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In a recent paper [41], we describe a highly e�cient implementation of matrix-matrix multiplication, ScalableUniversal Matrix Multiplication Algorithm (SUMMA), that has many bene�ts over alternative implementations[14, 29, 30]. These bene�ts include better performance, simpler and more 
exible implementation, and a lowerworkspace requirement. In this paper, we show how the simple techniques developed in that paper can be extendedto all the level 3 BLAS.2 Notation and Assumptions2.1 Model of computationWe assume that the nodes of the parallel computer form a r � c mesh. While for the analysis this is a physicalmesh, the developed codes require only that the nodes can be logically con�gured as a r � c mesh. The p = rcnodes are indexed by their row and column index and the (i; j) node will be denoted by Pij.In the absense of network con
icts, communicating a message between two nodes requires time �+ n�, whichis reasonable on machines like the Intel Paragon system [38] . Parameters � and � represent the startup and costper item transfer time, respectively. Performing a 
oating point computation requires time 
.2.2 Data decompositionWe will assume the classical data decomposition, generally referred to as a two dimensional block-wrapped, orblock-cyclic, matrix decomposition [21].In general, we would need to consider the case of matrices as being distributed using a template matrix asfollows: Let template matrix X be partitioned asX = 0BBB@ X00 X01 X02 � � �X10 X11 X12 � � �X20 X21 X22 � � �... ... ... 1CCCAwhere Xij is a nr�nc submatrix. We will assume that the template is distributed to nodes so that Xij is assignedto node Pimod r;jmod c. In other words, the template is block-wrapped onto the (logical) two dimensional meshof nodes. The template matrix can be thought of as having in�nite dimension. Since it doesn't really exist, itrequires no space. For our implementations, the submatrices are square, i.e. nr = nc = nb, which we will call theblocking factor. However, the techniques discussed in this paper encompass the more general case.Matrices A, B, and C, involved in the matrix-matrix operation, are aligned to this template by specifying theelement of template X with which the upper-left-hand element of the matrix is aligned, after which the elementsof the matrices are distributed like corresponding elements of the template.2.3 Calling sequencesIn this section, we show how sequential calling sequences can be easily generalized to parallel calling sequencesusing the above observations. This is not because we are proposing a standard. We are merely trying to illustratewhat kind of additional information must be speci�ed. We will illustrate this for the simplest case of the matrix-matrix multiplication algorithm only, under the assumption that it will be clear how this generalizes.The sequential calling sequence for the level 3 BLAS Double precision GEneral Matrix-matrix Multiplicationis Calling sequence operationDGEMM ( "N", "N", M, N, K, ALPHA, A, LDA, B,LDB, BETA, C, LDC ) C = ~�AB + ~�CHere "N", "N" indicate that neither matrix A nor B are transposed, respectively. M and N are the row and columndimensions of matrix C, and K is the \other" dimension, in this case the column dimension of A and row dimension2



of B. Matrices A, B, and C are stored in arrays A, B, and C, respectively, which have leading dimensions LDA,LDB, and LDC.In distributing the matrices, it su�ces to specify the following for each:� The local array in which it is stored on this node. We will assume that we simply use A, B, and C,� The local leading dimensions LLDA, LLDB, and LLDC,� The blocking factor nb in parameter NB,� MPI communicators indicating the row and column of the logical mesh: comm row and comm col, and� The element of matrix template X with which the upper-right-hand element of the matrices are aligned:the row, column pairs (IA, JA), (IB, JB), and (IC, JC), respectively.Thus the calling sequence becomesCalling sequence operationsB DGEMM ( "N", "N", M, N, K, ALPHA, A, LLDA,IA, JA, B, LLDB, IB, JB, BETA, C,LLDC, IC, JC ) C = ~�AB + ~�CIt will be assumed that NB is initialized through some initialization routine, as are the parameters and assignmentof the logical r � c mesh of nodes as part of the MPI communicators.2.4 Simplifying assumptionsIn our explanations, we assume for simplicity that� ~� = 1 and ~� = 0,� nr = nc = nb,� m = n = k = Nnb, and� IA = JA = IB = JB = IC = JC = 1, i.e., the matrices are aligned with the (1; 1) element of the template.Thus, we will use the partitioning of the matricesY = 0BBB@ Y00 Y01 � � � Y0(N�1)Y10 Y11 � � � Y1(N�1)... ... ...Y(N�1)0 Y(N�1)1 � � � Y(N�1)(N�1) 1CCCA (1)with Y 2 fA;B;Cg and Yij of size nb�nb assigned to Pimod r;jmod c. (We realize that slight confusion will resultof our mixing of the FORTRAN convension of starting the indexing of arrays with 1 and the indexing of theblocks starting at 0, which leads to simpler explanations.)3 Parallel Algorithms for the Level 3 BLASIn this section, we give high level descriptions of the parallel implementations of all the level 3 BLAS.3



3.1 Matrix-Matrix Multiplication (xGEMM)3.1.1 Forming C = ABIn [41], we note the following:C = AB = 0BBB@ A00A10...A(N�1)0 1CCCA � B00 B01 � � � B0(N�1) � (2)+ 0BBB@ A01A11...A(N�1)1 1CCCA � B10 B11 � � � B1(N�1) � + � � � (3)+ 0BBB@ A0(N�1)A1(N�1)...A(N�1)(N�1) 1CCCA � B(N�1)0 B(N�1)1 � � � B(N�1)(N�1) � (4)where A�j (Bi�) consists of nb columns (rows) and will be referred to as a column (row) panel.In other words, the matrix-matrix multiplication can be implemented as a sequence of N rank-nb updates.The parallel implementation can now proceed as given in Fig. 1.in parallel C = 0for i = 0; N � 1broadcast A�i within rowsbroadcast Bi� within columnsin parallelC = C +0BBB@ A0iA1i)...A(N�1)i 1CCCA � Bi0 Bi1 � � � Bi(N�1) �endfor Figure 1: Pseudo-code for C = AB.It has been pointed out to us that this implementation was already reported in [2]. In that paper the bene�tsof overlapping communication and computation are also studied.3.1.2 Forming C = ABTOne approach to implementing this case is to transpose matrix B followed by the algorithm presented in theprevious section. In [41], we show how to avoid this initial communication:0BBB@ C0iC1i...C(N�1)i 1CCCA = A � Bi0 Bi1 � � � Bi(N�1) �4



C can thus be computed column panel at a time.The parallel implementation can now proceed as given in Fig. 2in parallel C = 0for i = 0; N � 1broadcast BTi� within columnscompute C�i = ABTi� bycomputing local contributionsumming local contributions to column of nodesthat own C�iendfor Figure 2: Pseudo-code for C = ABT .3.1.3 Forming C = ATBThis case can be implemented much like C = ABT .3.1.4 Forming C = ATBTOn the surface, it appears that this case can be implemented much like C = AB by communicating row panels ofA and column panels of B. However, this would compute CT , requiring a transpose operation to bring the datato the �nal destination. We inherently dislike the transpose operation, and will therefore suggest an alternativeapproach. We will limit ourselves considerably by only describing the algorithm for the case where the mesh ofnodes is square. How to generalize this approach will be brie
y indicated in the conclusion.Note that C = ATBT = � A00 A01 � � � A0(N�1) �T 0BBB@ B00B10...B(N�1)0 1CCCAT (5)+ � A10 A11 � � � A1(N�1) �T 0BBB@ B01B11...B(N�1)1 1CCCAT + � � � (6)+ � A(N�1)0 A(N�1)1 � � � A(N�1)(N�1) �T 0BBB@ B0(N�1)B1(N�1)...B(N�1)(N�1) 1CCCAT (7)In other words, the matrix-matrix multiplication can again be implemented as a sequence of N rank-nb updates.The parallel implementation is complicated by the fact that this time the panels must be transposed �rst. Inthe special case where the data is aligned as indicated and we have a square mesh of nodes (r = c = pp), the5



transpose can be accomplished by sending the appropriate subblocks of matrix A from the nodes in the row ofnodes that holds the current row panel of the matrix (nodes P(imodpp)�) to the corresponding column of nodes(nodes P�(imodpp)). Similarly, the appropriate subblocks of matrix B must be sent from the nodes in the columnof nodes that holds the current column panel of the matrix (nodes P�(imodpp)) to the corresponding row of nodes(nodes P(imodpp)�).The parallel implementation can now proceed as given in Fig. 3.in parallel C = 0for i = 0; N � 1transpose Ai�broadcast Ai� within rowstranspose B�ibroadcast B�i within columnsin parallelC = C +0BBB@ AT0iAT1i...AT(N�1)i 1CCCA � BTi0 BTi1 � � � BTi(N�1) �endfor Figure 3: Pseudo-code for C = ATBT .3.2 Triangular Matrix-Matrix Multiplication (xTRMM)3.2.1 Forming B = AB (A lower triangular)Notice that if we wish to form C = AB, this operation can be easily derived from the case where A is a fullmatrix: C = AB = 0BBB@ A00A10...A(N�1)0 1CCCA � B00 B01 � � � B0(N�1) � (8)+ 0BBB@ 0A11...A(N�1)1 1CCCA � B10 B11 � � � B1(N�1) � + � � � (9)+ 0BBB@ 0...0A(N�1)(N�1) 1CCCA � B(N�1)0 B(N�1)1 � � � B(N�1)(N�1) � (10)In other words, the matrix-matrix multiplication can be implemented as a sequence of N rank-nb updates, wherewe can take advantage of the fact that some of matrix A is zero.6



If B is to be overwritten, we need to be somewhat more careful. Notice that we can rearrange the computationso that B = AB = 0BBB@ 0...0A(N�1)(N�1) 1CCCA � B(N�1)0 B(N�1)1 � � � B(N�1)(N�1) � (11)+ � � �+0BBB@ 0A11...A(N�1)1 1CCCA � B10 B11 � � � B1(N�1) � (12)+ 0BBB@ A00A10...A(N�1)0 1CCCA � B00 B01 � � � B0(N�1) � (13)If the row panels of B are overwritten in reverse order, all entries of the original matrix will be available at theappropriate point in the algorithm.3.2.2 Forming B = AB (A upper triangular)This operation can be easily derived from the general matrix-multiply and the lower triangular case.B = AB = 0BBB@ A000...0 1CCCA � B00 B01 � � � B0(N�1) � (14)+ � � �+0BBB@ A0(N�2)...A(N�2)(N�2)0 1CCCA � B(N�2)0 B(N�2)1 � � � B(N�2)(N�1) � (15)+ 0BBB@ A0(N�1)A1(N�1)...A(N�1)(N�1) 1CCCA � B(N�1)0 B(N�1)1 � � � B(N�1)(N�1) � (16)This time, the order indicate guarantees that the data in B is overwritten correctly, yielding the correct result.3.2.3 Forming B = BA, A upper or lower triangularThe case where the triangular matrix A multiplies B from the right can be handled similar to the case where itmultiplies from the left. We leave this as an exercise for the reader.3.2.4 Forming B = ATB, A lower triangularThe operation C = ATB, with A lower triangular can be implemented much like C = ATB, where A is a generalmatrix: � Ci0 Ci1 � � � Ci(N�1) � = � Ai0 � � � Aii 0 � � � 0 �T BC can thus be computed a row panel at a time, where the computation does not perform calculations on theupper triangular part of A. 7



Since C must overwrite B, we perform this operation i = N � 1; : : : ; 0, in that order. This will ensure that therow panels of B are overwritten in an order that does not change the �nal result.3.2.5 Forming B = ATB, A upper triangularThis case can be treated similarly.3.2.6 Forming B = BAT , A upper or lower triangularAlgorithms for these cases can be derived similarly.3.3 Symmetric Matrix-Matrix Multiply (xSYMM)The basic symmetric matrix-matrix multiply is de�ned by the operation C  AB. where matrix A is symmetric,and only the upper or lower triangular part of A contains the necessary data. A can multiply B from the left orright.Consider that case where A is stored in the lower triangular part of A only. Let ~A and Â equal the lower andstrictly lower triangular parts of A, respectively. Since A = ~A + ÂT , we see that C = ~AB + ÂTB, and theparallel implementations can be easily derived from the implementations of the triangular matrix-matrixmultiply.Indeed, the implementation is simpli�ed by the fact that B is not being overwritten.All cases of this operation can be derived similarly.3.4 Symmetric Rank-K Update (xSYRK)The basic symmetric matrix-matrixmultiply is de�ned by the operation C  AAT , where matrix C is symmetric,and only the upper or lower triangular part of C needs to be computed.If C is a general matrix, i.e. all of the matrix is to be updated, then this operation could be implementedimply, with two applications of the general matrix-matrixmultiply, with matrixB equal to A and the \Transpose"parameter set for matrix B. Since, due to symmetry, only a triangular portion of C is to be updated, the imple-mentation is exactly like this, except that unnecessary computation is not performed, and only the appropriateportion of matrix C is updated.All cases of this operation can be derived similarly.3.5 Symmetric Rank-2K Update (xSYR2K)The basic symmetric matrix-matrix multiply is de�ned by the operation C  ABT + BAT , where matrix C issymmetric, and only the upper or lower triangular part of C contains the necessary data.As with the rank-k update, if C is a general matrix, i.e. all of the matrix is to be updated, then this operationcould be implemented by simply two general matrix-matrixmultiply, with the appropriate \Transpose" parametersset. Since, due to symmetry, only a triangular portion of C is to be updated, the implementation is exactly likethis, except that unnecessary computation is not performed, and only the appropriate portion of matrix C isupdated.All cases of this operation can be derived similarly.3.6 Triangular Solve with Multiple Right-Hand-Sides (xTRSM)The �nal level-3 BLAS operation we discuss is the triangular solve with multiple right-hand-sides.3.6.1 Forming B = A�1B, A lower triangularThis operation can be reformulated as AX = B8



where A is lower triangular, and X overwrites B. Letting A, X, and B be partitioned as before, note that0BBB@ A00 0 � � � 0A10 A11 � � � 0... ... ...A(N�1)0 A(N�1)1 � � � A(N�1)(N�1) 1CCCA0BBB@ X0�X1�...X(N�1)� 1CCCA = 0BBB@ B0�B1�...B(N�1)� 1CCCAwhere Aii are lower triangular. From this, we derive the following equations:A00 � X00 X01 � � � X0(N�1) � = � B00 B01 � � � B0(N�1) � (17)0B@ A10...A(N�1)0 1CA (X0�) +0B@ A11 � � � 0... ...A(N�1)1 � � � A(N�1)(N�1) 1CA0B@ X1�...X(N�1)� 1CA = 0B@ B1�...B(N�1)� 1CA (18)From (17) we note that X0� can be computed by solving A00X0j = B0j, j = 0; : : : ; N � 1, overwriting B0j withthe results. After this, the right-hand-side can be overwritten by0B@ B10 � � � B1(N�1)... ...B(N�1)0 � � � B(N�1)(N�1) 1CA� = 0B@ A10...A(N�1)0 1CA � X00 � � � X0(N�1) �Here � = indicates the right-hand-side of the equation is subtracted from the left-hand-side. Finally, the equation0B@ A11 � � � 0... ...A(N�1)1 � � � A(N�1)(N�1) 1CA0B@ X1�...X(N�1)� 1CA = 0B@ B1�...B(N�1)� 1CAis recursively solved.It is important to note that this algorithm is very similar to the one derived for implementing the triangularmatrix-matrix multiply in Section 3.2. Indeed the algorithm can be viewed as a sequence of rank-nb updates,with the row panel �rst updated by the triangular solve with multiple right-hand-sides in Eqn. 17. Also the orderof the updates is the reverse of the corresponding updates for the lower triangular matrix multiply.The parallel implementation can now be derived in a straight forward manner: For each iteration, j, the currentnb � nb triangular block, Ajj is broadcast within the row of nodes that owns it, and also owns Bj�. These nodescan then perform independent triangular solves with multiple right-hand-sides, overwriting Bj�. Finally, Aij andBji, i = j+ 1; : : : ; N � 1, are broadcast within rows and columns of nodes, respectively, after which local rank-nbupdates are used to update the appropriate portions of B.3.6.2 Forming B = A�1B, A upper triangularThis case can be treated similarly.3.6.3 Forming B = BA�1, A upper and lower triangularThese cases follow similarly.3.6.4 Forming B = A�TB, A lower triangularThis operation can be reformulated as ATX = B9



where A is lower triangular, and X overwrites B. Letting A, X, and B be partitioned as before, note that0BBBBBB@ A00 � � � 0 0 � � � 0... . . . ... ... ...Ai0 � � � Aii 0 � � � 0... ... ... ...A(N�1)0 � � � � � � � � � � � � A(N�1)(N�1) 1CCCCCCAT 0BBBBBBB@ X0�...Xi�...X(N�1)� 1CCCCCCCA = 0BBBBBBB@ B0�...Bi�...B(N�1)� 1CCCCCCCAis equivalent to 0BBBBBBBB@ AT00 � � � � � � ATi0 � � � AT(N�1)00 ... ...0 � � � 0 ATii � � � AT(N�1)i... ... ... ...0 � � � 0 0 � � � AT(N�1)(N�1) 1CCCCCCCCA0BBBBBBB@ X0�...Xi�...X(N�1)� 1CCCCCCCA = 0BBBBBBB@ B0�...Bi�...B(N�1)� 1CCCCCCCAFrom this, we derive the following equation:ATiiXi0 +0BBBBBBBB@ 0...0A(i+1)i...A(N�1)i 1CCCCCCCCAT 0BBBBBBBB@ X0�...Xi�X(i+1)�...X(N�1)� 1CCCCCCCCA = Bi�Taking advantage of zeroes, the following two steps will compute Xi�:Bi� = Bi� �0B@ A(i+1)i...A(N�1)i 1CAT 0B@ X(i+1)�...X(N�1)� 1CA (19)followed by solving ATiiXi� = Bi� (20)Notice that Xi� must be computed in the order i = N � 1; : : : ; 0, which also allows B to be overwritten by X asthe computation proceeds.Again, observe the similarity with the operation B = ATB, where A is lower triangular. Exploiting thissimilarity, we obtain the following parallel algorithm: At step i, nonzero blocks Aji are broadcast within rows.After computing local contributions of the update in Eqn. 19, the results are summed within columns to the rowof nodes that hold the ith panel of B. Finally, local triangular solves with multiple right-hand-sides to updateaccording to Eqn. 20 are performed, and i is decreased.3.6.5 Forming B = A�TB, A upper triangularThis case can be treated similarly.3.6.6 Forming B = BA�T , A upper and lower triangularThese cases follow similarly. 10



4 AnalysisIn [41], we give an analysis of the matrix-matrix multiplication algorithm. In that paper, we assumed a slightlydi�erent matrix distribution, and hence the results were slightly di�erent from those we will derive next. Inaddition, we show the results of similar analysis of representative other parallel level 3 BLAS.For our analysis, we will make the following assumptions:1. The nodes for a physical r � c mesh, with Pij assigned to the (i; j) physical node in that mesh.2. All alignment parameters equal one.3. nr = nc = nb.4. A minimum spanning tree broadcast and summation-to-one are used, so that the cost for broadcasting avector of length n among p nodes is given bydlog(p)e(� + n�)and the cost for summing vectors of length n among p nodes is given bydlog(p)e(� + n� + n
)There are a number of papers on how to improve upon this method of broadcasting and summation [28,38, 9, 40, 42], but will analyze only this simple approach, since it is typically the current MPI defaultimplementation.5. Dimensions m, n, and k are integer multiples of nb: m = Mnb, n = Nnb, and k = Knb.4.1 Forming C = ABThe estimated cost for forming C = AB is given byTC=AB(m;n; k; r; c) =K �dlog(c)e��+ �Mr �n2b�� + dlog(r)e��+ �Nc �n2b��+ 2�Mr � �Nc �n3b
�The factor K comes from the number of iterations performed. Within the square brackets, the �rst and secondterm are due to the column and row panel broadcasts, respectively. The last term is due to the local matrix-matrixmultiply. If we ignore all the ceilings, we get an estimate ofTC=AB(m;n; k; r; c)� knb hlog(c)��+ mr nb�� + log(r)��+ nc nb�� + 2mr nc nb
i= knb log(p)�+ �log(c)mkr + log(r)nkc �� + 2mnkp 
If we de�ne the speedup as SC=AB(m;n; k; r; c) = T seqC=AB (m;n; k)TC=AB(m;n; k; r; c)and the e�ciency as EC=AB(m;n; k; r; c) = SC=AB (m;n; k; r; c)pthen we see thatEC=AB(m;n; k; r; c) � 11 + pknb2mnk log(p)�
 + �log(c) pmk2mnkr + log(r) pnk2mnkc� �
= 11 + p log(p)nb2mn �
 + �log(c) c2n + log(r) r2m� �
11



We will now study the special case where m = n = k and r = c = pp, in which case the e�ciency becomesEC=AB(n; n; n;pp;pp) = 11 + p log(p)nb2n2 �
 + log(p)pp2n �
Given this estimate of the e�ciency, we will ask ourselves the question what will happen to the e�ciency if weallow the problem to grow as nodes are added, with the constraint that the memory utilization per node mustremain constant. Since memory usage is proportional to n2, this means we require n2 = Cp for some constant C,or n = pCpp. Notice thatEC=AB(pCpp;pCpp;pCpp;pp;pp) = 11 + p log(p)nb2Cp �
 + log(p) pp2pCpp �
= 11 + log(p)nb2C �
 + log(p) 12pC �
We thus conclude that if logp is treated as a constant, then the e�ciency should remain constant if the problemsize and number of nodes grow as indicated.Notice that in our analysis, we have ignored the cost of copying between bu�ers, as may be necessary to packor unpack noncontiguous arrays.4.2 Other operationsRather than performing the above analysis for each of the indicated operations, we now give a table of some ofthe time estimates derived similarly. We will make the same assumptions as made for C = AB, and again willignore ceiling functions in this table. Also, we only report the most signi�cant term for each of the �, �, and 
components.Algorithm CostxGEMM (m � n matrix C, n� k matrix A)T GEMMC=AB � TC=ABT � TC=ATB � log(p) knb�+ �log(c)mkr + log(r)nkc � � + 2mnkp 
xTRMM (m� n matrix B)T TRMMB=AB � T TRMMB=ATB � log(p) mnb�+ �log(c)m22r + log(r)mnc )� � + m2np 
xSYMM(m � n matrix C)T SYMMC=AB � T TRMMC=AB + TRTRMMC=ATBxSYRK (m � n matrix A)T SYRKC=AAT � nnb log(p)�+ �log(c)mn2r + log(r)mnc � � + mn2p 
T SYRKC=ATA � mnb log(p)�+ �log(c)mn2r + log(r)mnc � � + m2np 
xSYR2K (m � n matrices A and B)T SYR2KC=ABT+BTA � T SYRKC=AAT + T SYRKC=ATAxTRSM (m� n matrix B)T TRSMB=A�1B � (log(p) + log(c)) mnb�+ �log(c)m22r + log(r)mnc � � + nm2p 
The presented costs are representative of the costs of all parallel level 3 BLAS. Scalability can be analysedusing these costs extimates as was done for matrix-matrix multiply. The resulting conclusions are similar to thosefor the matrix-matrix multiply. 12



5 OptimizationsIn [41], we show how the performance of the matrix-matrix multiplication can be improved considerably bypipelining communication and computation. In e�ect, the broadcast is replaced by one that passes the messagesaround the ring that forms the nodes involved in the broadcast. Let us examine the simple case C = AB. Sincethe next iteration of an algorithm can start as soon as the next nodes that need to broadcast are ready, the netcost of the algorithm becomesTC=AB (m;n; k; r; c) =K �2��+ �Mr � n2b�� + 2��+ �Nc �n2b�� + 2�Mr ��Nc �n3b
�� knb2�+�2mkr + 2nkc � � + 2mnkp 
This formula ignores the cost of �lling and/or emptying the pipe. A similar improvement is seen for all thealgorithms, if this \ring" broadcast is used. For some of the algorithms, some care must be taken to make theoperation \
ow" in the appropriate direction. Notice that the e�ect on scalability is considerable, since in theestimate for the e�ciency, the \log" factors are essentially replaced by a 2, making the approach virtually perfectlyscalable.6 Performance ResultsThis section reports the performance of preliminary parallel level 3 BLAS implementations, obtained on an IntelParagon with GP nodes. Our implementations use the highly optimized BLAS library available for computationon each node. Communication is accomplished using MPI collective communication calls. We present resultsfrom pipelined implementations.In Fig. 4, we show the performance of representative parallel level 3 BLAS as a function of the matrix dimen-sions, on a single node. This gives us an indication of the peak performance for the di�erent operations.In Fig. 5, we show the performance of representative parallel level 3 BLAS as a function of the matrix dimen-sions, on an 8� 8 mesh of nodes. All matrices are assumed to be square. Performance is reported in MFLOPSper node, as a function of problem size. Noting that peak performance for matrix-matrix multiply on a singlenode is around 45-46 MFLOPS, we see our implementations achieve very good performance, once the problemsize is reasonably large. Additional performance graphs are given in the appendix.In Fig. ??, we show the performance of representative parallel level 3 BLAS as a function of the number ofnodes, where the problem size is scaled with the number of nodes to keep the memory used per node constant.Again, all matrices are assumed to be square and performance is reported in MFLOPS per node. Since reportingMFLOPS (performance) per node is equivalent to reporting e�ciency, our analysis predicts that performance pernode should be essentially constant as the number of nodes increases. Our performance graphs show a trend thatveri�es that prediction. Additional scalability graphs are given in the appendix.Notice that we do not give performance results for C = ATBT since we don't have a general implementationfor that operation.7 AvailabilityA considerable contribution of this work is in the implementations that we have produced. Complete implemen-tations of the discussed BLAS, with the exception of C = ATBT , are available under GNU license fromhttp://www.cs.utexas.edu/users/rvdg/sw/sB BLAS13
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8 ConclusionWe have demonstrated a general, uni�ed approached to parallel implemention of the level 3 BLAS. Very goodperformance is demonstrated. Furthermore, a considerable strength of the approach is that it allows simpleimplementation of all algorithms, making it ideal for library development.It appears that one shortcoming of our approach is that is does not handle the operation C = ATBT elegantly.Moreover, while our graphs show that performance is impressive, we must point out that this is not necessarilythe case when the matrices are not nicely shaped. Consider the operation C = AB, where C and B are onlysingle columns or narrow panels of columns. All useful computation will be performed by the single column ofnodes that own C and B. Interestingly enough, if we start by transposing B, resulting ~B distributed in a singlerow of nodes, and next apply the algorithm C = ABT , useful computation is performed by all nodes.We thus argue that the key to implementing all level 3 BLAS so that they are e�cient for all shapes ofmatrices requires us to be able to transpose panels of rows and/or columns e�ciently. This would also solve theC = ATBT problem. Unfortunately, the traditional approach to matrix distribution does not allow this operationto be performed e�ciently, elegantly, or generally. We believe that the key to solving this problem is to switch towhat we call Physically Based Matrix Distributions (PBMD) [22]. We are currently pursuing implementation ofall BLAS using this new approach to matrix distribution.The above comments may make it appear we are sending mixed signals concerning the usefulness of the de-scribed techniques. We believe the presented paper is useful in that it exposes powerful techniques regardless ofthe matrix distribution choosen. We have tried to describe the techniques so that they can be easily customizedfor speci�c distributions. The library as it stands would be useful for implementation of a wide range of algo-rithms, including the LU factorization [21], the left-looking Cholesky factorization, matrix-multiplication basedeigensolvers[6, 7, 8, 33], or out-of-core dense linear solvers [31].Finally, in [26] we show how this approach can be used for parallel implementation of Strassen's algorithm formatrix-matrix multiplication. This suggests that an entire suite of variants of Strassen's algorithm for all thelevel 3 BLAS could be implemented on top of our standard parallel level 3 BLAS implementations.AcknowledgementsThis research was performed in part using the Intel Paragon System operated by the California Institute ofTechnology on behalf of the Concurrent Supercomputing Consortium. Access to this facility was provided byIntel Supercomputer Systems Division and the California Institute of Technology.References[1] R. C. Agarwal, F. G. Gustavson, S. M. Balle, M. Joshi, P. Palkar, \A High Performance Matrix MultiplicationAlgorithm for MPPs" IBM T.J. Watson Research Center, 1995.[2] R. C. Agarwal, F. G. Gustavson, and M. Zubair, \A High Performance Matrix Multiplication Algorithmon a Distributed-Memory Parallel Computer, using Overlapped Communication," IBM Journal of Researchand Development, pp. 673{681, 1994.[3] Anderson, E., Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. DuCroz, A. Greenbau m, S. Hammarling, A.McKenney, and D. Sorensen, \Lapack: A Portable Linear Algebra Library for High Performance Computers,"Proceedings of Supercomputing '90, IEEE Press, 1990, pp. 1{10.[4] Anderson, E., Z. Bai, J. Demmel, J. Dongarra, J. DuCroz, A. Greenbaum, S. Hammarling, A. McKenney, S.Ostrouchov, and D. Sorensen, LAPACK Users' Guide, SIAM, Philadelphia, 1992.[5] E. Anderson, A. Benzoni, J. Dongarra, S. Moulton, S. Ostrouchov, B. Tourancheau, and R. van de Geijn,\LAPACK for Distributed Memory Architectures: Progress Report." in the Proceedings of the Fifth SIAMConference on Parallel Processing for Scienti�c Computing, SIAM, Philadelphia, 1992. pp. 625{630.17
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In Figs. 7{11, we show the performance of all the level 3 BLAS as a function of the matrix dimensions.All matrices are assumed to be square. Performance is reported in MFLOPS per node, as a function ofproblem size. Noting that peak performance for matrix-matrix multiply on a single node is approximately45-46 MFLOPS, we observe that our implementations achieve very good performance, once the problem sizeis reasonably large.In Figs. 12{16, we show the performance of all the level 3 BLAS as a function of the number of nodes, wherethe problem size is scaled with the number of nodes to keep the memory used per node constant. Again,all matrices are assumed to be square and performance is reported in MFLOPS per node. Since reportingMFLOPS (performance) per node is equivalent to reporting e�ciency, our analysis predicts that performanceper node should be essentially constant as the number of nodes increases. Our performance graphs show atrend that veri�es that prediction.
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