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2 NotationWe will consider the formation of the matrix productsC = �AB + �C (1)C = �ABT + �C (2)C = �ATB + �C (3)C = �ATBT + �C (4)These are the special cases implemented as part of the widely used sequential Basic Linear Algebra Subpro-grams [10].We will assume that each matrixX is of dimension mX �nX , X 2 fA;B;Cg. Naturally, there are constraintson these dimensions for the multiplications to be well de�ned: We will assume that the dimensions of C are m�n,while the \other" dimension is k.3 Model of ComputationWe assume that the nodes of the parallel computer form a r� c mesh. While for the analysis, this is a physicalmesh, the developed codes require only that the nodes can be logically con�gured as a r � c mesh. The p = rcnodes are indexed by their row and column index and the (i; j) node will be denoted by Pij.In the absense of network con
icts, communicating a message between two nodes requires time �+ n�, whichis reasonable on machines like the Intel Paragon system [3] . Parameters � and � represent the startup and costper item transfer time, respectively. Performing a 
oating point computation requires time 
.4 Data DecompositionWe will consider two dimensional data decompositions. The analysis will automatically include the one di-mensional cases by letting either row or column dimension of the mesh equal one. For all the algorithms, we willassume the following assignment of data to nodes: Given mX �nX matrixX, X 2 fA;B;Cg, and an r� c logicalmesh of nodes, we partition as follows:X = 0B@ X00 � � � X0(c�1)... ...X(r�1)0 � � � X(r�1)(c�1) 1CAand assign Xij to node Pij. Submatrix Xij has dimensions mXi � nXj , withPmXi = m and PnXi = n. Furtherrestrictions on the dimensions are given for each of the four variants, to ensure that the appropriate row andcolumn dimensions match.5 Forming C = �AB + �CFor this operation to be well-de�ned, we require mA = m, nA = mB = k, and nB = n. For simplicity, we willtake � = 1 and � = 0 in our discription. If aij, bij and cij denote the (i; j) element of the matrices, respectively,then the elements of C are given by cij = kXl=1 aikbkjNotice that rows of C are computed from rows of A, and columns of C are computed from columns of B. Wehence restrict our data decomposition so that rows of A and C are assigned to the same row of nodes and columnsof B and C are assigned to the same column of nodes. Hence, mCi = mAi and nCj = nBj .2



5.1 Basic Parallel AlgorithmLet us consider what computation is required to form Cij:Cij = ~Aiz }| {� Ai0 Ai1 � � � Ai(c�1) � 0BBB@ B0jB1j...B(r�1)j 1CCCA9>>>=>>>; ~BjNotice that ~Ai is entirely assigned to node row i, while ~Bj is entirely assigned to node column j. Letting~Ai = � ~a0i ~a1i � � � ~ak�1i � and ~Bj = 0BBBB@ ~bj T0~bj T1...~bj Tk�1 1CCCCAwe see that Cij = k�1Xl=0 ~ali~bj TlHence the matrix-matrix multiply can be formulated as a sequence of rank-one updates.It now su�ces to parallelize each rank-one update. Pseudo-code for this, executed simultaneously on all nodesPij is given in Fig. 1. The process is illustrated in Fig. 2.To analyze the cost of this basic algorithm, we will make some simplifying assumptions: mCi = mAi = m=r,nCi = nBi = n=r, nAi = k=c, and mBi = k=r. Since relatively little data is involved during each broadcast, we willassume a minimum spanning tree broadcast is used and the cost of our algorithm is given byk �2mnp 
 + dlog(c)e��+ mr �� + dlog(r)e��+ nc ���The terms within the square brackets are due to the rank-one update, broadcast within row, and broadcast withincolumn, respectively. We ignore the packing required before sending rows of ~Bi. The total time is thusT (m;n; k; p) = 2mnkp 
 + k(dlog(c)e + dlog(r)e)� + dlog(c)emkr � + dlog(r)enkc � (5)This compares to a sequential time of 2mnk
.To establish the scalability of this approach, we will analyse the case where m = n = k, r = c = pp, and p isa power of two. Given the complexity in (5), the estimated speedup isS(n; p) = 2n3
2n3p 
 + n log(p)�+ log(p) n2pp� = p1 + p log(p)2n2 �
 + pp log(p)2n �
The corresponding e�ciency isE(n; p) = S(n; p)p = 11 + p log(p)2n2 �
 + pp log(p)2n �
 = 11 +O �p log(p)n2 �+ O �pp log(p)n �Ignoring the log(p) term, which grows very slowly when p is reasonably large, we notice the following: If weincrease p and we wish to maintain e�ciency, we must increase n with pp. Since memory requirements growwith n2, and physical memory grows linearly with p as nodes are added, we conclude that the method is scalablein the following sense: If we maintain memory use per node, this algorithm will maintain e�ciency, if log(p) istreated as a constant.Alternative broadcast algorithms, e.g. pipelined or scatter-collect broadcasts [4, 20] can be used to eliminatethe log(p) factor, at the expense of a larger number of startups. We instead will present the bene�ts of pipeliningcomputation and communication. 3



Cij = 0for l = 0; k� 1broadcast ~ali within my rowbroadcast ~bjl within my columnCij = Cij + ~ali~bj TlendforFigure 1: Pseudo-code for C = AB.
~al0 -� ~al1 -�~b0l

6
?

~b1l6
?

~b2l6
?

C00+= ~al0~b0TlC10+= ~al1~b0Tl C01+= ~al0~b1TlC11+= ~al1~b1Tl C02+= ~al0~b2TlC12+= ~al1~b2TlFigure 2: Operations implementing the inner loop of Fig. 1 of a 2� 3 mesh of nodes.4



5.2 Pipelined AlgorithmLet us consider implementing the broadcast as passing of a message around the logical ring that forms the rowor column. In this case, the time complexity becomes:(c � 1)��+ mr ��+ (r � 1)��+ nc �� (6)+k�2mnp 
 + �+ mr � + �+ nc �� (7)+(c� 2)��+ mr �� + (r � 2)��+ nc �� (8)+2mnp 
 (9)= 2mn(k + 1)p 
 + (k + 2c� 3)��+ mr �� + (k + 2r � 3)��+ nc �� (10)Contribution (6) equals the the time required for both the �rst column of ~Ar�1 and the �rst row of ~Bc�1 to reachP(r�1)(c�1) (�lling the pipe); (7) equals the time for performing the local update and passing the messages; (8)equals the time for the �nal messages (initiated at P(r�1)(c�1)) to reach the end of the pipe; and (9) equals thetime for the �nal update at the node at the end of the pipe (P(r�1)(c�2) or P(r�2)(c�1)). Notice that for large k,the \log" factors in Eqn. (5) are essentially removed.To establish the scalability of the pipelined approach, we will again analyse the case where m = n = k andr = c = pp. This changes the complexity in (10) to approximately2n3p 
 + 2(n+ 2pp� 3)��+ npp��and the estimated speedup isS(n; p) = 2n3
2n3p 
 + 2(n+ 2pp� 3)��+ npp�� � p1 + pn2 �
 + ppn �
The corresponding e�ciency is E(n; p) = S(n; p)p = 11 + O � pn2 �+ O �ppn �The log(p) term has disappeared and the method is again scalable in the sense that if we maintain memory useper node, this algorithm will maintain e�ciency.5.3 BlockingFurther improvements can be obtained by observing that reformulating the method in terms of matrix-matrixmultiplications instead of rank-one updates can greatly improve the performance of an individual node. Matrix-matrix operations perform O(n3) computation on O(n2) data, thereby overcoming the memory access bandwidthbottleneck present on most modern microprocessors. Highly optimized versions of an important set of suchoperations (the level-3 BLAS [10]) are typically provided by major vendors of high performance microprocessors.We can stage the computation using matrix-matrix multiplication by accumulating several columns of ~Ai androws of ~Bj before updating the local matrix: In our explanation, each column ~ali becomes a panel of columns,and row ~blj a corresponding panel of rows.An additional advantage of blocking is that it reduces the number of messages incurred, thereby reducingcommunication overhead. 5



5.4 CodeMPI code for the pipelined, blocked algorithm is given in Figs. 3 and 4. In the algorithm, arrays a, b, and chold the local matrices in column-major order. Parameters lda, ldb, and ldc indicate the local leading dimensionfor arrays a, b, and c, respectively. Variables m, n, and k hold m, n, and k, respectively. Entries m a[i], n a[i],m b[i], n b[i], m c[i], and n c[i] hold mAi , nAi , mBi , nBi , mCi , and nCi , respectively. Variable nb indicates thenumber of columns of ~Ai and rows of ~Bj that are accumulated before updated the local block of C. There are twowork arrays: work1 and work2, in which nb columns of ~Ai and nb rows of ~Bj , respectively, can be accumulated.MPI communicators indicating the nodes that constitute a row and column in the logical node mesh are providedin comm row and com col.Whenever possible, BLAS calls are used, and we use the LAPACK utility routine dlacpy to copy matrices tomatrices.6 Forming C = �ATBT + �CForming C = �ATBT + �C can be easily derived by noting that CT = BA and reversing the roles of rows andcolumns in the algorithm given in Section 5.7 Forming C = �ABT + �COne approach to implementing this algorithm is to transpose matrix B followed by the algorithm presented inthe previous section. We will show how to avoid this initial communication.For this operation to be well-de�ned, we require nA = n, mA = mB = k, and nB = m. Again, we take � = 1and � = 0 in our description. If aij, bij and cij denote the (i; j) element of the matrices, respectively, then theelements of C are given by cij = kXl=1 aikbjkFor our algorithm, we make the restriction that columns of A and columns of B are assigned to the same columnof nodes, and rows of A and rows of C are assigned to the same row of nodes.7.1 Basic AlgorithmLet ~Ci = � Ci0 Ci1 � � � Ci(c�1) � = � ~c0i ~c1i � � � ~ck�1i �and ~Bj = 0BBBB@ ~bj T0~bj T1...~bj Tk�1 1CCCCAThen matrix algebra tells us that cli = c�1Xj=0Aij~bj TlSince rows of Cij and Aij are assigned to the same row of nodes, and elements of ~bjl and columns of Aij are assignedto the same column of nodes, we derive the pseudo-code given in Fig. 5 for node Pij. A picture describing themechanism is given in Fig. 6. 6



#include "mpi.h"/* macro for column major indexing */#define A( i,j ) (a[ j*lda + i ])#define B( i,j ) (b[ j*ldb + i ])#define C( i,j ) (c[ j*ldc + i ])#define min( x, y ) ( (x) < (y) ? (x) : (y) )int i_one=1; /* used for constant passed to blas call */double d_one=1.0,d_zero=0.0; /* used for constant passed to blas call */void pdgemm( m, n, k, nb, alpha, a, lda, b, ldb,beta, c, ldc, m_a, n_a, m_b, n_b, m_c, n_c,comm_row, comm_col, work1, work2 )int m, n, k, /* global matrix dimensions */nb, /* panel width */m_a[], n_a[], /* dimensions of blocks of A */m_b[], n_b[], /* dimensions of blocks of A */m_c[], n_c[], /* dimensions of blocks of A */lda, ldb, ldc; /* leading dimension of local arrays thathold local portions of matrices A, B, C */double *a, *b, *c, /* arrays that hold local parts of A, B, C */alpha, beta, /* multiplication constants */*work1, *work2; /* work arrays */MPI_Comm comm_row, /* Communicator for this row of nodes */comm_col; /* Communicator for this column of nodes */{ int myrow, mycol, /* my row and column index */nprow, npcol, /* number of node rows and columns */i, j, kk, iwrk, /* misc. index variables */icurrow, icurcol, /* index of row and column that hold currentrow and column, resp., for rank-1 update*/ii, jj; /* local index (on icurrow and icurcol, resp.)of row and column for rank-1 update */double *temp; /* temporary pointer used in pdgemm_abt */double *p; /* get myrow, mycol */MPI_Comm_rank( comm_row, &mycol ); MPI_Comm_rank( comm_col, &myrow );/* scale local block of C */for ( j=0; j<n_c[ mycol ]; j++ )for ( i=0; i<m_c[ myrow ]; i++ )C( i,j ) = beta * C( i,j );Figure 3: MPI code for C = �AB + �C and C = �ABT + �C.7



icurrow = 0; icurcol = 0;ii = jj = 0; /* malloc temp space for summation */temp = (double *) malloc( m_c[myrow]*nb*sizeof(double) );for ( kk=0; kk<k; kk+=iwrk) {iwrk = min( nb, m_b[ icurrow ]-ii );iwrk = min( iwrk, n_a[ icurcol ]-jj );/* pack current iwrk columns of A into work1 */if ( mycol == icurcol )dlacpy_( "General", &m_a[ myrow ], &iwrk, &A( 0, jj ), &lda, work1,&m_a[ myrow ] );/* pack current iwrk rows of B into work2 */if ( myrow == icurrow )dlacpy_( "General", &iwrk, &n_b[ mycol ], &B( ii, 0 ), &ldb, work2,&iwrk );/* broadcast work1 and work2 */RING_Bcast( work1 , m_a[ myrow ]*iwrk, MPI_DOUBLE, icurcol, comm_row );RING_Bcast( work2 , n_b[ mycol ]*iwrk, MPI_DOUBLE, icurrow, comm_col );/* update local block */dgemm_( "No transpose", "No transpose", &m_c[ myrow ], &n_c[ mycol ],&iwrk, &alpha, work1, &m_b[ myrow ], work2, &iwrk, &d_one,c, &ldc );/* update icurcol, icurrow, ii, jj */ii += iwrk; jj += iwrk;if ( jj>=n_a[ icurcol ] ) { icurcol++; jj = 0; };if ( ii>=m_b[ icurrow ] ) { icurrow++; ii = 0; };}free( temp );}RING_Bcast( double *buf, int count, MPI_Datatype type, int root,MPI_Comm comm ){ int me, np;MPI_Status status;MPI_Comm_rank( comm, me ); MPI_Comm_size( comm, np );if ( me != root)MPI_Recv( buf, count, type, (me-1+np)%np, MPI_ANY_TAG, comm );if ( ( me+1 )%np != root )MPI_Send( buf, count, type, (me+1)%np, 0, comm );} Figure 4: MPI code for C = �AB + �C continued. See Fig. 3 for �rst part of code.8



Cij = 0for l = 0; k� 1broadcast ~bjl within my columnform ~cl;ji = Aij~bj Tlsum all ~cl;ji within my row to thenode that holds ~cliendforFigure 5: Pseudo-code for C = ABT .Assuming minimum spanning tree broadcast and sum-to-one are used, the cost becomesk �dlog(c)e(�+m=r�) + 2knp 
 + dlog(r)e(�+ k=c� + n=c
)� (11)Scalability properties are much like those of the algorithm for C = AB.7.2 PipeliningAs with forming C = AB, the above algorithm can be improved by introducing pipelining. Let us considerimplementing the broadcast as a passing of the message around the logical ring that forms the column. Similarly,let the summation within rows be implemented as a passing of a \bucket" that collects all local contributions tothe node on which the result is required. The e�ect on the time complexity is much like that obtained for theformation of C = AB.7.3 BlockingAs for the computation of C = AB, further improvements can be obtained by observing that reformulating themethod in terms of matrix-matrix multiplications instead of matrix-vector multiplications can greatly improvethe performance of an individual node. This can be accomplished by taking both ~cli and ~bjl to be a small numberof columns and rows, respectively.Again, communication overhead is reduced as well.7.4 CodeMPI code for the pipelined, blocked algorithm is given in Figs. 3 and 7. The parameters are essentially thesame as those used for forming C = �AB + �C.8 Forming C = �ATB + �CForming C = �ATB + �C can be easily derived by noting that CT = �BAT + �CT and reversing the roles ofrows and columns in the algorithm given in Section 7.9 Performance ResultsWe do not compare the achieved performance with predicted performance. The reason for this is that thereare too many parameters that cannot be easily controlled. For example, the performance of the BLAS kernel9



~cl0~cl1~b0l6
?

~b1l6
?

~b2l6
?

~cl;00 = A00~b0Tl~cl;01 = A10~b0Tl ~cl;10 = A01~b1Tl~cl;11 = A11~b1Tl ~cl;20 = A02~b2Tl~cl;21 = A12~b2Tl~cl;00~cl;01 ~cl;10~cl;11 ~cl;20~cl;21
���� ~cl0 =Pj ~cl;j0~cl1 =Pj ~cl;j1Figure 6: Operations implementing the inner loop of Fig. 5 of a 2� 3 mesh of nodes.10



icurrow = 0; icurcol = 0;ii = jj = 0; /* malloc temp space for summation */temp = (double *) malloc( m_c[myrow]*nb*sizeof(double) );/* loop over all column panels of C */for ( kk=0; kk<k; kk+=iwrk) {iwrk = min( nb, m_b[ icurrow ]-ii );iwrk = min( iwrk, n_c[ icurcol ]-jj );/* pack current iwrk rows of B into work2 */if ( myrow == icurrow )dlacpy_( "General", &iwrk, &n_b[ mycol ], &B( ii, 0 ), &ldb, work2,&iwrk );/* broadcast work2 */RING_Bcast( work2 , n_b[ mycol ]*iwrk, MPI_DOUBLE, icurrow, comm_col );/* Multiply local block of A times incoming rows of B */dgemm_( "No transpose", "Transpose", &m_c[ myrow ], &iwrk,&n_a[ mycol ], &alpha, a, &lda, work2, &iwrk, &d_zero,work1, &m_c[ myrow ] );/* Sum to node that holds current columns of C */RING_SUM( work1, m_c[ myrow ]*iwrk, MPI_DOUBLE, icurcol, comm_row, temp );/* Add to current columns of C */if ( mycol == icurcol ) {p = work1;for (j=jj; j<jj+iwrk; j++) {daxpy_( &m_c[ myrow ], &d_one, p, &i_one, &C( 0,j ), &i_one );p += m_c[ myrow ];}} /* update icurcol, icurrow, ii, jj */ii += iwrk; jj += iwrk;if ( jj>=n_c[ icurcol ] ) { icurcol++; jj = 0; };if ( ii>=m_b[ icurrow ] ) { icurrow++; ii = 0; };}free( temp );}RING_SUM( double *buf, int count, MPI_Datatype type, int root,MPI_Comm comm, double *work ){ int me, np;MPI_Status status;MPI_Comm_rank( comm, &me ); MPI_Comm_size( comm, &np );if ( me != (root+1)%np ) {MPI_Recv( work, count, type, (me-1+np)%np, MPI_ANY_TAG, comm, &status );daxpy_( &count, &d_one, work, &i_one, buf, &i_one );}if ( me != root )MPI_Send( buf, count, type, (me+1)%np, 0, comm );} Figure 7: MPI code for C = �ABT + �C continued. See Fig. 3 for �rst part of code11



dgemm, which is used for the matrix-matrix multiplication on a single node is highly dependent on the matrixsize and other circumstances. Instead, we compare the performance of our basic matrix-multiplication algorithmsfor C = �AB + �C and C = �ABT + �C with that achieved by the PUMMA implementation in [8], which weobtained from netlib. We modi�ed the PUMMA code to call the most e�cient forms of NX communicationprimitives (including forced messages).The implementation of SUMMA is essentially the one given in this paper. We implemented it using the MPIsend and receive primitives used in the algorithms in this paper. However, the current MPI implementation onthe Paragon incurs high latency and achieves lower bandwidth that the equivalent native NX calls. For thatreason, we also implemented a highly optimized version that uses \forced" (ready-receive) messages and NX calls.In Figs. 8 and 9, we report the performance per node for C = AB as a function of problem size for the twoSUMMA versions and PUMMA. Peak performance observed for dgemm on a single node is in the 45 MFLOPSrange. The blocking size (nb) chosen for both PUMMA and SUMMA was 20, which appears to give the bestperformance. Much more dramatic is the di�erence between PUMMA and SUMMA on a non-power-two mesh,results of which are reported in Fig. 10. The primary reason is that the broadcast-multiply-roll algorithm gener-alizes more readily to nonsquare meshes when either the row or column dimension is an integer multiple of theother dimension. When this is not the case, performance su�ers dramatically. SUMMA doesn't have the samekind of dependency, and it performs well.In Figs. 11 and 12, we report the performance per node as a function of the number of nodes (p) when memoryuse per node is held constant for C = AB. Notice that performance can essentially be maintained, as predicted byour analyses. Also, the cases we present represent relatively small problems: a local 500� 500 problem requiresonly 2 Mbytes of memory. We need space for three of these matrices, plus a small amount of workspace. TheParagon typically comes with at least 32 Mbytes of memory per node.In Fig. 13, we report the performance per node for C = ABT as a function of problem size for SUMMA andPUMMA. Peak performance on a single node is again in the 45 MFLOPS range. The observed performance isvery similar to that of C = AB. Again, SUMMA is competitive with PUMMA. In Fig. 14, we show the scalabilityof the this algorithm.It should be noted that PUMMA requires considerably more workspace per node than the amount of memoryused to store the local matrices. SUMMA by comparison uses a lower order amount of memory per node, whichmeans that SUMMA has the added advantage of allowing larger problems to be run.10 Generalization of the CodeThe codes presented in this paper are slight simpli�cations, allowing us to include them in the body of thepaper. Notice that the following generalizations are easily obtained:10.1 Relaxing the dependence on multiples of nb .We will limit our discussion in this section to the forming of C = AB only. The same techniques can be easilyapplied to the other cases.Notice that the code requires nodes to have a multiple of nb number of rows and columns of the matrix,except for the last row and column of nodes. There are two alternatives for overcoming this restriction:� The width of the current row and column panels can be reduced when a border between nodes is encountered.� Partial panels can be passed to the next row or column of nodes, to be �lled fully before broadcasting.The latter is particularly easy to incorporate into the pipelined version of the algorithm.10.2 Relaxing the alignment of the matricesNotice that it su�ces that the same rows of A and C are assigned to the same row of nodes, and the samecolumns of B and C to the same column of nodes. If A and B are not aligned with C in the other dimension, itis a matter of passing in icurrow and icurcol as parameters to the routine.12
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/* update icurcol, icurrow, ii, jj */if ( myrow == icurrow ) ii += iwrk;if ( mycol == icurcol ) jj += iwrk;icurrow = ( icurrow+1 )%nprow;icurcol = ( icurcol+1 )%npcol;Other alternative matrix decompositions can be handled similarly.10.4 Odd-shaped matricesA frequent use of matrix-matrix multiplication in applications is the case where k is much smaller than m andn. Examples of this occur in ScaLAPACK routines like those for the LU and QR factorization [11]. In suchcases, our approach continues to be useful. However it may be necessary to substitute a minimum spanning treebroadcast or other broadcast that does not rely on pipelining of communication and computations.10.5 Pipelining multiplicationsAnother interesting observation is that if a number of matrix-matrix multiplications need to be performed, thecommunication and computation can be pipelined between individual multiplications.11 SUMMA, ScaLAPACK, and Distributed BLASWe believe that the SUMMA approach is particularly appropriate for implementation of distributed BLASimplementations of the matrix-matrix multiplication. We summarize those in this section.It is very interesting to note that we started pursuing the presented algorithm by making the following simpleobservation: The blocked right-looking LU factorization, as implemented in LAPACK [1, 2], is much like amatrix-matrix multiplication, C = AB, implemented as a series of rank nb updates, except that they requirepivoting, matrices A, B, and C are all the same matrix, and the updates progressively a�ect less of the matrixbeing updated. Similarly, the approach used to derive the algorithm for C = ABT was actually inspired by theimplementation of a left-looking Cholesky factorization.We hence suspect that a ScaLAPACK implementation based on a distributed BLAS matrix-matrix multipli-cation would naturally bene�t from SUMMA.12 ConclusionThe presented algorithms for matrix-matrix multiplication are considerably simpler than those previouslypresented, all of which have been based on generalizations of the broadcast-multiply-roll algorithm. Nonetheless,their performance is competitive or better, and they are considerably more 
exible. Finally, their memory usefor work arrays is much lower than those of the broadcast-multiply-roll algorithm. As a result, we believe theSUMMA approach to be the natural choice for a general-purpose implementation.We should note that on some systems PUMMA may very well outperform SUMMA under some circumstances.In particular, SUMMA is slightly more sensitive to communication overhead. However, it is competetive, or faster,and given its simplicity and 
exibility, warrants consideration. Moreover, the implementations by Huss-Ledermanet. al. are competitive with PUMMA, and would thus compare similarly with SUMMA.AcknowledgementsThis research was performed in part using the Intel Paragon System and the Intel Touchstone Delta Systemoperated by the California Institute of Technology on behalf of the Concurrent Supercomputing Consortium.17
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