element of A is reachable, verify that each

10

successive element of A is reachable from the previous element of A, and verify that the first
element of A is reachable from the last element of A.

Clearly, all of the above algorithms operate in NP; therefore, all four problems are NP-complete.]

For each of the four problems discussed above, it was necessary to determine whether some given
vector was reachable; thus each problem was shown to be NP-hard. On the surface, it appears that the
9'_fair nontermination problem should be NP-hard for the same reason. However, it turns out that any
unbounded conflict-free VRS has an infinite 2-fair path for any A. Thus, to decide the 2'-fair

nontermination problem, we need to be able to decide reachability with respect to bounded systems only.

We will now show that this can be done in PTIME.

Lemma 3.3: The reachability problem for bounded conflict-free VRSs is in PTIME.

Proof: Let Vz(vO,U,V) be a bounded kX m conflict-free VRS, and let w be an arbitrary vector in NE.
We will describe an algorithm to decide whether w€R(V). The algorithm consists of two phases, each
corresponding to finding a portion of a path to w. The initial portion of the path will use only rules that

can be used at most finitely many times in any path, and the final portion of the path will use only rules

that can be used infinitely many times in some path.

In the first phase, the algorithm will attempt to construct sets A and B such that set A will contain
all the rules used in an initial portion of a path ¢ to w, and B will contain all the rules used in the
remainder of o (and possibly others). Furthermore, A and B will be disjoint. If the algorithm is

successful in this phase, it will also compute a vector v which, if weR({V), will represent the vector

produced by the initial portion of o.

Phase 1 proceeds as follows. First, assign to B the set of all rules executable in V. From Lemmsa 3.1,
this can be done in PTIME. Also, assign Vg to v, and initialize A to the empty set. A will be a set of
rules Vs that have the property that for some nj>0, all paths from v, to w use v, exactly n, times. v will
record v0+§: v.EAnj*Vj' Any rules placed in A will be removed from B. Now suppose there is some vjEB
and some i, 1'_<ii§m, such that V(i,j}==-1 and for all j's4j, if vj,eB, then V(i,j')==0. Clearly, if there is 2
path to w, w(i)<v(i), and v, must be executed exactly v(i)-w(i) times in that path. Therefore, we remove
v from B, and if w(i)<v(i}, include v in A and add {v(i)—w{i)}*v}. to v. We can now continue iterating
this process as long as there is some VJ.EB satisfying the condition above. If at any time there is a VJ.EB
and some i, 1<i<m, such that w(i)>v(i), V(i,j)=-1, and for all j'54j, if vj,(‘—_B, then V(i,j")==0, the

algorithm rejects.

If the above loop terminates successfully, then for any vj.EB, if V(i,j)==-1, there must be a VE,GB such

that V(i,j')>0. From Lemma 3.2 in [16], there is some path o in V containing a loop consisting of exactly

i1

one occurrence of each rule in B. Since V is bounded, this loop must have a displacement of 0. We can

therefore conclude that for any VjéB, if V(3,])>0, then
1. V(L,i)=1;

2. there is a vj,éB such that V{3,j')==-1; and

3. there is no vj.,,EB such that j"s£4j and V(i,j")>0.

Thus, there is no rule in B that adds to a position from which some rule in A subtracts. We can therefore
delay execution of all rules in B until all rules in A have been executed. Hence, if w is reachable, there

must be a path o that first executes exactly those rules in A (possibly more than once) until it reaches v,

then executes only rules from B.

We are now ready to begin Phase 2. We wish to construct a subset B'CB that contains exactly those
rules used in the second portion of o. We first initialize B' to the empty set. As we collect rules in B, we
will determine a minimum number of times they must be executed in o; v will continue to accumulate the
effect of these executions. We now note that if w>v and w is reachable, then there must be some
sequence of rules in B with a positive displacement. However, it then follows from the proof of Theorem
3.1 in [16] that V is unbounded - a contradiction. Hence, if w>>v, w is not reachable. Suppose there is
some i such that w(i)<v(i). We then begin the outer loop of two nested loops. Let VJ.EB be such that
V(i,j)=-1. (If there is no such v}.EB, then w clearly cannot be reached, so reject.)] We wish to collect a
set C of rules Vi such that for each additional execution of L (beyond what has already been accumulated
in v) vy must be executed an additional time. We therefore initialize C to {Vj}. We also initialize v/,
which will represent the sum of the rules in C, to Vs Suppose there is some i’ such that adding vl to v
would increase |v(i’)-w(i')]. This marks the beginning of the inner loop. There must be a Vj,EB\C such
that V(i',j)==-v'(i") (see the preceding paragraph concerning the properties of B). vy, must clearly be
executed as many additional times as some rule in C is yet to be executed, and all rules in C must be
executed at least as many additional times as v is yet to be executed. We therefore add Vi to v/ and
include Vi in C. We continue iterating this inner loop until there is no i’ such that adding v/ to v would
increase |v(i")-w(i)]. At the conclusion of this loop, if v/(i)==0, this means that the rule Vi such that
V(i,j")=1 is in C; hence Vi must be executed as many additional times as L is vet to be executed. But if
this is the case, w can clearly never be reached, since w(i}<v(i). Therefore, if v!(i)==0, we reject.
Otherwise, let n:minv,ﬁ,}%g{}V(i’)-w{i’)i} (ie., n is the minimum number of times v' must be added to v
to bring v(i')=w{i') for some i'). We are now ready to accumulate into v n of the executions of the rules
in O. We therefore add n*v' to v, and insert the rules in C into B'. This does not increase [v(i-w(i)]| for
any i, and brings it to 0 for some i'. We therefore iterate the outer loop until w(i)>v(i) for all i. Again,
if w>v, w is not reachable, so reject. Otherwise, w=v when the outer loop terminates. The algorithm
has therefore demonstrated the existence of a (not necessarily valid) sequence of rules § containing exactly

those rules in AUB' such that v +6(f)=w.

12

The final step of the algorithm is to verify that there is some path in V using exactly those rules in
AUB'; from Lemma 3.1, this can be done in PTIME. We claim that w is reachable iff there is some path
in V using exactly those rules in AUB'. First, suppose that w is reachable. We have already shown that
there is a path from v, to w having an initial segment using exactly those rules in A. From Lemma 3.1,
there is a path ¢' from v consisting of exactly one occurrence of each rule in A. Suppose there is a proper
subset B" of the rules in B’ that can be executed exactly once (in some sequence) after o', leaving none of
the rules in B'\B" enabled. Call the resulting vector x. Since AUB is the set of all executable rules in V,
from the proof of Lemma 3.1, there must be an i, 1<i<m, a vjEB\B’, and a vj,EB'\B" such that x(1)=0,
U(i,j")==1, and V(i,j)==1. Since vjEB and V(i,j)=1, V(i,j")==-1 (see the properties of B enumerated earlier).
Since vy has not yet been used and x(i)=0, v (i)=0. But this implies that w{i)<<0 (otherwise, v would
have been included in C with Vj’) - a contradiction. Therefore, there must be a path from Yo containing
only those rules in AUB'’. Now suppose there is a path from v, containing only those rules in AUB'
Since the algorithm demonstrates that there is a (not necessarily valid) sequence # containing exactly

those rules in AUB' such that §(6)+v =w, by Lemma 3.2 in [15], these rules can be arranged into a valid

sequence.

We have shown that our algorithm correctly decides reachability for bounded conflict-free VRSs.

Furthermore, it is easy to see that the algorithm runs in polynomial time. This completes the proof. O
Theorem 3.4: The 2-fair nontermination problem for conflict-free VRSs is PTIME-complete.

Proof: Let \)z(VO,U,V) be 2 kX m conflict-free VRS. If Vis unbounded, then there is clearly an infinite
path which reaches no vector infinitely often; thus, the path is 2’-fair for any A. The VRS constructed in
Lemma 4.1 of [16] to show the boundedness problem to be PTIME-hard has an infinite path iff it is
unbounded; therefore, the same proof can be used to show that this problem is PTIME-hard. We will
now show the problem to be in PTIME. Let A be a finite set of finite nonempty subsets of NX. We first
determine whether V is bounded; if not, accept. If Vis bounded, then there is an infinite 2-fair path iff
there is an AEA that contains a weR(V), and there is an infinite 1-fair path for A in (w,U,V). Therefore,
for all AEA we check all wEA to determine whether both of these conditions hold for some w.

From
Lemma 3.3 and Theorem 3.5 below, this can be done in PTIME. o

Theorem 3.5: The 1-fair nontermination problem for conflict-free VRSs is NLOGSPACE-complete.

Proof: We will first show the problem to be in NLOGSPACE. We first guess a set A€A. Next, we
verify that the start vector is in A. We will maintain a pointer to what we will call the "current vector®
in A; initially, the current vector will be the start vector. We repeatedly guess a rule v, and a vector

weA, and verify that the execution of Vs at the current vector produces w. w then becomes the current

i3

vector. If this process can be continued for more iterations than there are rules in A, there is an infinite

1'-fair path. Clearly, this nondeterministic algorithm can be implemented using only logarithmic space.

We will now show the problem to be NLOGSPACE-hard. We will use a reduction from the graph
accessibility problem, which is well known to be NLOGSPACE-complete [18]. Let G==(Q,E) be a directed
graph in which Q:{qi,..‘qn}, and ql,qn({Q are the start vertex and final vertex, respectively. We first
construct a graph G'=(Q'E'), where Q’z{pi’ qGQ and 1<j<n} and E'= {(pu,p,ﬁ_l) : {q,9.)€E or
4=0;=q,, 1<j<n-1} U {(pn]n,pn’n)}. Clearly, this construction can be done in deterministic logspace,

and there is an infinite path from p, in G’ iff there is a path from q, to q in G. We will now construct

a (2n2)><(3n2) conflict-free VRS V and a set AS:_N%2 such that there is an infinite path in V that is 1-fair
for {A} iff there is a path from q, to q, in G. For ease of expression, we will use variables to denote the
positions in the VRS; the addition rules will then consist of assignments to these variables. The variables
we will use are {Xi,j’yi,j : pi,jEQ'}. A 1'-fair path in V will represent a traversal of G'. The values of all
variables will be restricted to {0,1} in A. Intuitively, a value of 1 for X, . means we are entering vertex P;;

1,

and a value of 1 for ¥;; means we are leaving vertex p; ;- Thus, in the start vector, x, -——1 and all other

positions are 0. V will have the following rules:

Vlly where p, jEQ’ (prepare to leave p, j):
XX -1

>

y3 y+1

v?j., where p, JEQ’ (pick D, ; as next vertex):

X. .+ %, .+1
1)

® v?j, where p, jEQ’ (go to next vertex):

Vi Vit

All rules superscripted with i will be called iype 7 rules. The set A will contain all 0-1 vectors in N2n2
that contain exactly one 1, as well as all 0-1 vectors containing exactly two 1’s such that i =Xy =1 1ff
(p Py ,)EE This will guarantee that any 1'-fair path in V represents 2 traversal of G\ Clearly, Vs
confhc‘c-free and the construction can be done in deterministic logspace. We will now show that there is

an infinite path in V that is 1-fair for {A} iff there is an infinite path from p,, in G

(=2): Let ¢ be an infinite path in V that is 1'-fair for {A}. Then every vector reached by o is in
A. We associate with ¢ a sequence of vertices in Q' as follows: with each point reached by o in which one
x variable is 1 and all other variables are 0, associate the vertex P;; such that x.)}.zl. We will show by
induction that for every h>0, (1) there are at least h vertices in the sequence, and (2) the first h vertices
in the sequence form a path from P; 1 in G'. Clearly, this holds for h==1. Let h>1, and assume the claim

holds for h-1. Suppose the last of the h-1 points has x, }.::1. Now since OZA and all vectors in A with

14

3

3’:yi,j=1' Since

this vector must be in A, (pij’pi' j,)EE'. Now clearly, the only rule that will produce a vector in A is v3

more than one 1 have a v variable equal to 1, Vilj must be executed next in 0. Now since executing V.?

would produce OZA, some type 2 rule must be executed. This produces a vector with Xy

LI
This produces a vector in which Xy is the only position equal to 1. Since (pij.,pig j,)eE' and there is a

path of h-1 vertices from p, , to P; i the claim holds for h. Thus, it is clear that there is an infinite path
i !
from py,In G

(&): Let o be an infinite path from Py in Q'. Associate with o a sequence of vectors such that with
each vertex p; reached by o is associated the vector with Xi,jzl and all other variables equal to 0. We
will show by induction that for any h>>0 there is a path in V that remains within A and passes in order
through the first h points in the sequence associated with o. Clearly, this holds for h==1. Let h>1, and

assume the claim for h-1. Suppose the (h—l)st vertex reached by o is Py Let Py 5 be the next vertex

reached by o. Then V can clearly execute v.l., v% ., and v.3., producing vectors in A, the last of which has
L 1 1] ’

Xy j,zl and all other variables equal to 0. Thus, the claim holds for h. It is now clear that there is an

3

infinite path in V that is 1-fair for {A}. This completes the proof. |

4. The Model Checking Problem

We now consider a generalization of the problems considered in the previous section. Each of these
problems can be expressed as an instance of model checking. For example, fairness can be defined for a

kXm VRS V using the TL formula szgr_l___l(GFen(j)DGFﬁ(j)). Thus, V has an infinite fair path iff Vis

a model for f. Since all of the problems considered in the previous section were decidable, some very

efficiently, one might expect model checking in general for conflict-free VRSs to be decidable, with
perhaps some nontrivial subset that is efficiently decidable. However, the following theorem puts to rest

the first of these expectations, and strongly suggests that the second cannot be met, either.

Theorem 4.1: The model checking problem for conflict-free VRSs is undecidable, even when the TL

formula is of the form G, where { contains no TL operators.

Proof: We use a reduction from the halting problem for 2-counter machines (2CMs) on input €; since
this problem is undecidable [31], the result follows. Let M be a 20M with state set Qz-—-{ql,...,qs}, start

state q,, and transition relation § with r transition rules {tl,...,tr}. Each transition rule is of the form

tj:(<q3j’zl,5’z2,j>’ <qi’j’a1,j’a ,j>>’ where Zi,ée{uci:()"’ "C;?‘LOH} and ai,je{-l’g’l}' tj may be executed

only if M is in state g, and both oF and zy; aTe true of M’s counters, C, and C,. Upon execution of b, M
j 2 3

enters state g, and 2y and 2y

2

are added to C, and C,, respectively. We construct a (25+8) X (r-+2s-+4)

conflict-free VRS V as follows. We will represent the 2s+6 rows using the following variables: x;, ..., X,

» Cip 61,1’ 52’&, 52;1. FEach addition rule will then act on these variables. We

z, T

oo B Cp €

15

subsequently present addition rules and a TL formula that will cause the variables to simulate a
computation of M on ¢ as follows. Informally, %=1 will indicate that M is in state q, X,=1 will indicate
that M is entering state g, Ei,a::l will indicate that a must be added to counter C,, and ¢, will contain
the value of C.. Each move of M will be simulated by a series of addition rules. At the beginning of each
series, there will exist an i such that x=1 and x,=0 for all i'74i. This will indicate that M is in state g;.
Furthermore, all ¥ and € variables will be zero. The first addition rule in the series will correspond to

choosing some transition 2 such that ij=i. This rule will increment %, and €_ ifa J.7é0, for n=1,2.

A .
J n,}
Next, for each € that was incremented by the first addition rule in the series, a

H

. is added to ¢_, and
n,j n,j n

Tl is decremented. After this, X; is decremented, and finally, Xy is incremented and %, is decremented.
n,j
Note that at the end of the series, the variables have proper values to begin a new series if some

transition is enabled.

We now formally define the addition rules (again, all rules superscripted with i will be called type i
rules):
° vjl, 1<j<r (initiate transition tj):
%, — %,+1
lj 1.

4 — T, +Lifa j7—‘0, for i==1,2
3 el

1] i,
e v?, 1<j<s {leave state qj):
x, + x.-1
J J
e v?’, 1<j<s (enter state qj):
%, « %X.-1
J J
X, + X+1
i i
e v?, 1<j<2 (decrement counter C}.):
¢, + c-1
S T Gt
® v?, 1<j<2 (increment counter Cj):
c. « c¢.+1
S T Gt
We now construct a TL formula f that will guarantee that V faithfully simulates M. Let Py be
defined as ge(ci,l) if zi’j=“Ci%O“, or —ge(c,1) if Zi,j:"Gi:O"’ for i==1,2, 1<j<r. Now let
f=G(AABACADAEAFAG), where

- T
A= [,\3;1 —-.ge(x}.,l)} - [V§=1 ge(xij,l) APy APgy A fz{v}.)};

B= en(v‘;} D ﬁ(vi);

16

C = en(v}) D fi(+Y);

D= [en(V§) A -ven(v'i) A ﬂen(vi)] ») fj(v‘;);

B o= [en(v‘;’) A —sen(v'i) A —ﬁen(vi)] 5 ﬁ("’g)Q

F = Afymy [(en(v]) A men(¥) A men(vg) A ~en(vy) A =en(v) A el) D)]

G = (A, —eelxp))] D Vi, fi(v,%))-

Now let the start vector have x,=1 and all other variables 0. Clearly, V is conflict-free. Clause A in
{ guarantees that a valid transition in M is chosen and that type 1 addition rules are used as the first rule
in each series (i.e., when all X variables are 0). Clauses B, C, D, and E guarantee that the proper counters
are modified accordingly, first Cl’ then 02. Finally, Clauses F' and G guarantee that the state is changed

properly. It should therefore be reasonably clear that there is an infinite valid sequence ¢ such that

<V,6,0> k f iff M does not halt. O

The above proof is actually quite powerful. Since Gf=—F—f, the undecidability result immediately
follows for arbitrary TL formulas using only the F TL operator. This set of formulas corresponds to
L(F), defined in [40] with respect to finite state structures. In addition, the proof can be readily extended
to safety and liveness properties, as defined in [27, 46]. Informally, a safety property is of the form Gf,
where { is a formula in a logic that can refer only to events in the past. Clearly, Theorem 4.1 shows
model checking to be undecidable for safety properties. Also informally, a simple liveness property is
either of the form Ff, GF{, or FG{, where again { is a past formula. By constructing { to assert that M
is in a final state and that the past represents a valid computation of M, model checking for each of these

forms can be shown to be undecidable; the proof is left to the reader. For formal definitions of safety and

liveness properties, see [27, 46].

In view of Theorem 4.1, it might be interesting to consider model checking for formulas of the form
Ff, FGf, or GF{, where { contains no TL operators. The latter two forms are interesting because in (91,
fairness constraints were characterized by the canonical form V?=1A?L1(FGf;jVGngj)- Although we are
unable to give any results for formulas of the form GFf, we will now show that model checking is
undecidable for formulas of the form FGf; it will follow from a later theorem that for formulas of the

form Ff, model checking for conflict free VRSs is NP-complete.

Theorem 4.2: The model checking problem for conflict-free VRSs is undecidable for TL formulas of the

form FG{, where { contains no TL operators.

Proof: We again use a reduction from the halting problem for 2CMs on input €. Let M be an arbitrary

17

9OM. We first construct a 4-counter machine M’ that simulates successively longer and longer
computations of M on e. M’ will use two counters to record the contents of M’s counters. M’ uses the
other two counters -- say 01 and 02 - as a "clock® to stop the simulation of M after a certain number of
moves. Thus, if Cl contains the number of moves to be simulated, then after each simulated move of M,
M’ decrements Cl and increments Cz; when 01:0’ M transfers C2 to Cl’ adds 1, and restarts the
simulation. The construction of M from M is straightforward and is left to the reader. From M we then
construct a conflict-free VRS V and a TL formula Gf to simulate M, ala Theorem 4.1. Now suppose 6 is
a valid sequence such that <V,6,0> F Qf. All vectors reachable in executing § meet certain syntactical
requirements; for example, in the proof of Theorem 4.1, X, and X cannot both be 1 if iz#4j. These syntax
requirements can clearly be described in a formula g with no TL operators. Consider the TL formula
FG(fAg). Suppose f is an infinite valid sequence such that < V,6,0> k FG(fAg). Then for some n>0,
<V,6n> F G(iAg). This means that after the first n rules in @ have been executed, the resulting vector
is a syntactically valid description of a configuration of M, and the remainder of § faithfully simulates an
infinite computation of M’ from this configuration. Suppose that in this configuration, 01 contains the
value p. Then M’ simulates M {from some configuration) for p steps, then restarts the simulation of M on
¢. From this point on, M’ simulates M on € for successively longer and longer computations. Thus, it is

clear that FG(fAg) is 2 model for Viff M has an infinite computation. O

The major difficulty in model-checking seems to be that the simplest temporal logics are so
expressive that unleashing their power on even the most simple infinite state computing structures enables
one to construct temporal logic formulas that can only be satisfied by the structure emulating
computations of much more powerful automata. However, a subset of temporal logic was defined in

[40] with respect to finite state structures that we can adapt to conflict-free VRSs to produce a logic for
which model checking is NP-complete. Let E(F,X) be the subset of temporal logic that uses the Boolean
connectives A and V and the temporal operators F and X, with negations allowed only on the predicates.

We will refer to the predicates and their negations as literals. Before we can describe our model checking

algorithm for E(F,X), we must make the following definition. A formula in L(F,X) is said to be regular

if it is a literal or of the form aAf, Fi, or Xf, where « is a literal and { is regular.

~

Qur algorithm consists of two parts. Given a formula { in L(F,X), the first part will

nondeterministically generate a regular formula fr such that
1. for any fr generated by the algorithm, if @ is an infinite valid sequence in a VRS V such that
<V,0,0> FEf, then <V,8,0> E
9 if some VRS Vis a model for f, then Vis a model for some fr generated by the algorithm.
For this purpose we present Algorithm 1:

function reg(f)
case 1 [is a literal: return(f)

18

case 2 {=Fg: return{Freg(g))

case 3 [=Xg: return{Xreg(g))

case 4 f==gVh: return(reg(g) or reg(h})
case 5 f=gAh: return(reg2(reg(g),reg(h)))

end
function reg?{gr,hr)
case 1 g_is a literal: return(g Ah)
case 2 g =aAg , a aliteral: return(aAreg2(g' b))
case 3 gr=Fg’r and hrthlr:
return(Freg2(g/ ,Fh') or Freg2(h' Fg') or Freg2(g' ')
case 4 gr:Fg'r and h =Xh': return(Xreg2(g' b’) or Xreg2(h' Fg'))
case b gr=Xg'r and h =Fh': return(Xreg2(g' b’) or Xreg2(g' ,Fh'))
case 6 g =Xg' and hrz)(h'r: return(X(regQ(g’r,h'r))
end

Algorithm 1

We claim that the function reg in Algorithm 1 generates formulas satisfying conditions (1) and (2)
above. The purpose of reg2 is to generate from two regular formulas g, and hr formulas fr satisfying
conditions (1) and (2), where f==g Ah . It is easily seen that Algorithm 1 operates in NP. Hence, we will
now verify {irst reg2, then rég‘ In order to do this, we give the following lemma, which follows

immediately from the semantics of the logic.

Lemma 4.1: If { and g satisfy either condition (1) or condition {2} with respect to f and g, respectively,
then Ffr, Xfr, and fr/\gr satisfy the same condition with respect to Ff, Xf, and fAg, respectively.

Lemma 4.2: If f=gAh, where g, and h_are regular, then regQ(gr,hr) satisfies conditions (1) and (2)
with respect to {. i

Proof: We proceed by induction on the length of f. If f has length 1, the lemma vacuously holds.
Therefore, let f have length n>1 and assume the lemma for all formulas having length less than n. We

now consider the cases as enumerated in the algorithm.
Case 1: Trivial.

Case 2: From the induction hypothesis, reg?(g’r,hr) satisfies the conditions with respect to g’r/\hr.
From Lemma 4.1, aAreg2(g’ Ah) satisfies the conditions with respect to f.

Case 3: It follows from the semantics of the logic that Fg’r/\Fh’r =

F(g’rAFh?r)\/F{h’rAFg’r)\/F(g’rAh'r}. Therefore, if # is an infinite valid sequence in a VRS V such that

19

<7,6,0> F {', where f' € {F(g’r/\Fh’r), F(h’r/\Fg’r), F(g’r/\h'r)}, then < V,§,0> k f. From the induction
hypothesis and Lemma 4.1, if f € {F(regQ(g'r,Fh’r)), F(reg?(h'r,Fg’r)}, FregQ(g'r,h’r)}, then f_ satisfies
condition (1). Furthermore, if V is a model for f, the V must clearly be a model for some f e
{F(g’r/\Fh’r), F(h'r/\Fg';), F(g'r/\h'r)}. Thus, from the induction hypothesis and Lemma 4.1, condition {2)
must hold for some { € {F(regQ(g’r,Fh’r)), F(reg?(h’r,Fg'r)), FregQ(g'r,h'r)}.

Case 4: It follows from the semantics of the logic that Fg' AXh = X(g’r/\h’r)VX(h’r/\Fg'r)‘ The

conclusion therefore follows by a similar argument to that in Case 3.

Case 5: Symmetric to Case 4.

Case 6: It follows from the semantics of the logic that Xg'r/\Xh’r = X(g'Ag'). The conclusion

therefore follows as above. O

Lemma 4.3: If f is a formula in L(F,X), then reg(f) satisfies conditions (1) and {2) with respect to {.

Proof: Similar to the proof of Lemma 4.2. 0

The second part of our algorithm is to nondeterministically generate a system of linear Diophantine
inequalities from a given regular formula { . Let f be a regular formula with t TL operators, (VO,U,V) be
a conflict-free VRS, and n be an arbitrary natural number. The system will contain variables which we
will group as vectors: k-dimensional vectors w,, n<i<n+t, and m-dimensional vectors x,, n<i<n-+t-1,
and X, n<i<n+t. The vectors w_,...,w ., represent certain vectors in a path in (VO,U,V). X, will
represent a bit map indicating which addition rule is executed at w, if one is executed. X, will represent
the Parikh map of the path beginning after the first rule is executed at w, and ending at W, . We now
present Algorithm 2 to generate this system.

function gen({,U,V,n)
case 1 f=ge(i,a):

return({w (28,5 ™%, ()< 1w, > UR)
case 2 f=n—ge(ia):
. m - (- -

return({w, (i) <2, % ()< 1w, 2UR,))
case 3 f=-en(j):

return({w, 2,5 78 (1)< 1w, 2Us,)
case 4 f==—en(j):

guess i, 1<i<k;

return({w. () <UD, T T % ()< 1w, 2 Us,})
case B [=fi(j):

return({x (§)=1,5 &% ()=1,7,2U%,})

20

case B8 f=-fi(j):

return({5, (=0, % (1) 1w, 2Usx,})
case 7 {=aAg: return(gen{c,U,V,n)Ugen{g,U,V n))
case 8 f=Xg:

return({}_ jx?—:lgn(j =1 ,Xﬂzi)m,'wn >Us w,

U gen(g,U,V,n+1)})
case § f=Fg:

[—) S
+1—Wn—1—VXn}

guess w, OkSWS lk;

guess SC[1..m];

if there is a path from w containing exactly those rules v
such that j€S

then
return({}_ ;i___lin(j)=1,w_2Ug w +V% >ww =w +Vg +Vx }
U {x (3)=0:j#8} U {x (1)=1 : j€S} U gen(g,U,V,n+1))

else fail
end

Algorithm 2

It can easily be seen that the number of recursive calls of gen is no more than the length of f.
Furthermore, by Lemma 3.2, the condition in the if statement can be evaluated in time polynomial in the
size of V. Therefore, Algorithm 2 operates in NP. We now give the following lemma, which characterizes

the system of inequalities produced by gen.

Lemma 4.4: For any regular formula f and any conflict-free VRS V=(v ,U)V), {w =v } U gen{f,U,V n)
has a nonnegative integer solution for some computation of gen iff there is a valid sequence 6 such that

<V,8,0> E {. Furthermore, we can require that)‘cn(j)::l iff v is the first rule in 6.

Proof: By induction on the length of f. If f is a literal, the lemma follows by inspection of cases 1-6;
therefore, the induction is well-based. We now let { be any regular formula that is not a literal, and

assume the lemma for all regular formulas shorter than f. We must therefore consider cases 7-9.

Case 7: Suppose {w_=v } U gen{f,U,V n) has a nonnegative integer solution for some computation
of gen. Call this solution X, and the set of inequalities 5. Clearly, X also holds for Sg = {anvo} U
gen(g,U,V,n) and S = {wn-—:vg} U gen{o,U,V,n), since these are both subsets of S. Therefore, there are
valid sequences ﬂa and 9g such that <V,9a,0> Foand < V,Gg,0> F g. Now « is an assertion only on vy
and first rule in Ha. Therefore, for any valid sequence ¢ that starts with the same rule as the first rule in
g, <V0,0> F . Now by inspection of cases 1-6, gen(a,U,V,n) must contain either z;n 1>’<n(j)=1 or
E?__lxn(j}ﬁi‘ i Zilin(j)=0 in X, then from the induction hypothesis, both § and 9g must be the
empty sequence; so <Y/,9g,0> B aag=={. If, on the other hand, Z;n:lin(j}zl in X, from the induction

hypothesis, both Qa and Hg start with the same rule; so < V,ﬁg,0> & . Now suppose conversely that there
is a valid sequence § such that <V,6,0> F f. Then <V,6,0> F a and <V,6,0> F g. From the induction
hypothesis, there must be a solution X for the system {w,=vo} U gen(a,U,V,n) and a solution Xg for the
system {wﬁzvo} U gen{g,U,V,n) such that x_(j)=1 (in both solutions) iff v is the first rule in §. Now by
inspection of cases 1-6, gen{a, U,V n) only contains the variables w and % whose values must clearly be

the same in X and Xg. Therefore, Xg is a solution for {w_=v } U gen(f,U,V n), for some computation of

gen.

Case 8: Suppose X is a solution to {Wn"—:VG} U gen(f,U,V,n), for some computation of gen. Clearly,
X is also a solution to {Wn+1-—=wn+V>'<n} U gen(g,U,V,n+1). In order to satisfy the inequalities introduced
in case 8, X in X must have exactly one element with a value of 1, and the rest with values of 0. Let j be
such that)”(n{j)—-zl. Then in X, w =V, +v,. Letting V———(vg—i—vj,U,V), by the induction hypothesis, there
is a sequence ¢ such that < V.6'.0> E g. In order to satisfy the inequalities introduced in case 8, VOZuj..
Therefore, by inserting v, at the beginning of #', we have a valid sequence ¢ in V such that <V,0,0> kI
Now suppose conversely that 6 is a valid sequence in V such that <1,0,0> F {. Since # must clearly have
at least one addition rule, let v be the first rule in §. Again letting Vz(vo—{—vj,U,V), and letting # be the
sequence obtained by removing the first rule from ¢, we have <V, 60> F g. From the induction
hypothesis, there is a solution X! to the system {wn+1=v0+vj} U gen(g,U,V,n+1}. It is easily shown by
induction that this system contains no occurrences of w , x , or X . Therefore, by letting S'cn(j)———:l, it is

easily seen that {Wn=v0} U gen(f,U,V n) has a solution.

Case 9: Suppose X is a solution to {wnzve} U gen(f,U,V,n). Clearly, X is also a solution to
{wn+1=wn+V}'(n+Vxn} U gen(g,U,V,n+1). In order to satisfy the inequalities introduced in case 9, X_in
¥ must have exactly one element with a value of 1, and the rest with values of 0. Let j be such that
%(j)=1. Since gen terminated successfully, there must be a sequence §” enabled at some w, Okﬁwﬁlk,
using exactly those rules Vs such that xn(j)21 in X. In order to satisfy the inequalities introduced in case
g, v0+vj2w, so #" must be enabled at VotV Now since w >0, from Lemma 3.2 in [17], there exists a
path from VotV; to V0+vj+Vxn. Furthermore, in order to satisfy the inequalities introduced in case 9, v,
must be enabled at v, so there is a path from v, to v0+vj+Vxn. Now by letting V—-——-(v0+v3+Vxn,U,V),
we have from the induction hypothesis that there is a sequence ¢ such that <V, #,0> k g. Therefore,
there is clearly a sequence 8 beginning with Vs such that < V,6,0> & f. Now suppose conversely that 6 is a
valid sequence such that <V,6,0> k. Now there must exist an s>0 such that <V,8,s> F g. Let ¢, be
the first s rules in 8, and let 92 be the remainder of §. Let v be the vector produced by executing 91 at v,
Now by letting V=(y,U)V), we have from the induction hypothesis that the system {WH+1=y} U
gen(g,U,V,n-+1) has a solution, say X' Let }‘;n(j)———l if v is the first rule used in §, O otherwise, and let
W= xﬁx@(él)-}'{n. Since w , x , and X_ clearly do not appear in {’wvn+1zy} U gen(g,U,V,n+1), we

only need to show that there is a w, 0™ <w<1™, such that there is a path from w containing exactly

22

those rules \ such that Xn(j)_>_1 and w<v +V% . Let S=={j : Xn(j)_?_ 1}. From Lemma 3.1, there is a
sequence enabled at V0+V}”cn using exactly one occurrence of each v, such that j€S. Therefore, by letting
w(j)=0 if VO+Vin=0, then w(j)==1; otherwise, w clearly satisfies the necessary conditions. Therefore,
{w =v,} U gen(f,U,V,n) has a solution. O

We are now ready to show the model checking problem for conflict-free VRSs over E(F,X) to be
NP-complete.
Theorem 4.3: The model checking problem for conflict-free VRSs when restricted to IN,(F,X) is NP-
complete.
Proof: We first show the problem to be in NP. Let f be an arbitrary formula in E(F,X), and let
V=(v,,U,V) be an arbitrary conflict-free VRS. From Lemma 4.3, V is a model for f iff reg(f) can produce
a formula f' such that Vis a model for f. From Lemma 3.2, if there exists an infinite path in V, then any
finite path can be extended to an infinite path; furthermore, this property can be checked in polynomial
time. We therefore verify that there is an infinite path in V. We now define 2 function ¢ mapping
regular formulas to regular formulas by replacing the rightmost literal ¢ with eAXtrue. It is easy to
show by induction on the size of f that for any V containing an infinite path, V is a model for ! iff there
is a valid sequence 8 in V such that <V,6,0> F &(f). From Lemma 4.4, there is a valid sequence ¢ in V
such that <V,6,0> F o) iff {wnzva} U gen{®(f"),U,V,0) has a nonnegative integer solution for some
computation of gen. Since reg and gen operate in NP, and since integer linear programming is in NP [4],

model checking is in NP.

We now show the problem to be NP-hard. We use a reduction from the reachability problem for
conflict-free VRSs. Let V=(VG,U,V) be an arbitrary kXm conflict-free VRS, and let w be an arbitrary
vector in N Let V be V with a column of zeros appended to U and V, and let
f:F/\?zl(ge(j,w(j))/\'ﬂge(j,W(j)—}—l)). Clearly, weR(V) iff V' is a model for f. Since reachability is NP-
hard [17], model checking is NP-hard, and thus NP-complete. 0

Corollary 4.1: The model checking problem for conflict-free VRSs is NP-complete when restricted to

formulas of the form Ff, where f contains no TL operators.

Acknowledgment: We would like to thank Prof. Vidal-Naquet for pointing out the definition of
fairness given in [2, 37). We would also like to thank the Petrl net workshop referees for numerocus
comments which helped improve the presentation of these results. We are especially grateful to the

referee that pointed out the bug in our original consideration of the 2-fair nontermination problem.

23

References

Apt, K. and Kozen, D., Limits for Automatic Verification of Finite-State Concurrent Systems,
In formation Processing Letiers 22 (1986), 307-310.

Best, E., Fairness and Conspiracies, In formation Processing Letters 18 (1984), 215-220.

Brams, G., Reseauz de Petri: Theorie et Pratique -- Tome 1: Theorie et Analyse, (Masson, Paris,
1983).

Borosh, I. and Treybig, L., Bounds on Positive Integral Solutions of Linear Diophantine Equations,
Proc. AMS 55, 2 (March 1976), pp. 299-304.

Carstensen, H., Decidability Questions for Fairness in Petri Nets, Proceedings of the 4th
Symposium on Theoretical Aspects of Computer Science, LNCS 247 {(1987), 396-407.

Carstensen, H. and Valk, R., Infinite Behaviour and Fairness in Petri Nets, in: Rozenberg, G.,
Ed., Advances in Petri Nets 1984; LNCS 188, (Springer, Berlin, 1985), pp. 83-100.

Clarke, E., Grumberg, O., and Browne, M., Reasoning about Networks with Many Identical Finite-

State Processes, Proceedings of the 5th Symposium on Principles of Distributed Computing
(1986), 240-248.

Crespi-Reghizzi, S. and Mandrioli, D., A Decidability Theorem for a Class of Vector Addition
Systems, Information Processing Letters 8, 3 (1975), pp. 78-80.

Emerson, E. and Lei, C., Modalities for Model Checking: Branching Time Logic Strikes Back, to
appear in Science of Computer Programming. (Some of these results were presented at the 18th
Annual Hawaii International Con ference on System Sciences and at the 12th Annual ACM
Symposium on Principles of Programming Languages.).

Ginzburg, A. and Yoeli, M., Vector Addition Systems and Regular Languages, J. of Computer
and System Sciences 20 (1980), pp. 277-284.

Grabowski, J., The Decidability of Persistence for Vector Addition Systems, Injformation
Processing Letters 11, 1 (1980), pp. 20-23.

Hart, S., Sharir, M., and Pnueli, A, Termination of Probabilistic Concurrent Programs, ACM
Transactions on Programming Languages and Systems 5 (1983), 356-380.

Hoperoft, J. and Pansiot, J., On the Reachability Problem for 5-Dimensional Vector Addition
Systems, Theoret. Comp. Sci. 8 (1979}, pp. 1835-159.

Howell, R., Rosier, L., Huynh, D., and Yen, H., Some Complexity Bounds for Problems Concerning
Finite and 2-Dimensional Vector Addition Systems with States, Theoret. Comp. Sci. 46 (1988),
107-140.

Howell, R., and Rosier, L., Completeness Results for Reachability, Containment, and Equivalence
with Respect to Conflict-Free Vector Replacement Systems, to be presented at the 14th
International Colloguium on Automata, Languages, and Programming, July, 1987, Karlsruhe,
F.R.C. Also Rep. 86-21, The University of Texas at Austin, Austin, Texas, 78712, 1986.

(26]

(27]

(28]

24

Howell, R., Rosier, L., and Yen, H., An O(nl's) Algorithm to Decide Boundedness for Conflict-Free
Vector Replacement Systems, Information Processing Letiers 25 (1987), 27-33.

Howell, R., and Rosier, L., Completeness Results for Con flict-Free Vector Replacement Systems,
Rep. 86-21, {The University of Texas at Austin, Austin, Texas, 78712, 1986).

Jones, N., Space-Bounded Reducibility Among Combinatorial Problems, J. of Compuier and
System Sciences 11 (1975), 68-75.

Jones, N., Landweber, L. and Lien, Y., Complexity of Some Problems in Petri Nets, Theoret.
Comp. Sci. 4 (1977), pp. 277-299.

Karp, R. and Miller, R., Parallel Program Schemata, J. of Computer and System Sciences 8, 2
(1969), pp. 147-195.

Keller, R.M., Vector Replacement Systems: A Formalism for Modelling Asynchronous Systems,
TR 117, (Princeton University, CSL, 1972).

Kosaraju, R., Decidability of Reachability in Vector Addition Systems, Froceedings of the 14th
Annual ACM Symposium on Theory of Computing {1982}, pp. 267-280.

Landweber, L., Decision Problems for w-Automata, Math. Syst. Theory 3 (1969), 376-384.

Landweber, L. and Robertson, E., Properties of Conflict-Free and Persistent Petri Nets, JACM
25, 3 (1978), pp. 352-364.

Lehman, D., Panueli, A., and Stavi, J., Impartiality, Justice, and Fairness: The Ethics of
Concurrent Termination, Proceedings of the 8th International Colloquium on Automaia,
Languages, and Programming, LNCS 115 (1981), 264-277.

Lichtenstein, O., and Pnueli, A., Checking that Finite State Concurrent Programs Satisfy their
Linear Specification, Proceedings of the 12th Annual ACM Symposium on Principles of
Programming Languages (1985), 97-107.

Lichtenstein, O., Pnueli, A., and Zuck, L., The Glory of the Past, Froceedings of the Workshop on
Logics of Programs (1985}, 196-218.

Manna, Z., and Pnueli, A., The Modal Logic of Programs, Proceedings of the 6th International
Collogquium on Automata, Languages, and Programming, LNCS 71 (1979), 385-410.

Mayr, E., An Algorithm for the General Petri Net Reachability Problem, SIAM J. Comput. 18, 3
(1984), pp. 441-460. A preliminary version of this paper was presented at the 18th Annual
Symposium on Theory of Computing, 1981.

Mayr, E., Persistence of Vector Replacement Systems is Decidable, Acta Informatica 15 (1981},
pp. 309-318.

Minsky, M., Recursive Unsolvability of Post’s Problem of ‘Tag’ and Other Topics in the Theory of
Turing Machines, Annals of Mathematics 74 (1961), 437-455.

Miller, H., Decidability of Reachability in Persistent Vector Replacement Systems, Proceedings of
the 9th Symposium on Mathematical Foundations of Compuier Science , LNCS 88 (1980), pp.

25

426-438.

Owicki, S., and Lamport, L., Proving Liveness Properties of Concurrent Programs, ACM Trans.
on Programming Languages and Syst. 4 (1982), 455-495.

Peterson, J., Petri Net Theory and the Modeling of Systems, (Prentice Hall, Englewood Cliffs,
NJ, 1981).

Pnueli, A., and Koren, T., There Exist Decidable Context-Free Propositional Dynamic Logics,
CMU Workshop on Logics of Programs, LNCS 164, (1983).

Pnueli, A., The Temporal Logic of Programs, Proceedings of the 19th Annual Symposium on
Foundations of Computer Science (1977).

Queille, J., and Sifakis, J., Fairness and Related Properties in Transition Systems--A Temporal
Logic to Deal with Falrness, Acta Informaiica 19 (1983), 195-220.

Rosier, L. and Yen, H., Logspace Hierarchies, Polynomial Time and the Complexity of Fairness
Problems Concerning w-Machines, Proceedings of the 8rd Annual Symposium on Theoretical
Aspects of Computer Science, LNCS 210 (1986), pp. 306-320. To appear in SIAM J. Comput.

Rosier, L. and Yen, H., On the Complexity of Deciding Fair Termination of Probabilistic
Concurrent Finite-State Programs, Proceedings of the 18th International Colloguium on
Automata, Languages and Programming, LNCS 226 (1986), 334-343.

Sistla, A., and Clarke, E., The Complexity of Propositional Linear Temporal Logic, JACM 82
(1985), 733-749.

Suzuki, 1., Fundamental Properties and Applications of Temporal Petri Nets, Proceedings of the

19th Annual Con ference on In formation Sciences and Systems, The Johns Hopkins University
(1985), 641-646.

Valk, R. and Vidal-Naquet, G., Petri Nets and Regular Languages, J. of Computer and Systiem
Sciences 23 (1981), pp. 299-325.

Valk, R., and Jantzen, M., The Residue of Vector Sets with Applications to Decidability Problems
in Petri Nets, Acta Informatica 21 (1985}, 643-674.

Vardi, M., Automatic Verification of Probablistic Concurrent Finite-State Programs, Proceedings
of the 26th Annual Symposium on Foundations of Computer Science {1985), 327-338.

Yamasaki, H., On Weak Persistency of Petri Nets, Information Processing Letters 13, 3 {1981),
pp. 94-97.

Zuck, L., Past Temporal Logic, Ph.D. Thesis, The Weizmann Institute of Science, Rehovot, Isreal,
August, 1986.

