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Abstract

In this paper, we present straight forward techniques for a highly efficient, scalable implementation of common
matriz-matriz operations generally known as the Level 3 Basic Linear Algebra Subprograms (BLAS). This work
butlds on our recent discovery of a parallel matriz-matriz multiplication implementation, which has yielded superior
performance, and requires little work space. We show that the techniques used for the matriz-matriz multiplication
naturally extend to all important level 3 BLAS and thus this approach becomes an enabling technology for efficient
parallel implementation of these routines and libraries that use BLAS. Representative performance results on the
Intel Paragon system are given.

1 Introduction

Over the last five years, we have learned a lot about how to parallelize dense linear algebra libraries [5, 12, 15, 20,
21, 23, 36, 39]. Since much effort went into implementation of individual algorithms, it became clear that in order
to parallelize entire sequential libraries, better approaches had to be found. Perhaps the most successful sequential
library, LAPACK [3, 4], is built upon a few compute kernels, known as the Basic Linear Algebra Subprograms
(BLAS). These include the level 1 BLAS (vector-vector operations) [32], level 2 BLAS (matrix-vector operations)
[17], and level 3 BLAS (matrix-matrix operations) [18]. Tt is thus natural to try to push most of the effort into
parallelizing these kernels, in the hope that good parallel implementations of codes that utilize these kernels will
follow automatically. The above observations lead to two related problems: first, how to specify the parallel
BLAS and second, how to implement them. The former is left to those working to standardize parallel BLAS
interfaces [11]. This paper concentrates on the latter issue.

Notice that the dense linear algebra community has always depended on fast implementations of the BLAS
provided by the vendors. Unless simple implementation techniques are developed, construction and maintenance
of the parallel BLAS becomes too cumbersome, making it much more difficult to convince the vendors to provide
fast implementations. We therefore must develop fast reference implementations, so that the vendors need only
perform minor optimizations.

*This work is partially supported by the NASA High Performance Computing and Communications Program’s Earth and Space
Sciences Project under NRA Grant NAG5-2497 and the PRISM project, which is sponsored by ARPA. Additional support came from
the Intel Research Council.



In a recent paper [41], we describe a highly efficient implementation of matrix-matrix multiplication, Scalable
Universal Matrix Multiplication Algorithm (SUMMA), that has many benefits over alternative implementations
[14, 29, 30]. These benefits include better performance, simpler and more flexible implementation, and a lower
workspace requirement. In this paper, we show how the simple techniques developed in that paper can be extended

to all the level 3 BLAS.

2 Notation and Assumptions

2.1 Model of computation

We assume that the nodes of the parallel computer form a r x ¢ mesh. While for the analysis this 1s a physical
mesh, the developed codes require only that the nodes can be logically configured as a r x ¢ mesh. The p = re
nodes are indexed by their row and column index and the (4, j) node will be denoted by P;;.

In the absense of network conflicts, communicating a message between two nodes requires time o + ng, which
is reasonable on machines like the Intel Paragon system [38] . Parameters o and (3 represent the startup and cost
per item transfer time, respectively. Performing a floating point computation requires time ~.

2.2 Data decomposition

We will assume the classical data decomposition, generally referred to as a two dimensional block-wrapped, or
block-cyclic, matrix decomposition [21].

In general, we would need to consider the case of matrices as being distributed using a template matriz as
follows: Let template matrix X be partitioned as

Xoo | Xo1 | Xo2
Xig | Xi1 | Xuo2
X = Xog | Xo1 | Xog

where X;; is a n, X n. submatrix. We will assume that the template is distributed to nodes so that X;; is assigned
to node Pimodr jmode. In other words, the template is block-wrapped onto the (logical) two dimensional mesh
of nodes. The template matrix can be thought of as having infinite dimension. Since it doesn’t really exist, it
requires no space. For our implementations, the submatrices are square, i.e. n, = n. = np, which we will call the
blocking factor. However, the techniques discussed in this paper encompass the more general case.

Matrices A, B, and C, involved in the matrix-matrix operation, are aligned to this template by specifying the
element of template X with which the upper-left-hand element of the matrix is aligned, after which the elements
of the matrices are distributed like corresponding elements of the template.

2.3 Calling sequences

In this section, we show how sequential calling sequences can be easily generalized to parallel calling sequences
using the above observations. This s not because we are proposing a standard. We are merely trying to illustrate
what kind of additional information must be specified. We will illustrate this for the simplest case of the matrix-
matrix multiplication algorithm only, under the assumption that it will be clear how this generalizes.

The sequential calling sequence for the level 3 BLAS Double precision GEneral Matrix-matrix Multiplication
is

| Calling sequence | operation |
DGEMM ( "N, "N", M, N, K, ALPHA, A, LDA, B . P
3 3 3 3 3 3 3 3 3 C: AB C
LDB, BETA, C, LDC ) aAB +

Here "N", "N" indicate that neither matrix A nor B are transposed, respectively. M and N are the row and column
dimensions of matrix (', and K is the “other” dimension, in this case the column dimension of A and row dimension



of B. Matrices A, B, and C' are stored in arrays A, B, and C, respectively, which have leading dimensions LDA,
LDB, and LDC.
In distributing the matrices, it suffices to specify the following for each:

e The local array in which it is stored on this node. We will assume that we simply use A, B, and C,

e The local leading dimensions LLDA, LLDB, and LLDC,

e The blocking factor n; in parameter NB,

e MPI communicators indicating the row and column of the logical mesh: comm row and comm_col, and

e The element of matrix template X with which the upper-right-hand element of the matrices are aligned:
the row, column pairs (I4, JA), (IB, JB), and (IC, JC), respectively.

Thus the calling sequence becomes

| Calling sequence | operation |

SBDGEWM ( "N", "N", M, N, K, ALPHA, A, LLDA, )
IA, JA, B, LLDB, IB, JB, BETA, C, C = aAB + 38C
LLDC, IC, JC )

It will be assumed that NB is initialized through some initialization routine, as are the parameters and assignment
of the logical r x ¢ mesh of nodes as part of the MPI communicators.
2.4 Simplifying assumptions
In our explanations, we assume for simplicity that
e =1 and 5 =0,
® Ny =n. =My,
e m=n=k= Nng, and
e JA=JA=1IB=JB=1IC=JC =1, 1i.e., the matrices are aligned with the (1, 1) element of the template.

Thus, we will use the partitioning of the matrices

Yoo Yo Yow-1)
Yio Y1, Yien_1
Y = : : : (1)
Yiv—no | Yov—ur | - | Yvenyv-1)

with Y € {4, B,C} and Yj; of size ny x np assigned to Pimodr jmode. (We realize that slight confusion will result
of our mixing of the FORTRAN convension of starting the indexing of arrays with 1 and the indexing of the
blocks starting at 0, which leads to simpler explanations.)

3 Parallel Algorithms for the Level 3 BLAS

In this section, we give high level descriptions of the parallel implementations of all the level 3 BLAS.



3.1 Matrix-Matrix Multiplication (xGEMM)
3.1.1 Forming C'= AB
In [41], we note the following:

& (BOO|B()1|"'|BO(N_1) )

AN-1)1

Aov-1)
Aynv-1)
: (4)

Aoy ) Boveno | Bov—in [+ | Bovonyv-ny )

where A.; (Bsx) consists of np columns (rows) and will be referred to as a column (row) panel.
In other words, the matrix-matrix multiplication can be implemented as a sequence of N rank-n; updates.
The parallel implementation can now proceed as given in Fig. 1.

in parallel C =0

fori=0,N—-1
broadcast A.; within rows
broadcast B;, within columns
in parallel

Aov;
Aty (

C=C+ Bio | B | -+ | Biv—1) )

ANy
endfor

Figure 1: Pseudo-code for C'= AB.

It has been pointed out to us that this implementation was already reported in [2]. In that paper the benefits
of overlapping communication and computation are also studied.

3.1.2 Forming C = ABT

One approach to implementing this case is to transpose matrix B followed by the algorithm presented in the
previous section. In [41], we show how to avoid this initial communication:

Cloi

Chi
=A( Bio| B |-+ | Bin-1) )

CiN-1)i



C' can thus be computed column panel at a time.
The parallel implementation can now proceed as given in Fig. 2

in parallel C =0
fori=0,N -1
broadcast B, within columns
compute C.; = ABL by
computing local contribution
summing local contributions to column of nodes
that own C;
endfor

Figure 2: Pseudo-code for C' = ABT.

3.1.3 Forming C = A”B

This case can be implemented much like C' = ABT.

3.1.4 Forming C = AT BT

On the surface, it appears that this case can be implemented much like C' = AB by communicating row panels of
A and column panels of B. However, this would compute C”| requiring a transpose operation to bring the data
to the final destination. We inherently dislike the transpose operation, and will therefore suggest an alternative
approach. We will limit ourselves considerably by only describing the algorithm for the case where the mesh of
nodes 1s square. How to generalize this approach will be briefly indicated in the conclusion.

Note that

T B r
( Aoo | Aot | -+ | Aoty ) BOO
¢ o= ATBT = — 5
- - : (5)
Bn_1y0
Boy 4
By
T
+ (Ao lAn ] [ Ay ) 5 + (6)
Bn-1n1
Bov-1) 4
T — e (7)
/A
( Av-no [ Aw-n1 | [Ax-nv-1 )" \ By

In other words, the matrix-matrix multiplication can again be implemented as a sequence of N rank-n; updates.
The parallel implementation is complicated by the fact that this time the panels must be transposed first. In
the special case where the data is aligned as indicated and we have a square mesh of nodes (r = ¢ = /p), the



transpose can be accomplished by sending the appropriate subblocks of matrix A from the nodes in the row of
nodes that holds the current row panel of the matrix (nodes P (i mod \/17)*) to the corresponding column of nodes
(nodes P, (;mod \/17))' Similarly, the appropriate subblocks of matrix B must be sent from the nodes in the column
of nodes that holds the current column panel of the matrix (nodes P (i mod \/17)) to the corresponding row of nodes

(nodes P (;mod \/17)*)'

The parallel implementation can now proceed as given in Fig. 3.

in parallel C =0
fori=0,N -1
transpose A;,
broadcast A;, within rows
transpose By;
broadcast B,; within columns
in parallel
A,

c=ct || (BB | Blvsy)
A1y
endfor

Figure 3: Pseudo-code for C' = AT BT,

3.2 Triangular Matrix-Matrix Multiplication (xTRMM)
3.2.1 Forming B = AB (A lower triangular)

Notice that if we wish to form C' = AB, this operation can be easily derived from the case where A is a full
matrix:

& (BOO|B()1|"'|BO(N_1) )
A1
C = AB= : (8)
AN_1)0
0
i A.H ( Bio | Bit |-+ | Biv—1y ) i (9)
AN-1)1
0
+ f (10)
Aoy ) (Bov-no | B |-+ [ Bov-nv-) )

In other words, the matrix-matrix multiplication can be implemented as a sequence of N rank-n; updates, where
we can take advantage of the fact that some of matrix A is zero.



If B is to be overwritten, we need to be somewhat more careful. Notice that we can rearrange the computation
so that

0
B = AB= : (11)
m ( Bov—npo | Bovoupn |-+ | Bov—nyv-1) )
b
oA (B[ Bu || Buen ) (12)
ﬁifg ( Boo | Bot |-+ | Bopw-) )
+ | (13)

If the row panels of B are overwritten in reverse order, all entries of the original matrix will be available at the
appropriate point in the algorithm.

3.2.2 Forming B = AB (A upper triangular)

This operation can be easily derived from the general matrix-multiply and the lower triangular case.

% ( Boo | Bor | -+ | Bow=1 )
B = AB=|— (14)
0
Ag(n-2)
4o ' ( Bov-zjo | Bov-zy1 |-+ | Bov-zwv-1) ) (15)
AN-—2)(N-2
0
Ag(n-1)
Ayv-1)
+ : (16)
Aoy ) (Boveno | Boven | | Bovon-1) )

This time, the order indicate guarantees that the data in B is overwritten correctly, yielding the correct result.

3.2.3 Forming B = BA, A upper or lower triangular

The case where the triangular matrix A multiplies B from the right can be handled similar to the case where it
multiplies from the left. We leave this as an exercise for the reader.

3.2.4 Forming B = AT B, A lower triangular

The operation C' = AT B, with A lower triangular can be implemented much like C = AT B, where A is a general
matrix: .

(Gio | G [+ [ Cinery ) = (Aio |- [ A [0 ] [0)" B
C' can thus be computed a row panel at a time, where the computation does not perform calculations on the
upper triangular part of A.



Since C' must overwrite B, we perform this operation ¢ = N —1,...,0, in that order. This will ensure that the
row panels of B are overwritten in an order that does not change the final result.

3.2.5 Forming B = AT B, A upper triangular

This case can be treated similarly.

3.2.6 Forming B = BA”, A upper or lower triangular

Algorithms for these cases can be derived similarly.

3.3 Symmetric Matrix-Matrix Multiply (xSYMM)

The basic symmetric matrix-matrix multiply is defined by the operation (' < AB. where matrix A is symmetric,
and only the upper or lower triangular part of A contains the necessary data. A can multiply B from the left or
right.

Consider that case where A is stored in the lower triangular part of A only. Let A and A equal the lower and
strictly lower triangular parts of A, respectively. Since A = A+ AT we see that ¢ =« AB + AT B, and the
parallel implementations can be easily derived from the implementations of the triangular matrix-matrix multiply.
Indeed, the implementation is simplified by the fact that B is not being overwritten.

All cases of this operation can be derived similarly.

3.4 Symmetric Rank-K Update (xSYRK)

The basic symmetric matrix-matrix multiply is defined by the operation C' + AAT | where matrix C is symmetric,
and only the upper or lower triangular part of C' needs to be computed.

If C' is a general matrix, i.e. all of the matrix is to be updated, then this operation could be implemented
imply, with two applications of the general matrix-matrix multiply, with matrix B equal to A and the “Transpose”
parameter set for matrix B. Since, due to symmetry, only a triangular portion of C'is to be updated, the imple-
mentation is exactly like this, except that unnecessary computation is not performed, and only the appropriate
portion of matrix C'is updated.

All cases of this operation can be derived similarly.

3.5 Symmetric Rank-2K Update (xSYR2K)

The basic symmetric matrix-matrix multiply is defined by the operation C' + ABT + BAT  where matrix C is
symmetric, and only the upper or lower triangular part of C' contains the necessary data.

As with the rank-k update, if C' is a general matrix; i.e. all of the matrix is to be updated, then this operation
could be implemented by simply two general matrix-matrix multiply, with the appropriate “ITranspose” parameters
set. Since, due to symmetry, only a triangular portion of C' is to be updated, the implementation is exactly like
this, except that unnecessary computation is not performed, and only the appropriate portion of matrix C is
updated.

All cases of this operation can be derived similarly.

3.6 Triangular Solve with Multiple Right-Hand-Sides (xTRSM)
The final level-3 BLAS operation we discuss is the triangular solve with multiple right-hand-sides.

3.6.1 Forming B = A~'B, A lower triangular

This operation can be reformulated as

AX =B



where A is lower triangular, and X overwrites B. Letting A, X, and B be partitioned as before, note that

Ao | 0 | -] 0 Xox Bos
Aro Aty 0 Xix _ B
An-npo || Av-nn | | Av—nv=1) X(N-1)« Bn_1)«

where A;; are lower triangular. From this, we derive the following equations:
Ago ( Xoo | Xo1 | -+ | Xov—1y ) = ( Boo | Bo1 | -+ | Bov—-1) ) (17)

Ao (Xox) An 0 Xix By

Av_1)0 Ao | | Av—n - X(v-1)» Bv_1)x

From (17) we note that Xg, can be computed by solving AggXo; = Boj, j =0,..., N — 1, overwriting By; with
the results. After this, the right-hand-side can be overwritten by

Bio Biv-1) Aig ( Xoo |+ | Xov-1) )

Bnv_1yo | | Biv—nyv-1) AN_1)0
Here — = indicates the right-hand-side of the equation is subtracted from the left-hand-side. Finally, the equation

Arr 0 X1« B,

Av-nn | | Av=nv-n X(n-1)« B(n-1)

is recursively solved.

It is important to note that this algorithm is very similar to the one derived for implementing the triangular
matrix-matrix multiply in Section 3.2. Indeed the algorithm can be viewed as a sequence of rank-n;, updates,
with the row panel first updated by the triangular solve with multiple right-hand-sides in Eqn. 17. Also the order
of the updates is the reverse of the corresponding updates for the lower triangular matrix multiply.

The parallel implementation can now be derived in a straight forward manner: For each iteration, j, the current
ny X ny triangular block, A;; is broadcast within the row of nodes that owns it, and also owns B;.. These nodes
can then perform independent triangular solves with multiple right-hand-sides, overwriting B;.. Finally, A;; and
Bji,t=j41,..., N —1, are broadcast within rows and columns of nodes, respectively, after which local rank-n,
updates are used to update the appropriate portions of B.

3.6.2 Forming B = A~'B, A upper triangular

This case can be treated similarly.

3.6.3 Forming B = BA~!, A upper and lower triangular

These cases follow similarly.

3.6.4 Forming B = A~TB, A lower triangular

This operation can be reformulated as

ATX =B



where A is lower triangular, and X overwrites B. Letting A, X, and B be partitioned as before, note that

Ago . lollol!... 0 T Xow
Ao ol Aa || 0 ] 0 Xix
AN_1)0 AN-1)(N-1) X(N-1)
1s equivalent to
At Al |- A(TN—I)O Xox
0 : : :
T T _
T R v D
0 |---]0 0o |- A(TN_l)(N_l) X(N-1)«
From this, we derive the following equation:
0 T/ X
0 X;
’ AG41)i X(it1)
A(N-1)i X(n-1)«

Taking advantage of zeroes, the following two steps will compute Xj,:

T

A1y Xig1)«

Bi* = Bz’* -

AN-1yi X(N-1)«

followed by solving
A?;Xz* = Bz’*

BO*
Bi*
B(N—l)*

BO*

(19)

(20)

Notice that X;, must be computed in the order ¢ = N — 1,...,0, which also allows B to be overwritten by X as

the computation proceeds.

Again, observe the similarity with the operation B = AT B, where A is lower triangular. Exploiting this
similarity, we obtain the following parallel algorithm: At step ¢, nonzero blocks Aj;; are broadcast within rows.
After computing local contributions of the update in Eqn. 19, the results are summed within columns to the row
of nodes that hold the ¢th panel of B. Finally, local triangular solves with multiple right-hand-sides to update

according to Eqn. 20 are performed, and ¢ is decreased.

3.6.5 Forming B = A~TB, A upper triangular

This case can be treated similarly.

3.6.6 Forming B = BA~", A upper and lower triangular

These cases follow similarly.
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4 Analysis

In [41], we give an analysis of the matrix-matrix multiplication algorithm. In that paper, we assumed a slightly
different matrix distribution, and hence the results were slightly different from those we will derive next. In
addition, we show the results of similar analysis of representative other parallel level 3 BLAS.

For our analysis, we will make the following assumptions:

1. The nodes for a physical » x ¢ mesh, with P;; assigned to the (¢, j) physical node in that mesh.
2. All alignment parameters equal one.
3. Ny = Ne = Np.

4. A minimum spanning tree broadcast and summation-to-one are used, so that the cost for broadcasting a
vector of length n among p nodes is given by

[log(p)](a +np)
and the cost for summing vectors of length n among p nodes is given by
[log(p)1(er +nf +nv)

There are a number of papers on how to improve upon this method of broadcasting and summation [28,
38, 9, 40, 42], but will analyze only this simple approach, since it is typically the current MPI default
implementation.

5. Dimensions m, n, and k are integer multiples of ny: m = Mny, n = Nny, and & = Kny.

4.1 Forming C' = AB
The estimated cost for forming C' = AB is given by

TC:AB(ma n, ka r, C) =

ot (2] (o[ [ 2] [2] ]

The factor K comes from the number of iterations performed. Within the square brackets, the first and second
term are due to the column and row panel broadcasts, respectively. The last term is due to the local matrix-matrix
multiply. If we ignore all the ceilings, we get an estimate of

TC:AB (ma n, ka r, C)

~ L3 {log(c) (a + %nbﬁ) + log(r) (a + %nbﬁ) + 2%%%7

ny
k k k k
= Ltogp)a + (logte) 2 +1og(n) ™ ) 5+ 2728,
b

If we define the speedup as
T(sjejAB (m’ n, k)

SC:AB(manakara C) = TC—AB(m nkr C)

and the efficiency as
SC:AB (ma n, ka r, C)

EC:AB(ma n, ka r, C) =
P

then we see that

1
k o mk nk
1+ nbgmnk log(p)v + (log(c) 2£’mk7‘ + log(r) ZTZ;mkc) %

EC:AB(manakara C) ~

1
14 blos) o | (log(c) == + log(r) 5=) %

ny2mn y 2m

11



We will now study the special case where m = n = k and r = ¢ = /p, in which case the efficiency becomes

1
Eczap(n,n,n,\/p,\/p) = o >
14 LBl & 4 log(p) Y22

Given this estimate of the efficiency, we will ask ourselves the question what will happen to the efficiency if we
allow the problem to grow as nodes are added, with the constraint that the memory utilization per node must
remain constant. Since memory usage is proportional to n?, this means we require n? = Cp for some constant C,

orn= \/5\/5 Notice that

1
EC:AB(\/E\/ﬁ \/5\/5’ \/5\/5’ VPP = 14 PlosP) a 4 VP B
+ sy 5 Tlosp) 575 =5
1
1+ 28L& 4 og(p) 7 2=2

We thus conclude that ¢f logp is treated as a constant, then the efficiency should remain constant if the problem
size and number of nodes grow as indicated.

Notice that in our analysis, we have ignored the cost of copying between buffers, as may be necessary to pack
or unpack noncontiguous arrays.

4.2 Other operations

Rather than performing the above analysis for each of the indicated operations, we now give a table of some of
the time estimates derived similarly. We will make the same assumptions as made for C' = AB, and again will
ignore ceiling functions in this table. Also, we only report the most significant term for each of the «, 3, and ~
components.

| Algorithm | Cost |
xGEMM (m x n matrix C', n x k matrix A)
TEM o~ Tooapr & Tooprp & ‘ log(p)nﬁba + (log(c) 2% + log(r)2E) B + QmT”k'y
xTRMM (m x n matrix B)
T~ TR, ~ log(p) 220 + (log(c) 2= + log(r)22)) # + 22
xSYMM(m x n matrix C)
e p ~ | T8 g + TR 2 s
xSYRK (m x n matrix A)
Te8 ar & 2= log(p)a + (log(e) B2 + log(r) ") B+ ™2=y
Tefr 4 & 2 log(p)a + (log(e) B + log(r) ") B+ ™2y
xSYR2K (m x n matrices A and B)
T(Sjgﬂ(BT+BTA ~ | Tear + 100,
xTRSM (m x n matrix B)
Ty~ (log(p) +log(c)) 2Z-a + (log(c) = + log(r) 2 ) 5+ 227

The presented costs are representative of the costs of all parallel level 3 BLAS. Scalability can be analysed
using these costs extimates as was done for matrix-matrix multiply. The resulting conclusions are similar to those
for the matrix-matrix multiply.

12



5 Optimizations

In [41], we show how the performance of the matrix-matrix multiplication can be improved considerably by
pipelining communication and computation. In effect, the broadcast is replaced by one that passes the messages
around the ring that forms the nodes involved in the broadcast. Let us examine the simple case C' = AB. Since
the next iteration of an algorithm can start as soon as the next nodes that need to broadcast are ready, the net
cost of the algorithm becomes

Te=ap(m,n, k,r c)=
K [2 (a + [gw niﬁ) +2 (a + [g niﬁ) +2 [gw [g nZ"y]

k ko nk k
~ —2a+<2m—+2n—)6+2m” v
r C P

ny

This formula ignores the cost of filling and/or emptying the pipe. A similar improvement is seen for all the
algorithms, if this “ring” broadcast is used. For some of the algorithms, some care must be taken to make the
operation “flow” in the appropriate direction. Notice that the effect on scalability is considerable, since in the
estimate for the efficiency, the “log” factors are essentially replaced by a 2, making the approach virtually perfectly
scalable.

6 Performance Results

This section reports the performance of preliminary parallel level 3 BLAS implementations, obtained on an Intel
Paragon with GP nodes. Our implementations use the highly optimized BLAS library available for computation
on each node. Communication is accomplished using MPI collective communication calls. We present results
from pipelined implementations.

In Fig. 4, we show the performance of representative parallel level 3 BLAS as a function of the matrix dimen-
sions, on a single node. This gives us an indication of the peak performance for the different operations.

In Fig. 5, we show the performance of representative parallel level 3 BLAS as a function of the matrix dimen-
sions, on an 8 x 8 mesh of nodes. All matrices are assumed to be square. Performance is reported in MFLOPS
per node, as a function of problem size. Noting that peak performance for matrix-matrix multiply on a single
node 1s around 45-46 MFLOPS, we see our implementations achieve very good performance, once the problem
size 1s reasonably large. Additional performance graphs are given in the appendix.

In Fig. 7?7, we show the performance of representative parallel level 3 BLAS as a function of the number of
nodes, where the problem size is scaled with the number of nodes to keep the memory used per node constant.
Again, all matrices are assumed to be square and performance is reported in MFLOPS per node. Since reporting
MFLOPS (performance) per node is equivalent to reporting efficiency, our analysis predicts that performance per
node should be essentially constant as the number of nodes increases. Our performance graphs show a trend that
verifies that prediction. Additional scalability graphs are given in the appendix.

Notice that we do not give performance results for ¢ = AT BT since we don’t have a general implementation
for that operation.

7 Availability

A considerable contribution of this work 1s in the implementations that we have produced. Complete implemen-
tations of the discussed BLAS, with the exception of C' = AT BT | are available under GNU license from

http://www.cs.utexas.edu/users/rvdg/sw/sBBLAS
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Different algorithms on a single node
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Figure 4: Performance of the various algorithms (on a single node), as a function of the global matrix dimension.
The “x xx x” denoted the different options passed to the BLAS routine. E.g. r_u_t_n stands for “Right”,
“Upper triangular”, “Transpose”, “No transpose”
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Different algorithms on a 8x8 mesh of nodes
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8 Conclusion

We have demonstrated a general, unified approached to parallel implemention of the level 3 BLAS. Very good
performance is demonstrated. Furthermore, a considerable strength of the approach is that it allows simple
implementation of all algorithms, making it ideal for library development.

It appears that one shortcoming of our approach is that is does not handle the operation C' = A7 BT elegantly.
Moreover, while our graphs show that performance is impressive, we must point out that this is not necessarily
the case when the matrices are not nicely shaped. Consider the operation C' = AB, where (' and B are only
single columns or narrow panels of columns. All useful computation will be performed by the single column of
nodes that own ' and B. Interestingly enough, if we start by transposing B, resulting B distributed in a single
row of nodes, and next apply the algorithm C' = ABT | useful computation is performed by all nodes.

We thus argue that the key to implementing all level 3 BLAS so that they are efficient for all shapes of
matrices requires us to be able to transpose panels of rows and/or columns efficiently. This would also solve the
C = AT BT problem. Unfortunately, the traditional approach to matrix distribution does not allow this operation
to be performed efficiently, elegantly, or generally. We believe that the key to solving this problem is to switch to
what we call Physically Based Matriz Distributions (PBMD) [22]. We are currently pursuing implementation of
all BLAS using this new approach to matrix distribution.

The above comments may make it appear we are sending mixed signals concerning the usefulness of the de-
scribed techniques. We believe the presented paper is useful in that it exposes powerful techniques regardless of
the matrix distribution choosen. We have tried to describe the techniques so that they can be easily customized
for specific distributions. The library as it stands would be useful for implementation of a wide range of algo-
rithms, including the LU factorization [21], the left-looking Cholesky factorization, matrix-multiplication based
eigensolvers[6, 7, 8, 33], or out-of-core dense linear solvers [31].

Finally, in [26] we show how this approach can be used for parallel implementation of Strassen’s algorithm for
matrix-matrix multiplication. This suggests that an entire suite of variants of Strassen’s algorithm for all the
level 3 BLAS could be implemented on top of our standard parallel level 3 BLAS implementations.
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In Figs. 7-11, we show the performance of all the level 3 BLAS as a function of the matrix dimensions.
All matrices are assumed to be square. Performance is reported in MFLOPS per node, as a function of
problem size. Noting that peak performance for matrix-matrix multiply on a single node is approximately
45-46 MFLOPS, we observe that our implementations achieve very good performance, once the problem size
is reasonably large.

In Figs. 12-16, we show the performance of all the level 3 BLAS as a function of the number of nodes, where
the problem size is scaled with the number of nodes to keep the memory used per node constant. Again,
all matrices are assumed to be square and performance is reported in MFLOPS per node. Since reporting
MFLOPS (performance) per node is equivalent to reporting efficiency, our analysis predicts that performance
per node should be essentially constant as the number of nodes increases. Our performance graphs show a
trend that verifies that prediction.

Different algorithms on a 8x8 mesh of nodes
T T T T T T T
] s F

25 1

mflops per node

20 1

mflops per node

Tiioooo

Feitiet

ooo

L L L L L L L L
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
matrix dimensions matrix dimensions

0 L L L L 0 L L L L

DGEMM Notranspose Transpose
s T T T T T T T 7

40

35

25

20 1

mflops per node

0 L L L L L
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
matrix dimensions

Figure 7: Performance of parallel DGEMM

21



DSYRK Notranspose Lower triangular
T T T

DSYRK Notranspose Upper triangular
T T T T T

matrix dimensions

matrix dimensions

Figure 8: Performance of parallel DSYRK

22

45 q 45 ]
40 1
35 1
30 1
3 3
8 8
] 3
< 25 < 1
] ]
2 2
9 9
2 2
2 2 1
E E
15 1
10 1
5 ]
0 . . . . . . . . . 0 . . . . . . . . .
500 1000 1500 2000 2500 3000 3500 4000 4500 5000 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
matrix dimensions matrix dimensions
DSYRK Transpose Lower trangular DSYRK Transpose Upper trangular
. T T T T T T T ] . T T T T T T T T T ]
40 1 40 1
35 1 35 1
30 1 30 1
3 3
3 3
S 1 S 1
] ]
2 2
2 2
g 1 g 2 ]
E E
15 1 15 1
10 10 1
5 5 1
0 . . . . . . . 0 . . . . . . .
500 1000 1500 2000 2500 3000 3500 4000 4500 5000 500 1000 1500 2000 2500 3000 3500 4000 4500 5000



DSYR2K Notranspose Lower triangular
T T

DSYR2K Notranspose Upper triangular
T T T T T

matrix dimensions

matrix dimensions

Figure 9: Performance of parallel DSYR2K

23

45 ] 45 ]
40 1 40 1
35 1 35 1
30 1 30 1
2 2
B B
S % 1 S 3 1
3 3
2 2
a 8
g 1 E ]
13 13
15 1 15 1
10 1 10 1
5 1 5 1
0 . . . . . . . . . 0 . . . . . . . . .
500 1000 1500 2000 2500 3000 3500 4000 4500 5000 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
matrix dimensions matrix dimensions
DSYRZK Transpose Lower tiangular DSYRZK Transpose Upper trangular
. T T T T T T T T 7 . T T T T T T T T T 7
40 1 40 1
35 1 35 1
30 1 30 1
2 2
8 B
S 3 1 S 3 1
3 3
2 2
8 8
g 2 1 g 2 1
13 13
15 1 15 1
10 10 1
5 5 1
0 . . . . . . 0 . . . . . . .
500 1000 1500 2000 2500 3000 3500 4000 4500 5000 500 1000 1500 2000 2500 3000 3500 4000 4500 5000



DTRMM Left Upper Transpose Nonunit
T T T T

DTRMM Right Lower Transpose Nonunit
T T T T T

matrix dimensions

matrix dimensions

Figure 10: Performance of parallel DTRMM

24

45 ] 45 ]
40 1 40 1
35 1 35 1
30 1 30 1
2 2
B B
S % 1 S 3 1
3 3
2 2
a 8
g 1 g 2 1
13 13
15 1 15 1
10 1 10 1
5 1 5 1
0 . . . . . . . . . 0 . . . . . . . . .
500 1000 1500 2000 2500 3000 3500 4000 4500 5000 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
matrix dimensions matrix dimensions
DTRMM Left Upper Notranspose Nonunit DTRMM Right Lower Notranspose Nonunit
. T T T T T T T T T 7 . T T T T T T T T T 7
40 1 40 1
35 1 35 1
30 1 30 1
2 2
8 B
S 3 1 S 3 1
3 3
2 2
8 8
g 2 1 g 2 1
13 13
15 1 15 1
10 10 1
5 5 1
0 . . . . . . 0 . . . . . . .
500 1000 1500 2000 2500 3000 3500 4000 4500 5000 500 1000 1500 2000 2500 3000 3500 4000 4500 5000



DTRSM Left Lower Notranspose Nonunit
T

DTRSM Left Lower Transpose Nonunit
T T T

matrix dimensions

matrix dimensions

Figure 11: Performance of parallel DTRSM

25

45 ] 45 ]
40 1 40 1
35 1 35 1
30 1 30 1
2 2
B B
S % 1 S 3 1
3 3
2 2
a 8
g 1 E ]
13 13
15 1 15 1
10 1 10 1
5 1 5 1
0 . . . . . . . . . 0 . . . . . . . . .
500 1000 1500 2000 2500 3000 3500 4000 4500 5000 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
matrix dimensions matrix dimensions
DTRSM Left Upper Notranspose Nonunit DTRSM Right Lower Notranspose Nonunit
. T T T T T T T T 7 . T T T T T T T T T 7
40 1 40 1
35 1 35 1
30 1 30 1
2 2
8 B
S 3 1 S 3 1
3 3
2 2
8 8
g 2 1 g 2 1
13 13
15 1 15 1
10 10 1
5 1 5 1
0 . . . . . . 0 . . . . . . .
500 1000 1500 2000 2500 3000 3500 4000 4500 5000 500 1000 1500 2000 2500 3000 3500 4000 4500 5000



Scalability of DGEMM Notranspose Transpose
T T T

Scalability of DGEMM Transpose Notranspose
T T T

60
number of nodes

Figure

12: Scalability of parallel DGEMM

26

45 1 45
e
40 1
35 1
30 1
2 2
B B
S % 1 S sf
3 3
g 2
a 8
g ] & wf
E E
15 100x100 +— 1 15 100x100 +—
200x200 &— 200x200 5—
300x300 »*— 300x300 »—
10 400x400 +— ] w0l 400x400 -+—
5004500 ~+-- 500x500 ~+-
5 1 51
0 . . . . . . 0 . . . . .
20 2 60 100 120 0 20 2 60 100 120
number of nodes number of nodes
Scalabillty of DGEMM Notranspose Transpose
. T T T T —
30 1
2
4
3
S 3 1
3
g
9
2
g 2 1
E
15 100x100 +— 1
200x200 &—
300x300 *—
10 400x400 +— ]
500x500 —+--
5 ]
0 . . . . . .
20 2 80 100 120




Scalability of DSYRK Notranspose Lower triangular Scalability of DSYRK Notranspose Upper triangular
! ! : : ! ! ! : i
45 - 1 45 -
o o
] ]
g g
H i H
o o
g g
a a
2 2
& B &
13 13
100x100 -— — sl 100x100 ~—
200x200 =— 200x200 -5—
300x300 *— 300x300 »—
w0l 400x400 +— i w0l 400x400 +—
500x500 +- 500X500 ~+--
st — st
o . . . . . . o . . . . .
0 20 2 60 100 120 0 20 2 60 100
number of nodes number of nodes
Scalabilty of DSYRK Transpose Lower iranguiar Scalabilty of DSYRK Transpose Upper iranguiar
sF ! ! ! | ! — sF ! ! ! !
1 - +
"
k\\ 1 30 K\ﬁ\ﬂ\g
o o
] ]
g g
g ] — g sl
5 5
g g
a a
2 2
g o | £l
13 13
s 100x100 -— — s 100x100 ~—
200x200 =— 200x200 -5—
300x300 *— 300x300 »—
w0l 400x400 +— i w0l 400x400 +—
500x500 +- 500X500 ~+--
5| — 5|
o . . . . . . o . . . . .
0 20 2 60 80 100 120 0 20 2 60 80 100
number of nodes number of nodes

Figure 13: Scalability of parallel DSYRK

27



45

Scalabilty of DSYR2K Notranspose Lower triangular
T T T

Scalabilty of DSYR2K Notranspose Upper triangular
T T T T

60
number of nodes

60
number of nodes

Figure 14: Scalability of parallel DSYR2K

28

30
2 2
2 2
3 3
: 2% :
3 3
2 2
2 2
2 2
§ of §
E E
15 |- 100x100 +— 15 |- 100x100 +—
200x200 -=— 200x200 &—
300300 *— 3004300 %—
w0l 400x400 +— w0l 400x400 +—
500500 —+-- 500x500 -+~
5F 5F
0 . . . . . . 0 . . . . . .
0 20 40 60 100 120 0 20 40 60 0 100 120
number of nodes number of nodes
Scalabity of DSYRZK Transpose Lower trangular Scalabity of DSYRZK Transpose Upper trangular
T T T T T T T T T T T
a5 a5
N - . +
» Kﬂﬂ\ﬂ\‘ﬂ » KS\\»\Q\‘ﬂ
2 2
3 3
2 x| 2 x|
3 3
2 2
8 8
& f & f
E E
15 |- 100x100 +— 15 |- 100x100 +—
200x200 =— 200x200 &—
300300 %— 3004300 %—
w0l 400x400 +— w0l 400x400 -—
500500 —+-- 500x500 -+~
5F 5F
0 . . . . . . 0 . . . . . .
0 20 40 80 100 120 0 20 40 80 100 120




Figure

15: Scalability of parallel DTRMM

29

Scalabilty of DTRMM Left Upper Transpose Nonunit Scalability of DTRMM Right Lower Transpose Nonunit
T T T T T T T T T T T
a5 [ 1 a5 [
1 40
1 35
0L 1 30+
2 2
B B
S sf 1 S 3
3 3
2 2
a 8
g wor i £ ol
13 13
15 100x100 +— 1 15 100x100 +—
200x200 &— 200x200 5—
300x300 »*— 300x300 »—
w0l 400x400 +— ] w0l 400x400 -+—
5004500 ~+-- 500x500 -—
51 1 51
0 . . . . . . 0 . . . . . .
0 20 2 60 100 120 0 20 2 60 0 100 120
number of nodes number of nodes
Scalabiliy of DTRMM Left Upper Notranspose Nonunit Scalabity of DTRMM Right Lower Notranspose Nonunit
T T T T T T T T T T T T
a5 [ 1 a5 [
£ 1
2 2
8 B
S 3 1 S sf
3 3
2 2
8 8
g wor i £ ol
13 13
15 100x100 +— 1 15 100x100 +—
200x200 &— 200x200 5—
300x300 »*— 300x300 »—
w0l 400x400 +— ] w0l 400x400 -+—
5004500 ~+-- 500x500 ~+-
51 1 51
0 . . . . . . 0 . . . . . .
0 20 2 60 80 100 120 0 20 2 60 80 100 120
number of nodes number of nodes




Scalability of DTRSM Left Lower No transpose Nonunit
T

Scalability of DTRSM Left Lower Transpose Nonunit
T T T

60
number of nodes

Figure 16: Scalability of parallel DTRSM

30

60
number of nodes

45 45
40
35
30
2 2
4 4
3 3
A :
3 3
2 2
2 2
2 2
S 20 2
13 13
15 100x100 +— 100x100 +—
200x200 &— 200x200 5—
300x300 »*— 300x300 »—
10 400x400 +— 10 400x400 -+—
500x500 —+-- 500X500 -+~
5 5
0 . . . . . . 0 . . . . . .
20 40 60 100 120 20 40 60 0 100 120
number of nodes number of nodes
Scalabity of DTRSM Left Upper Notranspose Nonunit Scalabilfy of DTRSM Right Lower Nolranspose Nonunit
T T T T T T T T T T T T
45 45
40
35
30
2 2
8 B
£ S 3
g g
2 2
8 8
g g 2
13 13
15 100x100 +— 15 100x100 +—
200x200 &— 200x200 5—
300x300 »*— 300x300 »—
10 400x400 +— 10 400x400 -+—
500x500 —+-- 500X500 -+~
5 5
0 . . . . . . 0 . . . . . .
20 40 80 100 120 20 40 80 100 120




