
All about Eve: Execute-Verify Replication for Multi-Core Servers

Manos Kapritsos∗, Yang Wang∗, Vivien Quema†, Allen Clement‡, Lorenzo Alvisi∗, Mike Dahlin∗
∗The University of Texas at Austin †Grenoble INP ‡MPI-SWS

Abstract: This paper presents Eve, a new Execute-Verify
architecture that allows state machine replication to scale
to multi-core servers. Eve departs from the traditional
agree-execute architecture of state machine replication:
replicas first execute groups of requests concurrently and
then verify that they can reach agreement on a state and
output produced by a correct replica; if they can not, they
roll back and execute the requests sequentially. Eve min-
imizes divergence using application-specific criteria to
organize requests into groups of requests that are un-
likely to interfere. Our evaluation suggests that Eve’s
unique ability to combine execution independence with
nondetermistic interleaving of requests enables high-
performance replication for multi-core servers while tol-
erating a wide range of faults, including elusive concur-
rency bugs.

1 Introduction
This paper presents Eve, a new Execute-Verify archi-
tecture that allows state machine replication to scale to
multi-core servers.

State machine replication (SMR) is a powerful fault
tolerance technique [26, 38]. Historically, the essential
idea is for replicas to deterministically process the same
sequence of requests so that correct replicas traverse the
same sequence of internal states and produce the same
sequence of outputs.

Multi-core servers pose a challenge to this approach.
To take advantage of parallel hardware, modern servers
execute multiple requests in parallel. However, if differ-
ent servers interleave requests’ instructions in different
ways, the states and outputs of correct servers may di-
verge even if no faults occur. As a result, most SMR
systems require servers to process requests sequentially:
a replica finishes executing one request before beginning
to execute the next [7, 27, 31, 39, 44, 50].

At first glance, recent efforts to enforce determinis-
tic parallel execution seem to offer a promising approach
to overcoming this impasse. Unfortunately, as we de-
tail in the next section, these efforts fall short, not just
because of the practical limitations of current implemen-
tations (e.g. high overhead [2, 3, 5]) but more fundamen-

tally because, to achieve better performance, many mod-
ern replication algorithms do not actually execute opera-
tions in the same order at every replica (and sometimes
do not even execute the same set of operations) [7, 11,
21, 47].

To avoid these issues, Eve’s replication architecture
eliminates the requirement that replicas execute requests
in the same order. Instead, Eve partitions requests in
batches and, after taking lightweight measures to make
conflicts within a batch unlikely, it allows different repli-
cas to execute requests within each batch in parallel,
speculating that the result of these parallel executions
(i.e. the system’s important state and output at each
replica) will match across enough replicas.

To execute requests in parallel without violating the
safety requirements of replica coordination, Eve turns
on its head the established architecture of state ma-
chine replication. Traditionally, deterministic replicas
first agree on the order in which requests are to be ex-
ecuted and then execute them [7, 26, 27, 31, 38, 50]; in
Eve, replicas first speculatively execute requests concur-
rently, and then verify that they have agreed on the state
and the output produced by a correct replica. If too many
replicas diverge so that a correct state/output cannot be
identified, Eve guarantees safety and liveness by rolling
back and sequentially and deterministically re-executing
the requests.

Critical to Eve’s performance are mechanisms that en-
sure that, despite the nondeterminism introduced by al-
lowing parallel execution, replicas seldom diverge, and
that, if they do, divergence is efficiently detected and
reconciled. Eve minimizes divergence through a mixer
stage that applies application-specific criteria to produce
groups of requests that are unlikely to interfere, and it
makes repair efficient through incremental state transfer
and fine-grained rollbacks. Note that if the underlying
program is correct under unreplicated parallel execution,
then delaying agreement until after execution and, when
necessary, falling back to sequential re-execution guar-
antees that replication remains safe and live even if the
mixer allows interfering requests in the same group.

Eve’s execute-verify architecture is general and ap-

1

plies to both crash tolerant and Byzantine tolerant sys-
tems. In particular, when Eve is configured to toler-
ate crash faults, it also provides significant protection
against concurrency bugs, thus addressing a region of
the design space that falls short of Byzantine fault tol-
erance but that strengthens guarantees compared to stan-
dard crash tolerance. Eve’s robustness stems from two
sources. First, Eve’s mixer reduces the likelihood of trig-
gering latent concurrency bugs by attempting to run only
unlikely-to-interfere requests in parallel [25, 35]. Sec-
ond, its execute-verify architecture allows Eve to detect
and recover when concurrency causes executions to di-
verge, regardless of whether the divergence results from
a concurrency bug or from distinct correct replicas mak-
ing different legal choices.

In essence, Eve refines the assumptions that underlie
the traditional implementation of state machine replica-
tion. In the agree-execute architecture, the safety require-
ment that correct replicas agree on the same state and
output is reduced to the problem of guaranteeing that de-
terministic replicas process identical sequences of com-
mands (i.e. agree on the same inputs). Eve continues to
require replicas to be deterministic, but it no longer in-
sists on them executing identical sequences of requests:
instead of relying on agreement on inputs, Eve reverts to
the weaker original safety requirement that replicas agree
on state and output.

The practical consequence of this refinement is that
in Eve correct replicas enjoy two properties that prior
replica coordination protocols have treated as fundamen-
tally at odds with each other: nondeterministic interleav-
ing of requests and execution independence. Indeed, it is
precisely through the combination of these two proper-
ties that Eve improves the state of the art for replicating
multi-core servers:

1. Nondeterministic interleaving of requests lets Eve pro-
vide high-performance replication for multi-core
servers. Eve gains performance by avoiding the
overhead of enforcing determinism. For example,
in our experiments with the TPC-W benchmark,
Eve achieves a 6.5x speedup over sequential execu-
tion that approaches the 7.5x speedup of the orig-
inal unreplicated server. For the same benchmark,
Eve achieves a 4.7x speedup over the Remus primary-
backup system [13] by exploiting its unique ability to
allow independent replicas to interleave requests non-
deterministically.

2. Independence lets Eve mask a wide range of faults.
Without independently executing replicas, it is in gen-
eral impossible to tolerate arbitrary faults. Indepen-
dence makes Eve’s architecture fully general, as our
prototype supports tunable fault tolerance [9], retain-
ing traditional state machine replication’s ability to be
configured to tolerate crash, omission, or Byzantine

faults. Notably, we find that execution independence
pays dividends even when Eve is configured to tol-
erate only crash or omission failures by offering the
opportunity to mask some concurrency failures. Al-
though we do not claim that our experimental results
are general, we find them promising: for the TPC-W
benchmark running on the H2 database, executing re-
quests in parallel on an unreplicated server triggered
a previously undiagnosed concurrency bug in H2 73
times in a span of 750K requests. Under Eve, our
mixer eliminated all manifestations of this bug. Fur-
thermore, when we altered our mixer to occassionally
allow conflicting requests to be parallelized, Eve de-
tected and corrected the effects of this bug 82% of the
times it manifested, because Eve’s independent execu-
tion allowed the bug to manifest (or not) in different
ways on different replicas.

The rest of the paper proceeds as follows. In Section
2 we explain why deterministic multithreaded execution
does not solve the problem of replicating multithreaded
services. Section 3 describes the system model and Sec-
tion 4 gives an overview of the protocol. In Section 5 we
discuss the execution stage in more detail and in Section
6 we present the agreement protocols used by the veri-
fication stage for two interesting configurations and dis-
cuss Eve’s ability to mask concurrency bugs. Section 7
presents an experimental evaluation of Eve, and Section
8 presents related work. Section 9 concludes the paper.

2 Why not deterministic execution?
Deterministic execution of multithreaded programs [2, 3,
5, 30] guarantees that, given the same input, all correct
replicas of a multithreaded application will produce iden-
tical internal application states and outputs. Although
at first glance this approach appears a perfect match
for the challenge of multithreaded SMR on multi-core
servers, there are two issues that lead us to look beyond
it. The first issue [4] is straightforward: current tech-
niques for deterministic multithreading either require
hardware support [14, 15, 20] or are too slow (1.2x-10x
overhead) [2, 3, 5] for production environments. The sec-
ond issue originates from the semantic gap that exists be-
tween modern SMR protocols and the techniques used to
achieve deterministic multithreading.

Seeking opportunities for higher throughput, SMR
protocols have in recent years looked for ways to exploit
the semantics of the requests processed by the replicas to
achieve replica coordination without forcing all replicas
to process identical sequences of inputs. For example,
many modern SMR systems no longer insist that read
requests be performed in the same order at all replicas,
since read requests do not modify the state of the repli-
cated application. This read-only optimization [7, 9, 24]

2

is often combined with a second optimization that allows
read requests to be executed only at a preferred quo-
rum of replicas, rather than at all replicas [21]. Several
SMR systems [11, 47] use the preferred quorum opti-
mization during failure-free executions also for requests
that change the application’s state, asking other replicas
to execute these requests only if a preferred replica fails.

Unfortunately, deterministic multithreading tech-
niques know nothing of the semantics of the operations
they perform. Their ability to guarantee replica coordina-
tion of multithreaded servers is based purely on syntactic
mechanisms that critically rely on the assumption that all
replicas receive identical sequences of inputs: only then
can deterministic multithreading ensure that the replicas’
states and outputs will be the same. Read-only opti-
mizations and preferred quorum operations violate that
assumption, leading correct replicas to diverge. For in-
stance, read-only requests advance a replica’s instruction
counter and may cause the replica to acquire additional
read locks: it is easy to build executions where such low-
level differences may eventually cause the application
state of correct replicas to diverge [22]. Paradoxically,
the troubles of deterministic replication stem from stick-
ing to the letter of the state machine approach [26, 38], at
the same time that modern SMR protocols have relaxed
its requirements while staying true to its spirit.

3 System model

The novel architecture for state machine replication that
we propose is fully general: Eve can be applied to co-
ordinate the execution of multithreaded replicas in both
synchronous and asynchronous systems and can be con-
figured to tolerate failures of any severity, from crashes
to Byzantine faults.

In this paper, we primarily target asynchronous en-
vironments where the network can arbitrarily delay, re-
order, or lose messages without imperiling safety. For
liveness, we require the existence of synchronous in-
tervals during which the network is well-behaved and
messages sent between two correct nodes are received
and processed with bounded delay. Because syn-
chronous primary-backup with reliable links is a prac-
tically interesting configuration [13], we also evaluate
Eve in a server-pair configuration that—like primary-
backup [6]—relies on timing assumptions for both safety
and liveness.

Eve can be configured to produce systems that are live,
i.e. provide a response to client requests, despite a to-
tal of up to u failures, whether of omission or commis-
sion, and to ensure that all responses accepted by correct
clients are correct despite up to r commission failures
and any number of omission failures [9]. Commission
failures include all failures that are not omission fail-

Clients Execution Verification

Mixer

ParallelBatches

Application
logic

Decision?

Rollback

Commit

State transfer

to clients...

to other replicas...

client
requests

Figure 1: Overview of Eve.

ures. The union of omission and commission failures are
Byzantine failures. However, we assume that failures do
not break cryptographic primitives; i.e., a faulty node can
never produce a correct node’s MAC. We denote a mes-
sage X sent by Y that includes an authenticator (a vector
of MACs, one per receiving replica) as 〈X〉~µY .

4 Protocol overview
Figure 1 shows an overview of Eve, whose “execute-
then-verify” design departs from the “agree-then-
execute” approach of traditional SMR [7, 27, 50].

4.1 Execution stage
Eve divides requests in batches, and lets replicas exe-
cute requests within a batch in parallel, without requiring
them to agree on the order of request execution within
a batch. However, Eve takes steps to make it likely that
replicas will produce identical final states and outputs for
each batch.

Batching Clients send their requests to the current pri-
mary execution replica. The primary groups requests
into batches, assigns each batch a sequence number,
and sends them to all execution replicas. Multiple such
batches can be in flight at the same time, but they are
processed in order. Along with the requests, the pri-
mary sends any data needed to consistently process any
nondeterministic requests in the batch (e.g. a seed for
random() calls or a timestamp for gettimeofday()
calls [7, 9]). The primary however makes no effort to

3

eliminate the nondeterminism that may arise when mul-
tithreaded replicas independently execute their batches.

Mixing Each replica runs the same deterministic mixer
to partition each batch received from the primary into
the same ordered sequence of parallelBatches—groups
of requests that the mixer believes can be executed in par-
allel with little likelihood that different interleavings will
produce diverging results at distinct replicas. For exam-
ple, if conflicting requests ρ1 and ρ2 both modify object
A, the mixer will place them in different parallelBatches.
Section 5.1 describes the mixer in more detail.

Executing (in parallel) Each replica executes the par-
allelBatches in the order specified by the determinis-
tic mixer. After executing all parallelBatches in the ith

batch, a replica computes a hash of its application state
and of the outputs generated in response to requests in
that batch. This hash, along with the sequenceNumber
i and the hash for batch i− 1,1 constitute a token that is
sent to the verification stage in order to discern whether
the replicas have diverged. Section 5.2 describes how we
efficiently and deterministically compute the hash of the
final state and outputs.

4.2 Verification stage
Eve’s execution stage strives to make divergence un-
likely, but offers no guarantees: for instance, despite its
best effort, the mixer may inadvertently include conflict-
ing requests in the same parallelBatch and cause distinct
correct replicas to produce different final states and out-
puts. It is up to the verification stage to ensure that such
divergences cannot affect safety, but only performance:
at the end of the verification stage, all correct replicas
that have executed the ith batch of requests are guaran-
teed to have reached the same final state and produced
the same outputs.

Agreement The verification stage runs an agreement
protocol to determine the final state and outputs of all
correct replicas after each batch of requests. The input
to the agreement protocol (see Section 6) are the tokens
received from the execution replicas. The final decision
is either commit (if enough tokens match) or rollback (if
too many tokens differ). In particular, the protocol first
verifies whether replicas have diverged at all: if all to-
kens agree, the replicas’ common final state and outputs
are committed. If there is divergence, the agreement pro-
tocol tallies the received tokens, trying to identify a final
state and outputs pair reached by enough replicas to guar-
antee that the pair is the product of a correct replica. If

1We include the hash for the previous batch to make sure that the
system only accepts valid state transitions. Verification replicas will
only accept a token as valid if they have already agreed that there is a
committed hash for sequence number i−1 that matches the one in the
ith token.

one such pair is found, then Eve ensures that all correct
replicas commit to that state and outputs; if not, then the
agreement protocol decides to roll back.

Commit If the result of the verification stage is commit,
the execution replicas mark the corresponding sequence
number as committed and send the responses for that par-
allelBatch to the clients.

Rollback If the result of the verification stage is rollback,
the execution replicas roll back their state to the latest
committed sequence number and re-execute the batch se-
quentially to guarantee progress. A rollback may also
cause a primary change, to deal with a faulty primary. To
guarantee progress, the first batch created by the new pri-
mary, which typically includes some subset of the rolled
back requests, is executed sequentially by all execution
replicas.

A serendipitous consequence of its “execute-verify”
architecture is that Eve can often mask replica diver-
gences caused by concurrency bugs, i.e. deviations from
an application’s intended behavior triggered by particular
thread interleavings [18]. Some concurrency bugs may
manifest as commission failures; however, because such
failures are typically triggered probabilistically and are
not the result of the actions of a strategic adversary, they
can be often masked by configurations of Eve designed
to tolerate only omission failures. Of course, as every
system that uses redundancy to tolerate failures, Eve is
vulnerable to correlated failures and cannot mask con-
currency failures if too many replicas fail in exactly the
same way. This said, Eve’s architecture should help, both
because the mixer, by trying to avoid parallelizing re-
quests that interfere, makes concurrency bugs less likely
and because concurrency bugs may manifest differently
(if at all) on different replicas.

5 Execution stage
In this section we describe the execution stage in more
detail. In particular, we discuss the design of the mixer
and the design and implementation of the state manage-
ment framework that allows Eve to perform efficient state
comparison, state transfer, and rollback.

5.1 Mixer design
Parallel execution will result in better performance only
if divergence is rare. The mission of the mixer is to iden-
tify requests that may productively be executed in paral-
lel and to do so with low false negative and false positive
rates. False negatives will cause conflicting requests to
be executed in parallel, creating the potential for diver-
gence and rollback. False positives will cause requests
that could have been successfully executed in parallel to
be serialized, reducing the parallelism of the execution.
Note however that Eve remains safe and live independent

4

Transaction Read and write keys
getBestSellers read: item, author, order line
getRelated read: item
getMostRecentOrder read: customer, cc xacts, address,

country, order line
doCart read: item

write: shopping cart line, shopping cart
doBuyConfirm read: customer, address

write: order line, item, cc xacts,
shopping cart line

Figure 2: The keys used for the 5 most frequent transac-
tions of the TPC-W workload.

of the false negative and false positive rates of the mixer.
A good mixer is just a performance optimization (albeit
an important one).

The mixer we use for our experiments parses each re-
quest, trying to predict which state it will access: de-
pending on the application, this state can vary from a
single file or application-level object to higher level ob-
jects such as database rows or tables. Two requests con-
flict when they access the same object in a read/write or
write/write manner. To avoid putting together conflict-
ing requests, the mixer starts with an empty parallelBatch
and two (initially empty) hash tables, one for objects be-
ing read, the other for objects being written. The mixer
then scans in turn each request, mapping the objects ac-
cessed in the request to a read or write key, as appro-
priate. Before adding a request to a parallelBatch, the
mixer checks whether that request’s keys have read/write
or write/write conflicts with the keys already present in
the two hash tables. If not, the mixer adds the request
to the parallelBatch and adds its keys to the appropri-
ate hash table; when a conflict occurs, the mixer tries to
add the request to a different parallelBatch—or creates a
new parallelBatch, if the request conflicts with all exist-
ing parallelBatches.

In our experiments with the H2 Database Engine and
the TPC-W workload, we simply used the names of the
tables accessed in read or write mode as read and write
keys for each transaction2 (see Table 2). Note that be-
cause the mixer can safely misclassify requests, we need
not explicitly capture additional conflicts potentially gen-
erated through database triggers or view accesses that
may be invisible to us: Eve’s verification stage allows us
to be safe without being perfect. Moreover, the mixer can
be improved over time using feedback from the system
(e.g. by logging parallelBatches that caused rollbacks).

Although implementing a perfect mixer might prove
tricky for some cases, we expect that a good mixer can be
written for many interesting applications and workloads
with modest effort. Databases and key-value stores are
examples of applications where requests typically iden-

2Since H2 does not support row-level locking, we did not imple-
ment conflict checks at a granularity finer than a table.

tify the application-level objects that will be affected—
tables and values respectively. Our experience so far is
encouraging. Our TPC-W mixer took 10 student-hours
to build, without any prior familiarity with the TPC-W
code. As demonstrated in Section 7, this simple mixer
achieves good parallelism (acceptably few false posi-
tives), and we do not observe any rollbacks (few or no
false negatives).

5.2 State management
Moving from an agree-execute to an execute-verify ar-
chitecture puts pressure on the implementation of state
checkpointing, comparison, rollback, and transfer. For
example, replicas in Eve must compute a hash of the
application state reached after executing every batch of
requests; in contrast, traditional SMR protocols check-
point and compare application states much less often
(e.g. when garbage collecting the request log).

To achieve efficient state comparison and fine-grained
checkpointing and rollback, Eve stores the state using a
copy-on-write Merkle tree, whose root is a concise repre-
sentation of the entire state. The implementation borrows
two ideas from BASE [36]. First, it includes only the
subset of state that determines the operation of the state
machine, omitting other state (such as an IP address or
a TCP connection) that can vary across different replicas
but has no semantic effect on the state and output pro-
duced by the application. Second, it provides an abstrac-
tion wrapper on some objects to mask variations across
different replicas.

Similar to BASE and other traditional SMR systems
such as PBFT, Zyzzyva, and UpRight, where program-
mers are required to manually annotate which state is
to be included in the state machine’s checkpoint [7, 9,
24, 36], our current implementation of Eve manually an-
notates the application code to denote the objects that
should be added to the Merkle tree and to mark them
as dirty when they get modified.

Compared to BASE, however, Eve faces two novel
challenges: maintaining a deterministic Merkle tree
structure under parallel execution and parallel hash gen-
eration as well as issues related to our choice to imple-
ment Eve in Java.
5.2.1 Deterministic Merkle trees

To generate the same checksum, different replicas must
put the same objects at the same location in their Merkle
tree. In single-threaded execution, determinism comes
easily by adding an object to the tree when it is created.
Determinism is more challenging in multithreaded exe-
cution when objects can be created concurrently.

There are two intuitive ways to address the problem.
The first option is to make memory allocation synchro-
nized and deterministic. This approach not only negates
efforts toward concurrent memory allocation [17, 40],

5

but is unnecessary, since the allocation order usually does
not fundamentally affect replica equivalence. The second
option is to generate an ID based on object content and
to use it to determine an object’s location in the tree; this
approach does not work, however, since many objects
have the same content, especially at creation time.

Our solution is to postpone adding newly created ob-
jects to the Merkle tree until the end of the batch, when
they can be added deterministically. Eve scans existing
modified objects, and if one contains a reference to an
object not yet in the tree, Eve adds that object into the
tree’s next empty slot and iteratively repeats the process
for all newly added objects.

Object scanning is deterministic for two reasons. First,
existing objects are already put at deterministic locations
in the tree. Second, for a single object, Eve can iterate
all its references in a deterministic order. Usually we can
use the order in which references are defined in a class.
However some classes, like Hashtable, do not store their
references in a deterministic order; we discuss how to
address these classes in Section 5.2.2.

We do not parallelize the process of scanning for new
objects, since it has low overhead. We do parallelize hash
generation, however: we split the Merkle tree into sub-
trees and compute their hashes in parallel before combin-
ing them to obtain the hash of the Merkle tree’s root.
5.2.2 Java Language & Runtime

The choice of implementing our prototype in Java pro-
vides us with several desirable features, including an
easy way to differentiate references from other data that
simplifies the implementation of deterministic scanning;
at the same time, it also raises some challenges.

First, objects to which the Merkle tree holds a ref-
erence to are not eligible for Java’s automatic garbage
collection (GC). Our solution is to periodically perform
a Merkle-tree-level scan, using a mark-and-sweep algo-
rithm similar to Java’s GC, to find unused objects and
remove them from the tree. This ensures that those ob-
jects can be correctly garbage collected by Java’s GC.
For the applications we have considered, this scan can be
performed less frequently than Java’s GC, since objects
in the tree tend to be “important” and have a long life-
time. In our experience this scan is not a major source of
overhead.

Second, several standard set-like data structures in
Java, including instances of the widely-used Hashtable
and HashSet classes, are not oblivious to the order in
which they are populated. For example, the serialized
state of a Java Hashtable object is sensitive to the order
in which keys are added and removed. So, while two set-
like data structures at different replicas may contain the
same elements, they may generate different checksums
when added to a Merkle tree: while semantically equiva-
lent, the states of these replicas would instead be seen as

having diverged, triggering unnecessary rollbacks.
Our solution is to create wrappers [36] that abstract

away semantically irrelevant differences between in-
stances of set-like classes kept at different replicas. The
wrappers generate, for each set-like data structure, a de-
terministic list of all the elements it contains, and, if nec-
essary, a corresponding iterator. If the elements’ type
is one for which Java already provides a comparator
(e.g. Integer, Long, String, etc.), this is easy to do. Oth-
erwise, the elements are sorted using an ordered pair (re-
questId, count) that Eve assigns to each element before
adding it to the data structure. Here, requestId is the
unique identifier of the request responsible for adding the
element, and count is the number of elements added so
far to the data structure by request requestId. In practice,
we only found the need to generate two wrappers, one
for each of the two interfaces (Set and Map) commonly
used by Java’s set-like data structures.

6 Verification stage
The goal of the verification stage is to determine whether
enough execution replicas agree on their state and re-
sponses after executing a batch of requests. Given that
the tokens produced by the execution replicas reflect their
current state as well as the state transition they under-
went, all the verification stage has to decide is whether
enough of these tokens match.

To come to that decision, the verification replicas
use an agreement protocol [7, 27] whose details depend
largely on the system model. As an optimization, read-
only requests are first executed at multiple replicas with-
out involving the verification stage. If enough replies
match, the client accepts the returned value; otherwise,
the read-only request is reissued and processed as a reg-
ular request. We present the protocol for two extreme
cases: an asynchronous Byzantine fault tolerant system,
and a synchronous primary-backup system. We then dis-
cuss how the verification stage can offer some defense
against concurrency bugs and how it can be tuned to
maximize the number of tolerated concurrency bugs.

6.1 Asynchronous BFT
In this section we describe the verification protocol for an
asynchronous Byzantine fault tolerant system with nE =
u+max(u,r)+1 execution replicas and nV = 2u+ r+1
verification replicas [8, 9], which allows the system to
remain live despite u failures (whether of omission or
commission), and safe despite r commission failures and
any number of omission failures. Readers familiar with
PBFT [7] will find many similarities between these two
protocols; this is not surprising, since both protocols at-
tempt to perform agreement among 2u+ r + 1 replicas
(3 f +1 in PBFT terminology). The main differences be-
tween these protocols stem from two factors. First, in

6

PBFT the replicas try to agree on the output of a single
node—the primary. In Eve the object of agreement is the
behavior of a collection of replicas—the execution repli-
cas. Therefore, in Eve verification replicas use a quorum
of tokens from the execution replicas as their “proposed”
value. Second, in PBFT the replicas try to agree on the
inputs to the state machine (the incoming requests and
their order). Instead, in Eve replicas try to agree on the
outputs of the state machine (the application state and
the responses to the clients). As such, in the view change
protocol (which space considerations compel us to dis-
cuss in full detail elsewhere [22]) the existence of a cer-
tificate for a given sequence number is enough to commit
that sequence number to the next view—a prefix of com-
mitted sequence numbers is no longer required.

When an execution replica executes a batch of re-
quests (i.e. a sequence of parallelBatches), it sends a
〈VERIFY,υ,n,T,e〉~µe message to all verification replicas,
where υ is the current view number, n is the batch se-
quence number, T is the computed token for that batch,
and e is the sending execution replica. Recall that T con-
tains the hash of both batch n and of batch n− 1: a ver-
ification replica accepts a VERIFY message for batch n
only if it has previously committed a hash for batch n−1
that matches the one stored in T .

When a verification replica receives max(u,r) +
1 VERIFY messages with matching tokens, it marks
this sequence number as preprepared and sends
a 〈PREPARE,υ,n,T,v〉~µv message to all other ver-
ification replicas. Similarly when a verification
replica receives nV − u matching PREPARE messages,
it marks this sequence number as prepared and
sends a 〈COMMIT,υ,n,T,v〉~µv to all other verifica-
tion replicas. Finally, when a verification replica re-
ceives nV − u matching COMMIT messages, it marks
this sequence number as committed and sends a
〈VERIFY-RESPONSE,υ,n,T,v〉~µv message to all execu-
tion replicas. Note that the view number υ is the same
as that of the VERIFY message; this indicates that agree-
ment was reached and no view change was necessary.

If agreement can not be reached, either because of
diverging replicas, asynchrony, or because of a Byzan-
tine execution primary, the verification replicas initiate
a view change.3 During the view change, the verifica-
tion replicas identify the highest sequence number (and
corresponding token) that has been prepared by at least
nV − u replicas and start the new view with that token.
They send a 〈VERIFY-RESPONSE,υ+1,n,T,v, f 〉~µv mes-
sage to all execution replicas, where f is a flag that indi-
cates that the next batch should be executed sequentially
to ensure progress. Note that in this case the view num-
ber has increased; this indicates that agreement was not

3The view change is triggered when the commit throughput is lower
than expected, similar to [10].

reached and a rollback to sequence number n is required.

Commit, State transfer and Rollback Upon receipt of
r+1 matching VERIFY-RESPONSE messages, an execu-
tion replica e distinguishes three cases:

Commit If the view number has not increased and the
agreed-upon token matches the one e previously
sent, then e marks that sequence number as stable,
garbage-collects any portions of the state that have
now become obsolete, and releases the responses
computed from the requests in this batch to the cor-
responding clients.

State transfer If the view number has not increased,
but the token does not match the one e previously
sent, it means that this replica has diverged from
the agreed-upon state. To repair this divergence,
it issues a state transfer request to other replicas.
This transfer is incremental: rather than transferring
the entire state, Eve transfers only the part that has
changed since the last stable sequence number. In-
cremental transfer, which uses the Merkle tree to
identify what state needs to be transferred, allows
Eve to rapidly bring slow and diverging replicas up-
to-date.

Rollback If the view number has increased, this means
that agreement could not be reached. Replica e dis-
cards any unexecuted requests and rolls back its
state to the sequence number indicated by the token
T , while verifying that its new state matches the to-
ken (else it initiates a state transfer). The increased
view number also implicitly rotates the execution
primary. The replicas start receiving batches from
the new primary and, since the flag f was set, exe-
cute the first batch sequentially to ensure progress.

6.2 Synchronous primary-backup
A system configured for synchronous primary-backup
has only two replicas that are responsible for both exe-
cution and verification. The primary receives client re-
quests and groups them into batches. When a batch
B is formed, it sends a 〈EXECUTE-BATCH,n,B,ND〉
message to the backup, where n is the batch sequence
number and ND is the data needed for consistent exe-
cution of nondeterministic calls such as random() and
gettimeofday(). Both replicas apply the mixer to the
batch, execute the resulting parallelBatches, and com-
pute the state token, as described in Section 4. The
backup sends its token to the primary, which compares it
to its own token. If the tokens match, the primary marks
this sequence number as stable and releases the responses
to the clients. If the tokens differ, the primary rolls back
its state to the latest stable sequence number and noti-

7

fies the backup to do the same. To ensure progress, they
execute the next batch sequentially.

If the primary crashes, the backup is eventually noti-
fied and assumes the role of the primary. As long as the
old primary is unavailable, the new primary will keep
executing requests on its own. After a period of unavail-
ability, a replica uses incremental state transfer to bring
its state up-to-date before processing any new requests.

6.3 Tolerating concurrency bugs
A happy consequence of the execute-verify architecture
is that even when configured with the minimum number
of replicas required to tolerate u omission faults, Eve pro-
vides some protection against concurrency bugs.

Concurrency bugs can lead to both omission faults
(e.g., a replica could get stuck) and commission faults
(e.g., a replica could produce an incorrect output or tran-
sition to an incorrect state). However, faults due to con-
currency bugs have an important property that in general
cannot be assumed for Byzantine faults: they are easy to
repair. If Eve detects a concurrency fault, it can repair
the fault via rollback and sequential re-execution.

Asynchronous case When configured with r = 0, Eve
provides the following guarantee:

Theorem 1. When configured with nexec = 2u+ 1 and
r = 0, asynchronous Eve is safe, live, and correct despite
up to u concurrency or omission faults.

Note that safety and liveness refer to the requirements of
state machine replication—that the committed state and
outputs at correct replicas match and that requests even-
tually commit. Correctness refers to the state machine
itself; a committed state is correct if it is a state that can
be reached by the state machine in a fault-free run.
Proof sketch: The system is always safe and correct be-
cause the verifier requires u+ 1 matching execution to-
kens to commit a batch. If there are at most u concur-
rency faults and no other commission faults, then every
committed batch has at least one execution token pro-
duced by a correct replica.

The system is live because if a batch fails to gather
u+ 1 matching tokens, the verifier forces the execution
replicas to roll back and sequentially re-execute. During
sequential execution deterministic correct replicas do not
diverge; so, re-execution suffers at most u omission faults
and produces at least u+ 1 matching execution tokens,
allowing the batch to commit.

When more than u correlated concurrency faults pro-
duce exactly the same state and output, Eve still provides
the safety and liveness properties of state machine repli-
cation, but can no longer guarantee correctness.

Synchronous case When configured with just u+1 ex-
ecution replicas, Eve can continue to operate with 1

replica if u replicas fail by omission. In such configu-
rations, Eve does not have spare redundancy and can not
mask concurrency faults at the one remaining replica.

Extra protection during good intervals During good
intervals when there are no replica faults or time-
outs other than those caused by concurrency bugs, Eve
uses spare redundancy to boost its best-effort protection
against concurrency bugs to nE −1 execution replicas in
both the synchronous and asynchronous cases.

For example, in the synchronous primary-backup case,
when both execution replicas are alive, the primary re-
ceives both execution responses, and if they do not
match, it orders a rollback and sequential re-execution.
Thus, during a good interval this configuration masks
one-replica concurrency failures. We expect this to be
the common case.

In both the synchronous and asynchronous case Eve,
when configured for r = 0, enters extra protection mode
(EPM) after k consecutive batches for which all nE ex-
ecution replicas provided matching, timely responses.
While Eve is in EPM, after the verifiers receive the
minimum number of execution responses necessary for
progress, they continue to wait for up to a short timeout
to receive all nE responses. If the verifiers receive all nE
matching responses, they commit the response. Other-
wise, they order a rollback and sequential re-execution.
Then, if they receive nE matching responses within a
short timeout, they commit the response and remain in
EPM. Conversely, if sequential re-execution does not
produce nE matching and timely responses, they suspect
a non-concurrency failure and exit EPM to ensure live-
ness by allowing the system to make progress with fewer
matching responses.

7 Evaluation
Our evaluation tries to answer the following questions:
• What is the throughput gain that Eve provides com-

pared to a traditional sequential execution approach?

• How does Eve’s performance compare to an unrepli-
cated multithreaded execution and alternative replica-
tion approaches?

• How is Eve’s performance affected by the mixer and
by other workload characteristics?

• How well does Eve mask concurrency bugs?
We address these questions by using a key-value store

application and the H2 Database Engine. We imple-
mented a simple key-value store application to perform
microbenchmark measurements of Eve’s sensitivity to
various parameters. Specifically, we vary the amount of
execution time required per request, the size of the ap-
plication objects and the accuracy of our mixer, in terms
of both false positives and false negatives. For the H2

8

Database Engine we use an open-source implementation
of the TPC-W benchmark [42, 43]. For brevity, we will
present the results of the browsing workload, which has
more opportunities for concurrency.

Our current prototype omits some of the features de-
scribed above. Specifically, although we implement the
extra protection mode optimization from Section 6.3 for
synchronous primary-backup replication, we do not im-
plement it for our asynchronous configurations. Also,
our current implementation does not handle applications
that include objects for which Java’s finalize method
modifies state that needs to be consistent across replicas.
Finally, our current prototype only supports in-memory
application state.

We run our microbenchmarks on an Emulab testbed
with 14x 4-core Intel Xeon @2.4 GHz, 4x 8-core In-
tel Xeon @2.66 GHz, and 2x 8-core hyper-threaded
Intel Xeon @1.6 GHz, connected with a 1 Gb Ether-
net. We were able to get limited access to 3x 16-
core AMD Opteron @3.0 GHz and 2x 8-core Intel Xeon
L5420 @2.5 Ghz. We use the AMD machines as ex-
ecution replicas to run the TPC-W benchmark on the
H2 Database Engine for both the synchronous primary-
backup and the asynchronous BFT configuration (Fig-
ure 3). For the asynchronous BFT configuration we use
3 execution and 4 verifier nodes, which are sufficient to
tolerate 1 Byzantine fault (u = 1, r = 1). The L5420 ma-
chines are running Xen and we use them to perform our
comparison with Remus (Figure 10 and Figure 11).

7.1 H2 Database with TPC-W
Figures 3 demonstrates the performance of Eve for the
H2 Database Engine [19] with the TPC-W browsing
workload [42, 43]. We report the throughput of Eve us-
ing an asynchronous BFT configuration (Eve-BFT) and a
synchronous active primary-backup configuration (Eve-
PrimaryBackup). We compare against the throughput
achieved by an unreplicated server that uses sequential
execution regardless of the number of available hard-
ware threads (sequential). Note that this represents an
upper bound of the performance achievable by previous
replication systems that use sequential execution [7, 9,
27, 31]. We also compare against the performance of an
unreplicated server that uses parallel execution.

With 16 execution threads, Eve achieves a speedup
of 6.5x compared to sequential execution. That ap-
proaches the 7.5x speedup achieved by an unreplicated
H2 Database server using 16 threads.

In both configurations and across all runs and for all
data points, Eve never needs to roll back. This sug-
gests that our simple mixer never parallelized requests
it should have serialized. At the same time, the good
speedup indicates that it was adequately aggressive in
identifying opportunities for parallelism.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
hr

ou
gh

pu
t (

re
qu

es
ts

/s
ec

)

execution threads

TPC-W throughput

sequential

Eve-BFT
Eve-PrimaryBackup

unreplicated

Figure 3: The throughput of Eve running the TPC-W
browsing workload on the H2 Database Engine.

7.2 Microbenchmarks
In this section, we use a simple key-value store appli-
cation to measure how various parameters affect Eve’s
performance. Due to lack of space, we only show the
graphs for the primary-backup configuration; the results
for asynchronous replication are similar. Except when
noted, the default workload consumes 1 ms of execution
time per request, each request updates one application
object, and the application object size is 1 KB.

Figure 4 shows the impact of varying the CPU de-
mand of each request. We observe that heavier work-
loads (10 ms of execution time per request) scale well,
up to 12.5x on 16 threads compared to sequential exe-
cution. As the workload gets lighter, the overhead of
Eve becomes more pronounced. Speedups fall to 10x
for 1 ms/request and to 3.3x for 0.1 ms/request. The 3.3x
scaling is partially an artifact of our inability to fully load
the server with lightweight requests. In our workload
generator, clients have 1 outstanding request at a time,
thus requiring a high number of clients to saturate the
servers; this causes our servers to run out of sockets be-
fore they are fully loaded. We measure our server CPU
utilization during this experiment to be about 30%.

In Figure 4 we plot throughput speedup, so that trends
are apparent. For reference, the absolute peak through-
puts in requests per second are 25.2K, 10.0K, 1242 for
the 0.1 ms, 1 ms, 10 ms lines, respectively.

The next experiment explores the impact of the appli-
cation object size on the system throughput. We run the
experiment using object sizes of 10 B, 1 KB, and 10 KB.
Figure 5 shows the results. While the achieved through-
put scales well for object sizes of 10 B and 1 KB, its scal-
ability decreases for larger objects (10 KB). This is an
artifact of the hashing library we use, as it first copies
the object before computing its hash: for large objects,
this memory copy limits the achievable throughput. Note
that in this figure we plot throughput speedup rather than

9

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
pe

ed
up

 o
ve

r
se

qu
en

tia
l

execution threads

Impact of CPU demand

10ms
1ms

0.1ms

Figure 4: The impact of CPU demand per request on
Eve’s throughput speedup.

 0

 2

 4

 6

 8

 10

 12

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
pe

ed
up

 o
ve

r
se

qu
en

tia
l

execution threads

Impact of object size

10B
1KB

10KB

Figure 5: The impact of application object size on Eve’s
throughput speedup.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0.01 0.1 1 10

T
hr

ou
gh

pu
t (

re
qu

es
ts

/s
ec

)

Pairwise conflict probability (%) (log)

Impact of false negatives

single-threaded
0% FN

0.01% FN
0.1% FN

1% FN
2% FN

10% FN

Figure 6: The impact of conflict probability and false
negative rate on Eve’s throughput.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0.01 0.1 1 10

T
hr

ou
gh

pu
t (

re
qu

es
ts

/s
ec

)

Pairwise conflict probability (%) (log)

Impact of false positives

single-threaded
0% FP
1% FP

10% FP
25% FP
50% FP

100% FP

Figure 7: The impact of conflict probability and false
positive rate on Eve’s throughput.

absolute throughput to better indicate the trends across
workloads. For reference, the absolute peak throughput
values in requests per second are 10.0K, 10.0K, 5.6K for
the 10 B, 1 KB, 10 KB lines, respectively.

Next, we evaluate Eve’s sensitivity to inaccurate mix-
ers. Specifically, we explore the limits of tolerance to
false negatives (misclassifying conflicting requests as
non-conflicting) and false positives (misclassifying non-
conflicting requests as conflicting). The effect of these
parameters is measured as a function of the pairwise con-
flict probability: the probability that two requests have a
conflict. In practice, we achieve this by having each re-
quest modify one object and then varying the number of
application objects. For example, to produce a 1% con-
flict chance, we create 100 objects. Similarly, a 1% false
negative rate means that each pair of conflicting requests
has a 1% chance of being classified as non-conflicting.

Figure 6 shows the effect of false negatives on
throughput. First notice that, even for 0% false negatives,
the throughput drops as the pairwise conflict chance in-
creases due to the decrease of available parallelism. For
example, if a batch has 100 requests and each request has
a 10% chance of conflicting with each other request, then

a perfect mixer is likely to divide the batch into about 10
parallelBatches, each with about 10 requests.

When we add false negatives, we add rollbacks, and
the number of rollbacks increases with both the underly-
ing conflict rate and the false negative rate. Notice that
the impact builds more quickly than one might expect
because there is essentially a birthday “paradox”—if we
have a 1% conflict rate and a 1% false negative rate, then
the probability that any pair of conflicting requests be
misclassified is 1 in 10000. But in a batch of 100 re-
quests, each of these requests has about a 1% chance of
being party to a conflict, which means there is about a
39% chance that a batch of 100 requests contain an unde-
tected conflict. Furthermore, with a 1% conflict rate, the
batch will be divided into only a few parallelBatches, so
there is a good chance that conflicting requests will land
in the same parallelBatch. In fact, in this case we mea-
sure 1 rollback per 7 parallelBatches executed. Despite
this high conflict rate and this high number of rollbacks,
Eve achieves a speedup of 2.6x compared to sequential
execution.

Figure 7 shows the effect of false positives on through-
put. As expected, increased false positive ratios can lead

10

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 20 40 60 80 100 120 140 160

T
hr

ou
gh

pu
t (

re
qu

es
ts

/s
ec

)

Time (seconds)

Figure 8: Throughput during node crash and recovery
for an Eve primary-backup configuration.

to lower throughput, but the effect is not as significant as
for false negatives. The reason is simple: false positives
reduce the opportunities for parallel execution, but they
don’t incur any additional overhead.

From these experiments, we conclude that Eve does
require a good mixer to achieve good performance. This
requirement does not particularly worry us. We found it
easy to build a mixer that (to the best of our knowledge)
detects all conflicts and still allows for a good amount of
parallelism. Others have had similar experience [25]. Al-
though creating perfect mixers may be difficult in some
cases, we speculate that it will often be feasible to con-
struct mixers with the low false negative rates and modest
false positive rates needed by Eve.

7.3 Failure and recovery
In Figure 8, we demonstrate Eve’s ability to mask and re-
cover from failures. In the primary-backup configuration
we run an experiment where we kill the primary node n1
at t = 30 seconds and recover it at t = 60 seconds (by
which time the secondary n2 has become the new pri-
mary). We then kill the new secondary (n1) at t = 90
seconds and recover it at t = 120 seconds. We observe
that after the first failure the throughput drops to zero
until the backup realizes that the primary is dead after
a timeout of 4 seconds.4 The backup then assumes the
role of the primary and starts processing requests. The
throughput during this period is higher because the new
primary knows that the other node is crashed and does
not send any messages to it. At t = 60, the first node
recovers, and the throughput drops to zero for about one
second while the newly recovered node catches up. Then
the throughput returns to its original value. The process
repeats when n1 crashes again at t = 90 seconds and re-
covers at t = 120 seconds.

7.4 Concurrency faults
To evaluate Eve’s ability to mask concurrency faults, we
use a primary-backup configuration with 16 execution
threads and run the TPC-W browsing workload on the

4One could use a fast failure detector [29] to achieve sub-second
detection.

H2 Database Engine with various mixers. H2 has a pre-
viously undiagnosed concurrency bug in which a row
counter is not incremented properly when multiple re-
quests access the same table in read uncommitted mode.
Our standard mixer completely masks this bug because
it does not let requests that modify the same table exe-
cute in parallel. By introducing less accurate mixers we
explore how well Eve’s second line of defense—parallel
execution—works in masking this bug.

Figure 9 shows the number of times that the bug man-
ifested in one or both replicas. When the bug manifests
only in one replica, Eve detects that the replicas have
diverged and repairs the damage by rolling back and re-
executing sequentially. If the bug happens to manifest in
both replicas in the same way, Eve will not detect it.

The first column shows the results when there is a triv-
ial aggressive mixer that places all requests of batch i in
the same parallelBatch. In this case, all requests that ar-
rive together in a batch are allowed to execute in parallel.
Naturally, this case has the highest number of bug man-
ifestations. We observe that even when the mixer does
no filtering at all, Eve masks 82% of the instances where
the bug manifests. In the remaining 18% of the cases,
the bug manifested in the same way in both replicas and
was not corrected by Eve. In columns 2 through 4, we
introduce mixers with high rates of false negatives. This
results in fewer manifestations of the bug, with Eve still
masking the majority of those manifestations. In the fifth
column, we show results for our original mixer, which
(to the best of our knowledge) does not introduce false
negatives. In this case, the bug does not manifest at all.

Although we do not claim that these results are gen-
eral, we find them promising.

7.5 Remus
Remus [13] is a primary-backup system that uses Virtual
Machines (VMs) to send modified state from the primary
to the backup. An advantage of this approach is that it
is simple and requires no modifications to the applica-
tion. A drawback of this approach is that it aggressively
utilizes network resources to keep the backup consistent
with the primary. The issue is aggravated by two prop-
erties of Remus. First, Remus does not make fine-grain
distinctions between state that is required for the state
machine and temporary state. Second, Remus operates
on the VM level, which forces it to send entire pages,
rather than just the modified objects. Also, because Re-
mus is using passive replication, it tolerates a narrower
range of faults than Eve. Our experiments show that, de-
spite Eve’s stronger guarantees, it outperforms Remus by
a factor of 4.7x, while using two orders of magnitude less
network bandwidth.

Figure 10 shows the throughput achieved by Remus
and Eve on the browsing workload of the TPC-W bench-

11

Group all 1% FN 0.5% FN 0.1% FN Original Mixer
Times bug manifested 73 51 29 4 0
Fixed with rollback 60 38 18 3 0
All identical (not masked) 13 13 11 1 0
Throughput 1104 1233 1240 1299 1322

Figure 9: Effectiveness of Eve in masking concurrency bugs when various mixers are used.

 0

 50

 100

 150

 200

 250

 0 200 400 600 800 1000 1200 1400 1600

La
te

nc
y

(m
s)

Throughput (requests/sec)

Latency and throughput

Unreplicated

Eve

Remus

Figure 10: The latency and throughput of Remus and
Eve running the H2 Database Engine on Xen. Both sys-
tems use a 2-node configuration. The workload is the
browsing workload of the TPC-W benchmark.

mark. We also show the latency and throughput of the
unreplicated system for the same workload. Both sys-
tems run the H2 Database Engine on Xen and using a
2-node (primary-backup) configuration. Remus achieves
a maximum throughput of 235 requests per second, while
Eve peaks at 1225 requests per second. Remus crashes
for loads higher than 235 requests per second, as its
bandwidth requirements approach the capacity of the
network, as Figure 11 shows. In contrast with Remus,
Eve executes requests independently at each replica and
does not need to propagate state modifications over the
network. The practical consequence is that Eve uses
significantly less bandwidth, achieves higher throughput,
and provides stronger guarantees compared to a passive
replication approach like Remus.

7.6 Latency and batching
Figure 10 provides some insight in Eve’s tradeoff be-
tween latency and throughput. When Eve is not satu-
rated, its latency is only marginally higher than that of
an unreplicated server. As the load increases, Eve’s la-
tency increases somewhat, until it finally spikes up at
the saturation point, at a throughput of 1225 requests
per second; the unreplicated server’s latency spikes up
at around 1470 requests per second. To keep its latency
low while maintaing a high peak throughput, Eve uses
a dynamic batching scheme: the batch size decreases
when the demand is low (providing good latency), and

 1

 10

 100

 1000

 0 200 400 600 800 1000 1200

B
an

dw
id

th
 c

on
su

m
pt

io
n

(M
b/

se
c)

 (
lo

g)

Throughput (requests/sec)

Network bandwidth consumption

Eve

Remus

Figure 11: The bandwidth consumption of Remus and
Eve for the experiment shown in Figure 10.

increases when the system starts becoming saturated, in
order to leverage as much parallelism as possible.

8 Related Work
Vandiver et al. [45] describe a Byzantine-tolerant semi-
active replication scheme for transaction processing sys-
tems. Their system supports concurrent execution of
queries but its scope is limited: it applies to the sub-
set of transaction processing systems that use strict two-
phase locking (2PL). A recent paper suggests that it may
be viable to enforce deterministic concurrency control in
transactional systems [41], but the general case remains
hard. Kim et al. [23] recently proposed applying this
idea to a transactional operating system. This approach
assumes that all application state is manageable by the
kernel and does not handle in-memory application state.

One alternative is to use a replication technique other
than state machine replication. Semi-active replica-
tion [34] weakens state machine replication with respect
to both determinism and execution independence: one
replica, the primary, executes nondeterministically and
logs all the nondeterministic actions it performs. All
other replicas then execute by deterministically repro-
ducing the primary’s choices. In this context, one may
hope to be able to leverage the large body of work on
deterministic multiprocessor replay [1, 12, 16, 28, 32, 33,
37, 46, 48, 49]. Unfortunately, relaxing the requirement
of independent execution makes these systems vulnera-
ble to commission failures. Also, similar to determin-

12

istic multithreaded execution approaches, record and re-
play approaches assume that the same input is given to
all replicas. As discussed in Section 2 this assumption is
violated in modern replication systems.

The Remus primary-backup system [13] takes a dif-
ferent approach: the backup does not execute requests,
but instead passively absorbs state updates from the pri-
mary: since execution occurs only at the primary, the
costs and difficulty of coordinating parallel execution are
sidestepped. These advantages however come at a sig-
nificant price in terms of fault coverage: Remus can only
tolerate omission failures—all commission failures, in-
cluding common failures such as concurrency bugs, are
beyond its reach. Like Remus, Eve neither tracks nor
eliminates nondeterminism, but it manages to do so with-
out forsaking fault coverage; further, despite its stronger
guarantees, Eve outperforms Remus by a factor of 4.7x
and uses two orders of magnitude less network band-
width (see Section 7.5) because it can ensure that the
states of replicas converge without requiring the transfer
of all modified state.

One of the keys to Eve’s ability to combine indepen-
dent execution with nondeterministic interleaving of re-
quests is the use of the mixer, which allows replicas to
execute requests concurrently with low chance of inter-
ference. Kotla et al. [25] use a similar mechanism to im-
prove the throughput of BFT replication systems. How-
ever, since they still assume a traditional agree-execute
architecture, the safety of their system depends on the
assumption that the criteria used by the mixer never mis-
takenly parallelize conflicting requests: a single unantic-
ipated conflict can lead to a safety violation.

Both Eve and Zyzzyva [24] allow speculative execu-
tion that precedes completion of agreement, but the as-
sumptions on which Eve and Zyzzyva rest are fundamen-
tally different. Zyzzyva depends on correct nodes being
deterministic, so that agreement on inputs is enough to
guarantee agreement on outputs: hence, a replica need
only send (a hash of) the sequence of requests it has
executed to convey its state to a client. In contrast, in
Eve there is no guarantee that correct replicas, even if
they have executed the same batch of requests, will be in
the same state, as the mixer may have incorrectly placed
conflicting requests in the same parallelBatch.

We did contemplate an Eve implementation in which
verification is not performed within the logical bound-
aries of the replicated service but, as in Zyzzyva, it is
moved to the clients to reduce overhead. For example, a
server’s reply to a client’s request could contain not just
the response, but also the root of the Merkle tree that
encodes the server’s state. However, since agreement is
not a bottleneck for the applications we consider, we ul-
timately chose to heed the lessons of Aardvark [10] and
steer away from the corner cases that such an implemen-

tation would have introduced.

9 Conclusion
Eve is a new execute-verify architecture that allows state
machine replication to scale to multi-core servers. By
revisiting the role of determinism in replica coordina-
tion, Eve enables new SMR protocols that for the first
time allow replicas to interleave requests nondetermin-
istically and execute independently. This unprecedented
combination is critical to both Eve’s scalability and to
its generality, as Eve can be configured to tolerate both
omission and commission failures in both synchronous
and asynchronous settings. As an added bonus, Eve’s
unconventional architecture can be easily tuned to pro-
vide low-cost, best-effort protection against concurrency
bugs.

Acknowledgements
We thank our shepherd Robert Morris, and the OSDI re-
viewers for their insightful comments. This work was
supported by NSF grants NSF-CiC-FRCC-1048269 and
CNS-0720649.

References
[1] G. Altekar and I. Stoica. ODR: output-deterministic replay for

multicore debugging. In SOSP, 2009.

[2] A. Aviram, S.-C. Weng, S. Hu, and B. Ford. Efficient system-
enforced deterministic parallelism. In OSDI, 2010.

[3] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Grossman.
CoreDet: a compiler and runtime system for deterministic multi-
threaded execution. SIGARCH Comput. Archit. News, 2010.

[4] T. Bergan, J. Devietti, N. Hunt, and L. Ceze. The deterministic
execution hammer: How well does it actually pound nails? In
2nd Workshop on Determinism and Correctness in Parallel Pro-
gramming, 2011.

[5] T. Bergan, N. Hunt, L. Ceze, and S. D. Gribble. Deterministic
process groups in dOS. In OSDI, 2010.

[6] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg.
Primary-backup protocols: Lower bounds and optimal imple-
mentations. In CDCCA, 1992.

[7] M. Castro and B. Liskov. Practical Byzantine fault tolerance and
proactive recovery. ACM Trans. Comput. Syst., 2002.

[8] A. Clement. UpRight Fault Tolerance. PhD thesis, The Univer-
sity of Texas at Austin, Dec. 2010.

[9] A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi, M. Dahlin,
and T. Riche. UpRight cluster services. In SOSP, 2009.

[10] A. Clement, M. Marchetti, E. Wong, L. Alvisi, and M. Dahlin.
Making Byzantine fault tolerant systems tolerate Byzantine
faults. In NSDI, 2009.

[11] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and L. Shrira.
HQ replication: A hybrid quorum protocol for Byzantine fault
tolerance. In OSDI, 2006.

[12] H. Cui, J. Wu, J. Gallagher, H. Guo, and J. Yang. Efficient de-
terministic multithreading through schedule relaxation. In SOSP,
2011.

13

[13] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and
A. Warfield. Remus: High availability via asynchronous virtual
machine replication. In NSDI, 2008.

[14] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. DMP: deterministic
shared memory multiprocessing. In ASPLOS, 2009.

[15] J. Devietti, J. Nelson, T. Bergan, L. Ceze, and D. Grossman.
RCDC: a relaxed consistency deterministic computer. In ASP-
LOS, 2011.

[16] G. Dunlap, D. Lucchetti, M. Fetterman, and P. Chen. Execution
replay for multiprocessor virtual machines. In VEE, 2008.

[17] J. Evans. A scalable concurrent malloc(3) implementation for
FreeBSD, April 2006.

[18] P. Fonseca, C. Li, V. Singhal, and R. Rodrigues. A study of the
internal and external effects of concurrency bugs. In DSN, 2010.

[19] H2. The H2 home page. http://www.h2database.com.

[20] D. Hower, P. Dudnik, M. Hill, and D. Wood. Calvin: Determin-
istic or not? Free will to choose. In HPCA, 2011.

[21] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. Zookeeper: wait-
free coordination for internet-scale systems. In USENIX, 2010.

[22] M. Kapritsos, Y. Wang, V. Quema, A. Clement, L. Alvisi, and
M. Dahlin. All about Eve: Execute-verify replication for multi-
core servers (extended version). Technical Report TR-12-23,
Department of Computer Science, The University of Texas at
Austin, September 2012.

[23] S. Kim, M. Z. Lee, A. M. Dunn, O. S. Hofmann, X. Wang,
E. Witchel, and D. E. Porter. Improving server applications with
system transactions. In EuroSys, 2012.

[24] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong.
Zyzzyva: Speculative Byzantine fault tolerance. In SOSP, 2007.

[25] R. Kotla and M. Dahlin. High throughput Byzantine fault toler-
ance. In DSN, 2004.

[26] L. Lamport. Time, clocks, and the ordering of events in a dis-
tributed system. CACM, 1978.

[27] L. Lamport. The part-time parliament. ACM Trans. Comput.
Syst., 1998.

[28] D. Lee, B. Wester, K. Veeraraghavan, S. Narayanasamy, P. M.
Chen, and J. Flinn. Respec: efficient online multiprocessor replay
via speculation and external determinism. In ASPLOS, 2010.

[29] J. B. Leners, H. Wu, W.-L. Hung, M. K. Aguilera, and M. Wal-
fish. Detecting failures in distributed systems with the Falcon spy
network. In SOSP, 2011.

[30] T. Liu, C. Curtsinger, and E. D. Berger. Dthreads: efficient deter-
ministic multithreading. In SOSP, 2011.

[31] Y. Mao, F. P. Junqueira, and K. Marzullo. Mencius: building
efficient replicated state machines for WANs. In OSDI, 2008.

[32] J. T. Pablo Montesinos, Luis Ceze. Delorean: Recording and
deterministically replaying shared-memory multiprocessor exe-
cution efficiently. In ISCA, 2008.

[33] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. H. Lee, and
S. Lu. PRES: probabilistic replay with execution sketching on
multiprocessor. In SOSP, 2009.

[34] D. Powell, M. Chéréque, and D. Drackley. Fault-tolerance in
Delta-4. ACM OSR, 1991.

[35] C. Reis, J. Dunagan, H. Wang, O. Dubrovsky, and S. Esmeir.
BrowserShield: Vulnerability-driven filtering of dynamic HTML.
In OSDI, 2006.

[36] R. Rodrigues, M. Castro, and B. Liskov. BASE: using abstraction
to improve fault tolerance. In SOSP, 2001.

[37] M. Ronsse and K. De Bosschere. RecPlay: a fully integrated
practical record/replay system. ACM TCS, 1999.

[38] F. B. Schneider. Implementing fault-tolerant services using the
state machine approach: a tutorial. ACM Computing Surveys,
1990.

[39] A. Singh, P. Fonseca, P. Kuznetsov, R. Rodrigues, and P. Mani-
atis. Zeno: Eventually consistent Byzantine-fault tolerance. In
NSDI, 2009.

[40] Sun Microsystems, Inc. Memory management in the Java
HotSpot virtual machine, April 2006.

[41] A. Thomson and D. J. Abadi. The case for determinism in
database systems. VLDB, 2010.

[42] TPC-W. Open-source TPC-W implementation.
http://pharm.ece.wisc.edu/tpcw.shtml.

[43] Transaction Processing Performance Council. The TPC-W home
page. http://www.tpc.org/tpcw.

[44] R. van Renesse, K. P. Birman, and S. Maffeis. Horus: A flexible
group communication system. CACM, 1996.

[45] B. Vandiver, H. Balakrishnan, B. Liskov, and S. Madden. Tol-
erating Byzantine faults in transaction processing systems using
commit barrier scheduling. In SOSP, 2007.

[46] K. Veeraraghavan, D. Lee, B. Wester, J. Ouyang, P. Chen,
J. Flinn, and S. Narayanasamy. DoublePlay: parallelizing se-
quential logging and replay. In ASPLOS, 2011.

[47] T. Wood, R. Singh, A. Venkataramani, P. Shenoy, and E. Cecchet.
ZZ and the art of practical BFT. In Eurosys, 2011.

[48] M. Xu, R. Bodik, and M. D. Hill. A “flight data recorder” for en-
abling full-system multiprocessor deterministic replay. In ISCA,
2003.

[49] M. Xu, V. Malyugin, J. Sheldon, G. Venkitachalam, and B. Weiss-
man. Retrace: Collecting execution trace with virtual machine
deterministic replay. In MOBS, 2007.

[50] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin.
Separating agreement from execution for Byzantine fault tolerant
services. In SOSP, 2003.

14

	References

