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Abstract

Genesis is a software system generator for database management systems that
relies exclusively on as-is large scale component reuse. We review the general
model of software components on which Genesis is based and discuss component
libraries for relational database systems that we have implemented. We then
explain how we evolved Genesis and its libraries to be able to synthesize impor-
tant classes of object-oriented database systems. We study a subproblem of creat-
ing "self-tuning” software systems by examining the performance of selected com-
ponents for object-oriented database systems.
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1. Introduction

Contemporary software design techniques encourage the creation of one-of-a-kind sys-
tems. As a consequence, most software is hand-crafted from scratch. As-is software reuse -
i.e., the reuse of software without modification - is largely constrained to the reuse of plat-
forms (operating systems, graphics packages, etc.) on which new software systems are con-
structed. While platform reuse is indeed important, it does not represent a complete picture
of what is possible.

There are three granularities of as-is software reuse. Small scale reuse (SSR) is the
reuse of algorithms or functions. The Unix function libraries and mathematical libraries are
examples of repositories whose functions are reused as-is. We believe SSR is well-
understood.

Medium scale reuse (MSR) is the as-is reuse of abstract data types (ADTs) or object
oriented classes; i.e., the unit of reuse is a suite of tightly interrelated functions. Object-
oriented programming environments, such as Smalltalk and C++, offer different mechanisms
for reusing classes. Inheritance is one such mechanism. We believe MSR is also well-
understood.

Large scale reuse (LSR) is as-is subsystem reuse; i.e., the unit of reuse is a suite of
tightly interrelated classes or ADTs. As mentioned above, taking a subsystem from some
software system A and a second subsystem from another system B to form a third system, C,
i5 indeed rare. There are no accepted methodologies or techniques for achieving LSR; LSR
is clearly not a well-understood problem.

Our research has focused on domain-specific LSR and has lead to two contributions.
First, we have shown how as-is large scale reuse can be achieved in the domain of database
management systems (DBMSs). We built Genesis, a system that enables customized
DBMSs to be assembled quickly from prewritten, standardized, and plug-compatible com-
ponents [Bat88a-b]. Second, we have extracted a domain-independent model of as-is LSR
from Genesis and its network software counterpart, Avoca/x-kernel [OMa90, Pet90, Hut91].
This model is a blue-print for achieving as-is LSR in mature software domains [Bat92b].

From our experience, large scale software component technologies are indeed possible.
We present in this paper some of our results and experiences and identify open problems in
this important area of software engineering. Although not all readers will be interested in
database-related issues, the basic themes that we address - namely the design of standardized
and plug-compatible components, system synthesis, specification, customization, and optimi-
sation - are fundamental to software component technologies.

We begin with a brief overview of our general LSR model, called the GenVoca model.
The basic idea of GenVoca is to standardize a domain of similar software systems in terms of
a collection of plug-compatible components. We show that software systems of considerable
complexity can be modeled by type expressions, which are compositions of components. We
illustrate these ideas by discussing components that underly relational database systems.

Domains are not static, but constantly evolve through the influx of new technologies.
Object-oriented database systems (OODBMSs) can use some, but not all, of the components
of relational systems. We explain how we have evolved our component library to include
building blocks for class inheritance, so that OODBMSs can be synthesized just like rela-
tional systems. Finally, we examine the performance of inheritance building blocks from the
perspective of self-tuning software.




2. The GenVoca Model

The structure of large scale software systcms can be captured by an elementary model
that reflects the fact that systems are designed as assemblies of components and that com-
ponents fit together in very specific ways. The GenVoca model postulates that components
are instances of types and components themselves may be parameterized. The ways in
which components fit together to form systems is captured by typed parameters and typed
expressions.

Realms. Let R be the interface to one or more classes (say, in C++ [Str91]). Suppose
interface R consists of three classes: I, J, and K. An implementation of R is an implementa-
tion of each of its classes. We call such an implementation a component of R.¥*

In principle, implemehtations (i.e., components) of R are not unique. We define the
realm of R to be the set of components each of which is an implementation of R. Suppose
the membership of Realm R and a second realm, Realm_S, are given below:

"

Realm___R { a, b : € }

i

Realm_S { d[ x:Realm R 1, e[ x:Realm_R ], f[ x:Realm R ] }

Note that interface R has three distinct implementations, namely the components a, b, and
c. Typically each of these components has a distinct implementation for each of the three
classes (I, J, and K) that define R. Similarly, interface S also has three implementations:
components d, e,and f.

Parameters. Components may have parameters. All components of Realm_S, for
example, have a single parameter x of type Realm_R. Each component of Realm_S, say
d[ x:Realm_R ], exporis interface S and imports interface R. That is, component
a[ ] translates objects and operations of S to objects and operations of R. The key idea is
that the translation itself does not depend on how R is implemented; any implementation of
R can be ‘plugged’ into component d[ ] to make d[ ] work. This underscores an impor-
tant property of realms: realms are sets of components that are plug-compatible and inter-
changeable. In the above example where component a was used, components b and ¢
could have been used instead.

Type Expressions. An important consequence of the above is that software systems
can be modeled as fype expressions. Consider the two systems shown below:

system_1 = d[ bl

system 2 = f[ b ]

** A component is the combination of an interface R plus an implementation of each of R’s
classes. So technically the term "component” of R is not equivalent to the term "implementation”
of R. However, the difference is so slight that it is not ambiguous to use both terms interchange-
ably.
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System_1 is a composition of component d with b; System_2 is a composition of
component £ with b. Since both of these systems present the same interface (i.e., both
present S), System_1 and System_2 are also interchangeable implementations of S.

Layers of Hierarchical Systems. The stacking of components in software systems can
be interpreted as the composition of layers in hierarchical software systems. We will use the
terms component and layers interchangeably, although we note that our use of the term
‘layer’ is probably different than its typical ad hoc usage.

Symmetry. A fundamental concept in the GenVoca model is the existence of sym-
metric components. Symmetric components have the unusual property that they can be com-
posed in arbitrary ways. More specifically, a component is symmetric if it exports the same
interface that it imports (i.e., a symmetric component of realm W has at least one parameter
of type W). In the realm shown below, components n{ 1 and m[ ] are symmetric
whereas p[ ] isnot.

Realm_ T = { n[ x:Realm.T ], m[ x:Realm T 1, plI x:Realm R 1, ... }

Because n[ 1 and m[ ] are symmetric, compositions n{m[ 1] and m[n[ ] ] are
possible. Unix file filters are classical examples of symmetric components; file filters can be
composed in virtually arbitrary orders. In general, the order in which components are com-
posed affects both the semantics and performance of the resulting (sub)system.

Reuse. Software reuse is often difficult to quantify [Big89a-b]. A useful byproduct of
the GenVoca model is that as-is reuse is easy to recognize. Consider two systems and their
type expressions. If both expressions reference the same component, then that component is
being reused. System_1 and system_2, for example, reuse component b. More gen-
erally, if two systems have a common subexpression, then they share a common subsystem.

Domain Modeling. As mentioned in Section 1, large-scale as-is component reuse is
unusual in today’s software systems. This is a consequence of the fact that contemporary
software systems are designed to be one-of-a-kind. A different approach to software design
is needed to achieve LSR. The value of the GenVoca model becomes evident when interfaces
and their components are standardized and capture fundamental programming abstractions
of a domain. By having different implementation teams agree to use the same interfaces and
abstractions, component reuse becomes possible. Designing generic interfaces and identify-
ing basic abstractions through an in depth study of existing systems is called domain
analysis, a topic that is currently under investigation [Pri91].

The GenVoca model has been successfully applied to the database and
network/communication software domains [Bat92b]. In this paper, we show how it has been

applied to the database domain. Other applications of the model are discussed elsewhere
[Bat92c, Bat93].




3. Components of Relational DBMSs

Relational and object-oriented DBMSs can share many, but not all, components. Inher-
jtance relationships among classes introduce subtle but important distinctions between
classes and relations that preclude the wholesale interchange of relational DBMS and
OODBMS components.

In order to expose these differences and relationships, we review components of rela-
tional DBMSs that we have built. In Section 4, we build upon these examples and ideas by
explaining the generalizations and additional components that are needed to support inheri-
tance.

We presume a familiarity with database concepts in this and the following two sections.
Software components, in general, encapsulate complex mappings and it helps considerably
to have some familiarity with basic database concepts. This is true for all applications of the
GenVoca model that we have encountered.

As a general rule, the basic paradigm of encapsulation, as stated earlier, is the abstract
to concrete mappings of data and operations. Although simple, this leads to layer/component
boundaries that are quite different than those encountered in ad hoc "layered” systems built
today. We attempt to bridge the unintuitive aspects of our software components by provid-
ing overviews of the ideas being discussed. Ultimately, the correctness of components and
their compositions is borne out through implementation, which we discuss in Section 5.

3.1 Overview

A relational DBMS uses components from many realms. Genesis 2.2 alone supports
thirteen distinct realms; more than twenty have been identified. In order to understand how
structural inheritance impacts relational DBMSs, only three realms need to be considered.
They are FMAP, LINK,and LANG:

FMAP @ * { index[ d4,i:FMAP ], btree, heap, unordered, rle[ x:FMAP 1],

LINK — { pointer_array[ 4d:LINK ], ring_list[ d:LINK ], mjoin[ d4:LINK 1,
nloops| 4:LINK ], link_term[ £:FMAP ], ... }

LANG = { sqll x:LINK ], quel[ x:LINK 1, -.. 1}

As a brief description: FMAP components provide different ways to store relations, LINK
components are different ways of implementing relational joins, and LANG components are
different relational data languages. Each realm is discussed in detail in the following sec-
tions.

3.2 The FMAP Realm

FMAP is the realm of components that presents a procedural interface to files or rela-
tions. (We will use the terms ‘file’ and ‘relation’ interchangeably; we also make no distinc-
tion between the terms ‘record’ and ‘tuple’). Among the exported operations of FMAP are
the retrieval, insertion, deletion, and modification of records.

Each FMAP component maps the records and operations of an abstract file to records
and operations on one or more concrete files. Note that a ‘concrete’ file to one component



-6-

may be an ‘abstract’ file to another. Hence, many FMAP components are symmetric;
rle[x:FMAP] and index[d, 1:FMAP] are two examples that we discuss below.

The rle[x:FMAP] component maps an uncompressed file to a compressed file using
run-length encoding. rle translates operations on uncompressed records into operations on
compressed records. For example, an insertion of a record r is mapped to an insertion of a
run-length-compressed record r’. The parameter x indicates that the mapping performed by
rle does not depend on how compressed records are stored. Thus, the rle component
defines a generic mapping which can be reused in many contexts.

The index[d,i:FMAP] component maps an abstract file to an inverted file that has
exactly one concrete data file and zero or more concrete index files. Operations on abstract
records are translated by index into operations on data records and index records. Param-
eter d is the implementation of the data file, and parameter i is the implementation of the
index files. This parameterization means that the mappings of index do not depend on
how data records and index records are stored.

Terminal FMAP components (i.e., components without parameters) are file structures,
such as btree, heap, and unordered.

Example 3.1. Suppose a relation is mapped to an inverted file, where tuples are stored
in a heap structure and index files are stored in B+ trees. The composition of FMAP
components that defines this mapping is F1:

F1 = index[ heap, bplus ]

To appreciate the large number of details this compact expression hides, recall that the gen-
eral paradigm for operation mapping is: a layer receives an operation, it performs local pro-
cessing (e.g., updates) that is triggered by the received operation, and then the layer transmits
the operation to the next lower layer(s). This process repeats until the lowest layer (i.e., a ter-
minal or nonparameterized component) is reached. Consider the following.

Suppose tuples are 0 be retrieved from a relation that is stored according to F1. The
retrieval operation of the top-most layer (ie, index) is called. This operation is mapped
by index into a retrieval of data records and index records; data record retrievals are
mapped by heap into heap retrievals and index record retrievals are mapped by bplus
into B+ tree retrievals.

Now consider what happens when a tuple is to be updated. The update operation of the
index layer is called. index updates the index records that are affected by this change,
and then passes the update to the next lower layer (which is heap). heap, in turn, makes
the changes to the record in heap storage. The updates of index records are processed by
bplus.

Example 3.2. Suppose the relation in Example 3.1 is to be compressed via run-length
encoding after indexing but before heap storage. The composition of FMAP com-
ponents that defines this mapping is F2:

F2 = index[ rlel heap 1, bplus ]




3.3 The LINK Realm

A link is a logical relationship between two files; link traversals are relational join
operations. LINK is the realm of components that presents a procedural interface to both
files and links. This means that LINK components map both file and link operations.

Although links are not part of the relational model, they are central features of semantic
data models, and to a lesser éxtent, of object-based data models [BCN92, ACM91]. In the
following discussions, we depart slightly from the relational model by admitting explicit
links.

Every link in a database schema is tagged with an implementation. A LINK com-
ponent encapsulates a mapping of a database of conceptual files and tagged conceptual links
to a less-abstract database where links of a given tag have been removed. In essence, a
LINK component rewrites operations on links (with 2 given tag) into file operations. Classi-
cal LINK components include nonpointer-based methods (i.e., join algorithms of merge-sort
mjoin and nested loops nloops) and pointer-based methods (e.g, pointer_array
and ring_list). Consider the following examples.

Example 3.3. Suppose relations of a database are stored in B+ trees. Links between
relations are implemented as either ring lists or pointer arrays. The compositions of
LINK and FMAP components that define this mapping are X1 and X2:

X1 ring_list]| pcinter_array[ link_term[ bplus ] 11

it

X2 pointer,array{ ring_list]| link_term[ bplus ] 11

To understand what these expressions mean and how they differ, consider how join and file
operations are mapped.

When a query requires a join, a join cursor (also called a link cursor) is created and
tagged with the name of the layer that is to perform the link traversal.** In X1 and X2, the
only legal tags are ring_list and pointer_array. (Although query optimization
has not yet been discussed, it is the query optimizer that creates the cursor and tags it). Thus,
if a join cursor is tagged with ‘pointer_array’, the pointer_array layer will per-
form the join; if the cursor was tagged with ‘ring_list’, the ring_list layer per-
forms the join.

When a join cursor is initialized, the join initialization operation of the top-most layer is
called. If that layer recognizes its tag on the join cursor, it performs the cursor initialization.
Otherwise, it does nothing and passes the cursor to the next lower layer. Eventually, a layer
is encountered that recognizes the tag and performs the initialization.

What happens if a cursor is incorrectly tagged? The link_term component is
responsible for resolving this question. All 1link_term does is to trap link operations and
report them as errors; no layer above link_term recognized the tag of the join cursor and
thus no layer above link_term processed the operation. Such errors are ‘fatal’ because

¥% A cursor or iterator is a run-time object that is used to reference records within files [Kor91,
ACMI1].
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they should never occur in a correctly functioning DBMS or query optimizer. In effect,
1ink_term provides a run-time safety net.**

When a join operation is performed, the layer L that is responsible for the join issues
file retrieval operation calls. These calls are transmitted through LINK layers beneath L
without modification. (The reason is that file retrieval operations, in general, are identity
mapped by all LINK layers). The processing of file retrieval operations begins at the first
FMAP layer that is encountered.

The difference between X1 and X2 is the order in which update operations are pro-
cessed by pointer_array and ring_list. In X1, update operations are first pro-
cessed by the ring_list layer and only after all ring list interlinkages are made will the
update operation be propagated to the pointer_array layer; the opposite is true of X2.
For practical purposes, this is an insignificant difference. (Generally the ordering of layers is
important, but in this particular example it is not significant).

Example 3.4. IBM’s DB2 stores relations in a manner similar to that of F1. DB2 also
uses merge-join and nested loop algorithms to implement links. The expressions that
define this mapping are X3 and X4:

%3 = nloops|[ mjoin| link_term[ F1 ] ] 1

As in the case of X1 and X2, there is no practical difference between the ordering of the
nloops and mjoin layers in X3 and X4: both expressions denote semantically
equivalent systems.

3.4 The LANG Realm

LANG is the realm of components that presents a nonprocedural data language interface
to a database of files/relations and links. Each LANG component embodies a query optimizer
that translates nonprocedural queries into efficient expressions that reference operations on
conceptual files and conceptual links. Each LANG component is parameterized by the
method in which links between conceptual files are implemented. This parameterization
means that the mappings of LANG components do not depend on how conceptual links or
conceptual files are implemented. Classical LANG components include SQL- and QUEL-
based languages.

Expressions of type LANG correspond to relational database systems. Consider the fol-
lowing two examples.

Example 3.5. IBM’s DB2 presents an SQL interface on top of a file-and-link database
that is stored according to X3. The expression that defines DB2 is:

D1 = sglf X3 1

** 1ink_term[x:FMAP] also serves the useful purpose in type expressions as the place to in-
sert FMAP components; LINK components generally do not have FMAP parameters.
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Example 3.6. A DBMS that presents an SQL interface, implements links by nested
loops and pointer arrays, and stores relations in an inverted file, where both data files
and index files are stored in isam structures is:

D2 = sqll nloopsl ptr_arrayl link_term[ index[ isam, isam 1 1 1 1 1

It is worth noting that D1 and D2 are among the many relational DBMSs that we have built
with the components that have been listed. Each system consists of approximately 70K lines
of C.

3.5 Operational Aspects

Database schemas are defined in the Genesis Data Definition Language (DDL), which
is an amalgam of concepts taken from different relational and Entity-Relationship (E-R) data
definition languages. A schema is a collection of file or relation declarations followed by a
list of zero or more links declarations. A link is defined by its name, followed by a join
predicate that specifies the relationship between two files. Figure 3.1 shows the schema of an
atlas database, which consists of three relations: nation - which describes a nation,
border - which records what nations border on each other, and inventor - a table of
inventions and the nation in which each invention was created, and two links
invented_in - which connects nat ion tuples to inventor tuples, and
borders_on - which connects a nation tuple to its related border tuples.

Implementation hints are indicated by tags, which are exported by the components that
define a DBMS. The tags present in Figure 3.1 are consistent with the DBMS (mapping) of
D2 of Example 3.6: primary_key is exported by isam, indexed is exported by
index, and ptr_array isexported by ptr_array.

The semantics of each tag is straightforward. The indexed tag is used to adorn attri-
butes for which secondary indices are to be created (e.g., nation.name and
inventor.category). The primary_key tag adorns attributes that define the pri-
mary key of a relation. The primary key of nationis nation_code; the primary key
of border is compound (nationl, nation2); and the primary key of inventor is
compound (invention, name). The ptr_array tag adorns links to indicate a
pointer-array implementation (e.g., invented_in). If a link has no tag (e.g.,
borders_on), then a join algorithm is assigned by the query optimizer. (Note thatin D2,
the algorithm would be nested-loops).
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DATABASE atlas {

RELATIONS
nation {
nation_code INT primary_key /* nation code
name CSTRING ( 30 ) indexed /* name of nation
capital CSTRING ( 30 ) /* name of capital city
sgmile INT /* size in sg miles
population INT /* population of country
1
border {
nationl INT primary_key ;
nation2 INT primary_key ;
north BOOLEAN ;
south BOOLEAN ;
east BOOLEAN ;
west BOOLEAN ;

}

inventor {

category CSTRING ( 20 ) indexed /* general category
invention CSTRING ( 30 ) primary_key /* specific invention
name CSTRING ( 30 ) primary_key /* name of inventor(s)
year INT /* year of invention
nation_code INT /* nation code

i

LINKS

/* 1:n links */

invented_in : nation.nation_code = inventor.nation_code ptr_array

borders_on : nation.nation_code = border.nationl

Figure 3.1 An Example Schema

The query language of D2 (provided by Genesis) is standard SQL with one embellish-
ment: link names can be substituted in place of their join predicates. For example, to retrieve
the name of the inventions created in Mexico can be written in two equivalent ways:

select invention select invention

from nation, inventor from nation, inventor

where nation.name = "Mexico" and where nation.name = *Mexico"
nation.nation_code = inventor.nation_code and invented_in

3.6 DaTE - Putting It All Together

As type expressions are not the easiest notation to read, Genesis has a layout editor,
called DaTE, which enables components of different realms to be composed graphically

*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
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[Bat92a]. DaTE (Database Type Editor) is, in essense, a visual module interconnection
language which allows university-quality relational DBMSs to be easily specified in about
ten minutes. An output of DaTE is a set of configuration files, which when compiled with
the Genesis library, produces the target DBMS. The DBMS that is generated is untuned
because tuning constants - that are part of every component - are assigned default values. By
performing benchmarks, it is possible to tune the generated software by selectively altering

these constants and recompiling. We will return to this issue in Section 3.

Another purpose of DaTE is to enforce design rules. All the components that we have
presented sofar can be composed without restrictions. In general, composition restrictions -
beyond matching type signatures of components - do exist. For example, some components
(in other database realms) cannot work in the presense of other components; similarly, some
components can only work when other specific components are present. DaTE enforces
these restrictions (called design rules) to ensure that all DaTE-specified DBMSs are correct.
Further discussions on DaTE and design rule checking are presented in [Bat92a-b].

3.7 Recap

Relational DBMSs can be assembled into seamless compositions of components. We
have reviewed three realms of components whose compositions form the backbone of rela-
tional DBMS implementations. The (sub)systems we have described are among the many
that have been built with Genesis.

The sizes of the components that we have discussed are tabulated in Figure 3.2. Some
of these values are estimates, as the source code for several components (e.g., quell ]
and sqll 1) overlap considerably, making it difficult to clearly associate specific lines of
code with individual components. Although 18K lines of source are specifically attributed to
the components in Figure 3.2, there is approximately 37K lines of utilities (for query evalua-
tion, buffering, recovery, etc.) and 9K lines of headers that are shared by most components.
Thus, the size of DBMSs that are generated by Genesis can be quite large. Genesis source
itself totals over 130K lines of C.

realm component lineg of C

FMAP index 1400
rle 1000
bplus *2000
heap *1000
LINK ptr_array 2400
ring_list 3100
nloops 1000
mjoin 1050
LANG sgl *2600
quel *2600

* means estimated

Figure 32 Size of Components
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We remind readers that we have deliberately simplified the type expressions that have
been presented. Issues of page buffer management, recovery, method of blocking records,
primitive data types, etc. are encapsulated in their own components, whose presense are
implicit in these expressions. Again, this is to help restrict our discussions only to the
relevant issues of comparing components of relational and object-oriented DBMSs in
Genesis.

In the next section, we examine components for object-oriented DBMSs and how some
of these blocks have evolved from their relational counterparts.
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4. Components of Object-Oriented DBMSs

A basic feature that distinguishes relational DBMSs from OODBMSs is the support of
inheritance. Certainly there are other features, such as user-defined data types, user-defined
operators, a close coupling with programming languages (e.g., C++ or CLOS), and possibly
different concurrency control mechanisms, but these features have been present in relational
systems in the past [Sch77, Sto85, Alb85]; it is the support of inheritance that we believe is
the fundamental distinction between relational and OODBMSs. In this section, we will focus
exclusively on the important problem of encapsulating implementations of inheritance as
GenVoca components.

We differentiate the terms ‘classes’ and ‘relations’ in the following way. One can
indeed visualize objects of a class and their attributes in a tabular form, just like tuples of a
relation. However, classes are related via inheritance whereas relations are not. Thus, an
object in one class is also an object in all of its super classes; there are no corresponding con-
cepts such as ‘super relations’ or ‘sub relations’ in the relational model. This difference
leads to the distinctions between relational and object-oriented components in Genesis.

OODBMSs consist of as compositions of components that belong to three realms. They
are CMAP, CLINK,and CLANG:

CMAP = { class_index[ d:CMAP, i:FMAP ], store_all[ d:FMAP, o:FMAP 1,
store_few[ 4d:FMAP, o:FMAP 1, I

CLINK ~ { oo_pointer_array[ f:CMAP ], oo_ring_list[ £:CMAP ],
oo_mjoin[ £:CMAP ], oo_nloopsl| £:CMAP J, ... }

CLANG = { oosgl[ x:CLINK ], ooquell %:CLINK ], postquel[ x:CLINK ]

As a brief description: CMAP components provide different ways of storing classes, CLINK
components offer different ways of joining objects in one class with objects in another, and
CLANG are different object-oriented query languages. Each realm is described in the follow-
ing sections.

4.1 The CMAP Realm

CMAP is the class counterpart to FMAP: CMAP is the realm of components that present
a procedural interface to classes. CMAP components implement retrieval, insertion, dele-
tion, and modification operations on objects.

Each CMAP component transforms an abstract object class to one or more concrete
object classes. Like their FMAP counterparts, CMAP components can be symmetric. An
example is class_index[d:CMAP,i:FMAP]. The primary CMAP components are
those that implement inheritance; they are store_alll ], store_few[ ], and
store_trunc[ 1. The mappings of each are outlined in the following paragraphs.

Class Indexing. The class_index[d:CMAP, i:FMAP] component is the class
counterpart to index([d:FMAP, 1:FMAP]. It encapsulates the mapping of an abstract
class to an inverted class [Mai86, Kim87]. This mapping differs from index[ ] in the
following ways: if an attribute A of class C is indexed, then attribute A of all subclasses of C
are also indexed. Thus, when an object of a subclass C’ of C is inserted, it is indexed on
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attribute A.

An index file for attribute A is a set of <value, class, oid> tuples. oid is the identifier of
the object that has value as its A attribute; class is the identifier of the class in which the
referenced object was initially inserted. The class attribute is not present in FMAP index
records, which are simply <value, rid> tuples where rid is a record id. The class attribute of
oid tuples differentiates objects in subclasses of C. Suppose all objects from class C’ are to
be retrieved that satisfy the predicate (A=v) for some value v. C’ is a subclass of C. By exa-
mining the class value of an index record, it is easy to determine if the referenced object
belongs to C’ or any of its subclasses. If so, this object is returned. If the object is not a
member of C’ (and hence, is a member of a superclass of C’), it is not returned.

These differences require subtle but not significant changes to the relational component
index[ 1. In fact, only eight percent (130 lines out of 1500 lines of C code) of
index|[ ] was modified to produce class_index| 1. In our experience, converting
FMAP components to their CMAP counterparts has not been difficult. Later we will see that
some components do not change at all.

There are many ways of implementing inheritance relationships between classes. Every
method known to us defines a 1:1 correspondence between each class of a database and an
implementing relation. Methods differ in the ways objects are mapped to tuples. Below we
discuss three methods that we have implemented. As stated earlier, each can be understood
as a mapping of a database with inheritance relationships to a database without inheritance
relationships.

Store All. The store_all[d:FMAP,i:FMAP] component relies on tuple replica-
tion as a method to implement class inheritance. Every class C has a corresponding relation
RC where each attribute of C is also an attribute of RC. The object’s identifier is technically
not an explicit attribute of the object (although one can think of oids in this way). However,
oids are stored explicitly as a field in RC tuples. Each object ¢ in C is represented by a tuple
rc in RC, where for each attribute A, c.A = rc.A (i.e., attribute values of each object equal the
attribute values of the corresponding tuples). Figure 4.1 shows three classes, I, J, and K,
along with their corresponding relations, RI RJ, and RK. Note the identity of the tabular
representations of each class and its relation.

To maintain the identity of tabular representations, inheritance requires each object ¢ of
class C to be an instance of each superclass C" of C. This means that there is a correspond-
ing tuple rc" for object ¢ in each relation RC", the relation underlying C". The
store_all mapping clearly makes object insertions expensive. However, the benefit is
that retrievals are inexpensive: retrieving objects from class C is equivalent to retrieving
tuples from relation RC.

An integral part of the store_all mapping is the creation of an oid index. An oid
index is a file of <oid, rid> tuples that define the correspondence between object identifiers
and record ids. Whenever a tuple is stored by an FMAP component, it is assigned a record
id. Depending on the storage structure used, a record id could be physical address or it could
be a symbolic address. (Heap storage, for example, would assign physical addresses to
records; B+ trees, in contrast, assign symbolic keys because records do not have permanent
physical addresses in B+ tree structures). At the class interface, record ids are no longer visi-
ble and are replaced by object ids (which are 4-byte integers). To fetch an object from its oid
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1 x4y 1 xU vy

2 |x3y2 2 Ix3v7

3 x3y3 3 x3y3

4 x4v4 4 x4v4

5 {x8¥y5 5 x8vH
Class J (subclass of I) Relation RJ

3 x3y3z 3 |x3y3z3

4 x4v4z4 4 |x4v4:z4

5 |x9vyHzH 5 |x83vYH 2y
Class K (subclass of J) Relation RK
[oia]x]¥ [z |w] , [oia[x]y ]z ||

3 x3yJz3w 3 xIyJz3Iw
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(a) Class Representation (b) Store_All Representation

Figure 4.1 The Store All Mapping

requires a translation of the oid into an rid; this translation is the purpose of the o0id index.

store_all has two parameters d:FMAP and i:FMAP. d specifies the implemen-
tation of the relations that are created, while i specifies the implementation of the oid file.
store_all does not depend on how its relations or oid index are stored.

Store Few. The store_few mapping, in contrast, does not rely on tuple replication
[Sto86]. As before, every class C has a corresponding relation RC. However, each object ¢
in C is represented by a single tuple rc in RC iff ¢ does not belong to any subclass of C. If ¢
belongs to a subclass of C, then it is not explicitly represented in RC. Figure 4.2 shows the
same three classes as in Figure 4.1 along side the relations that are created by store_few.

The store few method makes object insertions inexpensive; only a single tuple insertion
per object insertion is made. However, retrievals tend to be more expensive than
store_all since retrieving objects from C requires the retrieval of tuples from relation
RC and relations that correspond to all subclasses of C.

Store Trunc. The store_trunc mapping is a variation on store all; it eliminates
the redundant storage of attribute values [Fis87]. Once again, every class C has a
corresponding relation RC where the attributes of RC include the oid and the attributes of C
that are not inherited. Every object ¢ in class C has a corresponding tuple rc in relation RC.
The difference with store_all is that inherited attribute values are not replicated in
store_trunc. The tables in Figure 4.3 illustrate this mapping.
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Class I Relation RI
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(a) Class Representation (b) Store_Few Representation

Figure 42 The Store Few Mapping

store_trunc makes updates more efficient than store_all, simply because
redundant attribute values have been eliminated. The tradeoff is a higher cost for retrieval;
to retrieve all attributes of an object in class C requires a join over the oid field of the rela-
tions that correspond to C and its superclasses.

4.3 The CLINK and CLANG Realms

CLINK is the class counterpart of LINK: it is the realm of components that presents a
procedural interface to both classes and links between classes. Thus, the CLINK interface
provides a superset of the operations exported by CMAP.

Join algorithm components, such as nested loops and merge joins (oo_nloops[ 1,
oo_mjoin[ 1), are identical to their LINK counterparts. Components that connect
objects via pointers (oids), such as pointer arrays and ring_lists (co_ptr_arrayl 1,
oo_ring_list[ 1), are slightly different than their LINK counterparts. (Recall that
LINK components augment fields to both the parent and child relations of a link. A CLINK
component goes a step further by propagating augmented fields to all subclasses of the parent
and child classes. Asin the case of class_index[ ] these differences are marginal).

CLANG is the class counterpart of LANG: it is the realm of components that present
nonprocedural data language interfaces to a database of classes, links, and inheritance rela-
tionships. Standard relational interfaces, such as SQL and QUEL, can be used to query and
update objects in a OODBMS. (In fact, our oo_sql[ | and oo_qguel[ ] components
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Figure 4.3 The Store Trunc Mapping

are identical to their LANG counterparts). This is not to say that object-oriented query
languages are the same as relational languages; it is more of the case that relational
languages provide a subset of the capabilities of OO languages. We may eventually supple-
ment the CLANG realm with the postquel[ ] and ogl[ ] components.

4.4 Object-Oriented Database Systems

Expressions of type CLANG denote object-oriented database systems. Consider the fol-
lowing examples.

Example 4.1. System B1 presents a Quel interface. It implements links by merge join
and nested loop algorithms. Classes are indexed, where index files are stored in B+
trees. Classes are mapped by store all, where the oid index is stored in a B+ tree and
the underlying relations are stored in heaps. The expression that defines Bl is:

Bl oco_quel| oco_mjoin| oo_nloops{ oo_term link[ B1' 1 1 ] ]

n

Bl’ = class_index[ store_all{ heap, bplus ], bplus ]
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Example 4.2. System B2 differs from B1 in that it presents an SQL interface, uses
store few to implement class inheritance, and compresses its tuple representation of
objects prior to storage in heaps. The oid and attribute indices are stored in isam struc-
tures. The expression for B2 is:

B2 oo_sqgll oo_mjoin{ oo_nloops| oo_term_link[ B2’ ] 111

B2 class_index| store_few[ rle[ heap . isam ], isam ]

)

B1 and B2 are among the many OODBMSs that we have been able to synthesize from com-
ponents in the CLANG, CLINK, CMAP, and FMAP realms. The approximate size of
each system is 75K lines of C.
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5. Performance Results

The availability of components makes it very easy 1o reconfigure a software system.
The number of distinct relational DBMSs that can be formed from the components listed in
Section 3.1 is over 350 and the number of distinct OODBMSs that can be formed from the
components listed in Sections 3 and 4 is over 2500.%* As the number of components
increases, the number of systems that can be assembled grows exponentially.

A unique and important feature of software component technologies (as we have
described them) is the possibility of enumerating a spectrum of different software systems.
An important question arises: what combination of components yields the system (in our
case a DBMS) with the best performance for a given workload? An interesting variation on
this problem is "self-tuning" software. A software system monitors its workload and periodi-
cally optimizes and reconfigures itself as its workload changes. These are clearly fundamen-
tal and formidable optimization problems. As we have noted even for a small number of
components, the number of possible systems is enormous. Heuristics must be used to limit
the search space of possibilities.

Our first steps to address both problems are modest: we are attempting to understand the
tradeoffs of using different components in various situations. We take an experimental
approach in this paper to compare and contrast the performance of the store_few,
store_all,and store_trunc components under different workloads. By understand-
ing their tradeoffs better, we believe in the long run it is possible to formalize these tradeoffs
as DBMS design heuristics.

The DBMSs that we will use in our experiments present an SQL interface, use nested
loop and merge join algorithms, perform class indexing and store oid and attribute indices in
B+ trees and data records in unordered files. The type expressions that define this system is:

ODBMS( vy )

i}

oo_sqll oo_nloops| oo_mijoin|{ oco_linkterm[ SS(y) ]

8S(y) class_index[ yI unordered, bplus], bplus ]

il

where parameter vy is to be instantiated by the components store_all, store_few,
and store_trunc.

In the following sections, we survey numerous conditions and assumptions associated
with experiments of this type to give readers an idea of the difficulty of addressing these
problems.

5.1 Synthetic Databases

The complexity of a database can be described by the number of classes, the inheritance
relationship among classes, the number and type of attributes per class, the distribution of
attribute values that are assigned to objects, and the number of objects per class. Varying
each of these parameters can alter a database noticeably and hence can affect the overall

#* 350 and 2500 estimate the number of legal type expressions that can be formed from the com-
ponents in the realms of Sections 3and 4.

]

]

]
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performance.

Unfortunately, it is not clear what are typical values for each of these parameters. We
propose to assign values that are outwardly reasonable, knowing full well that any set or
range of values that we could have used would be inherently incomplete. Our goal is not to
be exhaustive in quantifying tradeoffs, but rather to improve our insight about the strengths
and weaknesses of different implementation methods.

We adapted an approach taken in the Wisconsin Benchmark to generate synthetic
classes [Bit88]. We examined class hierarchies that are a linear chain of classes where the
number of classes ranges from two to five. Every class is originally empty. At database load
time, 2000 objects are inserted into each class; thus in a linear hierarchy of five classes, the
root class would have a total 10000 distinct objects; in a hierarchy of two classes, the root
would have 4000 objects.

To further minimize database complexity, we assume that all attributes are uniform. In
particular, attributes are strings 10 bytes wide. "Rotating" character strings are assigned to
each attribute as prescribed in [Bit88], where the selectivity of an attribute is 1/100.** The
root class has six attributes; each subclass specializes its superclass by adding another two
attributes. In a hierarchy of n classes, objects in the leaf class are 60 + n*20 bytes wide (n=5
—> 160 bytes).

We settled on this particular database for several reasons. First, the uniformity assump-
tions (if not the values) chosen are similar to those used by other researchers in experimental
or analytic models [Kim86, Bit88, Sel79]. Second, these databases are among the simplest
that could be generated. Clearly, more complex and varied classes and class hierarchies
could have been considered, but we felt that the essence of the algorithms and their tradeoffs
would be more clearly exposed by a simple database.

In the following, we report averaged results over a set of experiments that were run on a
diskless SparcStation 1+.

5.2 Load Performance

Figure 5.1 shows the CPU time (system plus DBMS) that was needed to load the syn-
thetic databases. Database loading is a sequence of object insertions into an initially empty
database and thus reflects insertion (and more generally, update) performance.

As expected, store_few is the fastest, while store_trunc and store_all
were progressively slower. Although the database grows linearly (in terms of objects
inserted) as the number of classes increases, the performance of store_all and
store_trunc is nonlinear. Each time an object is inserted into class C, a projected object
is inserted into each of C’s superclasses, leading to an O(d?) behavior, where d is the depth of
the inheritance lattice. Thus, for deep lattices, there will be a substantial difference in the
performance of store_fewthan store_all and store_trunc for insertion (and in
general, for updates).

** The selectivity of an attribute is the average fraction of a relation that has a given value for that
attribute. A selectivity of .01 means that an attribute has 100 unique values and that .01*n objects
on average in a class of n objects will share a given value.
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Figure 5.1 Insertion/Load Performance
5.3 Synthetic Retrieval Workloads

There are at least three degrees of freedom in categorizing retrieval workloads: predi-
cate selectivity, attribute selection, and queried class. Each category has two possible
subclassifications which are described below.

There are two basic types of selection predicates: those that can be processed using an
index and those that can not. The latter type of query requires the examination of every
object in the class (i.e., 2 scan) to determine the objects that satisfy the selection predicate.
Indexable predicates were of the form (Root_Class.Attribute = value) while the nonindexable
predicate that we used was ‘true’ (i.e., all objects qualified).

Two different types of projection lists can accompany a selection predicate: either all
attribute values of an object are retrieved or just the value of a single attribute. To maximize
the performance differences between store_trunc and the other methods, we made the
retrieved attribute different than the attribute on which objects were qualified.

Another way to maximize performance differences between the various inheritance
methods is to direct queries to both the root of a class hierarchy and to the leaves. In Figure
5.2, we list eight different query types that reflect the different possibilities of selection
predicates, projection lists, and classes referenced in queries.

Selection Projection ~ Class
Query __ Predicate Type Queried
Q0 nonindexable  one leaf
Q1 nonindexable  all leaf
Q2 nonindexable  one root
Q3 nonindexable  all root
Q4 indexable one leaf
Q5 indexable all leaf
Q6 indexable one root
Q7 indexable all root

Figure 52 A Classification of Query Types
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In the following paragraphs, we examine the performance of each query class. We begin
with queries QO and Q! as they reveal performance information that is relevant to interpret-
ing the performance graphs for all other queries. The graphs depicted in the subsequent
figures are the average CPU time consumed by the system and DBMS over 70 different
queries for each of the eight query types. CPU time is plotted with respect to the number of
classes in the database.

Queries Q0 and Q1. Figure 5.3 shows the performance graphs for queries QO and Q1.
Both of these queries scan the bottom-most class of a class hierarchy; they are different in
that QO retrieves a single attribute for all objects whereas Q1 retrieves all attributes. Both
queries return the same number of objects (2000).
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Figure 5.3 NonIndex-Processable Queries on the Leaf Class (Q0 and Q1)

Although outwardly it would seem that graphs for Q0 and Q1 should be similar, they
are clearly very different. Consider the graph for Q0. store_trunc is by far the most
efficient, as we would expect, since only one relation (containing rather short tuples 24 bytes
wide) is scanned. For store_all and store_few, the size of the tuples that are being
retrieved varies with the number of classes. Specifically, the length of a tuple is 64+20*n,
where n is the number of classes.** The nonlinear behavior of the store_few and
store_all graphs is explained by the number of blocks that must be accessed to scan the
underlying relation. At n=2, four tuples can be stored inside a block of 512 bytes; at n=3 and
n=4, three tuples can be stored per block; and at n=5, only two tuples can be stored per
block. As the number of tuples remains constant, the stair-stepped graph merely reflects the
number of blocks that are accessed in a relation scan (where the relations in cases n=3 and
n=4 are packed into the same number of blocks).

** The width of an object is 60+20%n bytes. The width of its underlying tuple is 64+20%n bytes.
The additional 4 bytes is the oid that is stored.
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In contrast, when all attributes are to be retrieved, store_trunc performs the worst.
The reason is that attribute data for individual objects is stored in different relations; simul-
taneously retrieving from different relations - in particular when there is a limited amount of
buffer space - causes a significant increase in retrieval costs. On the other hand,
store_few and store_all do not fragment attribute data of an individual object,
thereby reducing the number of blocks that need to be in DBMS buffers at any one time.
(The graph for store_all and store_fewis still stair-stepped, but the effective slope
is rather flat compared to that for store_trunc). Although the result that store_few
can be significantly better or worse in performance than store_all and store_fewis

not surprising. However, we were surprised at the magnitude of the performance differ-
ences.

Queries Q2 and Q3. Figure 5.4 shows the performance graphs for queries Q2 and Q3.
Both of these queries scan the topmost class of the class hierarchy; the only difference is that
Q2 returns a single attribute per object whereas Q3 returns all attributes. The number of
objects that are returned increases with the number of classes. (The reason is that the selec-
tivity is fixed at .01, but the number of objects in the root is 2000*n, where n is the number
of classes in the class hierarchy). It is for this latter reason that the graphs overall are linear
in nature.
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The performance of store_all is slightly better than that of store_few and
store_trunc. The reason is that there appears to be less overhead in initializing
retrievals. As these overheads are constants, it is possible that a tuned version of these com-
ponents would reduce their differences further to the point where the same basic perfor-
mance would be noted. Such tuning is a subject of future work.

Queries Q4 and Q5. Figure 5.5 shows the performance graphs for queries Q4 and Q5.
Both of these index-processable queries are directed at the leaf class of the inheritance lat-
tice. The main difference between these queries is that Q4 returns a single attribute whereas
Q5 returns them all. Similar to queries QO and Q1, the number of records returned is the
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same, no matter how many classes exist in the hierarchy. (Once again, the query selectivity
is constant (.01) and the number of objects in the leaf class remains fixed at 2000). Thus, we
would expect performance graphs to be linear because of the random-access nature of pro-
cessing queries using indices. In particular we would expect a horizontal graph (i.e., a line
with no slope) at least for store_few and store_all.
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Figure 5.5 Index-Processable Queries on the Leaf Class (Q4 and Q5)

In reality, the plotted graphs have a slight slope that increases with the number of
classes. This is because of three reasons: (1) the length of tuples that are stored increases
linearly with the number of classes. As tuple length increases, more blocks are needed to
store the relation. This, in turn, means that a block in the DBMS buffers is less likely to be
needed for subsequent random accesses. The net effect is that slopes of performance graphs
should increase (slightly) as the number of classes increases.

(2) Because we are dealing with class indexing, as the number of tuples increases there
is a logarithmic increase in searching B+ tree index structures. And (3), the overheads for
initializing a retrieval for the three different methods are different. In this particular case,
initialization for store_few retrieval is slightly less than that for store_all. We
expect a tuning of the store_all and store_few algorithms would minimize this
disparity. store_trunc is the least efficient of the three. The reason is more initializa-
tion overhead and that in the case of retrieving all attributes (query Q5), multiple relations
must be accessed.

Queries Q6 and Q7. Figure 5.6 shows the performance graphs for queries Q6 and Q7.
Both of these index-processable queries are directed at the root class and as in the case of
queries Q2 and Q3 the number of objects that are retrieved increases linearly as the number
of classes increases. The difference between Q6 and Q7 is that Q7 retrieves all attributes of
selected objects, whereas Q6 returns only one attribute.

The graphs for all methods are linear as expected. store_all is more efficient than
store_few and store_trunc. The differences in performance we have seen earlier:
less initialization overhead contributes a constant difference, larger tuple sizes (with
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increasing numbers of classes) raises the number of blocks that are likely to be accessed, and
logarithmic increases in the depth of B+ trees (with increasing numbers of classes) contribute
to the non-zero slope of these graphs.
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Summary. Software component technologies offer the possibility of easily customiz-
ing software systems to a particular application. Behind this potential lies very challenging
and yet unsolved problems. On the one hand, how does one search the enormous space of
possibilities to reduce the number of potential systems to examine? On the other hand, how
does one actually evaluate a given assembly of components? From our experiments, while it
appears that specific interactions between components are hard to anticipate, the general
expectations of the behavior of specific components are reinforced.

The ultimate goal is to automate the customization of software systems given workload
input. This opens up the possibility of self-tuning software systems which reconfigure them-
selves periodically, using actual workloads to drive the optimization. Much more work is
needed to solve this interesting problem.
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6. Conclusions

Large scale component reuse technologies are realizable. We created such a technol-
ogy by exploiting the maturity of the domain of relational database management systems.
We studied many such systems to discover a uniform and standard means by which all sys-
tems could be "conceptually" decomposed. The resulting components were primitive build-
ing blocks that could be used in the construction of many relational systems.

We presented a model of large scale component reuse that identified components with
parameterized types and software systems with type expressions. We used this model to
describe different libraries (called realms) of plug-compatible components that form the
backbone of relational systems.

Software domains are not static, but are constantly evolving through the influx of new
algorithms and ideas. Domain evolution means that new components and new realms must
occasionally be introduced. This paper explained how we had to add new realms of com-
ponents to be able to synthesize database systems that supported inheritance. It is well-
known that the introduction of inheritance impacts many parts of a relational DBMS to the
extent that not all relational components can be reused "as-is" to construct OODBMSs. Our
research confirmed this finding. Moreover, the changes needed to convert relational com-
ponents into their object-oriented counterparts was indeed slight (i.e., less than 10 percent of
a relational component’s source code was changed). More importantly, the basic software
component model that we defined was invariant to these additions; the inclusion of new
realms or new components did not invalidate existing components nor the methods by which
software systems were constructed.

A fundamental property of software component technologies as we defined them is the
ability to generate a spectrum of systems. This opens up the possibility of being able to
optimize the design of a system by appropriately selecting and composing the components
that are best suited for the application at hand. Another version of this problem is for a sys-
tem to periodically record its workload and to automatically reconfigure and optimize itself
as the workload changes. Thus, the possibility of creating "self-tuning" software systems
may be a benefit of software component technologies.

We also examined the performance tradeoffs of different inheritance components under
different workloads, viewing this particular study as a means to better understand the prob-
lems that will confront researchers in realizing "self-tuning" software. From our experi-
ments, it is clear that specific interactions between components are hard to anticipate, but the
basic behavior of individual components was easy (o understand. Creating tools that can
accurately predict the interaction of components is central to realizing "self-tuning" software
systems. We believe that this will be a challenging and exciting problem for future study.
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