An Optimal Minimum Spanning Tree Algorithm

Seth Pettie and Vijaya Ramachandran
Department of Computer Sciences
The University of Texas at Austin
Austin, TX 78712
seth@cs.utexas.edu, vlr@cs.utexas.edu

August 4, 1999

UTCS Technical Report TR99-17

Abstract

We present a deterministic algorithm to find a minimum spanning forest of an edge-weighted
undirected graph. On a graph with n vertices and m edges, the algorithm runs in time
O(T*(m,n)) where T* is the decision-tree complexity of the problem. This time bound is
provably optimal as a function of n and m. The algorithm is quite simple, and can be imple-
mented on a pointer machine.

The exact function describing the running time of our algorithm is not known at present.
The current best bounds known for 7* (and hence the running time of our algorithm) are
T*(m,n) = Q(m) and T*(m,n) = O(m - a(m,n) - loga(m,n)), where a, a certain natural
inverse of Ackermann’s function, is an extremely slow-growing function.

1 Introduction

The minimum spanning tree (MST) problem has been studied for much of this century and yet
despite its apparent simplicity, the problem is still not fully understood. The first algorithms for
finding MST's were published in 1926 and 1930 by Boruvka [Bor26] and Jarnik [Jar30] and for many
years the only progress made on the MST problem was in rediscovering these algorithms. Bortuvka’s
algorithm was rediscovered by Choquet [Cho38], Florek et al. [FLPSZ51], and Sollin [BG65], and
both Prim [Prim57] and Dijkstra [Dij59] give descriptions of Jarnik’s algorithm, together with some
important implementation details. (See [GH85] for a history of the MST problem.) Kruskal [Kr56]
presented an algorithm that matched previous algorithms in terms of simplicity but did not improve
on the O(mlogn) time bound first established by Boruvka. Here m and n are the number of edges
and vertices in the graph.

The m logn barrier was broken in the mid-1970s by O(mloglogn) time algorithms by [Yao75]
and Cheriton and Tarjan [CT76]. The MST problem saw no new developments until the mid-1980s
when Fredman and Tarjan [F'T87] used Fibonacci heaps (presented in the same paper) to give an
algorithm running in O(m B(m,n)) time!; in the worst case this algorithm runs in O(mlog* n)
time?. Soon thereafter Gabow et al. [GGST86] refined this algorithm to obtain a running time
of O(mlogB(m,n)). Then recently Chazelle [Chaz97] presented an MST algorithm running in

By definition, 3(m,n) = min{i : log® n < Z}; here log™ n = logn, logt*" n = loglog” n.

%log* n = min{i > 1 :log" n < 1}.

time O(ma(m,n)log a(m,n)), where a is a certain inverse of Ackermann’s function which grows
extremely slowly. This algorithm uses a data structure called the Soft Heap [Chaz98]. This is the
fastest algorithm to date, although it is not known to be optimal.

All algorithms mentioned thus far require a relatively weak model of computation. Each can
be implemented on a deterministic pointer machine model [Tar79] which does not allow pointer
arithmetic, hence certain techniques such as table lookup cannot be used, and in which the only
operations allowed on edge weights are binary comparisons. If more powerful models of computation
are used then finding minimum spanning trees can be done even faster. Under the assumption that
edge weights are integers, Fredman and Willard [FW90] showed that on a unit-cost RAM in which
the bit-representation of edge weights may be manipulated, the MST can be computed in linear
time. Karger et al. [KKT95] considered a unit-cost RAM with access to a stream of random bits
and showed that with high probability, the MST can be computed in linear time, even if edge
weights are only subject to comparisons. Buchsbaum et al. [BKRW98] recently showed that the
randomized algorithm of [KKT95] can be made to run on a pointer machine.

It is still unknown whether these more powerful models are necessary to compute the MST in
linear time. However, in this paper we give a deterministic MST algorithm that runs on a pointer
machine and is provably optimal; specifically, we prove that our algorithm runs in O(7*(m,n)) time,
where 7*(m,n) is the number of edge-weight comparisons needed to determine the MST on any
graph with m edges and n vertices. This implies that any future algorithm for computing MST that
performs f(m,n) edge-weight comparisons (for some function f) demonstrates that our algorithm
performs O(f(m,n)) operations in total; note that the cost incurred by using data structures which
require super-linear time to maintain (such as union-find), may be exempted. Further, if one is
able to show that the MST problem can be solved with no more than f(m,n) comparisons through
any type of reasoning, including a nonconstructive proof, this would imply that our algorithm runs
in O(f(m,n)) time.

Although our algorithm is optimal, its precise running time is not known at this time. In
view of Chazelle’s algorithm [Chaz97] we can state that the running time of our algorithm is
O(m - a(m,n) -loga(m,n)). Clearly, its running time is also Q(m).

2 Preliminaries

The input is an undirected graph G = (V, E) where each edge is assigned a distinct real-valued
weight. The minimum spanning forest (MSF) problem asks for a spanning acyclic subgraph of
G having the least total weight. In this paper we assume for convenience that the input graph
is connected, since otherwise we can find its connected components in linear time and then solve
the problem on each connected component. Thus the MSF problem is identical to the minimum
spanning tree problem.

It is well-known that one can identify edges provably in the MSF using the cut property, and
edges provably not in the MSF using the cycle property. The cut property states that the lightest
edge crossing any partition of the vertex set into two parts must belong to the MSF. The cycle
property states that the heaviest edge in any cycle in the graph cannot be in the MSF.

2.1 Boruvka steps

The earliest known MSF algorithm is due to Boruvka [Bor26]. The algorithm is quite simple: It
proceeds in a sequence of stages, and in each stage it executes a Boruvka step on the graph G, which
identifies the set F' consisting of the minimum-weight edge incident on each vertex in G, adds these

edges to the MSF (since they must be in the MSF by the cut property), and then forms the graph
G1 = G\F as the input to the next stage, where G\F is the graph obtained by contracting each
connected component formed by F. This computation can be performed in linear time. Since
the number of vertices reduces by at least a factor of two, the running time of this algorithm is
O(mlogn), where m and n are the number of vertices and edges in the input graph.

Our optimal algorithm uses a procedure called Boruvka2(G; F,G'). This procedure executes
two Boruvka steps on the input graph G and returns the contracted graph G’ as well as the set of
edges F' identified for the MSF during these two steps.

2.2 Dijsktra-Jarnik-Prim Algorithm

Another early MSF algorithm that runs in O(m log n) time is the one by Jarnik [Jar30], re-discovered
by Dijkstra [Dij59] and Prim [Prim57]. We will refer to this algorithm as the DJP algorithm. Briefly,
the DJP algorithm grows a tree 7', which initially consists of an arbitrary vertex, one edge at a
time, choosing the next edge by the following simple criterion: Augment 7' with the minimum
weight edge (z,y) such that € T and y ¢ T. By the cut property, all edges in T are in the MSF.

Lemma 2.1 Let T be the tree formed after the execution of some number of steps of the DJP
algorithm on a graph G. Let © and y be vertices in T, let w and z be vertices not in T, and let
(z,w) and (y,z) be edges in G—T. If f is the edge of mazimum weight on the path in T' connecting
x and y, then the weight of f cannot be larger than the weights of both (x,w) and (y, z).

Proof: Let f = (a,b) and let the path P in T connecting x and y consist of a path from z to a,
followed by edge f, followed by a path from b to y.

Consider the step in which f was chosen to be added to the DJP tree and assume w.l.o.g. that
at this time a is in the tree and b is not. Let P’ be the subpath of P that is present in the tree
at this step, and let its endpoints be a and c. If ¢ # = then the next edge in P incident on ¢ has
smaller cost than f and is eligible to be picked in this step, hence f would not be chosen in this
step. Hence ¢ = z. But then f must have smaller weight than edge (z,w), since (z,w) is eligible
to be picked at this step. O

2.3 The Dense Case Algorithm

Our algorithm will switch to another MSF algorithm when the graph becomes sufficiently dense,
allowing its MSF to be computed in linear time by one of several existing algorithms. Here density
refers to the edge-to-vertex ratio. The procedure DenseCase(G; F') takes as input a graph G and
returns the MSF F of G. Our algorithm guarantees DenseCase will be called on graphs of density
Q(log® n), thus the algorithms presented in [FT87, GGST86, Chaz97] could be used as DenseCase
since each runs in linear time for that density.

2.4 Soft Heap

The main data structure used by our algorithm is the Soft Heap [Chaz98]. The Soft Heap is a kind
of priority queue that gives us an optimal tradeoff between accuracy and speed. It supports the
following operations:

e MakeHeap(): returns an empty soft heap.

e Insert(S,z): insert item z into heap S.

e Findmin(S): returns item with smallest key in heap S.

e Delete(S,z): delete x from heap S.

e Meld(Sy, S2): create new heap containing the union of items stored in S; and Sa,
destroying 57 and S5 in the process.

All operations take constant amortized time, except for Insert, which takes O(log(1)) time.
However, the values of some keys may be increased, corrupting the associated items and potentially
causing later Findmins to report the wrong answer. The guarantee is that after n Insert operations,
no more than en corrupted items are in the heap. Note that because of deletes, the proportion of
corrupted items could be much greater than e. The following result in shown in [Chaz98].

Lemma 2.2 Fiz any parameter 0 < € < 1/2, and beginning with no prior data, consider a mized
sequence of operations that includes n inserts. On a Soft Heap the amortized complexity of each op-
eration is constant, except for insert, which takes O(log(1/€)) time. At most en items are corrupted
at any given time.

3 A Key Lemma and Procedure

3.1 A Robust Contraction Lemma

It is well known that if T" is a tree of MSF edges, we can contract T into a single vertex while
maintaining the invariant that the MSF of the contracted graph plus 7' gives the MSF for the
graph before contraction.

In our algorithm we will find a tree of MSF edges T in a corrupted graph, where some of the
edge weights have been increased due to the use of a Soft Heap. In the lemma given below we show
that useful information can be obtained by contracting certain corrupted trees, in particular those
constructed using some number of steps from the Dijkstra-Jarnik-Prim (DJP) algorithm.

Before stating the lemma, we need some notation and preliminary concepts. Let V(G) and E(G)
be the vertex and edge sets of G, and n and m be their cardinality, respectively. Let weightg(e)
be the weight of edge e in graph G (G may be omitted if implied from context).

For the following definitions, M and C are subgraphs of G. Denote by G } M a graph derived
from G by raising the weight of each edge in M by some amount (these edges are said to be
corrupted). Let M be the set of edges in M with exactly one endpoint in C. Let G\C denote
the graph obtained by contracting all connected components induced by C. To be very explicit,
for each connected component C’ of C, we add a new vertex ¢’ to G and reassign the endpoints of
edges with one or more endpoint in C’. If z is an endpoint for some edge and z € C’, that endpoint
is reassigned to ¢’. Finally we remove from G all vertices and edges in C.

We define a subgraph C of G to be DJP-contractible if the tree that results by executing the
DJP algorithm on G for some number of steps, starting with a vertex in C, is a spanning tree for

C.

Lemma 3.1 Let M be a set of edges in a graph G. If C is a subgraph of G that is DJP-contractible
w.r.t. G M, then MSF(G) is a subset of MSF(C)UMSF(G\C — M¢)U Mc.

Proof: Each edge in C that is not in MSF(C') is the heaviest edge on some cycle in C. Since that
cycle exists in G as well, that edge is not in MSF(G). So we need only show that edges in G\C
that are not in MSF(G\C — M¢) U M¢ are also not in MSF(G).

Let H = G\C — M¢. Our goal is to show that no edge in H— MSF(H) is in MSF(G).

Let e be an edge in H— MSF(H). Then e must be the heaviest edge on the cycle X formed in
H when e is added to MSF(H). In G the cycle & forms a path P whose end points, say = and y,
are both in C; let these end edges in P be (z,w) and (y, z). In H we removed all corrupted edges
with one end point in C. Hence both (z,w) and (y, z) are not in M.

Let T be the spanning tree of C {4 M derived by the DJP algorithm, Q be the path in T
connecting = and y, and f be the heaviest edge in Q. Notice that P U Q forms a cycle. The weight
of e is larger than the weights of the other edges in the path P. Hence if e is in MSF(G), then
by the cycle property weightgy (f) > weightg(e). But this requires weightgya (f) to be greater
than the weights of edges (z,w) and (y,z) since both of these edges have smaller weight than e.
By Lemma 2.1 this is not possible. Hence e cannot be in MSF(G). O

3.2 The Partition Procedure

Our algorithm uses the Partition procedure given below. This procedure finds DJP-contractible
subgraphs C4, ..., Cy in which edges are progressively being corrupted by the Soft Heap. Let Mc;,
contain only those corrupted edges with one endpoint in C; at the time it is completed.

Each subgraph C; will be DJP-contractible w.r.t a graph derived from G by several rounds of
contractions and edge deletions. When C; is finished it is contracted and all incident corrupted
edges are discarded. By applying Lemma 3.1 repeatedly we see that after C; is built, the MSF of
G is a subset of

LiJ MSF(C]) UMSF (G\ O Cj — O M0j> U O MC]'
j=1

j=1 j=1 Jj=1
Below, arguments appearing before the semicolon are inputs; the outputs will be returned in

the other arguments. M is a set of edges and C={C1,...,C}} is a set of subgraphs of G. No edge
will appear in more than one of M, Cy, ..., Cg.

Partition(G, mazsize,e; M,C)
A1l vertices are initially ‘‘live’’
M =0
1:=0
While there is a live vertex
Increment i
Let V; := {v}, where v is any live vertex
Create a Soft Heap consisting of v’s edges (uses ¢)
While all vertices in V; are live and |V;| < mazsize
Repeat
Find and delete min-weight edge (z,y) from Soft Heap
Until y ¢ V; (Assume w.l.o.g. x € V)
Vi = ViU{y}
If y is live then insert each of y’s edges into the Soft Heap
Set all vertices in V; to be dead
Let My, be the corrupted edges with one endpoint in Vj
M := M U My,
G:=G- MVi
Dismantle the Soft Heap
Let C := {C4,...,C;} where C, is the subgraph of G induced by V,
Exit.

Initially, Partition sets every vertex to be live. The objective is to convert each vertex to dead,
signifying that it is part of a component C; with < maxsize vertices and part of a conglomerate
of > mazxsize vertices, where a conglomerate is a connected component of the graph | E(C;).
Intuitively a conglomerate is a collection of C;’s linked by common vertices. This scheme for
growing components is similar to the one given in [FT87].

We grow the C;’s one at a time according to the DJP algorithm. In place of a correct heap, we
use a Soft Heap. A component is done growing if it reaches maxsize vertices or if it attaches itself
to an existing component. Clearly if a component does not reach maxsize vertices, it has linked to
a conglomerate of at least maxsize vertices. Hence all its vertices can be designated dead. Upon
completion of a component C;, we discard the set of corrupted edges with one endpoint in C;.

The running time of the Partition procedure is dominated by the heap operations, which de-
pend on e. Each edge is inserted into a Soft Heap no more than twice (once for each endpoint),
and extracted no more than once. We can charge the cost of dismantling the heap to the insert
operations which created it, hence the total running time is O(mlog()). The number of discarded
edges is bounded by the number of insertions scaled by €, thus |M| < 2em. Summarizing the
specification of Partition, we have the following lemma.

Lemma 3.2 Given a graph G, any 0 < € < %, and a parameter maxsize, Partition finds edge-

disjoint subgraphs M,C4, ..., Cy in time O(|[E(G)| - log(L)) while satisfying several conditions:

a) For all v € V(G) there is some i s.t. v € V(C;).

b) For all i, |V(C;)| < mazxsize.

¢) For each connected component (i.e., conglomerate) P € J; C;, |V (P)| > mazxsize.
4) |E(M)] < 2¢ - |E(G)|

e) MSF(G) C U; MSF(C;) UMSF(G\(U; Ci) — M) U M

4 The Optimal Algorithm

4.1 Overview

Here is an overview of our optimal MSF algorithm.

e In the first stage we find DJP-contractible subgraphs Cy, Co, ..., C} with their associated set
of edges M = J; Mc,, where Mc, consists of corrupted edges with one endpoint in C;.

e In the second stage we find the MSF F; of each C;, and the MSF Fj of the contracted
graph G\(U; C;) —U; M¢,. By Lemma 3.1, the MSF of the whole graph is contained within
Fo UU;(F; U Mg,). Note that at this point we have not identified any edges as being in the
MSF of the original graph G.

e In the third stage we find some MSF edges, via Boruvka steps, and recurse on the graph
derived by contracting these edges.

We execute the first stage using the Partition procedure described above.

We execute the second stage with optimal decision trees. Essentially, these are hardwired
algorithms designed to compute the MSF of a graph using an optimal number of edge-weight
comparisons. In general, decision trees are much larger than the size of the problem that they solve
and finding optimal ones is very time consuming. We can afford the cost of building decision trees
by guaranteeing that each one is extremely small. At the same time, we make each conglomerate

formed by the C; to be sufficiently large so that the MSF Fj of the contracted graph can be found
in linear time using the DenseCase algorithm.

Finally, in the third stage, we have a reduction in vertices due to the Boruvka steps, and a
reduction in edges due to the application of Lemma 3.1. In our optimal algorithm both vertices
and edges reduce by a constant factor, thus resulting in the recursive applications of the algorithm
on graphs with geometrically decreasing sizes.

4.2 Decision Trees

An MSF decision tree is a rooted tree having an edge-weight comparison associated with each
internal node (i.e. weight(z,y) < weight(w, z)). Each internal node has exactly two children, one
representing that the comparison is true, the other that it is false. The leaves of the tree list off
the edges in some spanning tree. An MSF decision tree is said to be correct if the edge-weight
comparisons encountered on any path from the root to a leaf uniquely identify the spanning tree
at that leaf as the MSF. A decision tree is said to be optimal if it is correct and there exists no
correct decision tree with lesser depth.

Let us bound the time needed to find all optimal decision trees for graphs of < r vertices by
brute force search. There are fewer than 2" such graphs and for each graph we must check all
possible decision trees bounded by a depth of 72. There are < r* possibilities for each internal node
and < r2r2+o(1) decision trees to check. To determine if a decision tree is correct we generate all
possible permutations of the edge weights and for each, solve the MSF problem on the given graph.
Now we simultaneously check all permutations against a decision tree. First put all permutations
at the root, then move them to the left or right child depending on the truth or falsity of the
edge-weight comparison w.r.t to each permutation. Repeat this step until all permutations reach
a leaf. If for each leaf, all permutations sharing that leaf agree on the MSF, then the decision tree
is correct. This process takes no longer than (r2 + 1)! for each decision tree. Setting r = log(3) n
allows us to precompute all optimal decision trees in O(n) time.

Observe that in the high-level algorithm we gave in section 4.1, if the maximum size of each
component C; is sufficiently small, the components can be organized into a relatively small number
of groups of isomorphic components (ignoring edge weights). For each group we use a single pre-
computed optimal decision tree to determine the MSF of components in that group.

In our optimal algorithm we will use a procedure DecisionTree(G; F), which takes as input a
collection of graphs G, each with at most r vertices, and returns their minimum spanning forests
in F using the precomputed decision trees.

5 The Algorithm

As discussed above, the optimal MSF algorithm is as follows. First, precompute the optimal
decision trees for all graphs with < log(3) n vertices. Next, divide the input graph into subgraphs
C1,Cy, ..., Cy, discarding the set of corrupted edges M, as each C; is completed. Use the decision
trees found earlier to compute the MSF F; of each Cj;, then contract each connected component
spanned by Fj; U...U Fy (i.e., each conglomerate) into a single vertex. The resulting graph has
<n/ log(3) n vertices since each conglomerate has at least log(3) n vertices by Lemma 3.2. This
allows us to use the DenseCase algorithm to compute its MSF Fj in time linear in m. At this
point, by Lemma 3.1 the MSF is now contained in the edge set Fy U...U Fj, UM¢c, U... M¢,. On
this graph we apply two Boravka steps, reducing the number of vertices by a factor of four, and
then compute recursively. The algorithm is given below.

Let € = 1/8 (this is used by the Soft Heap in the Partition procedure).
Precompute optimal decision trees for all graphs with < log(3) ng vertices, where ng is the number
of vertices in the original input graph.

OptimalMSF(G)
If E(G) =0 then Return(f)
r:=1og® V(@]
Partition(G,r,e; M,C)
DecisionTree(C;F)
Let k:=|C| and let C ={C1,...,C}, F={F,...,Fs}
G, =G\(FLU...UF,)- M
DenseCase(G,; Fp)
Gy =FhUFRU..UFL,UM
Boruvka2(Gy; F', G.)
F := OptimalMSF(G.)
Return(F U F')

Apart from recursive calls and using the decision trees, the computation performed by Opti-
malMSF is clearly linear since Partition takes O(mlog(l)) time, and owing to the reduction in
vertices, the call to DenseCase also takes linear time. For € = %, the number of edges passed to the
final recursive call is < m/4 + n/4 < m/2, giving a geometric reduction in the number of edges.
Since no MSF algorithm can do better than linear time, the bottleneck, if any, must lie in using
the decision trees, which are optimal by construction.

More concretely, let T'(m, n) be the running time of OptimalMSF. Let 7*(m,n) be the optimal
number of comparisons needed on any graph with n vertices and m edges and let 7*(G) be the
optimal number of comparisons needed on a specific graph G. The recurrence relation for 7" is given
below. For the base case note that the graphs in the recursive calls will be connected if the input
graph is connected. Hence the base case graph has no edges and one vertex, and we have 7°(0,1)
equal to a constant.

T(m,n) < ZT*(Q‘) +T(m/2,n/4) +c1-m

It is straightforward to see that if 7*(m,n) = O(m) then the above recurrence gives T'(m,n) =
O(m). One can also show that T'(m,n) = O(7*(m, n)) for many natural functions for 7* (including
m - a(m,n) - log a(m,n)). However, to show that this result holds no matter what the function
describing 7*(m,n) is, we need to establish some results on the decision tree complexity of the
MSF problem, which we do in the next section.

5.1 Some Results for MSF Decision Trees

In this section we establish some results on MSF decision trees that allow to establish our main
result that OptimalMSF runs in O(7*(m,n)) time.

Claim 5.1 7*(m,n) > m/2.

Claim 5.2 For fized m and n' > n, T*(m,n’) > T*(m,n).

Claim 5.3 For fized n and m' > m, T*(m/,n) > T*(m,n).

Claim 5.1 is obviously true since every edge should participate in a comparison to determine
inclusion in or exclusion from the MSF. Claim 5.2 holds since we can add isolated vertices to a
graph, which obviously does not affect the MSF or the number of necessary comparisons. To see
that Claim 5.3 holds, we observe that we can add edges of very large cost to a graph without
altering its MSF.

We now state a Condition that is used by Lemmas 5.5 and 5.6.

Condition 5.4 The structure of G dictates that MSF(G) = MSF(Cy) U ...U MSF(C}), where
Ci,...,Cy are edge-disjoint subgraphs of G.

If Cy,...,C} are the components returned by Partition, it can be seen that the graph (J; C;
satisfies Condition 5.4 since every simple cycle in this graph must be contained in exactly one of
the C;. To see this, consider any simple cycle and let ¢ be the largest index such that C; contains
an edge in the cycle. Since each C; shares no more than one vertex with {J;; Cj, this cycle cannot
contain an an edge from U;; Cj.

Lemma 5.5 If Condition 5.4 holds for G, then there exists an optimal MSF decision tree for G
which makes no comparisons of the form e < f where e € C;, f € Cj and i # j.

Proof: Consider a subset P of the permutations of all edge weights where for e € C;, f € C; and
i < j, it holds that weight(e) < weight(f). Permutations in P have two useful properties which
can be readily verified. First, any number of inter-component comparisons shed no light on the
relative weights of edges in the same component. Second, any spanning forest of a component is
the MSF of that component for some permutation in P.

Now consider any optimal decision tree T for G. Let T' be the subtree of T' which contains
only leaves that can be reached by some permutation in P. Each inter-component comparison
node in 7" must have only one child, and by the first property, the MSF at each leaf was deduced
using only intra-component comparisons. By the second property, 7" must determine the MSF of
each component correctly, and thus by Condition 5.4 it must determine the MSF of the graph G
correctly. Hence we can contract 7" into a correct decision tree T" by replacing each one-child node
with its only child. O

Lemma 5.6 If Condition 5.4 holds for a graph G, then T*(G) = Y; T*(C;).

Proof: Given optimal decision trees 7; for the C; we can construct a decision tree for G by replacing
each leaf of 77 by T3, and in general replacing each leaf of T; by T;4+1 and by labeling each leaf of
the last tree by the union of the labels of the original trees along this path. Clearly the height of
this tree is the sums of the heights of the T;, and hence T*(G) < >, T*(C;). So we need only prove
that no optimal decision tree for G has height less than the sum of the heights of the T;.

Let T be an optimal decision tree for G that has no inter-component comparisons (as guaranteed
by Lemma 5.5). We show that T" can be transformed into a ‘canonical’ decision tree 7" for G of
the same height as T, such that in 7", all comparisons for C; precede all comparisons for C; 1, for
each i, and further, for each ¢, the subgraph of 7" containing the comparisons within C; consists of
a collection of isomorphic trees. This will establish the desired result since 7" must contain a path
that is the concatenation of the longest path in an optimal decision tree for each of the Cj.

We first prove this result for the case when there are only two components, C; and Cy. Assume
inductively that the subtrees rooted at all vertices at a certain depth d in 7" have been transformed

to the desired structure of having the C; comparisons occur before the C2 comparisons, and with
all subtrees for Cy within each of the subtrees rooted at depth d being isomorphic. (This is trivially
the case when d is equal to the height of T'.)

Consider any node v at depth d — 1. If the comparison at that node is a C; comparison, then
all C subtrees at descendent nodes must compute the same set of leaves for C5. Hence the subtree
rooted at v can be converted to the desired format simply by replacing all C'5 subtrees by one having
minimum depth (note that there are only two different C2 subtrees — all Cy subtrees descendent
to the left (right) child of v must be isomorphic). If the comparison at v is a C2 comparison, we
know that the C; subtrees rooted at its left child « and its right child y must both compute the
same set of leaves for C7. Hence we pick the C; subtree of smaller height (w.l.o.g. let its root be
x) and replace v by x, together with the C; subtree rooted at z. We then copy the comparison at
node v to each leaf position of this C) subtree. For each such copy, we place one of the isomorphic
copies of the C5 subtree that is a descendant of x as its left subtree, and the Cy subtree that is a
descendant of y as its right subtree. The subtree rooted at x, which is now at depth d — 1 is now
in the desired form, it computes the same result as in 7', and there was no increase in the height of
the tree. Hence by induction 7" can be converted into canonical decision tree of no greater height.

Assume inductively that the result hold for up to £ — 1 > 2 components. The result easily
extends to k components by noting that we can group the first £ — 1 components as C] and let Cj,
be C). By the above method we can transform 7' to a canonical tree in which the Cj comparisons
appear as leaf subtrees. We now strip the C} subtrees from this canonical tree and then by the
inductive assumption we can perform the transformation for remaining £ — 1 components. O

Corollary 5.7 Let the C; be the components formed by the Partition routine applied to graph G,
and let G have m edges and n vertices. Then, >, T*(C;) < T*(G) < T*(m,n).

Corollary 5.8 For any m and n, 2-T*(m,n) < T*(2m, 2n)

We can now solve the recurrence relation for the running time of OptimalMSF given in the
previous section.

T(m,n) < > TCi)+T(m/2,n/4)+c1-m
i
< T*(myn)+T(m/2,n/4) +c1-m (Corollary 5.7)
< T*(myn)+c-T*(m/2,n/4) +c1-m (assume inductively)
< T*(m,n)(1+4c¢/2+2¢c;1) (Corollary 5.8 and Claims 5.1, 5.2)
< ¢ T*(m,n) (for some c sufficiently large; this completes the induction)

This gives us the desired theorem.

Theorem 5.9 Let T*(m,n) be the decision tree complexity of the MSF problem on graphs with m
edges and n nodes. The algorithm OptimalMSF computes the MSF of a graph with m edges and n
vertices deterministically in O(T*(m,n)) time.

6 Avoiding Pointer Arithmetic

We have not precisely specified what is required of the underlying machine model. Upon examina-
tion, the algorithm does not seem to require the full power of a random access machine (RAM). No

10

bit manipulation is used and arithmetic can be limited to just the increment operation. However, if
procedure DecisionTree is implemented in the obvious manner it will require using a table lookup,
and thus random access to memory. In this section we describe an alternate method of handling the
decision trees which can run on a pointer machine [Tar79], a model which does not allow random
access to memory. Our method is similar to that described in [BKRW98], but we ensure that the
time taken during a call to DecisionTree is linear in the size of the current input to DecisionTree.

A pointer machine distinguishes pointers from all other data types. The only operations allowed
on pointers are assignment, comparison for equality and dereferencing. Memory is organized into
records, each of which holds some constant number of pointers and normal data words (integers,
floats, etc.). Given a pointer to a particular record, we can refer to any pointer or data word in that
record in constant time. On non-pointer data, the usual array of logical, arithmetic, and binary
comparison operations are allowed.

We first describe the representation of a decision tree. Each decision tree has associated with it a
generic graph with no edge weights. This decision tree will determine the MST of each permutation
of edge weights for this generic graph. At each internal node of the decision tree are four pointers,
the first two point to edges in the generic graph being compared and the second two point to the
left and right child of the node. Each leaf lists the edges in some spanning tree of the generic graph.
Since a decision tree is a pointer-based structure, we can construct each precomputed decision tree
(by enumerating and checking all possibilities) without using table lookups.

We now describe our representation of the generic graphs. The vertices of a generic graph are
numbered in order by integers starting with 1, and the representation consists of a listing of the
vertices in order, starting from 1, followed by the adjacency list for each vertex, starting with vertex
1. Each generic graph will have a pointer to the root of its decision tree.

Recall that we precomputed decision trees for all generic graphs with at most log(3) ng vertices
(where ng is the number of vertices in the input graph whose MSF we need to find). The generic
graphs will be generated and stored in lexicographically sorted order. Note that with our represen-
tation, in the sorted order the generic graphs will appear in nondecreasing order of the number of
vertices in the graph.

Before using a decision tree on an actual graph (which must be isomorphic to the generic graph
for that decision tree), we must associate each edge in the actual graph with its counterpart in the
generic graph. Thus a comparison between edge weights in the generic graph can be substituted
by the corresponding weights in the actual graph in constant time.

On a random access machine, we can encode each possible graph in a single machine word (say,
as an adjacency matrix), then index the generic graph in an array according to this representation.
Thus given a graph we can find the associated decision tree in constant time. On a pointer machine
however, converting a bit vector or an integer to a pointer is specifically disallowed.

We now describe our method to identify the generic graph for each C; efficiently. We assume
that each C; is specified by the adjacency lists representation, and that each edge (z, y) has a pointer
to the occurrence of (y,) in y’s adjacency list. Each edge also has a pointer to a record containing
its weight. Let m and n be the number of edges and vertices in |J; C;, and let r = log(3) n.

We rewrite each C; in the same form as the generic graphs, which we will call the numerical
representation. Let C; have p vertices (note that p < r). We assign the vertices numbers from 1 to
p in the order in which they are listed in the adjacency lists representation, and we rewrite each
edge as a pair of such numbers indicating its endpoints. Each edge will retain the pointer to its
weight, but that is separate from its numerical representation.

We then change the format for each graph as follows: Instead of a list of numbers, each in the
range [1..r], we will represent the graph as a list of pointers. For this we initialize a linked list with

11

r buckets, labeled 1 through r. If, in the numerical representation the number j appears, it will be
replaced by a pointer to the j%* bucket.

We transform a graph into this pointer representation by traversing first the list of vertices and
then the list of edges in order, and traversing the list of buckets simultaneously, replacing each
vertex entry, and the first vertex entry for each edge by a pointer to the corresponding bucket.
Thus edge (z,y), also appearing as (y, z), will now appear as (ptr(x),y) and (ptr(y),z). We then
employ the twin pointers to replace the remaining y and = with their equivalent pointers. Clearly
this transformation can be performed in O(m) time, where m is the sum of the sizes of all of the
C;.

We will now perform a lexicographic sort [AHU74] on the sequence of C;’s in order to group
together isomorphic components. With our representation we can replace each bucket indexing
performed by traditional lexicographic sort by an access to the bucket pointer that we have placed
for each element. Hence the running time for the pointer-based lexicographic sort is O(>"; ¢; + Lr)
where /; is the length of the i vector and L = max;{¢;} [AHU74]. Since DecisionTree is called
with graphs of size r = O(log® n), we have L = O(r?) and the sum of the sizes of the graphs is
O(m). Hence the radix sort can be performed in O(m + r3) = O(m + n) time.

Finally, we march through the sorted list of the C;’s and the sorted list of generic graphs,
matching them up as appropriate. We will only need to traverse an initial sequence of the sorted
gezneric graphs containing O(rTz) entries in order to match up the graphs. This takes time O(m +
r") = O0(m).

7 Conclusion

We have presented a deterministic MSF algorithm that is provably optimal. The algorithm runs
on a pointer machine, and on graphs with n vertices and m edges, its running time is O(7*(m,n)),
where 7*(m,n) is the decision tree complexity of the MSF problem on n-node, m-edge graphs.

An intriguing aspect of our algorithm is that we do not know its precise running time. The
presence of Chazelle’s algorithm [Chaz97] shows that its running time is O(ma(m,n)log a(m,n)).
This could conceivably be the correct bound for our algorithm — all that we can say at this time
is that the bound lies between this rather unwieldy upper bound and the obvious linear-time lower
bound.

Since our time bound depends only on the decision tree complexity of the MSF problem, the
running time of our algorithm (and hence of the fastest MSF algorithm) depends only on the
number of edge-weight comparisons needed to resolve this problem, and not on data structural
issues. Hence if the complexity of the problem turns out to be, say, ®(ma(m,n)), the o will not
be due to the use of a data structure with that complexity, but rather due to the nature of edge-
weight comparisons required. This also means that in order to determine the complexity of the
MSF problem one can now look solely at its decision tree complexity without considering the data
structures needed to implement the other features of the algorithm. This could potentially simplify
proofs on the algorithmic complexity of the MST problem.

Pinning down the function that describes the worst-case complexity of our algorithm is the main
open question that remains for the sequential complexity of the MSF problem. One can also ask
for the parallel complexity of this problem. Here, the randomized complexity of the MSF problem
on the EREW PRAM was recently resolved in [PR99]. For deterministic parallel MSF algorithms,
the time complexity on the EREW PRAM was resolved recently in [CHL99]. An open question
that remains here is to obtain a deterministic parallel MSF algorithm with optimal work and time
bounds.

12

References

[AHU74] A. V. Aho, J. E. Hopcroft, J. D. Ullman. The Design and Analysis of Computer Algorithms.
Addison-Wesley, 1974.

[BG65] C. Berge, A. Ghouila-Houri. Programming, Games, and Transportation Networks. John Wiley, New
York, 1965.

[Bor26] O. Boruvka . O jistém problému minimadlnim. Moravské Prirodovédecké Spoleénosti 3, (1926), pp.
37-58. (In Czech).

[BKRW98] A. L. Buchsbaum, H. Kaplan, A. Rogers, J. R. Westbrook. Linear-Time Pointer-Machine Algo-
rithms for Least Common Ancestors, MST Verification, and Dominators. In Proc. of the 30th ACM
Symposium on Theory of Computing, pp. 279-288, 1998.

[Chaz97] B. Chazelle. A Faster Deterministic Algorithm for Minimum Spanning Trees. In FOCS 97, pp.
22-31, 1997.

[Chaz98] B. Chazelle. Car-Pooling as a Data Structuring Device: The Soft Heap. In ESA ’98 (Venice), pp.
35-42, Lecture Notes in Comp. Sci., 1461, Springer, Berlin, 1998.

[Cho38] G. Choquet. Etude de certains réseaux de routes. Comptes Rendus Acad. Sci., 206 (1938), pp.
310-313.

[CHL99] K. W. Chong, Y. Han and T. W. Lam. On the parallel time complexity of undirected connectivity
and minimum spanning trees. In Proc. SODA 1999, pp. 225-234.

[CT76] D. Cheriton, R. E. Tarjan. Finding minimum spanning trees. In SIAM J. Comput. 5 (1976), pp.
724-742.

[Dij59] E. W. Dijkstra. A note on two problems in connexion with graphs. In Numer. Math., 1 (1959), pp.
269-271.

[FLPSZ51] K. Florek, L. Lukasziewicz, J. Perkal, H. Steinhaus, S. Zubrzycki. Sur la liaison et la division
des points d’un ensemble fini. In Collog. Math., 2 (1951), pp. 282-285

[FT87] M. L. Fredman, R. E. Tarjan. Fibonacci heaps and their uses in improved network optimization
algorithms. In J. ACM 34 (1987), pp. 596-615.

[FW90] M. Fredman, D. E. Willard. Trans-dichotomous algorithms for minimum spanning trees and shortest
paths. In Proc. FOCS 90, pp. 719-725, 1990.

[GGST8&6] H. N. Gabow, Z. Galil, T. Spencer, R. E. Tarjan. Efficient algorithms for finding minimum
spanning trees in undirected and directed graphs. In Combinatorica 6 (1986), pp. 109-122.

[GH85] R.L. Graham, P. Hell. On the history of the minimum spanning tree problem. Annals of the History
of Computing 7 (1985), pp. 43-57.

[Jar30] V. Jarnik. O jistém problému minimadlnim. Moravské Prirodovédecké Spoleénosti 6, 1930, pp.
57-63. (In Czech).

[KKT95] D. R. Karger, P. N. Klein, and R. E. Tarjan. A randomized linear-time algorithm to find minimum
spanning trees. Journal of the ACM, 42:321-328, 1995.

[Kr56] J. B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem. In
Proc. Amer. Math. Soc. 7 (1956), pp. 48-50.

13

[PR99] S. Pettie, V. Ramachandran. A Randomized Time-Work Optimal Parallel Algorithm for Finding a
Minimum Spanning Forest To appear in Proc. RANDOM ’99, also Tech. Report TR99-13, Univ. of
Texas at Austin, April 1999.

[Prim57] R. C. Prim. Shortest connection networks and some generalizations. Bell System Technical Journal,
36:1389-1401.

[Tar79] R. E. Tarjan. A class of algorithms which require nonlinear time to maintain disjoint sets. In JCSS,
18(2), pp 110-127, 1979.

[Tar83] R. E. Tarjan. Data Structures and Network Algorithms. Society for Industrial and Applied Mathe-
matics, 1983.

[Yao75] A.Yao. An O(|E|loglog|V]) algorithm for finding minimum spanning trees. Information Processing
Letters 4 (1975), pp. 21-23.

14

