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Abstract

In this paper, we give a straight forward, highly efficient, scalable tmplementation of common matriz multipli-
cation operations. The algorithms are much simpler than previously published methods, yield better performance,
and require less work space. MPI implementations are given, as are performance results on the Intel Paragon
system.

1 Introduction

It seems somewhat strange to be writing a paper on parallel matrix multiplication almost two decades after
commercial parallel systems first became available. One would think that by now we would be able to manage
such an apparently straight forward task with simple, highly efficient implementations. Nonetheless, we appear
to have gained a new insight into this problem.

Different approaches proposed for matrix-matrix multiplication include 1D-systolic [14], 2D-systolic [14], Can-
non’s algorithm [5, 14], Broadcast-Multiply-Roll [12, 13], and the Transpose algorithm [19]. Two recent efforts
extend the work by Fox et. al. to general meshes of nodes: the paper by Choi et. al. [8] uses a two-dimensional
block-wrapped (block-cyclic) data decomposition, while the papers by Huss-Lederman et. al. [17, 18] use a
“virtual” 2-D torus wrap data layout. Both these efforts report very good performance attained on the Intel
Touchstone Delta, achieving a sizeable percentage of peak performance.

The method presented our paper has the benefit of being more general, simpler and more efficient. We explain
our algorithms for the case where the matrices to be multiplied, as well as the result, are block-mapped identically
to nodes. However, we show how this restriction can be easily relaxed to achieve the wrapped decompositions
mentioned above, as well as more general decompositions.

This paper makes a number of contributions: We present a new approach and its scalability analysis. In
addition, we give complete Message Passing Interface (MPI) [15] implementations, demonstrating the power of
this standard for coding concurrent algorithms. We show how our simpler approach outperforms more complex
implementations, and, finally, we show how it 1s more general than alternative approaches to the problem.

*This work is partially supported by the NASA High Performance Computing and Communications Program’s Earth and Space
Sciences Project under NRA Grant NAG5-2497. Additional support came from the Intel Research Council. Jerrell Watts is being
supported by an NSF Graduate Research Fellowship.



2 Notation

We will consider the formation of the matrix products

C = aAB+pC (1)
C = aABT +p5C (2)
C = aATB+pC (3)
C = aATBT 4+ C (4)

These are the special cases implemented as part of the widely used sequential Basic Linear Algebra Subpro-
grams [10].

We will assume that each matrix X is of dimension m* x nX, X € {4, B, C}. Naturally, there are constraints
on these dimensions for the multiplications to be well defined: We will assume that the dimensions of C' are m x n,
while the “other” dimension is k.

3 Model of Computation

We assume that the nodes of the parallel computer form a 7 x ¢ mesh. While for the analysis, this is a physical
mesh, the developed codes require only that the nodes can be logically configured as a r x ¢ mesh. The p = re
nodes are indexed by their row and column index and the (4, j) node will be denoted by P;;.

In the absense of network conflicts, communicating a message between two nodes requires time o + ng, which
is reasonable on machines like the Intel Paragon system [3] . Parameters « and 3 represent the startup and cost
per item transfer time, respectively. Performing a floating point computation requires time ~.

4 Data Decomposition

We will consider two dimensional data decompositions. The analysis will automatically include the one di-
mensional cases by letting either row or column dimension of the mesh equal one. For all the algorithms, we will
assume the following assignment of data to nodes: Given m* x n* matrix X, X € {4, B,C}, and an r x ¢ logical
mesh of nodes, we partition as follows:

Xoo o Xoe—1)
Yy - . .

X—no | | Xpr=1)(e=1)

and assign X;; to node P;;. Submatrix X;; has dimensions m;x X nf, with ) m;x =mand ) n;X = n. Further
restrictions on the dimensions are given for each of the four variants, to ensure that the appropriate row and
column dimensions match.

5 Forming € = aAB + (C

A =m, n® = m®? =k, and n® = n. For simplicity, we will
take o = 1 and § = 0 in our discription. If a;;, b;; and ¢;; denote the (i, j) element of the matrices, respectively,
then the elements of C' are given by

For this operation to be well-defined, we require m

k
cij = Z aikbij
=1
Notice that rows of C' are computed from rows of A, and columns of C are computed from columns of B. We
hence restrict our data decomposition so that rows of A and C' are assigned to the same row of nodes and columns

of B and C are assigned to the same column of nodes. Hence, m{ = m{! and n]C =nPb.

J



5.1 Basic Parallel Algorithm

Let us consider what computation is required to form Cj;:

A; _ Boy
By, -
Cij=( Aw | A | | Aige=ry ) : B’
Bir-1);
Notice that A; is entirely assigned to node row ¢, while Bi is entirely assigned to node column j. Letting
e
by
N y by’
A= (ag )t ] ab ) ana 37 = |
T
k-1

we see that
k-1
- ~177T
Cyy; = E a; by
=0

Hence the matrix-matrix multiply can be formulated as a sequence of rank-one updates.
It now suffices to parallelize each rank-one update. Pseudo-code for this, executed simultaneously on all nodes
P;; is given in Fig. 1. The process is illustrated in Fig. 2.

To analyze the cost of this basic algorithm, we will make some simplifying assumptions: m{ = m#f = m/r,
n¢ =nB =n/r n# = k/c, and mP = k/r. Since relatively little data is involved during each broadcast, we will

assume a minimum spanning tree broadcast i1s used and the cost of our algorithm is given by

2mn

k| =7+ Tog(o)] (a + ?ﬁ) + [log(r)] (a + %ﬁ)]

The terms within the square brackets are due to the rank-one update, broadcast within row, and broadcast within
column, respectively. We ignore the packing required before sending rows of B*. The total time is thus

2mnk nk

T(m, .k, p) = 2 4 k(Tloa(e)] + [Hog(r)])or + los(e)] "2 3 + [log(r)] 2 5 (5)

This compares to a sequential time of 2mnk~.
To establish the scalability of this approach, we will analyse the case where m =n =4k, r =c=,/p, and p is
a power of two. Given the complexity in (5), the estimated speedup is

2n’y p
S(n.p) = % 4 nlog(p)a + log( )ﬁﬁzl plogp) o | VPlog®) p
p 7 glp g\P) /5 t = T T S
The corresponding efficiency is
S(n,p 1 1
E(n.p) = .0 - plogr) @ , VPlog(®) g plog(p) P log(p)
p I+ ==+ =5 1+O( 5 )+O(7n )

Ignoring the log(p) term, which grows very slowly when p is reasonably large, we notice the following: If we
increase p and we wish to maintain efficiency, we must increase n with \/p. Since memory requirements grow
with n?, and physical memory grows linearly with p as nodes are added, we conclude that the method is scalable
in the following sense: If we maintain memory use per node, this algorithm will maintain efficiency, if log(p) is
treated as a constant.

Alternative broadcast algorithms, e.g. pipelined or scatter-collect broadcasts [4, 20] can be used to eliminate
the log(p) factor, at the expense of a larger number of startups. We instead will present the benefits of pipelining
computation and communication.
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Figure 1: Pseudo-code for C'= AB.

| |
| |
Do
L L -
1o b} b | . . .
b-= _:_—IT_ _______ - — ===l Coo+= EléblOT Co1+= ElébllT Coo+= EléblZT
|
| |
| |
| |
| |
| |
| |
| |
Do
Ky . . .
Lo Cro+=ay b} [ Cri+=ald} " | Crat=al b7 "
| |
| |
| |
| |
| |
| |
Figure 2: Operations implementing the inner loop of Fig. 1 of a 2 x 3 mesh of nodes.




5.2 Pipelined Algorithm

Let us consider implementing the broadcast as passing of a message around the logical ring that forms the row
or column. In this case, the time complexity becomes:

(=1 (a+28)+ (=1 (a+25) (6)
+k<2m7n'y+a+?ﬁ+a+%ﬁ) (7)
+He—2) (a+ ?ﬁ) +(r—2) (oz—l—%ﬁ) (8)
o, o

_ Wyﬂkmc—:ﬂ(cw%ﬁ)+(k+2r—3)(a+%6) (10)

Contribution (6) equals the the time required for both the first column of A,_1 and the first row of B~! to reach
P(,_1)(c—1) (filling the pipe); (7) equals the time for performing the local update and passing the messages; (8)
equals the time for the final messages (initiated at P(,_1y.—1)) to reach the end of the pipe; and (9) equals the
time for the final update at the node at the end of the pipe (P(r—l)(c—Z) or P(r—2)(e—1))~ Notice that for large &,
the “log” factors in Eqn. (5) are essentially removed.

To establish the scalability of the pipelined approach, we will again analyse the case where m = n = k and
r = ¢ = /p. This changes the complexity in (10) to approximately

2%37+2(n+2@—3) (oz—I—%ﬁ)

and the estimated speedup 1s

Sn,p) = 2n’y N P
n,p_E +2(n+2\/__3)(04+L6)~1—|—Lg+\/—Z_)
P Y P NG n? -~y n
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The corresponding efficiency is
S(n,p) 1
Po1+0(5)+0 ()

E(n,p) =

The log(p) term has disappeared and the method is again scalable in the sense that if we maintain memory use
per node, this algorithm will maintain efficiency.

5.3 Blocking

Further improvements can be obtained by observing that reformulating the method in terms of matrix-matrix
multiplications instead of rank-one updates can greatly improve the performance of an individual node. Matrix-
matrix operations perform O(n®) computation on O(n?) data, thereby overcoming the memory access bandwidth
bottleneck present on most modern microprocessors. Highly optimized versions of an important set of such
operations (the level-3 BLAS [10]) are typically provided by major vendors of high performance microprocessors.

We can stage the computation using matrix-matrix multiplication by accumulating several columns of A; and
rows of Bj before updating the local matrix: In our explanation, each column @ becomes a panel of columns,
and row b\ a corresponding panel of rows.

An additional advantage of blocking is that it reduces the number of messages incurred, thereby reducing
communication overhead.



5.4 Code

MPI code for the pipelined, blocked algorithm is given in Figs. 3 and 4. In the algorithm, arrays a, b, and ¢
hold the local matrices in column-major order. Parameters 1da, 1db, and 1dc indicate the local leading dimension
for arrays a, b, and c, respectively. Variables m, n, and k hold m, n, and k, respectively. Entries m_a[i], n_a[i],
mblil, n b[i], m_c[i], and n_c[il hold m#, n#, mP, nP m{, and n¢, respectively. Variable nb indicates the
number of columns of A; and rows of BJ that are accumulated before updated the local block of C'. There are two
work arrays: workl and work2, in which nb columns of A; and nb rows of BJ, respectively, can be accumulated.
MPI communicators indicating the nodes that constitute a row and column in the logical node mesh are provided
in comm_row and com_col.

Whenever possible, BLAS calls are used, and we use the LAPACK utility routine dlacpy to copy matrices to
matrices.

6 Forming C = aATBT 4 5C

Forming C' = a AT BT 4 3C' can be easily derived by noting that C* = BA and reversing the roles of rows and
columns in the algorithm given in Section 5.

7 Forming C = aABT + 3C

One approach to implementing this algorithm is to transpose matrix B followed by the algorithm presented in
the previous section. We will show how to avoid this initial communication.

For this operation to be well-defined, we require n® = n, m4 = m® =k, and n® = m. Again, we take a =1
and 8 = 0 in our description. If a;;, b;; and ¢;; denote the (7, j) element of the matrices, respectively, then the

elements of C' are given by
k

cij = g aikbjk

=1

For our algorithm, we make the restriction that columns of A and columns of B are assigned to the same column
of nodes, and rows of A and rows of (' are assigned to the same row of nodes.

7.1 Basic Algorithm

Let

Ci=(Co|Cul - |Cie-ry)=(& | |- |&")
and
b
0
bJI
1

Eﬂ
k—1

Then matrix algebra tells us that
c—1
! 73T
C; = Z Aij b‘ly
j=0

Since rows of Cj; and A;; are assigned to the same row of nodes, and elements of INJ‘Z and columns of A;; are assigned
to the same column of nodes, we derive the pseudo-code given in Fig. 5 for node P;;. A picture describing the
mechanism is given in Fig. 6.



#include "mpi.h"

/* macro for column major indexing */
#define A( 1,7 ) (al j*lda + i 1)
#define B( i,j ) (b[ j*ldb + i 1)
#define C( 1,7 ) (c[ j*ldc + i 1)

#define min( x, v ) ( (x) < (y) 7 (x) : (y) )

int
double

i_one=1;
d_one=1.0,
d_zero=0.0;

/*

/*

used for constant passed to blas call */

used for constant passed to blas call */

void pdgemm( m, n, k, nb, alpha, a, 1lda, b, 1ldb,
beta, ¢, 1dc, m_a, n_a, m_b, n_b, m_c, n_c,
comm_row, comm_col, workl, work2 )

int m, n, k, /* global matrix dimensions */
nb, /* panel width */
m_all, n_all, /* dimensions of blocks of A */
n_b[], n_bl], /* dimensions of blocks of A */
m_cl], n_cl], /* dimensions of blocks of A */
1da, 1db, ldc; /* leading dimension of local arrays that
hold local portions of matrices A, B, C */
double *a, *b, *c, /* arrays that hold local parts of A, B, C */
alpha, beta, /* multiplication constants */
*workl, *work2; /* work arrays */
MPI_Comm comm_row, /* Communicator for this row of nodes */
comm_col; /* Communicator for this column of nodes */
{
int myrow, mycol, /* my row and column index */
nprow, npcol, /* number of node rows and columns */
i, j, kk, iwrk, /* misc. index variables */
icurrow, icurcol, /* index of row and column that hold current
row and column, resp., for rank-1 updatex/
ii, jjs; /* local index (on icurrow and icurcol, resp.)
of row and column for rank-1 update */
double *temp; /* temporary pointer used in pdgemm_abt */
double *p;
/* get myrow, mycol */
MPI_Comm_rank ( comm_row, &mycol ); MPI_Comm_rank( comm_col, &myrow );
/* scale local block of C */

for ( j=0; j<un_cl[ mycol 1; j++ )
for ( i=0; i<m_c[ myrow 1; i++ )
C(i,j ) = beta * C( 1,j );

Figure 3: MPI code for C = aAB + #C and C = a ABT + 3C.




icurrow
ii = jj

0; icurcol = 0;
0;

/* malloc temp space for summation */
temp = (double *) malloc( m_c[myrow]*nb*sizeof (double) );

for ( kk=0; kk<k; kk+=iwrk) {
iwrk = min( nb, m_b[ icurrow ]-ii );
iwrk = min( iwrk, n_al icurcol ]-jj );
/* pack current iwrk columns of A into workl */
if ( mycol == icurcol )

dlacpy_( "General", &m_al[ myrow 1, &iwrk, &A( 0, jj ), &lda, workl,
gm_al myrow ] );

/* pack current iwrk rows of B into work2 */
if ( myrow == icurrow )
dlacpy_( "General", &iwrk, &n_b[ mycol ], &B( ii, 0 ), &1ldb, work2,
&iwrk )
/* broadcast workl and work?2 */

RING_Bcast( workl , m_a[ myrow ]*iwrk, MPI_DOUBLE, icurcol, comm_row );
RING_Bcast( work2 , n_b[ mycol J*iwrk, MPI_DOUBLE, icurrow, comm_col );

/* update local block */
dgemm_( "No transpose", "No transpose", &m_c[ myrow ], &n_c[ mycol ],
&iwrk, &alpha, workl, &m_b[ myrow ], work2, &iwrk, %d_one,
c, &ldc );
/* update icurcol, icurrow, ii, jj */
ii += iwrk; jj += iwrk;

if ( jj>=n_al icurcol ] ) { icurcol++; jj = 0; };
if ( 1i>=m_b[ icurrow ] ) { icurrow++; ii = 0; };
¥
free( temp );
¥

RING_Bcast( double *buf, int count, MPI_Datatype type, int root,
MPI_Comm comm )
{
int me, np;
MPI_Status status;

MPI_Comm_rank( comm, me ); MPI_Comm_size( comm, np );
if ( me !'= root)

MPI_Recv( buf, count, type, (me-1+np)%np, MPI_ANY_TAG, comm );
if ( ( me+1 )%np != root )

MPI_Send( buf, count, type, (me+1)%np, 0, comm );

Figure 4: MPI code for C'= a AB + 3C' continued. See Fig. 3 for first part of code.




Cij =0
forl=0k-1
broadcast INJ‘Z within my column
form 52"7 = AijINJ‘ZT
sum all 52"7 within my row to the
node that holds &
endfor

Figure 5: Pseudo-code for C' = ABT.

Assuming minimum spanning tree broadcast and sum-to-one are used, the cost becomes

2kn
k | [log(c)l(a 4+ m/rp) + -t [log(r)[(ar + k/cB + n/cy) (11)
Scalability properties are much like those of the algorithm for C'= AB.
7.2 Pipelining

As with forming ¢' = AB, the above algorithm can be improved by introducing pipelining. Let us consider
implementing the broadcast as a passing of the message around the logical ring that forms the column. Similarly,
let the summation within rows be implemented as a passing of a “bucket” that collects all local contributions to
the node on which the result is required. The effect on the time complexity is much like that obtained for the
formation of ' = AB.

7.3 Blocking

As for the computation of C' = AB, further improvements can be obtained by observing that reformulating the
method in terms of matrix-matrix multiplications instead of matrix-vector multiplications can greatly improve
the performance of an individual node. This can be accomplished by taking both & and b] to be a small number

of columns and rows, respectively.
Again, communication overhead is reduced as well.

7.4 Code

MPI code for the pipelined, blocked algorithm is given in Figs. 3 and 7. The parameters are essentially the
same as those used for forming C' = aAB + 3C.
8 Forming C = aATB + 3C

Forming C' = a AT B + 3C can be easily derived by noting that C7 = a BAT + SC7T and reversing the roles of
rows and columns in the algorithm given in Section 7.
9 Performance Results

We do not compare the achieved performance with predicted performance. The reason for this is that there
are too many parameters that cannot be easily controlled. For example, the performance of the BLAS kernel
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Figure 6: Operations implementing the inner loop of Fig. 5 of a 2 x 3 mesh of nodes.
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icurrow = 0; icurcol = 0;
ii = jj = 0;

/* malloc temp space for summation */
temp = (double *) malloc( m_c[myrow]*nb*sizeof (double) );

/* loop over all column panels of C */

for ( kk=0; kk<k; kk+=iwrk) {
iwrk = min( nb, m_b[ icurrow ]-ii );
iwrk = min( iwrk, n_c[ icurcol ]-jj );

/* pack current iwrk rows of B into work2 */
if ( myrow == icurrow )
dlacpy_( "General", &iwrk, &n_b[ mycol ], &B( ii, 0 ), &1ldb, work2,
&iwrk )
/* broadcast work2 */

RING_Bcast( work2 , n_b[ mycol J*iwrk, MPI_DOUBLE, icurrow, comm_col );
/* Multiply local block of A times incoming rows of B */
dgemm_( "No transpose", "Transpose", &m_c[ myrow 1, &iwrk,
&n_al[ mycol ], &alpha, a, %lda, work2, &iwrk, &d_zero,
workl, &m_c[ myrow ] );

/* Sum to node that holds current columns of C */
RING_SUM( workl, m_c[ myrow ]*iwrk, MPI_DOUBLE, icurcol, comm_row, temp );
/* Add to current columns of C */
if ( mycol == icurcol ) {
p = workl;

for (j=jj; j<jj+iwrk; j++) {
daxpy_( &m_c[ myrow ], &d_one, p, &i_one, &C( 0,j ), &i_one );
p += m_c[ myrow ];
}
}
/* update icurcol, icurrow, ii, jj */
ii += iwrk; jj += iwrk;
if ( jj>=n_cl[ icurcol ] ) { icurcol++; jj = 0;
if ( 1i>=m_b[ icurrow ] ) { icurrow++; ii 0
}
free( temp );

};
}.

H

H

}

RING_SUM( double *buf, int count, MPI_Datatype type, int root,
MPI_Comm comm, double *work )

{
int me, np;
MPI_Status status;
MPI_Comm_rank ( comm, &me ); MPI_Comm_size( comm, &np );
if ( me !'= (root+1)%np ) {
MPI_Recv( work, count, type, (me-1+np)%np, MPI_ANY_TAG, comm, &status );
daxpy_( &count, %d_one, work, &i_one, buf, &i_one );
¥
if ( me !'= root )
MPI_Send( buf, count, type, (me+1)%np, 0, comm );
¥

Figure 7: MPI code for C = a ABT + 3C continued. See Fig. 3 for first part of code
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dgemm, which is used for the matrix-matrix multiplication on a single node is highly dependent on the matrix
size and other circumstances. Instead, we compare the performance of our basic matrix-multiplication algorithms
for C = aAB 4+ BC and C = a ABT 4 BC with that achieved by the PUMMA implementation in [8], which we
obtained from netlib. We modified the PUMMA code to call the most efficient forms of NX communication
primitives (including forced messages).

The implementation of SUMMA is essentially the one given in this paper. We implemented it using the MPI
send and receive primitives used in the algorithms in this paper. However, the current MPI implementation on
the Paragon incurs high latency and achieves lower bandwidth that the equivalent native NX calls. For that
reason, we also implemented a highly optimized version that uses “forced” (ready-receive) messages and NX calls.

In Figs. 8 and 9, we report the performance per node for C' = AB as a function of problem size for the two
SUMMA versions and PUMMA. Peak performance observed for dgemm on a single node is in the 45 MFLOPS
range. The blocking size (nb) chosen for both PUMMA and SUMMA was 20, which appears to give the best
performance. Much more dramatic is the difference between PUMMA and SUMMA on a non-power-two mesh,
results of which are reported in Fig. 10. The primary reason is that the broadcast-multiply-roll algorithm gener-
alizes more readily to nonsquare meshes when either the row or column dimension i1s an integer multiple of the
other dimension. When this is not the case, performance suffers dramatically. SUMMA doesn’t have the same
kind of dependency, and it performs well.

In Figs. 11 and 12, we report the performance per node as a function of the number of nodes (p) when memory
use per node is held constant for C' = AB. Notice that performance can essentially be maintained, as predicted by
our analyses. Also, the cases we present represent relatively small problems: a local 500 x 500 problem requires
only 2 Mbytes of memory. We need space for three of these matrices, plus a small amount of workspace. The
Paragon typically comes with at least 32 Mbytes of memory per node.

In Fig. 13, we report the performance per node for C = ABT as a function of problem size for SUMMA and
PUMMA. Peak performance on a single node is again in the 45 MFLOPS range. The observed performance is
very similar to that of (' = AB. Again, SUMMA is competitive with PUMMA. In Fig. 14, we show the scalability
of the this algorithm.

It should be noted that PUMMA requires considerably more workspace per node than the amount of memory
used to store the local matrices. SUMMA by comparison uses a lower order amount of memory per node, which
means that SUMMA has the added advantage of allowing larger problems to be run.

10 Generalization of the Code

The codes presented in this paper are slight simplifications, allowing us to include them in the body of the
paper. Notice that the following generalizations are easily obtained:

10.1 Relaxing the dependence on multiples of nb .

We will limit our discussion in this section to the forming of C' = AB only. The same techniques can be easily
applied to the other cases.

Notice that the code requires nodes to have a multiple of nb number of rows and columns of the matrix,
except for the last row and column of nodes. There are two alternatives for overcoming this restriction:

e The width of the current row and column panels can be reduced when a border between nodes is encountered.
e Partial panels can be passed to the next row or column of nodes, to be filled fully before broadcasting.
The latter 1s particularly easy to incorporate into the pipelined version of the algorithm.
10.2 Relaxing the alignment of the matrices
Notice that it suffices that the same rows of A and C' are assigned to the same row of nodes, and the same

columns of B and C' to the same column of nodes. If A and B are not aligned with C' in the other dimension, it
is a matter of passing in icurrow and icurcol as parameters to the routine.

12
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Figure 8: Performance of SUMMA vs. PUMMA for C'= AB on 64 nodes.
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Figure 9: Performance of SUMMA vs. PUMMA for C'= AB on 512 nodes.
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Comparison on 15x31 node Paragon
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Figure 10: Performance of SUMMA vs. PUMMA for ¢' = AB on 465 nodes.

10.3 Generalizing the matrix decomposition

We will further illustrate the flexibility of our approach by showing how the algorithm in Fig. 4 can be easily
changed to handle block-wrapped data decompositions like those used for ScaLAPACK. Indeed, it is a matter of
changing the code segments

iwrk = min( nb, m_b[ icurrow ]-ii );
iwrk = min( iwrk, n_al icurcol ]-jj );

to
iwrk = min( nb, k-kk );
and
/* update icurcol, icurrow, ii, jj */
ii += iwrk; jj += iwrk;
if ( jj>n_al icurcol ] ) { icurcol++; jj = 0; };
if ( 11>m_b[ icurrow ] ) { icurrow++; ii = 0; };
to

14
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Figure 11: Performance of SUMMA (nx version) for C' = AB as a function of the number of nodes, when memory
use per node 1is held constant. The curves for 100 x 100, 200 x 200, etc., indicate the use of local memory equivalent
to that necessary to store a matrix of the indicated size. E.g., on 64 and 128 nodes, 100 x 100 is equivalent to
a 800 x 800 and 1128 x 1128 global matrix, respectively. The “zigzagging” of the curves is due to the effects of
square vs. nonsquare meshes.
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Figure 12: Performance of PUMMA for C' = AB as a function of the number of nodes, when memory use per
node is held constant.
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Figure 14: Performance of SUMMA (nx version) for €' = AB? as a function of the number of nodes, when
memory use per node is held constant. The curves for 100 x 100, 200 x 200, etc., indicate the use of local memory
equivalent to that necessary to store a matrix of the indicated size. E.g., on 64 and 128 nodes, 100 x 100 is
equivalent to a 800 x 800 and 1128 x 1128 global matrix, respectively.
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/* update icurcol, icurrow, ii, jj */
if ( myrow == icurrow ) ii += iwrk;
if ( mycol == icurcol ) jj += iwrk;
icurrow = ( icurrow+l )%nprow;
icurcol = ( icurcol+l )%npcol;

Other alternative matrix decompositions can be handled similarly.
10.4 Odd-shaped matrices

A frequent use of matrix-matrix multiplication in applications is the case where k is much smaller than m and
n. Examples of this occur in ScaLAPACK routines like those for the LU and @R factorization [11]. In such
cases, our approach continues to be useful. However it may be necessary to substitute a minimum spanning tree
broadcast or other broadcast that does not rely on pipelining of communication and computations.

10.5 Pipelining multiplications

Another interesting observation is that if a number of matrix-matrix multiplications need to be performed, the
communication and computation can be pipelined between individual multiplications.

11 SUMMA, ScaLAPACK, and Distributed BLAS

We believe that the SUMMA approach is particularly appropriate for implementation of distributed BLAS
implementations of the matrix-matrix multiplication. We summarize those in this section.

It is very interesting to note that we started pursuing the presented algorithm by making the following simple
observation: The blocked right-looking LU factorization, as implemented in LAPACK [1, 2], is much like a
matrix-matrix multiplication, C' = AB, implemented as a series of rank nb updates, except that they require
pivoting, matrices A, B, and C are all the same matrix, and the updates progressively affect less of the matrix
being updated. Similarly, the approach used to derive the algorithm for C' = ABT was actually inspired by the
implementation of a left-looking Cholesky factorization.

We hence suspect that a ScaLAPACK implementation based on a distributed BLAS matrix-matrix multipli-
cation would naturally benefit from SUMMA.

12 Conclusion

The presented algorithms for matrix-matrix multiplication are considerably simpler than those previously
presented, all of which have been based on generalizations of the broadcast-multiply-roll algorithm. Nonetheless,
their performance is competitive or better, and they are considerably more flexible. Finally, their memory use
for work arrays is much lower than those of the broadcast-multiply-roll algorithm. As a result, we believe the
SUMMA approach to be the natural choice for a general-purpose implementation.

We should note that on some systems PUMMA may very well outperform SUMMA under some circumstances.
In particular, SUMMA is slightly more sensitive to communication overhead. However, it is competetive, or faster,
and given its simplicity and flexibility, warrants consideration. Moreover, the implementations by Huss-Lederman
et. al. are competitive with PUMMA, and would thus compare similarly with SUMMA.
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