CONCURRENT ACCESS OF PRIORITy QUEUES

V. Nageshwar Rao and Vipin Kumar

Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712-1188

TR-88-06 February 1988

Concurrent Access of Priority Queues

V. Nageshvara Rao and Vipin Kumar*

Department of Computer Sciences,
University of Texas at Austin,
Austin, Texas 78712

Abstract

The heap is an important data structure used as a priority queue in a wide variety of parallel algorithms (e.g., multiprocessor scheduling, branch-and-bound). In these algorithms, contention for the shared heap limits the obtainable speedup. This paper presents an approach to allow concurrent insertions and deletions on the heap in a shared-memory multiprocessor. Our scheme has much smaller overheads and gives a much better performance than a previously reported scheme. The scheme also retains the strict priority ordering of the serial-access heap algorithms; i.e., a delete operation returns the best key of all keys that have been inserted or are being inserted at the time delete is started. Our experimental results on the BBN Butterfly parallel processor demonstrate that the use of the concurrent-heap algorithms in parallel branch-and-bound improves its performance substantially.

Index Terms: concurrent data structures, priority queues, insertions, deletions, branch-and-bound, speedup.

1 Introduction

The heap is an important data structure used as a priority queue in a wide variety of parallel algorithms (e.g., multiprocessor scheduling, graph search[17], branch-and-bound[13,12,8,18])

*This work was supported by Army Research Office grant # DAAG29-84-K-0060 to the Artificial Intelligence Laboratory, and Office of Naval Research Grant N00014-88-K-0763 to the computer science department at the University of Texas at Austin.
on shared-memory multiprocessors. In these algorithms each processor repeatedly performs an access-think cycle. Every processor executes its current subproblem at hand (thinking), then accesses the shared heap to insert subproblems if it generated any and removes the best available subproblem in the heap to solve next. Since many processors share the heap, the simplest way to provide consistency in updates is to serialize the updates. A lock is associated with the heap and the processors access the heap under mutual exclusion. This serial-access scheme limits the number of processors that can be used to speed up the problem. If T_{think} is the mean think time and T_{access} is the mean access time, then clearly the maximum speedup achievable is $\leq (T_{\text{access}} + T_{\text{think}})/T_{\text{access}}$ (see [8]). T_{think} is a characteristic of the problem being solved. T_{access} depends on the priority structure being used. For the heap, T_{access} is $O(\log M)$, where M is the size of the heap.

One way to alleviate the limitation is to let many processors access the heap simultaneously. Updates on different parts of a heap can proceed concurrently provided they do not interact with each other. Let us view the heap as a binary tree with the root at the top and leaves at the bottom. In the ordinary serial heap algorithms, deletes manipulate the heap level by level going from top to bottom, while inserts manipulate it from bottom to top. Hence many deletions (or many insertions) can be executed in parallel by using a simple window locking scheme[3] or software pipelining[15,16]. But inserts and deletes cannot be active together, as they proceed in opposite directions and hence can deadlock. Biswas and Browne[3] present a scheme to handle this problem. But their scheme incurs substantial overhead, and performs worse than the serial-access heap unless the heap size M is very large.

This paper presents a new concurrent-heap access scheme that has small overhead, and is able to perform better than the serial-access heap even for small heaps. Two important ingredients of this scheme are (i) a heap insertion algorithm which manipulates the heap from top to bottom; and (ii) a scheme to combine a delete operation with the most recent unfinished insertion operation. Since these new insertions and the deletions move from top to bottom in the heap, they can both be active together without causing deadlocks.

Section 2 reviews conventional insert and delete operations on the heap, and presents a new insert operation that traverses the heap from top to bottom. Section 3 presents concurrent-heap algorithms developed using this insert operation, and provides a proof of its correctness. Section 4 analyzes the expected performance improvement due to the concurrent-heap scheme. Section 5 presents experimental results on the BBN Butterfly.
parallel processor evaluating the improvement in performance due to the concurrent-heap algorithms. Section 6 discusses ways to improve the basic scheme to further reduce the overheads. A comparison with related work is presented in Section 7. Section 8 contains concluding remarks.

2 Serial Access Heap algorithms

2.1 Preliminaries

A heap is a complete binary tree of depth d[1,7], with the property that the value of the key at any node is less than the value of the keys at its children (if they exist).1 Before presenting the concurrent update scheme, we briefly describe the sequential implementation of the heap to establish the terminology. Throughout the paper we present algorithms in a machine-independent, high-level pseudo-code.

It is efficient to implement the heap using an array. The root occupies location 1 and the node i occupies location i. The children of node i occupy locations 2i and 2i+1. The parent of node i is at \(\left\lfloor \frac{i}{2} \right\rfloor \). We assume that each node in the heap has a key pointing to a field of data. Key(i) denotes the key located at node i. VALUE(i) denotes the value or the priority order of the key at node i. Empty nodes in the heap are assumed to have a special key called MAXINT whose value is \(\infty \).

We denote the left son and the right son of node i by LSON(i) and RSON(i) respectively. The parent of node i is denoted by PARENT(i). Associated with the heap are the data fields lastelem and fulllevel2. lastelem is the index of the last non-empty node of the heap. fulllevel is the index of the first node in the deepest level of the heap that contains at least one non-empty node. For an empty heap, lastelem = fulllevel = 0. Fig. 1 shows a sample heap of twelve keys, and the value of lastelem and fulllevel.

The values of keys at all nodes in a correct heap satisfy the heap property. The heap property, given below, simply states that the value of node i is less than or equal to the value of any of its descendents in the heap.

\[HP(i) \equiv \left(\forall j : j \text{ is a descendant of } i :: \text{VALUE}(i) \leq \text{VALUE}(j) \right) \]

1The discussion in this paper is applicable even if the heap is represented as a k-ary tree.
2The conventional delete and insert daha operations described below do not need to maintain fulllevel, but it is needed for the insert daha operation which traverses the heap from top to bottom.
Figure 1: A heap of 12 keys. Upper half of the circle contains the node number, and the lower half contains the value of the key.
2.2 Insertion and Deletion operations on a Serial Heap

The operations supported on a heap are insertion and deletion. The insert operation inserts a new key, nkey, in the heap and the delete operation returns the smallest key in the heap.

The insert operation grows the heap by adding a key to the first empty node in the heap. Let us call this location target. When target has this new key, then the heap property may be violated at the nodes on the path from target to the root. The following insertion algorithm performs reheapification on this path by pushing the new key upwards. This type of insertion is called insert_b because it proceeds from the bottom of the heap towards the top.

```plaintext
insert_b(nkey, heap)
Lock(heap);
lastelem ← lastelem + 1;
if (lastelem ≥ fulllevel*2) then fulllevel ← lastelem endif
i ← lastelem;
key[i] ← nkey;

/* Reheapification Loop */
while ((i ≠ 1) ∨ (VALUE(i) < VALUE(PARENT(i)))) do
    Exchange(key(i), key(PARENT(i)));
i ← PARENT(i);
endwhile
Unlock(heap);
end_insert_b
```

The delete operation shrinks the heap by removing the key at the root of the heap and by placing the key of the last non-empty node of the heap at the root. The heap property may now be violated at the root of the heap. Reheapification is performed by pushing this key downward until the heap property is satisfied at the node where this key is held. Note that, after placing the key of the last node at the root, the heap structure is changed only internally. It does not shrink or grow.

delete(heap)
Lock(heap);
if (lastelem = 0) then {Unlock(heap); Return(NULL)} endif
least ← key(1);
i ← 1;
j ← lastelem;
lastelem ← lastelem - 1;
if (lastelem < fulllevel) then fulllevel ← fulllevel/2 endif
if (j = 1) then {key(1) ← MAXINT; Unlock(heap); Return(least)} endif
key(1) ← key(j);
key(j) ← MAXINT;

/* Reheapification Loop */
/* Let MIN(i) be the index of the son of i which has smaller VALUE*/
while (VALUE(i) > VALUE(MIN(i))) do
 Exchange(key(i),key(MIN(i))) ;
 i ← MIN(i) ;
endwhile
Unlock(heap) ;
Return(least) ;
end_delete

2.3 Inserting from Top

It is possible to perform insertions from the top by using the following (informally stated) algorithm:

\[k \leftarrow 1 ; \]
\[\textbf{if } \text{VALUE}(k) > \text{VALUE}(nkey) \textbf{ then } \text{Exchange}(\text{key}(k),nkey)) ; \]
\[\textbf{while } (k \text{ has both successors}) \]
\[\quad \text{k} \leftarrow \text{any successor of k} ; \]
\[\quad \textbf{if } \text{VALUE}(k) > \text{VALUE}(nkey) \textbf{ then } \text{Exchange}(\text{key}(k),nkey)) \textbf{ endif} \]
endwhile

Put nkey at one of the empty leaves of k.

This naive insertion algorithm is not guaranteed to grow the heap level-by-level, which is crucial for the efficiency of insertions and deletions.\(^3\) Our new insertion algorithm, which we call insert_t, performs reheapification in such a way that each insertion adds a key to the first empty node in the heap (just as in the conventional insert_b operation).

Let \textbf{target} be the first empty node in the heap. The \textbf{insertion path} is the path between the root and \textbf{target}. This path is unique because the heap has a tree structure. This path can be easily traversed starting from \textbf{target} (integer division by 2 gives the parent of any node in the binary tree). This path can also be traversed starting at the root as follows. Let \(I \) be the displacement of \textbf{target} at the last level \((\text{i.e., } I = \text{lastelem} - \text{fulllevel}) \), and \(p \) be the length of the insertion path. If we view \(I \) as a \(p \) bit binary number, then the bits of the binary representation of \(I \) (from the most significant to the least significant) tell us whether to go right (if 1) or left (if 0) when we go from the root downward. For

\(^3\)If the heap becomes unbalanced, then inserts and deletes can take up to \(O(M) \) operations rather than \(O(\log M) \) operations.
Figure 2: An example of how the insertion path is computed in insertₜ. A new key is inserted into the heap at node 13. \(I = 5 = (101) \) in the binary representation; length of the insertion path = 3.

example, the first node at the last level (given by fulllevel) has displacement 0 and its path is left, left, left \ldots. Fig. 2 shows the twelve node heap of Fig. 1 to which a thirteenth node is being added. It also shows the values of fulllevel, lastelem, and I. In binary representation, \(I = (101) \), which means that we can go from the root to target by following right, left and right branches at successive nodes.

Values of the nodes on the insertion path (from root to target) are nondecreasing. To insert a new key in the heap, we need to put the new key at a proper node on the insertion path, and move all the keys at and below this node one level down (filling the target node). The insertₜ algorithm does this by visiting the nodes on the insertion path from bottom
The **insert**_t algorithm given below does it in the opposite order.

```plaintext
insert\_t(nkey,heap)
Lock(heap)
lastelem ← lastelem + 1;
target ← lastelem;
if (lastelem ≥ fullevel*2) then fullevel = lastelem endif
i ← target - fullevel; /* i is the displacement of target */
j ← fullevel/2; /* j = 2\text{length of insertion path - 1} */
k ← 1; /* k is the current position in the insertion path */
/* Reheapification Loop */
while (j ≠ 0)
    if(VALUE(k) > VALUE(nkey)) then Exchange(nkey,key(k)) endif
    if (i ≥ j)
        then {k ← RSON(k); i ← i - j;} /* Go Right */
    else {k ← LSON(k); /* Go Left */
    endif
    j ← j/2;
endwhile
key(k) ← nkey;
Unlock(heap);
end_insert\_t
```

In the above procedure, the insertion path is being computed on the fly. In the nth iteration of the re-heapification loop of insert_t, nth bit (from the left) of the binary representation of I is tested. If it is 1, then the right son is traversed next; otherwise the left son is traversed next. At the beginning of the nth iteration of insert_t, the value of i is the same as the value of I if its n − 1 left most bits are set to zero.

2.4 Proof of correctness of insertion from the top

The following invariant is maintained by the insert_t algorithm (it is true after the initialization step, and is maintained throughout the execution of the reheapification loop).

Invariant I_1: In insert_t, Value(nkey) is no smaller than the value of any of the nodes that are above (the node pointed to by the variable k).

The proof of correctness of insert_t follows from the following theorem.

Theorem 2.1 If a key is inserted in a heap using the insert_t procedure, then the resulting binary tree is still a heap.

Proof: To place a key at location t, level n, the procedure insert_t performs n-1 iterations of the heapification loop, and then places some key at location t. Due to Invariant I_1, swapping nkey with the key at node k does not violate the heap property of
k's ancestors. Furthermore, swapping is done only if Value(k) > Value(nkey), which means that it does not affect the heap property of k and k's descendents. Therefore, throughout the execution of the heapification loop, the heap property is satisfied by all the nodes in the heap.

At the end, k=t, and nkey is no smaller than any of the ancestors of the node k. Hence placing nkey at location k does not violate the heap property of any node in the heap, and the resulting tree structure is a heap.

3 Concurrent-access heap algorithms

A simple locking strategy is embedded into delete and insert_t routines to achieve concurrency in access maintaining consistency in updates and avoiding deadlocks. Instead of locking the whole heap (as done in the serial-access scheme), we lock only a small portion of the heap at a time. This portion is called a window. It consists of 3 nodes for the delete algorithm and 1 node for the insert operation. In order to allow window locking, we associate a lock with every node. Each processor accesses the contents of a node only after locking it to ensure mutual exclusion. The two other data fields of the heap, full level and lastelement, are modified only in the initialization phase of the insert_t and delete routines. Hence we conveniently associate the lock of node 1, the root, with these fields also; i.e., a processor can access these locations only when the root has been locked.

Although insert_t and delete both manipulate the heap from top to bottom, there is one problem in letting them work together. Recall that the delete operation deletes the key at the root and replaces it with the most recently inserted leaf key (and starts reheapification). If the most recent insert_t operation is still in progress, then this last leaf node does not have a key. If delete picks up the key of any other leaf node, then the resulting heap may become unbalanced. If the delete operation waits for the last insertion to finish, then we lose concurrency.

To solve this problem, we associate a field called status with every node in the heap. The status of a node can have four values, each associated with the semantics given in Table 1. When an insertion starts, the status of its target is set to PENDING. If a deleter starts working when an insertion is still in progress, it changes the status of the target of the last inserter to WANTED, and waits. At the beginning of each iteration of the reheapification loop, the inserter checks to see if the status of target has become WANTED. If this is
<table>
<thead>
<tr>
<th>Status code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRESENT</td>
<td>A key exists at the node.</td>
</tr>
<tr>
<td>PENDING</td>
<td>An insertion is in progress which will ultimately insert a key at the node</td>
</tr>
<tr>
<td>WANTED</td>
<td>A deleter is waiting for the key.</td>
</tr>
<tr>
<td>ABSENT</td>
<td>No key is present at the node.</td>
</tr>
</tbody>
</table>

Table 1: Meaning of various status codes.

the case, then nkey is placed at the root and the inserter quits. Once the key is placed at the root, deleter starts working. The concurrent deletion and insertion algorithms are presented below.

Concurrent Delete(heap)
Lock(1);
/* Lock the root of the heap */
if (lastelem = 0) then {Unlock(1); Return(NULL)} endif
least ← key(1);
i ← 1;
j ← lastelem;
lastelem ← lastelem - 1;
if (lastelem < fulllevel) then fulllevel ← fulllevel/2 endif
if (j=1) then{ key(1) ← MAXINT; status(1) ← ABSENT; Unlock(1); Return(least)} endif

Lock(j);
if (status(j) = PRESENT)
 then {key(1) ← key(j); status(j) ← ABSENT; key(j) ← MAXINT;}
 else {status(1) ← ABSENT; status(j) ← WANTED;}
endif
Unlock(j);
while (status(i) = ABSENT) do {Wait()} endwhile /* i = 1 at this point */

Lock(LSON(i)); Lock(RSON(i));
/* Reheapification Loop */
/* Let MIN(i) give index of the son of i which has lower VALUE*/
/* Let MAX(i) give index of the son of i which has higher VALUE*/
while (VALUE(i) > VALUE(MIN(i))) do
 Exchange(key(i), key(MIN(i)));
 Unlock(i); Unlock(MAX(i));
i ← MIN(i);
 Lock(LSON(i)); Lock(RSON(i));
endwhile
Unlock(i); Unlock(LSON(i)); Unlock(RSON(i));
Return(least);
end_Concurrent_Delete

Concurrent Insert(nkey,heap)
Lock(1) /* Lock root of the heap */
lastelem ← lastelem + 1;
target ← lastelem;
if (lastelem ≥ fulllevel* 2) then fulllevel ← lastelem endif
i ← target - fulllevel ; /* i is the displacement of target */

j ← fulllevel/2 ; /* j = \(2^{\text{length of insertion path}} - 1\) */

k ← 1 ; /* k is the current position in the insertion path */

status(target) ← PENDING ;

/* Reheapification Loop */

while (j ≠ 0)
 if (status(target) = WANTED) then break endif
 if (VALUE(k) > VALUE(nkey)) then Exchange(nkey,k); endif
 if (i ≥ j)
 then /* Go Right */
 {Lock(RSON(k)); Unlock(k); k ← RSON(k); i ← i - j}
 else /* Go Left */
 {Lock(LSON(k)); Unlock(k); k ← LSON(k)};
 endif
 j ← j/2 ;
endwhile

if (status(target) = WANTED)
 then /* Some deleter is waiting at the root to pick the key at target */
 {key(1) ← nkey; status(target) ← ABSENT; status(1) ← PRESENT}
 else
 {key(target) ← nkey; status(target) ← PRESENT};
endif

Unlock(k);

end_Concurrent_Insert

Whenever an inserter or a deleter moves down 1 level by incrementing k or i, it first locks the next node and then releases the current lock. This ensures that concurrent deletes or inserts proceeding in the same path progress in strict queue order without any interference. Since the locking sequence is in the strict increasing order of node indices, there are no deadlocks.

Proof of correctness of the Concurrent-Heap Scheme

The proof of correctness follows from the following theorem.

Theorem 3.1 If a sequence of operations \(OP_1, \ldots, OP_n\) is performed on a binary heap such that, for all \(i\), \(OP_i \in \{\text{concurrent insert, concurrent delete}\}\), then the resulting binary tree is a heap. Furthermore, each delete operation \(OP_i\) returns the smallest key of the heap that would have resulted from the application of \(OP_1, \ldots, OP_{i-1}\) to the original heap.

Proof: By induction on the length \(n\) of the sequence of operations.

Base Case: The sequence length is 1; hence only one insert or delete operation is performed. In this case, the proof follows from the correctness of sequential delete and insert functions.
Induction Step: Suppose the theorem holds for all sequences of length n and less. Let $OP_1, ..., OP_n, OP_{n+1}$ be a sequence of length $n+1$.

Case 1: $OP_{n+1} = \text{Concurrent insert}.$

In this case, because of the strict queuing order maintained among successive operations, OP_{n+1} sees exactly the same binary tree as it would if it waited for $OP_1, ..., OP_n$ to finish. From the induction hypothesis, the sequence $OP_1, ..., OP_n$ returns a correct heap. Hence the tree resulting from the application of OP_{n+1} is also a correct heap due to the correctness of the sequential insertion.

Case 2: $OP_{n+1} = \text{Concurrent delete}.$

The key deleted by OP_{n+1} is clearly the smallest key of the heap resulting from the application of $OP_1, ..., OP_n$, as this key would not have been touched by any of the still executing operations if OP_{n+1} waited for them to finish. If at the time OP_{n+1} starts executing, the status of the node pointed to by lastelem is PRESENT, then OP_{n+1} sees exactly the same heap as it would if it waited for $OP_1, ..., OP_n$ to finish. Otherwise, some concurrent insert operation that is supposed to put a key at lastelem has not finished execution. Assume that this operation is OP_m. Once OP_{n+1} has changed the status of the target of OP_m, OP_m stops executing the reheapification loop, and gives nkey to OP_{n+1}. OP_{n+1} sees the binary tree that results from the application of $OP_1, ..., OP_{m-1}, OP_m$ (partial), $OP_{m+1}, ..., OP_n$.

OP_m sees exactly the same binary tree as it would if it waited for $OP_1, ..., OP_{m-1}$ to finish\(^4\), which should be a correct heap, as the length of the sequence $OP_1, ..., OP_{m-1}$ is less than $n+1$. OP_m, being an insert operation, always maintains the binary tree as a heap (see the proof of Theorem 1). Hence even partial execution of OP_m leaves the tree as a heap. The binary tree seen by $OP_{m+1}, ..., OP_n$ is the one that results from the partial application of OP_m. Since this sequence is shorter than $n+1$, the tree resulting from the application of $OP_{m+1}, ..., OP_n$ is also a heap. Hence the tree seen by OP_{n+1} is also a heap, which also returns a heap (due to the correctness of concurrent delete).

\(^4\)The sequence $OP_{m+1}, ..., OP_n$ may contain some deletes which might “absorb” some other insert operations OP_i. But such OP_i is guaranteed to be within the sequence $OP_{m+1}, ..., OP_n$, and hence does not effect the heap seen by OP_m.

12
4 Theoretical Analysis of Performance

In this section we present a discussion of expected improvement in speedup due to the new concurrent-heap algorithms. First we define some terms and state some assumptions that are made to simplify the analysis.

4.1 Definitions and Assumptions

1. M is the total number of keys present in the heap.

2. Think time T_{think} is the time spent by each processor in computation in between successive accesses to the heap.

3. L is the number of levels traversed in the heap during heap access operations. For example, for insert,t,

$$L = \lfloor \log (M + 1) \rfloor$$

4. Access time T_{access} is the time required to perform an operation on the heap in the absence of contention for the heap.

$$T_{\text{access}} = L \times T_w + T_r$$

Here, T_r is the time for executing the initialization part of the code (i.e., the code before the reheapification loop), and T_w is the time for executing one iteration of the reheapification loop. For simplicity, the above definition of T_{access} assumes that, for any given operation, the execution time of different iterations of the reheapification loop are the same.

Clearly, T_w, T_r, and hence T_{access} are higher for concurrent heap because of the overheads of locking, etc. We use the superscript c to denote that the term refers to the concurrent-access operation and the superscript s to denote that the term refers to the corresponding serial access operation, whenever a distinction needs to be made. For example, T_{access}^c refers to access time using the concurrent-access scheme.

Speedup S is the ratio of time taken by one processor to execute N think-access cycles, and the time taken by P processors to execute the same number of cycles. In the parallel case, each processor performs $\frac{N}{P}$ think-access cycles.
Speedup improvement factor due to concurrent heap

\[= \frac{\text{speedup due to concurrent heap}}{\text{speedup due to serial-access heap}} \]

4.2 Analysis

Here we study the performance of serial and concurrent-heap algorithms for the task of performing N think-access cycles using P processors (\(N \gg P\)). To simplify the analysis, we assume that all N access operations are identical, and that all processors have the same processing speed.

1. The Base Case

The time needed by one processor to execute N think-access cycles

\[= N \ast (T_{\text{think}} + T_{\text{access}}^s) \]

2. Serial Heap

Now P processors perform the same number of operations using the serial heap algorithms. Each processor performs \(N/P\) think-access cycles, and locks the heap for the duration of each access operation. If there is no contention for the heap, then each processor takes \(T_{\text{think}} + T_{\text{access}}^s\) for executing one cycle. Even if \(P\) is very large, the maximum rate at which the operations can be done is \(1/T_{\text{access}}\) per unit time.

\[\text{Time for } N \text{ operations} = \begin{cases}
\frac{N}{P}(T_{\text{think}} + T_{\text{access}}^s) & \text{if } P \leq \frac{T_{\text{think}} + T_{\text{access}}^s}{T_{\text{access}}} \\
N \ast T_{\text{access}}^s & \text{if } P \geq \frac{T_{\text{think}} + T_{\text{access}}^s}{T_{\text{access}}}
\end{cases} \]

\[\text{Speedup} = \begin{cases}
P & \text{if } P \leq \frac{T_{\text{think}} + T_{\text{access}}^s}{T_{\text{access}}} \\
\frac{T_{\text{think}} + T_{\text{access}}^s}{T_{\text{access}}} & \text{if } P \geq \frac{T_{\text{think}} + T_{\text{access}}^s}{T_{\text{access}}}
\end{cases} \]

The maximum speedup achievable with the serial heap algorithms is \(\frac{T_{\text{think}} + T_{\text{access}}^s}{T_{\text{access}}}\).

3. Concurrent Heap

Now P processors perform N think-access cycles using the concurrent-heap algorithms. Note that the next operation can start after the current operation has
unlocked the root. The time for which the root is locked = \(T_w^c + T_r^c \). Therefore, the maximum rate at which the operations can be performed is \(\frac{1}{T_w^c + T_r^c} \) per unit time.

\[
\text{Time for } N \text{ operations} = \begin{cases}
\frac{N}{P}(T_{\text{think}} + T_{\text{access}}^c) & \text{if } P \leq \frac{T_{\text{think}} + T_{\text{access}}^c}{T_w^c + T_r^c} \\
N(T_w^c + T_r^c) & \text{if } P \geq \frac{T_{\text{think}} + T_{\text{access}}^c}{T_w^c + T_r^c}
\end{cases}
\]

\[
\text{Speedup} = \begin{cases}
\frac{P}{T_{\text{think}} + T_{\text{access}}^c} & \text{if } P \leq \frac{T_{\text{think}} + T_{\text{access}}^c}{T_w^c + T_r^c} \\
\frac{T_{\text{think}} + T_{\text{access}}^c}{T_w^c + T_r^c} & \text{if } P \geq \frac{T_{\text{think}} + T_{\text{access}}^c}{T_w^c + T_r^c}
\end{cases}
\]

The maximum speedup obtainable with the concurrent-heap algorithms is \(\frac{T_{\text{think}} + T_{\text{access}}^c}{T_w^c + T_r^c} \).

From the above analysis, we conclude the following.

1. The concurrent-heap scheme allows \(O(\log M) \) operations to proceed in parallel.

2. Unless \(T_{\text{access}}^s \) is greater than \(T_w^c + T_r^c \), concurrent heap cannot perform better than the serial heap.

3. If \(T_{\text{think}} = 0 \) (and \(T_{\text{access}}^s > T_w^c + T_r^c \)), then the concurrent heap performs better than the serial heap as long as \(P > \frac{T_{\text{access}}^s}{T_{\text{access}}^c} \). Otherwise (for \(P < \frac{T_{\text{access}}^s}{T_{\text{access}}^c} \)), the concurrent heap performs worse than the serial heap due to the overheads.

4. If \(T_{\text{think}} \gg T_{\text{access}}^c \) (and \(T_{\text{access}}^s > T_w^c + T_r^c \)), then the concurrent heap does not perform worse than the serial heap even for small \(P \). It performs better than the serial heap if \(P > T_{\text{think}}/T_{\text{access}}^c \).

5. For large \(P \) (\(\geq \frac{T_{\text{think}} + T_{\text{access}}^s}{T_w^c + T_r^c} \)), the speedup improvement factor due to concurrent heap is \(\frac{T_{\text{access}}^s}{T_w^c + T_r^c} \), which is independent of \(T_{\text{think}} \). The actual value of the improvement factor varies for different operations as follows.

- **Case I: Deletes**

 For the serial delete, \(T_{\text{access}}^s = T_r^s + L \times T_w^s \), where \(L \approx \log M \). Thus, \(T_{\text{access}}^s \) increases logarithmically with the heap size, and \(T_w^c + T_r^c \) remains (an implementation dependent) constant. Hence there exists \(K \) such that for \(M > K, T_{\text{access}}^s > T_w^c + T_r^c \). Thus for big enough heaps, the concurrent-heap scheme performs better than the serial-access heap, and the speedup improvement factor grows as \(O(\log M) \).
• Case II: Random Inserts

If the keys of randomly distributed values are inserted into a heap, then the number of iterations of the heapification loop executed in insert.b is very small [7]. Hence, L in $T^*_{access} = T^*_{r} + L \times T^*_{w}$ is very small (<2) even for very large heaps. Hence, for this case, the concurrent heap does not perform better than the serial heap, as in most implementations, $T^*_{w} + T^*_{r}$ is not much smaller than T^*_{access}. \(^5\) Note that if concurrent (random) inserts and deletes are performed simultaneously, then the concurrent heap could still perform better overall if the average access time for serial inserts and deletes is larger than the average root locking time in concurrent heap operations.

• Case III: Biased Inserts

In many parallel algorithms (e.g., branch-and-bound [13]), each newly inserted key tends to be nearly as good as the best key already available in the heap. In this case, $T^*_{access} = T^*_{r} + L \times T^*_{w}$, where $L \approx \log M$. For this case, just as in case I, the speedup improvement factor grows as $O(\log M)$.

In our analysis, we assumed that all access operations take exactly the same amount of time. In practice, T_{access} would be different for different operations. In this case, for larger number of processors, the speedup improvement factor would be $\frac{\text{mean}(T_{access})}{\text{mean}(T_{w} + T_{r})}$.

5 Experimental Evaluation of the Concurrent-access heap algorithms

We have implemented the concurrent-heap algorithms and the serial-access heap algorithms on the BBN Butterfly multiprocessor to test their performance. Using each scheme, P processors performed a total of 1000 delete or insert operations (each processor performed 1000/P operations. P was varied between 1 and 30). The speedup was computed according to the definition given in Section 4.1. Relative performance of the concurrent heap was studied for the following cases.

Case I: Deletes

In this case, each processor performed one delete operation in each access-think cycle. A

\(^5\)it may even be larger for some implementations.
total of 1000 delete operations were performed on a heap that initially had 2048 keys. Thus, the depth of the heap remained 10 for all the deletions. Fig. 3 shows speedup results for the case in which \(T_{think} \) is set to 10 ms (\(\approx 5 \) times \(T_{access}^* \)). For the serial-access scheme, the speedup was fairly linear up to 5 processors, but saturated after that. For the concurrent heap, the speedup saturated at 11.6. For less than 5 processors, concurrent delete performs slightly worse than the serial delete. When we decreased (or increased) \(T_{think} \), the speedup dropped (or went up) for both sequential and concurrent deletes. But, as predicted by the analysis of the previous section, the speedup improvement factor for large number of processors remained roughly the same (\(\approx 2.3 \)).

Case II: Inserts

In this case, each processor performed one insert operation in each access-think cycle. A total of 1000 insert operations were performed on a heap that initially had 1024 keys. Thus, the depth of the heap remained 10 for all the insertions. As discussed in the previous section, for inserting keys with random key values, our concurrent-heap scheme does not perform better than the serial-access heap insert. (The speedup figures are roughly the same for both concurrent heap and serial heap; hence they are not shown.)

To test the performance for biased inserts, we generated keys whose values were in the decreasing order. In this case, the relative performance of the concurrent-heap scheme is similar to that obtained for deletes. Fig. 4 shows the speedup curves for \(T_{think} = 10 \)ms.

Case III: Parallel Branch-and-Bound

To test the performance of the concurrent-heap scheme in a more realistic situation, we incorporated it in a parallel branch-and-bound algorithm for solving the traveling salesman problem[13,12,8]. In this parallel algorithm, in each access-think cycle, each processor removes a least cost node from the heap, generates two successors, computes their costs, and inserts them both on the heap. The think time is the time to create two successors and compute their costs (for the algorithm we used, it is \(O(n^2) \), where \(n \) is the number of cities). We implemented two versions of the parallel algorithm on BBN Butterfly - one using the serial-access heap, and the other using the concurrent-access heap. For each version, the speedup was computed with respect to sequential branch-and-bound using the conventional heap algorithm. As shown in Fig. 5, the concurrent-access scheme delivers significantly higher speedups than the serial-access scheme. In the problem instances we used for experiments, the heap size grew up to 8000 elements. The larger heap size explains the larger speedup improvement factor (\(\approx 3 \)).
Figure 3: Plot of speedups obtained in execution of access-think cycles for delete operation. Think time is set to 10ms ($\approx 5 \times T_{access}$).
Figure 4: Plot of speedups obtained in execution of access-think cycles for insert operation. The numbers inserted are in a decreasing order. Think time is set to 10ms ($\approx 7 \times T_{access}$).
Number of processors

Figure 5: Comparison of performance of concurrent-access heap vs serial-access heap for Parallel Branch and Bound algorithm.
6 Possible Improvements

A number of modifications can be made to our scheme to further improve its performance. Some of these are outlined below.

1. Combining Insertions and Deletions

If a processor needs to do one or more inserts and a delete, then it can merge the last insert operation and the delete operation into a slightly modified delete operation as follows. If the root of the heap is worse than the key to be inserted, then the (merged) operation finishes right away, and processor treats the key to be inserted as the one deleted. Otherwise, it replaces the root with the key to be inserted, and proceeds (without having to wait for some other active inserter to give it the key) with the deletion routine. This improvement can be incorporated in the serial-access scheme as well.

2. FIFO access at the bottom of the heap.

Notice that insertions and deletions extend the current last level of the heap in a LIFO manner; i.e., a delete operation removes the most recently inserted key. We can change this to FIFO; i.e., as long as the current level is not completely empty, the deleter deletes the oldest inserted key from this level. Now inserters put nodes at one end of the last level while deleters take nodes from the other end. (Clearly, this implicit FIFO queue is to be implemented at each level with a wrap around. We also need extra synchronization when a level is completely filled up or completely empty.) This scheme makes it unnecessary for the deleter to wait for the inserter to put its key at the root, and thus removes one checking operation from the loop of insert (reducing T_i^c) and reduces the initial processing time (T^c_i) in delete.

3. Level Locking

This modification is useful if processors execute at uniform speed and the locking operation is expensive. We can associate one lock with each level of the heap, and instead of locking individual nodes, we can lock the entire level as needed. This reduces the number of lock and unlock operations in each cycle of concurrent delete from four to two (reducing T_d^c). The number of lock and unlock operations in concurrent insert remain unchanged.
4. Service Processors

It is possible to incorporate service processors in our scheme as follows. Whenever a processor needs to insert or delete, it communicates with the next available service processor (the available service processors may be maintained in a queue), which performs the actual operation on behalf of the user processor. For example if the user processor likes to delete a key, then a service processor locks the root, gives the root key to the user processor, and continues with the delete operation. The user processor can continue with its processing without having to wait for the entire delete operation to finish. If $O(\log M)$ processors are available, then one processors (or a small number of processors) can perform delete or insert in constant time irrespective of the size of the heap. This arrangement may be useful if T_{think} and the number of user processors are small. If T_{think} is large, then service processors do not provide any performance improvement.

5. Splitting T_r

One way to reduce the bottleneck at the root (given by $T_r^c + T_r^c$) is to split the root update operation into two steps - the first step updating the values of lastelem, etc., and the second part performing the reheapification at the root. We can associate two different locks for these two steps.

7 Related Research

In [3], Biswas and Browne present a scheme, called CHEAP, that allows insertions and deletions to proceed in parallel. In their scheme, an insert or delete operation is decomposed into a sequence of update steps at different levels of a heap. An auxiliary task queue stores the steps of insertions and deletions currently in progress. By appropriately scheduling these update steps, a set of service processes concurrently perform insertions and deletions without causing deadlocks. If enough service processors are available, then this scheme allows many insertions and deletions to proceed in parallel. This approach is not able to perform better than the serial access scheme except for very large heaps due to the overheads associated with scheduling window updates through the server queue.

Unlike the scheme in [3], our scheme does not require special server processors to update the heap. Also the number of locks needed for each operation are much smaller in our scheme. Unlike their scheme, our scheme also retains the strict priority ordering of the
serial-access heap algorithms; i.e., a delete operation returns the best key of all keys that have been inserted or are being inserted at the time the delete operation is started. The scheme presented in this paper was motivated by the work of Biswas and Browne. Initially, we wanted to incorporate CHEAP in our parallel branch-and-bound algorithms to improve their performance. But experiments conducted by Biswas\(^6\) showed that CHEAP was not able to perform better than the serial-access scheme even for heaps with 10,000 keys.

Ellis and Gaffar\(^7\) have developed a scheme that also does not require the use of separate special service processors. In this scheme, inserts and deletes proceed in opposite directions, but avoid deadlock using a “sliding-lock” scheme. Performance results of this scheme are not yet available.

A number of concurrent-access schemes have been developed for manipulating dictionaries that are represented as balanced trees\([6,11]\), B-trees \([5]\), and the balanced cube\([4]\). Most of these concurrent schemes allow \(O(\log M)\) operations (delete the smallest key, delete a key, insert a key, search for key, etc.) to be done simultaneously. A major exception is the balanced cube which permits \(O(M)\) search, insert and delete operations to done concurrently. However, even the balanced cube permits only \(O(\log M)\) operations “delete-the-smallest-key” operations at a time. In a priority queue, the only operations of interest are “delete-the-smallest-key” and “insert-a-key”. For these operations, on a sequential processor, the heap is clearly a more efficient data structure than B-tree, balanced trees and the balanced cube. Since our concurrent-access heap scheme has the same degree of concurrency as others and has smaller overhead, it is better than other concurrent schemes for manipulating a strict priority queue.

A number of VLSI dictionary machines \([14,19,2]\) use \(O(M)\) processors and allow \(O(\log M)\) operations to proceed in parallel. Leiserson’s hardware priority queue\([10]\) provides \(O(1)\) access time at the expense of \(O(M)\) processors. As discussed in the previous section, with the help of \(O(\log M)\) service processors, our concurrent-access scheme can also provide \(O(1)\) access time. However, the constant factor in \(O(1)\) is expected to be smaller for the hardware priority queue.

\(^6\)Private communication

\(^7\)Private communication with Carla Ellis
8 Conclusions

We have presented a new scheme that allows concurrent insertions and deletions in a priority queue. The insert and delete operations of this scheme keep the heap balanced; hence each operation still takes $O(\log M)$ steps, where M is the size of the heap. The scheme also retains the strict priority ordering of the serial-access heap algorithms; i.e., a delete operation returns the best key of all keys that have been inserted or are being inserted at the time delete is started. The scheme allows $O(\log M)$ processors to manipulate the heap simultaneously. For a large number of processors, the speedup improvement factor due to our scheme grows as $O(\log M)$. We have incorporated the concurrent-heap scheme in a parallel branch-and-bound algorithm for solving the traveling salesman problem, and have obtained significantly higher speedups than with the serial-access schemes.

Note that even in the concurrent-access heap scheme, at most $O(\log M)$ processors can manipulate the heap concurrently. To allow greater concurrency, it seems necessary to relax the strictness of the priority queue. In [9], we present several ”distributed” formulations of priority queue that permit $O(M)$ concurrency, and test their effectiveness in parallel branch-and-bound.

Acknowledgements: We would like to thank Jit Biswas for many useful discussions concerning CHEAP, and Dan Miranker for comments on an earlier draft of this paper. Center for Automation Research, University of Maryland, provided access to a large BBN Butterfly parallel processor.

References

