A COMPARISON OF
LED-FROM AND LEADS-TO

Edgar Knapp

Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712-1188

TR-88-35 October 1988

Abstract

Progress properties of parallel programs are often expressed using the operator leads-to, a binary relation over predicates on the program state. Informally, p leads-to q means that from a state satisfying p a state satisfying q is reached eventually. We investigate the notion of the weakest predicate that leads-to q, for some given q. We formalize this notion by defining a predicate transformer called led-from and show that led-from maps a predicate q to the weakest predicate that leads-to q. We also demonstrate that led-from and leads-to are equivalent in expressive power by showing that each can be defined in terms of the other. The advantages of basing concurrent program semantics on the predicate transformer led-from rather than the relation leads-to are similar to those of basing sequential program semantics on the predicate transformer wp rather than on the relation of Hoare-Triples $\{p\}S\{q\}$. In particular, questions about junctivity properties can be raised and answered. Among other things we show that led-from is monotonic and idempotent, but not or-continuous and neither finitely disjunctive nor finitely conjunctive.
Contents

Introduction 0

1 Definition of leads-to and led-from 1
 1.1 Notation ... 1
 1.2 Extreme Solutions of a Set of Equations 2
 1.3 Definition of leads-to 2
 1.4 Definition of led-from 5

2 The relationship between leads-to and led-from 6

3 Theorems about led-from 9
 3.1 More Properties of led-from 10
 3.2 Some Results about led-from in UNITY 11
 3.2.1 A Few More Definitions 12
 3.2.2 Junctivity Results for led-from 13

4 Discussion ... 16

Acknowledgements 16

References ... 16

Introduction

When specifying concurrent systems it is necessary to formulate requirements that "something good is going to happen eventually", where eventually means "in finite time" or "in a finite number of steps". These kinds of requirements are traditionally called progress conditions. Examples of such requirements are: a requested resource is granted eventually; a message sent along a channel is received eventually; deadlock is detected eventually.

In the theory of UNITY [Chandy and Misra 1988], which attempts a unified approach to the specification and verification of concurrent programs, properties like the ones above are expressed using the binary operator leads-to (\(\rightarrow\)), a relation over predicates on program states. This operator was first introduced in [Lamport 1977]. Informally, \(p \rightarrow q\) means that from a state satisfying predicate \(p\) a state satisfying predicate \(q\) is reached eventually. For example, the property true \(\rightarrow p\) specifies that a state satisfying \(p\) occurs infinitely often.

In [Chandy and Misra 1988] \(\Rightarrow\) is defined as the strongest relation that satisfies a set of axioms. These axioms formalize the requirements that the \(\Rightarrow\) relation is a superset of some fixed relation called ensures, and that it is transitively and disjunctively closed. The ensures relation itself depends only on the program text and also captures fairness. Our first result formally verifies
that the definition of \(\leftarrow \) given in [Chandy and Misra 1988] is sound by showing
that this strongest relation exists and is unique.

The main contribution of this paper is to investigate an alternative way of
defining \(\leftarrow \) using a predicate transformer (i.e. a function from predicates to
predicates) which we call \(\text{led-from} \). This predicate transformer, too, can be
defined as an extreme solution of a set of equations. The intuitive meaning of
\(\text{led-from} \) is that it maps a predicate \(p \) to the \textit{weakest predicate that leads-to} \(p \).
We show that this alternative definition of \(\leftarrow \) is equivalent to the definition that
appears in [Chandy and Misra 1988].

The advantage of using \(\text{led-from} \) as the basis for the definition of \(\leftarrow \) is that
\(\text{led-from} \) is a function on predicates. Therefore, questions about monotonicity,
continuity, etc. can be easily posed for \(\text{led-from} \). To draw an analogy with
sequential program verification, the advantages of \(\text{led-from} \) over \(\leftarrow \) are similar
to the advantages of basing program semantics on the predicate transformer
\(\text{wp} \) rather than on the relation of Hoare-Triples \(\{p\} S \{q\} \). It turns out that
\(\text{led-from} \) lacks many of the nice properties of \(\text{wp} \). In particular, we show that
for UNITY logic, \(\text{led-from} \) is not \text{or}-continuous, and neither finitely conjunctive
nor finitely disjunctive.

Our paper is organized as follows. Section 1 introduces our notation and
gives formal definitions of \(\leftarrow \) and \(\text{led-from} \) as extreme solutions of certain sets
of equations. It is proved that these solutions uniquely define both operators.
Section 2 is devoted to the proof that all information about \(\leftarrow \) is captured within
\(\text{led-from} \). More precisely, we show that each concept can be defined in terms of
the other. In Section 3, we study interesting properties of \(\text{led-from} \). We derive
negative answers to a number of questions about junctivity properties. The
paper concludes with a discussion of our results.

1 Definition of \textit{leads-to} and \textit{led-from}

First we present the notation necessary to express our concepts. We then
introduce the notion of an extreme solution to a set of equations in order to define
the operators \textit{leads-to} and \textit{led-from}.

1.1 Notation

We will use the following notational conventions: the expression
\[\langle Q \, x : r.x : t.x \rangle, \]
where \(Q \in \{\forall, \exists\} \) denotes quantification over all \(t.x \) for which \(x \) satisfies \(r.x \).
We call \(x \) the \text{dummy}, \(r.x \) the \text{range}, and \(t.x \) the \text{term} of the quantification.
We adopt the convention that all formulae are universally quantified over all
free variables occurring in them (these are variables that are neither dummies
nor program variables).
We will write \(f, g, h \) to denote predicate transformers, \(p, q, r \) to stand for predicates on program states, and \(R, S \) to denote relations on predicates.

Universal quantification over all program variables is denoted by surrounding a predicate by square brackets ([], read: everywhere). This unary operator has all the properties of universal quantification over a non-empty range. For a detailed discussion of this notation the reader is referred to [Dijkstra 1985].

The other operators we use are summarized below, ordered by increasing binding powers.

\[
\equiv, \neq \\
\Rightarrow, \Leftarrow \\
\text{ensures, } \mapsto \\
\wedge, \lor \\
\neg \\
=, \neq, \leq, < \\
+,, - \\
\text{"." (function application)}
\]

All boolean and arithmetic operators have their usual meanings. We define \(\Leftarrow \) (read: follows-from) by \([p \Leftarrow q \equiv q \Rightarrow p] \). For relations \(R, S \) on predicates we say that \(R \) is stronger than \(S \) (in formulae \(R \Rightarrow S \)) if and only if \(\forall p, q : p R q \Rightarrow p S q \). For predicate transformers \(f, g \) we say that \(f \) is stronger than \(g \) (in formulae \(f \Rightarrow g \)) if and only if \(\forall p : [f]p \Rightarrow [g]p \). Note that for predicates, relations, and predicate transformers \(\Rightarrow \) is a partial order. The relations ensures and \(\mapsto \) will be defined later.

1.2 Extreme Solutions of a Set of Equations

Most operators we introduce are defined as extreme solutions of sets of equations. We write \(x : E \) to make explicit that \(E \) is a set of equations in the unknown \(x \). Given a partial order \(\Rightarrow \) on the solutions of \(E \), we say that \(y \) is the strongest solution of \(E \) if and only if

\[(0) \ y \text{ solves } E, \text{ and} \]

\[(1) \ (\forall z : z \text{ solves } E : y \Rightarrow z). \]

The weakest solution of \(E \) is defined analogously.

1.3 Definition of leads-to

Let ensures be a given binary relation over predicates on program states; ensures describes the basic progress properties of a program. We assume that ensures fulfils the following requirements:

\[(D0) \ \ p \text{ ensures } p \]

\[(D1) \ \ p \text{ ensures } false \Rightarrow [\neg p] \]

\[(D2) \ \ (p \text{ ensures } r) \land [r \Rightarrow q] \Rightarrow p \text{ ensures } q \]
The first requirement states that ensures is a reflexive relation. The second requirement excludes absurd progress properties. D2 states that the right-hand side of ensures may be weakened. Note that by combining D0 and D2 we get

Lemma 0 \[p \Rightarrow q \Rightarrow p \text{ ensures } q \]

Remark: The relation ensures was first defined in UNITY logic[Chandy and Misra 1988]. It is possible, however, to define this relation for other programming formalisms besides UNITY. Note that in such a case, ensures should also capture assumptions about fairness. (End of Remark)

Consider now the set \(A \) of equations A0-A2 in the unknown relation \(\triangleright \):

\[
\begin{align*}
(A0) & \quad p \text{ ensures } q \Rightarrow p \triangleright q \\
(A1) & \quad (p \triangleright q) \land (q \triangleright r) \Rightarrow p \triangleright r \\
(A2) & \quad (\forall p : p \in W : p \triangleright q) \Rightarrow (\exists p : p \in W : p \triangleright q)
\end{align*}
\]

A0 states that the ensures relation is a subset of the relation \(\triangleright \). Transitivity of \(\triangleright \) is expressed by A1. A2 means that \(\triangleright \) is disjunctively closed over \(W \), where \(W \) is any set of predicates.

With "\(\Rightarrow \)" as a partial order on relations we now prove the following

Lemma 1 There is a unique strongest solution of \(\triangleright : A \).

Proof (of Lemma 1, due to Dijkstra): We show that the conjunction of all solutions of \(A \) is a solution of \(A \). Obviously then, this is the strongest solution of \(A \), since it implies all solutions.

Now define a relation \(R \) as the conjunction of all solutions:

\[p R q \equiv (\forall S : S \text{ solves } A : p S q) \]

Our proof obligation is to show that \(R \) solves A0, A1, and A2.

Ad A0:

\[
\begin{align*}
p R q \\
= & \{ \text{definition } R \} \\
= & \{ \forall S : S \text{ solves } A : p S q \} \\
\iff & \{ \text{each } S \text{ solves } A0 \} \\
= & \{ \forall S : S \text{ solves } A : p \text{ ensures } q \} \\
\iff & \{ \text{term does not depend on dummy} \} \\
= & p \text{ ensures } q
\end{align*}
\]
Ad A1:

\[(p \rightarrow q) \land (q \rightarrow r)\]

\[=\{\text{definition } R\}\]

\[\forall S : S \text{ solves } A : p S q) \land (\forall S : S \text{ solves } A : q S r)\]

\[=\{\text{predicate calculus}\}\]

\[\forall S : S \text{ solves } A : (p S q) \land (q S r)\]

\[\Rightarrow\{\text{each } S \text{ solves } A1\}\]

\[\forall S : S \text{ solves } A : p S r\]

\[=\{\text{definition } R\}\]

\[p \rightarrow r\]

Ad A2 (we omit the range \(p \in W\)):

\[\forall p : p \rightarrow q\]

\[=\{\text{definition } R\}\]

\[\forall p : (\forall S : S \text{ solves } A : p S q)\}

\[=\{\text{interchange of quantifications}\}\]

\[\forall S : S \text{ solves } A : (\forall p : p S q)\}

\[\Rightarrow\{\text{each } S \text{ solves } A2\}\]

\[\forall S : S \text{ solves } A : (\exists p : p) S q\]

\[=\{\text{definition } R\}\]

\[\exists p : p \rightarrow R q\]

(End of Proof)

We use Lemma 1 as the basis for the following definition:\(^0\):

Definition 0 The unique strongest solution of \(A\) is called leads-to \((\rightarrow)\).

Using Lemma 0 and A0 we now observe:

Lemma 2 \([p \Rightarrow q] \Rightarrow p \rightarrow q\)

As a Corollary of Lemma 2 we get

Corollary 0 \(p \rightarrow p\)

Remark: In [Chandy and Misra 1988] it was shown that if equation A1 is replaced by the weaker A1' defined as

\[(A1')\quad(p \text{ ensures } q) \land (q \rightarrow r) \Rightarrow p \rightarrow r\]

then the two sets of equations A0, A1, A2 and A0, A1', A2 are equivalent. In our proofs we will use whichever formulation is more convenient. (End of Remark)

\(^0\)Except for Lemma 1 this is essentially the same definition as in [Chandy and Misra 1988]
1.4 Definition of \textit{led-from}

We said earlier that the predicate transformer \textit{led-from} formalizes our notion of the weakest predicate that \textit{leads-to} \(q \). In the following we define \textit{led-from} formally, again by considering the strongest solution of the following set \(B \) of equations B0–B2 in the unknown predicate transformer \(f \):

\[
\begin{align*}
\text{(B0)} & \quad p \text{ ensures } q \Rightarrow [p \Rightarrow f.q] \\
\text{(B1)} & \quad [p \Rightarrow q] \Rightarrow [f.p \Rightarrow f.q] \\
\text{(B2)} & \quad [f.(f.p) \Rightarrow f.p]
\end{align*}
\]

B0 states that any predicate that \textit{ensures} \(q \) is stronger than \(f.q \). Monotonicity of \(f \) is expressed in B1. Equation B2 represents one half of the idempotence of \(f \). Observe that from the reflexivity of \textit{ensures} we can infer the other half:

\[
\begin{align*}
p \text{ ensures } p \\
\Rightarrow \quad \text{(B0)} \\
\Rightarrow \quad \text{(B1)} \\
\quad [f.p \Rightarrow f.(f.p)]
\end{align*}
\]

Lemma 3 There is a unique strongest solution of \(f : B \).

Proof (of Lemma 3): We again show that the conjunction of all solutions of \(B \) solves \(B \). In the following we abbreviate

\[[g.p \equiv (\forall h : h \text{ solves } B : h.p)] \]

Ad B0:

\[
\begin{align*}
[p \Rightarrow g.q] \\
= \{ \text{definition } g \} \\
[p \Rightarrow (\forall h : h \text{ solves } B : h.q)] \\
= \{ \text{predicate calculus} \} \\
[\forall h : h \text{ solves } B : p \Rightarrow h.q] \\
= \{ \text{interchange of quantifications} \} \\
(\forall h : h \text{ solves } B : [p \Rightarrow h.q]) \\
\Leftarrow \{ \text{each } h \text{ solves B0} \} \\
(\forall h : h \text{ solves } B : p \text{ ensures } q) \\
\Leftarrow \{ \text{term does not depend on dummy} \} \\
p \text{ ensures } q
\end{align*}
\]
Ad B1:

\[g.p \Rightarrow g.q \]
\[= \{ \text{definition } g \} \]
\[= \{ \text{predicate calculus} \} \]
\[(\forall h : h \text{ solves } B : h.q) \]
\[= \{ \text{interchange of quantifications} \} \]
\[(\forall h : h \text{ solves } B : [g.p \Rightarrow h.q]) \]
\[\Leftrightarrow \{ [g.p \Rightarrow h.p] \text{ and transitivity of } \Rightarrow \} \]
\[(\forall h : h \text{ solves } B : [h.p \Rightarrow h.q]) \]
\[\Leftrightarrow \{ \text{each } h \text{ solves B1} \} \]
\[(\forall h : h \text{ solves } B : [p \Rightarrow q]) \]
\[\Leftrightarrow \{ \text{term does not depend on dummy} \} \]
\[[p \Rightarrow q] \]

Ad B2:

\[g.p \]
\[= \{ \text{definition } g \} \]
\[(\forall h : h \text{ solves } B : h.p) \]
\[\Leftrightarrow \{ \text{each } h \text{ solves B2} \} \]
\[(\forall h : h \text{ solves } B : h.(h.p)) \]
\[\Leftrightarrow \{ [g.p \Rightarrow h.p] \text{ and B1} \} \]
\[(\forall h : h \text{ solves } B : h.(g.p)) \]
\[= \{ \text{definition } g \} \]
\[g.(g.p) \]

(End of Proof)

Definition 1 The unique strongest solution of B is called led-from (or led for short).

The following Corollary is immediate:

Corollary 1 led is monotonic and idempotent, and \([p \Rightarrow led.p]\).

2 The relationship between leads-to and led-from

We said earlier that led.p formalizes the notion of the weakest predicate that leads-to p. We will now make this relationship precise in the following

Theorem 0 (0) \(p \leftrightarrow q \equiv [p \Rightarrow led.q] \)
(1) For any q, led.q is the weakest solution of p: p \(\leftrightarrow q \).
Proof (of Theorem 0): Abbreviate $C \equiv p : p \mapsto q$. Our proof proceeds in five steps. We demonstrate that

(a) For any q, C has a unique weakest solution $f.q$.

(b) $led \Rightarrow f$.

(c) $p \mapsto q \Rightarrow [p \Rightarrow led.q]$.

(d) $[p \Rightarrow led.q] \Rightarrow p \mapsto q$.

(e) $f \Rightarrow led$.

Ad (a): Observe that $[p \equiv false]$ is a solution of C. We show that the disjunction of all solutions of C solves C. Hence, this is the weakest solution, since it follows from any solution.

Define $[f.q \equiv (\exists p : p \mapsto q : p)]$. Our proof obligation is to show that for any q, $f.q$ solves C.

\[
\begin{align*}
 f.q \mapsto q \\
 = \{ \text{definition } f \} \\
 (\exists p : p \mapsto q : p) \mapsto q \\
 \Leftarrow \{ A2 \} \\
 (\forall p : p \mapsto q : p \mapsto q) \\
 = \{ \text{predicate calculus} \} \\
 \text{true}
\end{align*}
\]

We summarize the following two facts about $f.q$: it solves C, and any solution of C is stronger than $f.q$. Formally:

(F0)
\[f.q \mapsto q \]

(F1)
\[p \mapsto q \Rightarrow [p \Rightarrow f.q] \]

Ad (b): We show that f solves B, the defining equations for led. Then, since led is the strongest solution of B, the result follows.

Ad B0:

\[
\begin{align*}
 p \text{ ensures } q \\
 \Rightarrow \{ A0 \} \\
 p \mapsto q \\
 \Rightarrow \{ F1 \} \\
 [p \Rightarrow f.q]
\end{align*}
\]
Ad B1:

\[
\begin{align*}
[p \Rightarrow q] \\
\Rightarrow \quad \{\text{Lemma 2}\} \\
p \Rightarrow q \\
= \quad \{\text{F0}\} \\
(f.p \Rightarrow p) \land (p \Rightarrow q) \\
\Rightarrow \quad \{\text{A1}\} \\
f.p \Rightarrow q \\
\Rightarrow \quad \{\text{F1}\} \\
[f.p \Rightarrow f.q]
\end{align*}
\]

Ad B2:

\[
\begin{align*}
[f.(f.p) \Rightarrow f.p] \\
\iff \quad \{\text{F1}\} \\
f.(f.p) \Rightarrow p \\
\iff \quad \{\text{A1}\} \\
(f.(f.p) \Rightarrow f.p) \land (f.p \Rightarrow p) \\
= \quad \{\text{F0 twice, once with } p := f.p\} \\
\text{true}
\end{align*}
\]

Ad (c): We show that the relation \(R \) defined as \(p R q \quad \equiv \quad [p \Rightarrow led.q] \) solves \(A \). Then, since \(\Rightarrow \) is the strongest solution of \(A \), the result follows.

Ad A0:

\[
\begin{align*}
p R q \\
= \quad \{\text{definition } R\} \\
[p \Rightarrow led.q] \\
\iff \quad \{\text{B0}\} \\
p \text{ ensures } q
\end{align*}
\]

Ad A1:

\[
\begin{align*}
(p R q) \land (q R r) \\
= \quad \{\text{definition } R\} \\
[p \Rightarrow led.q] \land [q \Rightarrow led.r] \\
\Rightarrow \quad \{\text{B1}\} \\
[p \Rightarrow led.q] \land [led.q \Rightarrow led.(led.r)] \\
\Rightarrow \quad \{\text{transitivity of } \Rightarrow\} \\
[p \Rightarrow led.(led.r)] \\
= \quad \{\text{Corollary 1}\} \\
[p \Rightarrow led.r] \\
= \quad \{\text{definition } R\} \\
p R r
\end{align*}
\]
Ad A2 (the range $p \in W$ is omitted):

$$\{\forall p :: p \ R \ q\}$$

$$= \{\text{definition } R\}$$

$$\{\forall p :: [p \Rightarrow led \ q]\}$$

$$= \{\text{interchange of quantifications}\}$$

$$\{[\forall p :: p \Rightarrow led \ q]\}$$

$$= \{\text{predicate calculus}\}$$

$$\{[\exists p :: p \Rightarrow led \ q]\}$$

$$= \{\text{definition } R\}$$

$$\{\exists p :: p \ R \ q\}$$

Ad (d): We observe for any p, q:

$$[p \Rightarrow led \ q]$$

$$\Rightarrow \{\text{part (b) and transitivity of } \Rightarrow\}$$

$$[p \Rightarrow f.q]$$

$$\Rightarrow \{\text{Lemma } 2\}$$

$$p \mapsto f.q$$

$$= \{F0\}$$

$$\Rightarrow \{A1\}$$

$$p \mapsto q$$

Ad (e): We observe for any p:

$$[f.p \Rightarrow led \ p]$$

$$= \{\text{parts (c) and (d)}\}$$

$$f.p \mapsto p$$

$$= \{F0\}$$

true

(End of Proof)

3 Theorems about led-from

We will now derive a few more properties of led and show that in the UNITY logic, led does not enjoy a number of junctivity properties such as or-continuity and finite conjunctivity and disjunctivity.
3.1 More Properties of \textit{led-from}

As a direct consequence of Theorem 0 we get as our first result the following Lemma, which allows us to compute \textit{led} for a special case.

Lemma 4 \[\text{true} \leftrightarrow p \equiv \text{[led.p} \equiv \text{true}] \]

Since by Lemma 2 \text{true} \leftrightarrow \text{true} we get from the above

Corollary 2 \[\text{[led.true} \equiv \text{true}]. \]

Lemma 5 \[[p \Rightarrow \text{led.q}] \equiv \text{[led.p} \Rightarrow \text{led.q}] \]

\textit{Proof (of Lemma 5)}:

\[\begin{align*}
\text{"\Rightarrow"} & \\
& \{p \Rightarrow \text{led.q} \} \\
& \Rightarrow \{\text{B1}\} \\
& \text{[led.p} \Rightarrow \text{led.}(\text{led.q})] \\
& = \{\text{Corollary 1}\} \\
& \text{[led.p} \Rightarrow \text{led.q}] \\
\text{"\Leftarrow"} & \\
& \{p \Rightarrow \text{led.q}\} \\
& \Leftarrow \{\text{by Corollary 1, [p} \Rightarrow \text{led.p]}\} \\
& \text{[led.p} \Rightarrow \text{led.q}] \\
\end{align*}\]

(End of Proof)

Next we show that if all \text{ensures} properties with respect to some predicate \text{q} are of a certain trivial form, then \text{[q} \equiv \text{led.q]}. More precisely we have

Theorem 1 \[(\forall p::p \text{ ensures } q \Rightarrow [p \Rightarrow q]) \Rightarrow [q \equiv \text{led.q}] \]

\textit{Proof (of Theorem 1)}: We show that \text{q} is the weakest solution of the equation \text{p}::\text{p} \leftrightarrow \text{q}. Then by Theorem 0 part (1), \text{[q} \equiv \text{led.q]}. So our proof obligation is twofold:

(a) \text{q solves p}::\text{p} \leftrightarrow \text{q}, i.e. \text{q} \leftrightarrow \text{q}

(b) \text{q is weakest, i.e. (}\forall p::p \leftrightarrow \text{q} \Rightarrow [p \Rightarrow q])

We note that (a) follows trivially from Lemma 2. We will prove (b) by showing that, for any \text{p}, \text{R} defined as

\[p \ R \ q \equiv [p \Rightarrow q] \]

satisfies equations A0,A1', and A2. Then we observe for any \text{p}
\[p \rightarrow q \]
\[\Rightarrow \{ \rightarrow \text{is the strongest solution of } A0, A1', \text{ and } A2 \} \]
\[p R q \]
\[= \{ \text{definition } R \} \]
\[[p \Rightarrow q] \]

Ad A0:
\[[p \Rightarrow q] \]
\[\iff \{ \text{antecedent of Theorem} \} \]
\[p \text{ ensures } q \]

Ad A1':
\[(p \text{ ensures } r) \land [r \Rightarrow q] \]
\[\Rightarrow \{ D2 \} \]
\[p \text{ ensures } q \]
\[\Rightarrow \{ \text{antecedent of Theorem} \} \]
\[[p \Rightarrow q] \]

Ad A2 (the range } p \in W \text{ is omitted):
\[(\forall p :: [p \Rightarrow q]) \]
\[= \{ \text{interchange of quantifications} \} \]
\[[(\forall p :: p \Rightarrow q)] \]
\[= \{ \text{predicate calculus} \} \]
\[[(\exists p :: p) \Rightarrow q] \]

(End of Proof)

From D1 we now have the following Corollary of Theorem 1:

Corollary 3 \[\text{[led} . \text{false}} \equiv \text{false} \]

3.2 Some Results about `led-from` in UNITY

We show that in UNITY led is not or-continuous, and neither finitely disjunctive nor finitely conjunctive. In the following we first define ensures for UNITY [Chandy and Misra 1988], together with the notions of or-continuity and finite conjunctivity and disjunctivity. We then give UNITY programs that show that for UNITY led has none of these properties.
3.2.1 A Few More Definitions

We give a very brief and incomplete description of UNITY programs and the
UNITY logic. For our purposes, a UNITY program consists of three parts: a
collection of variable declarations, a set of initial conditions, and a finite set of
multiple assignment statements. We call these parts declare, initially, and
assign, respectively. We define the predicate transformer \(\text{wp} \) for each multiple
assignment in assign in the usual way. From an operational point of view,
the execution of a UNITY program starts from any state satisfying the initial
conditions and proceeds by repeatedly picking any statement in assign and
executing it. The only fairness constraint we impose is that each statement in
assign is picked infinitely often.

This operational interpretation is the motivation for the definition of \text{ensures}
that is given below. However, neither our definitions nor our proofs will mention
program executions or fairness.

Definition 2

\[
p \text{ ensures } q \equiv \langle \forall s : s \in \text{assign} : [p \land \neg q \Rightarrow \text{wp}.s.(p \lor q)] \rangle \land
\langle \exists s : s \in \text{assign} : [p \land \neg q \Rightarrow \text{wp}.s.q] \rangle
\]

It is straightforward to verify that this definition of \text{ensures} satisfies require-
ments D0, D1, and D2 of Section 1.3.

For a multiple assignment statement \(x := f.x \), where \(x \) is a list of program
variables and \(f.x \) is a list of expressions matching \(x \) in number and type, we
define \text{wp} in the following standard way:

Definition 3 \([\text{wp}."x := f.x".p] \equiv (f.x =: x).p\), where \([f.x =: x].p\) denotes \(p \) with every occurrence of \(x \) replaced by \(f.x \).

Next we define or-continuity, finite conjunctivity and finite disjunctivity:

Definition 4 Let \(f \) be a predicate transformer and \(Y(i \geq 0) \) a weakening
sequence of predicates. We say that \(f \) is or-continuous if and only if

\[
\{f.(\exists i : i \geq 0 : Y.i)\} \equiv \{\exists i : i \geq 0 : f.(Y.i)\}
\]

Definition 5 A predicate transformer \(f \) is finitely conjunctive if and only if

\[
\langle \forall p, q :: [f.(p \land q) \equiv f.p \land f.q] \rangle
\]

It is finitely disjunctive if and only if

\[
\langle \forall p, q :: [f.(p \lor q) \equiv f.p \lor f.q] \rangle
\]
3.2.2 Junctivity Results for $\textit{led-from}$

We now show that with these definitions, \textit{led} is not or-continuous.

Theorem 2
\textit{led} is not or-continuous.

Proof (of Theorem 2): Consider the following program, which can be thought of as adding up a series of random numbers:

```
declare  x, n : integer
initially true
assign   n := n + 1 | x, n := x + n, 0
end
```

We will show the following:

$$(\forall i : i \geq 0 : \textit{led}.(0 \leq x \land x < i) \equiv 0 \leq x \land x < i)$$

Notice that $0 \leq x \land x < i$ ($i \geq 0$) is a weakening sequence of predicates. Furthermore observe that:

$$\langle \exists i : i \geq 0 : 0 \leq x \land x < i \rangle$$

= \{predicate calculus\}

= \{arithmetic\}

= 0 \leq x

Calling this result (\ast), and assuming that $F2$ has been proved, we can now calculate

$$\langle \exists i : i \geq 0 : \textit{led}.(0 \leq x \land x < i) \rangle$$

= \{$$\text{F2}$$\}

= \{($$\ast$$)\}

= 0 \leq x

On the other hand we have (the proof is straightforward, but requires some more UNITY machinery and is therefore omitted) $true \rightarrow 0 \leq x$. Hence by Lemma 4 we obtain ($$\ast\ast$$) [$\textit{led}.(0 \leq x) \equiv true$], and we observe

$$\textit{led}.(\exists i : i \geq 0 : 0 \leq x \land x < i)$$

= \{($$\ast$$)\}

= \{($$\ast\ast$$)\}

= true
and we see that led is not or-continuous. So we are left with demonstrating F2.

To this end abbreviate \(0 \leq x \land x < i\) by \(q\). By Theorem 1 it suffices to show that

\[
\forall i : i \geq 0 : (\forall p : p \text{ ensures } q \Rightarrow [p \Rightarrow q])
\]

Massaging \(p \text{ ensures } q\) we get for any \(i\) and \(p\), using the universal part of the definition of \textit{ensures}:

\[
p \land \neg q
\]

\[
\Rightarrow \{\text{interchange of quantifications}\}
\]

\[
wp . "n := n + 1" . (p \lor q) \land wp . "x, n := x + n, 0" . (p \lor q)
\]

\[
\Rightarrow \{\text{predicate calculus}\}
\]

\[
wp . "n := n + 1" . (p \lor q)
\]

\[
= \{\text{definition } wp; n \text{ does not occur in } q\}
\]

\[
(n + 1 =: n). p \lor q
\]

Rewriting this slightly yields

\[
[p \Rightarrow (n + 1 =: n). p \lor q]
\]

For the existential part of \textit{ensures} we get:

\[
[p \land \neg q \Rightarrow wp . "n := n + 1" . q] \lor [p \land \neg q \Rightarrow wp . "x, n := x + n, 0" . q]
\]

\[
= \{\text{definition } wp; n \text{ does not occur in } q\}
\]

\[
[p \land \neg q \Rightarrow q] \lor [p \land \neg q \Rightarrow (x + n =: x). q]
\]

\[
= \{\text{predicate calculus}\}
\]

\[
[p \Rightarrow q] \lor [p \Rightarrow q \lor (x + n =: x). q]
\]

\[
\Rightarrow \{\text{predicate calculus}\}
\]

\[
[p \Rightarrow q \lor (x + n =: x). q]
\]

Combining both we arrive at

\[
[p \Rightarrow q \lor ((n + 1 =: n). p \land (x + n =: x). q)]
\]

Now we generalize this result by a straightforward induction (omitted to):

\[
(\forall j : j \geq 0 : [p \Rightarrow q \lor ((n + j + 1 =: n). p \land (x + n + j =: x). q)])
\]

Next we observe, using the above result, that

\[
(\forall j : j \geq 0 : [p \Rightarrow q \lor ((n + j + 1 =: n). p \land (x + n + j =: x). q)])
\]

\[
\Rightarrow \{\text{predicate calculus}\}
\]

\[
(\forall j : j \geq 0 : [p \Rightarrow q \lor (x + n + j =: x). q])
\]

\[
\Rightarrow \{\text{predicate calculus}\}
\]

\[
[p \Rightarrow q \lor (\forall j : j \geq 0 : (x + n + j =: x). q)]
\]

We now concentrate on the second disjunct:
\begin{align*}
&\langle \forall j : j \geq 0 : (x + n + j =: x) \cdot q \rangle \\
= \quad \{ \text{definition of } q \} \\
&\langle \forall j : j \geq 0 : 0 \leq x + n + j \land x + n + j < i \rangle \\
= \quad \{ j \text{ does not have an upper limit} \} \\
&\text{false} \\
\end{align*}

from which \([p \Rightarrow q]\) follows. (End of Proof)

Theorem 3 \(\text{led is not finitely conjunctive.} \)

Proof (of Theorem 3): Consider the program

\begin{verbatim}
declare x : integer
initially true
assign x := 0 end x := 1
\end{verbatim}

Since (without proof) \(true \iff x=0\) and \(true \iff x=1\) are properties of this program we know \([\text{led.}(x=0) \equiv true]\) and \([\text{led.}(x=1) \equiv true]\). Hence we have \([\text{led.}(x=0) \land \text{led.}(x=1) \equiv true]\). On the other hand, however, we observe

\begin{align*}
\text{led.}(x=0 \land x=1) \\
= \quad \{ \text{arithmetic} \} \\
\text{led.}\text{false} \\
= \quad \{ \text{Corollary 3} \} \\
\text{false}
\end{align*}

(End of Proof)

Theorem 4 \(\text{led is not finitely disjunctive.} \)

Proof (of Theorem 4): Consider the program

\begin{verbatim}
declare x : integer
initially true
assign x := x + 1 end x := x + 2
\end{verbatim}

By a technique similar to the one employed in the proof of Theorem 2 we can show

\begin{align*}
[\text{led.}(x=0) \equiv x=0] \\
[\text{led.}(x=1) \equiv x=1]
\end{align*}
Also since \(x = -1 \iff x = 0 \lor x = 1 \) we know that

\[
\text{led.}(x = 0 \lor x = 1) \iff x = -1
\]

As a consequence, \(\text{led} \) is not finitely disjunctive. (End of Proof)

4 Discussion

We used the technique of defining an operator as an extreme solution of a set of equations to formalize progress properties of parallel programs. We have shown that it is possible to formalize the notion of the weakest predicate that \(\text{leads-to} q \), for any \(q \), by defining a predicate transformer \(\text{led-from} \). We demonstrated that \(\text{led-from} \) and \(\text{leads-to} \) are equivalent in expressive power. We investigated the properties of \(\text{led-from} \) in the context of UNITY and discovered that it was idempotent and monotonic, but neither \(\text{or-continuous} \) nor finitely junctive.

Future work has to concentrate on finding a fixpoint characterization of \(\text{led-from} \) that allows \(\text{led.} q \) to be computed from a given program. Such a definition should drastically shorten the proofs of Theorems 2, 3, and 4. The usefulness of \(\text{led-from} \) will also depend on whether it is possible to prove a number of Meta-Theorems about \(\text{leads-to} \) (e.g., PSP-Theorem, Completion Theorem, cf. [Chandy and Misra 1988]), without resorting to induction on the structure of a proof of \(\text{leads-to} \).

Acknowledgements

We are indebted to Dr. Jayadev Misra for posing the problem and contributing valuable ideas. We would also like to thank the members of the Austin Tuesday Afternoon Club for their comments and suggestions, in particular Edsger W. Dijkstra, who helped clean up the proof of Theorem 1. This work was supported in part by ONR contract N00014-87-K-0510.

References

