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Abstract

InkTag is a virtualization-based architecture that gives strong safety
guarantees to high-assurance processes even in the presence of a
malicious operating system. InkTag advances the state of the art
in untrusted operating systems in both the design of its hypervi-
sor and in the ability to run useful applications without trusting the
operating system. We introduce paraverification, a technique that
simplifies the InkTag hypervisor by forcing the untrusted operating
system to participate in its own verification. Attribute-based access
control allows trusted applications to create decentralized access
control policies. InkTag is also the first system of its kind to ensure
consistency between secure data and metadata, ensuring recover-
ability in the face of system crashes.

Categories and Subject Descriptors D.4.6 [Operating Systems]:
Security and Protection—Access controls, Invasive software

General Terms Security, Verification

Keywords Application protection, Virtualization-based security,
Paraverification

1. Introduction

Operating systems are a vexing Achilles heel in the security archi-
tecture of modern computing systems. The OS is the root of trust,
so compromising the OS compromises every program on the sys-
tem. On discretionary access control operating systems like Linux
and Windows, controlling any process running as root (administra-
tor) is a kernel compromise because the root user can load code and
data into the kernel’s address space. If an application could remain
safe even if the operating system were compromised, then operat-
ing system exploits would no longer have the security emergency
status that they have today.

This paper introduces InkTag, a system in which secure, trust-
worthy programs can efficiently verify an untrusted, commodity
operating system’s behavior, with a small degree of assistance
from a small, trusted hypervisor. OS implementations are complex.
However, verifying OS behavior is possible without reimplement-
ing OS subsystems in the hypervisor, because OS services often
have simple specifications. OS complexity comes from supporting
these simple services simultaneously for many different processes.
Global behavior and resource management is much more compli-
cated than the specification for an individual process. For instance,
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swapping and copy-on-write heuristics in Linux require many thou-
sands of lines of code, but auditing an application’s page tables and
checksumming the page contents requires only a few hundred. Ver-
ifying that the OS provides system services correctly allows InkTag
to avoid having to reason about the OS’s implementation of these
services.

Though feasible, efficiently and safely verifying OS behavior
remains a significant challenge. The InkTag hypervisor must im-
plement deep introspection into architecture-level primitives, such
as page tables, to isolate trusted applications from an untrusted op-
erating system. The range of “normal” operating system behavior is
large, making recognition of malicious behavior a challenge. While
verifying OS behavior is hard, doing it efficiently is even harder.
Modern virtualization hardware improves performance by reliev-
ing hypervisor software from having to process many common op-
erations. Unfortunately, it is often those exact operations, e.g., page
table updates, that are crucial for verifying OS behavior.

InkTag introduces paraverification, which enables verification
of OS behavior with limited hypervisor complexity. Most previous
systems have attempted to verify unmodified operating systems.
InkTag requires the untrusted OS to provide information and re-
sources to both the hypervisor and application that allow them to
efficiently verify the operating system’s actions. Using paraverifi-
cation to force the OS to make verification easier and more efficient
is similar to the way paravirtualization forces an OS to make virtu-
alization more efficient.

Prior work on untrusted operating systems [11] has focused on
simply isolating trusted code and data from the OS, with minimal
support for securely using OS features. InkTag addresses important
issues in the completeness and usability of untrusted operating
systems, such as providing users of an untrusted OS with flexible
access control and crash consistency for hypervisor and OS data
structures. InkTag advances the design and implementation of OS
verification in the following ways:
1. InkTag introduces paraverification, where an untrusted operat-

ing system is required to perform extra computation to make
verifying its own behavior easier.

2. InkTag is the first system to provide users of an untrusted OS
with flexible access control, that allows applications to define
access control policies for their own secure files (files with
privacy and integrity managed by InkTag). Access control is
vital for sharing data between processes with different levels
of privilege. Our prototype applies flexible access control to
a multi-user wiki application, providing hypervisor-enforced
privacy, integrity, and access control for wiki code and data.

3. InkTag is the first system to provide crash consistency between
security-critical metadata managed by the hypervisor and data
managed by the untrusted OS.

4. InkTag directly addresses Iago attacks [8], a new class of at-
tacks against systems providing trusted applications in un-
trusted operating systems that manipulates the return values
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Figure 1. InkTag design overview. In InkTag high-assurance processes
(HAPs) make hypercalls to the virtual machine hypervisor to verify the
runtime behavior of the operating system. The hypervisor is trusted.

of system calls (e.g., mmap) to cause a trusted application to
harm itself.

Section 2 gives an overview of InkTag, while Section 3 explains
InkTag’s high-level design. Section 4 introduces paraverification.
Section 5 describes access control in InkTag, followed by our
design for storage (§6), implementation (§7) and evaluation (§8).
Section 9 covers related work and Section 10 concludes.

2. Overview

InkTag is a hypervisor-based system that protects trusted applica-
tions from an untrusted OS, allowing trusted applications to se-
curely use untrusted OS services. The hypervisor protects applica-
tion code, data, and control flow from the OS, allowing applications
to execute in isolation. Mutually trusting secure applications can
securely and privately share data without interference from the OS
or other applications. Each secure application coordinates directly
with the InkTag hypervisor via hypercalls to detect OS misbehav-
ior.

Figure 1 shows an overview of the InkTag architecture. Trusted
application code executes in a high-assurance process, or HAP,
which is isolated from the OS. Nearly all application-level changes
are contained in a small, 2000-line library (libinktag) the use of
which is largely encapsulated in the standard C library. InkTag
extends a standard hypervisor to monitor the untrusted OS using
paravirtualized device drivers and virtualization hardware. InkTag
defines new hypercalls for HAPs to verify OS behavior.

InkTag shares its basic threat model and security guarantees
with previous work where a trusted hypervisor verifies an untrusted
operating system’s actions; such as SP3 [47], and especially Over-
shadow [11]. We first discuss issues generic to all approaches, then
starting with Section 2.4 discuss issues specific to InkTag.

2.1 Threat Model

InkTag assumes that the OS is completely untrusted and can behave
in arbitrarily malicious ways. Applications running on the OS have
both an untrusted context maintained by the OS used for requesting
OS services, and a trusted context used for executing code that must
be isolated from the OS. The developer trusts the InkTag hypervisor
and the trusted execution context of the application. The trusted
application context is isolated from the OS by the hypervisor.

InkTag does not address application-level bugs, and will not
stop an application that deliberately divulges secret data (e.g., by
putting it in the arguments of a system call that the OS handles).

InkTag cannot guarantee untrusted OS availability, but can de-
tect this class of misbehavior. Trivially, a malicious OS could sim-
ply shut down every time it was started, though the InkTag hyper-
visor will detect such misbehavior. More subtle availability attacks
are possible, such as deleting volatile data, which will be detected
in a timely manner, but may result in the loss of data between mis-
behavior and detection.

2.2 Size of trusted computing base (TCB)

The operating system consists of millions of lines of code, so its
elimination from the trusted computing base seems, prima facie, to
increase security. However, the KVM hypervisor includes an entire
OS (sometimes called a type 2 hypervisor). Eliminating trust in the
guest instance of Linux is of little security value if the hypervisor
contains its own instance.

However, simpler hypervisors (type 1) exist, and contain fewer
lines of code than a typical operating system. Additionally, the hy-
pervisor interface is a hardware interface, which is far simpler and
easier to make secure than the hundreds of semantically complex
system calls exported by a general-purpose operating system. For
example, from 2010 to 2012, a search of the National Vulnerabil-
ity Database [31] returns 12 exploits for Xen and 16 exploits for
KVM that have an impact worse than denial of service. By contrast,
there are 53 such vulnerabilities published for the Linux kernel in
2012, of which only 7 are driver vulnerabilities. These vulnerabil-
ities spanned many different core kernel services such as memory
management, file systems, network protocol implementations, and
syscalls. The situation is not much better for Windows 7: in 2012,
there were 9 privilege escalation and 31 remote code execution bul-
letins listed [1].

2.3 Security guarantees

Here we summarize the security guarantees provided to an InkTag
application. The InkTag hypervisor ensures that a HAP’s process
context (registers) and address space are isolated from the the oper-
ating system. Then, InkTag ensures that a HAP can use a subset of
services provided by the untrusted OS to interact with secure files
(files with privacy and integrity managed by InkTag through en-
cryption and hashing), and verify that those services were provided
correctly. InkTag shares these basic security guarantees, as well
as implementation techniques, with previous work such as Over-
shadow.

In addition to the majority of HAP code that executes in a trusted
context, each HAP also contains a small amount of untrusted tram-
poline code that interacts with the operating system (this is similar
to Overshadow’s uncloaked shim). The InkTag hypervisor switches
control between secure HAP code and the untrusted trampoline,
while the untrusted operating system schedules among the un-
trusted trampoline and other contexts. This allows the InkTag hy-
pervisor to control switches into and out of a secure context and
ensure control flow integrity. Then, the InkTag hypervisor encrypts
and hashes HAP pages to ensure privacy and integrity for the HAP’s
address space: this is analogous to Overshadow’s multi-shadowing
technique.

Control flow integrity As with traditional applications, a HAP

running in InkTag may be interrupted at any time by the operat-
ing system. InkTag must not allow the operating system to read or
modify the application’s processor registers. Doing so could leak
private data, or allow the operating system to modify the applica-
tion’s control flow or data by changing the instruction pointer, con-
dition flags, or a register value. The InkTag hypervisor interposes
on every context switch between a secure HAP and the operating
system. On context switches, the hypervisor saves processor regis-
ters, and overwrites their values before switching to the OS.

Address space integrity In addition to application registers, the
InkTag hypervisor must ensure privacy and integrity for code and
data in a HAP’s address space. When an untrusted operating system
attempts to read application memory, InkTag hashes memory and
encrypts it, ensuring that the untrusted operating system cannot
read application secrets. When the HAP accesses the memory again,
the InkTag hypervisor decrypts it and verifies the hash, to ensure
that the memory was not modified by the operating system.



The position and order of pages in an application’s virtual ad-
dress space is also an important integrity property. InkTag ensures
that every page of memory is mapped at the virtual address re-
quested by the application, either via information about the HAP’s
initial state contained in the ELF binary, or via a request to a mem-
ory mapping function such as brk() or mmap(). The problem
of synchronizing the mapping information between application and
hypervisor motivates our primary contribution, paraverification, de-
scribed in detail in Section 4.

File I/O To perform useful work, a HAP isolated from an un-
trusted operating system must still be able to use a subset of OS
services. The InkTag hypervisor must ensure that the application
can still rely on those services even when running on a malicious
OS.

Most importantly, InkTag provides HAPs with the ability to se-
curely interact with files despite the fact that they are read from and
written to disk by the untrusted operating system, by guaranteeing
integrity for file memory mappings. InkTag applications primar-
ily identify files through a 64-bit object identifier, or OID. Most
file operations are expressed as operations on OIDs, even though
real applications generally expect to use string filenames: mapping
string filenames to OIDs is a contribution of InkTag, as discussed
later in this section. When an application maps an OID into mem-
ory (through a call to mmap) and receives an address for the new
mapping, InkTag ensures that later references to that address will
access the desired file. Privacy and integrity for file data are ensured
via InkTag’s guarantee of address space privacy and integrity, by
hashing and encrypting in-memory file data in response to accesses
by the untrusted operating system. To handle file I/O via read()
and write() system calls, our application-level library translates
these calls into operations on memory-mapped files.

Process control HAPs may also create new processes through
calls to fork() and execute binaries in these processes with
exec(). The InkTag hypervisor ensures that the untrusted op-
erating system executes these operations correctly. In the case of
fork(), InkTag ensures that the new HAP is a clone of its parent.
For exec(), InkTag ensures that the new HAP, specified by the
identifier of the binary file passed to exec() is loaded into mem-
ory correctly (i.e., each section in the binary is loaded unmodified
into the correct virtual address), based on the information specified
by the ELF format binary.

Other OS services Because InkTag guarantees control flow and
data integrity for HAPs, a HAP may safely invoke system calls
not explicitly secured by InkTag. However, it must consider the
results of those system calls as it considers any data provided by an
untrusted source. For example, InkTag does not manage network
I/O, however it is possible for applications to safely communicate
over the network via mechanisms such as transport layer security
(TLS [13]), that enable secure communication over an untrusted
channel.

2.4 InkTag contributions

InkTag advances work on untrusted operating systems along two
axes: the underlying architecture for isolating processes from the
operating system, and the set of core OS services that applications
may use securely.

Paraverification Isolating an application’s address space from an
untrusted operating system is a daunting task. Whereas previous
work has used unmodified OS kernels, InkTag employs paraverifi-
cation, a technique similar to paravirtualization, in which the un-
trusted kernel is required to send to the hypervisor information
about updates to process state (that the hypervisor then checks
for correctness). Paraverification simplifies the design of the Ink-
Tag hypervisor by allowing it to directly use high-level information

from the kernel, rather than having to deduce that information from
low-level updates such as changes to bits on process page tables.

Hardware virtualization The utility of virtualization has prompted
the rapid introduction of hardware support for virtualizing pro-
cessor state, as well as hardware support for virtualizing memory
management. Eliminating software from these performance-critical
processing paths is a clear advantage, but systems like InkTag re-
quire validation of OS updates to HAP page tables. InkTag min-
imizes the performance impact of validation via a combination
of the efficiency afforded by paraverification and a two-level ap-
proach to protection. InkTag uses hardware MMU virtualization
for coarse-grained separation between secure and insecure data.
Then it uses software only when needed, to manage the userspace
portions of HAP page tables.

Access control and naming The InkTag hypervisor allows HAPs
to specify access control policies on secure files, with privacy and
integrity managed by InkTag through encryption and hashing. Ink-
Tag’s access control mechanism is described in detail in Section 5.
Although InkTag applications identify files via an integer OID,
most applications and users expect to reference files through a
string name. InkTag allows applications to map from string names
to OIDs, while maintaining important integrity properties (such as
the trusted nature of the /etc directory).

Consistency To protect the integrity of file contents, InkTag, like
similar systems, must maintain additional metadata in the form of
hashes of file data pages. InkTag is the first such system to provide
crash consistency between file metadata and data. Consistency is
vital in this setting: without consistent data and metadata, the Ink-
Tag hypervisor cannot protect file integrity. An application must
either discard the inconsistent data, or accept the possibility of tam-
pering by an untrusted OS.

2.5 API

HAPs communicate with the InkTag hypervisor primarily by mak-
ing hypercalls. InkTag maintains the simplicity of the hypervisor
interface by adding only 14 hypervisor calls. Table 1 summarizes
InkTag’s hypercall interface. It refers to several concepts that will
be introduced shortly, but what is clear is that the number of calls
is limited and their function is mostly intuitive.

In addition to invoking operations through hypercalls, the Ink-
Tag hypervisor shares two data structures with the guest kernel and
HAPs First, an InkTag application must describe the layout of its
virtual address space. A HAP enters each of its memory mappings
into an array of descriptors in its virtual address space, specifying
the base address of the array as part of the INIT hypercall. Second,
the untrusted kernel sends information about updates to process
state to the InkTag hypervisor. These updates are communicated
through a shared queue, similar to existing paravirtual interfaces.

3. Address space management

Address space management is the foundation for InkTag’s security
guarantees. We discuss S-pages, InkTag’s abstraction for secure ad-
dress spaces, and how InkTag uses hardware memory management
virtualization features that are part of modern virtualization hard-
ware.

3.1 Objects and secure pages

InkTag’s basic file abstraction is an object. All files, including bi-
nary executables, are represented by an InkTag object. Objects
are identified by a 64-bit object identifier (OID). Section 5.4 dis-
cusses translating between human-readable names and OIDs, how-
ever OIDs are the main abstraction used by the InkTag hypervisor.



Hypercall Arguments Description

Process control

INIT control addr Starts a new HAP. The HAP passes to the hypervisor the address of a control structure,
which specifies which binary the HAP was loaded from, and the base address of the
HAP’s list of virtual memory mappings.

EXEC new hap OID Start a HAP, ensuring that it is loaded from the binary identified by OID.
CLONE Create a new HAP that is a duplicate of the current state of the calling HAP.
SWITCH TO HAP hap id Invoked by untrusted trampoline code to switch context back into a HAP.
SYSCALL new PC On any hypercall, a HAP may request a switch out of secure execution to invoke a

system call by specifying a program counter value for a service routine in untrusted
code. SYSCALL is used when invoking a system call is the only desired behavior.

Memory management

UNMAP memory range Ensure that S-pages within the specified virtual address range are unmapped.
REMAP old range, new range Move any S-page mappings from old range to new range.

Files and access control

ACCESS OID Check if the current HAP has access to OID.
CREATE OID, namespace Create a new file within the given namespace.
SET LENGTH OID Set the length of a file for which the HAP has write permission.
OID ACL OID, acl Set the ACL on a file.
ADD DROP add attr, drop attr Add and/or drop attributes from a HAP’s list of attributes.

Paraverification

MMU REGISTER queue addr Invoked by the untrusted kernel to specify a location in memory that contains a queue
of updates to HAP address spaces (such as page table updates).

MMU FLUSH Invoked by the untrusted kernel to notify the InkTag hypervisor that the queue is full,
and must be processed.

Table 1. The hypercall interface to the InkTag hypervisor

Throughout the rest of the paper, we use the term OID interchange-
ably with object.

Objects are comprised of secure pages (S-pages), which are the
basic mechanism by which InkTag enforces address space privacy,
address space integrity, and access control policy for files. S-pages
consist of a block of data (4 KB for most pages on x86 proces-
sors), in memory or on disk, with additional metadata. S-pages in-
clude a hash of the data contained with the page, as well as infor-
mation about which resource the page describes, in the form of a
〈OID, offset〉 pair. An object identifies a set of pages that share
a single OID, and may refer to a file on disk or a private memory
region created dynamically by an application (e.g., an anonymous
mmap).

The InkTag hypervisor encrypts S-pages to ensure privacy, and
hashes them to ensure integrity. When a HAP accesses an S-page for
which it has read permission, the InkTag hypervisor transparently
decrypts the page, allowing the HAP access to cleartext. If an
S-page is accessed by the operating system, a regular application,
or a HAP without read permission, the InkTag hypervisor detects
the access and re-encrypts the page. Even if a malicious operating
system can read the data within an S-page, InkTag guarantees
privacy because the OS can read only encrypted data.

Similarly, only the hypervisor can update the hash associated
with an S-page. When a HAP updates an S-page for which it has
write permission, the InkTag hypervisor updates the hash. If the OS
modifies the data in the S-page, the InkTag hypervisor will detect
the modification, because hashing the modified data will not match
the recorded hash.

The untrusted OS views S-pages as standard data pages, and re-
mains responsible for placing S-pages in memory and on disk. The
additional metadata attached to S-pages is transparent to the guest
OS: the InkTag hypervisor updates and tracks S-page metadata as
the operating system or application moves or transforms the data

such as by mapping a file in memory or by writing a page to the
virtual disk.

Each HAP must provide a description of its address space to
the InkTag hypervisor, in the form of a list of memory mappings
[〈address range ,OID, offset〉, . . .], each of which defines a se-
quence of S-pages. With a description of the address space, the hy-
pervisor may then validate individual page table updates requested
by the untrusted OS. For example, suppose the OS attempts to map
virtual address V to physical frame P in a HAP’s page tables. The
hypervisor examines the HAP’s memory map for a range that in-
cludes V . If one exists, the hypervisor then verifies that the HAP

has access to the specified OID. Finally, the hypervisor checks that
frame P actually contains the correct S-page, by checking P ’s hash
against the stored metadata. If all of these checks succeed, the hy-
pervisor now considers P to be a physical frame containing an
S-page, and the HAP has a valid mapping of address V to P . Thus,
when the HAP attempts to access the S-page, InkTag will decrypt
its contents and provide the HAP with cleartext access.

3.2 Nested paging

The InkTag hypervisor is designed to run on modern processors
that support hardware assistance for virtualization. Such processors
are designed to simplify the task of writing hypervisor software by
automatically creating a self-contained environment for the guest
OS, without requiring manual intervention by hypervisor software.

One of the primary tasks of any hypervisor (including InkTag),
is virtualizing memory management. The hypervisor must ensure
that the guest operating system has access only to those pages of
memory that represent its virtualized physical address space. For
early x86 hypervisors, this required intercepting page table up-
dates made by the guest OS, transforming guest-physical addresses
(physical addresses from the point of the virtualized guest) into
host-physical addresses (actual physical addresses of the frames of
memory that constitute the guest’s virtualized physical memory),



Figure 2. Address space protection using both EPT and management of
HAP page tables. The InkTag hypervisor uses two EPTs to divide access
between physical frames containing cleartext S-pages, and those containing
untrusted data or encrypted S-pages. Then, it manages HAP page tables to
restrict access within the set of secure frames.

and installing modified page tables for the guest OS that contain
the transformed mappings.

Hardware MMU virtualization As might be expected, virtual-
izing memory in this manner adversely affects both hypervisor
complexity and hypervisor performance. In response, more recent
x86 processors have supported nested paging. With nested pag-
ing, guest memory accesses are translated through two separate
page tables. First, guest-virtual addresses are translated into guest-
physical addresses by traditional page tables managed entirely by
the guest OS. Then, guest-physical addresses are translated into
host-physical addresses by the extended page table (EPT)1. The
EPT is managed by the hypervisor, but does not need to be up-
dated in response to changes to guest page tables, as it only maps
between guest-physical and host-physical address spaces. Mean-
while, the guest OS is free to perform arbitrary modifications to
its own page tables, as all accesses will be restricted by EPTs to
memory explicitly approved by the hypervisor.

Nested paging is a significant step forward for hypervisors.
However, as discussed in section 3.1, the InkTag hypervisor’s pri-
mary means of enforcing privacy, integrity, and access control is
through detailed management of OS page table updates. A key goal
for designing the InkTag hypervisor is to retain the necessary con-
trol over guest OS page table updates, while still being able to har-
ness the performance benefits of modern virtualization hardware.

Nested isolation InkTag takes advantage of hardware MMU vir-
tualization by using a combination of hardware EPT support and

1EPT is the terminology used for nested paging on Intel processors. Al-
though InkTag was designed for Intel processors, we believe the design to
be equally applicable to AMD processors.

management of individual OS page table updates. Rather than use
a single EPT for all of guest execution, the InkTag hypervisor uses
two separate EPT trees. The trusted EPT is installed during isolated
HAP execution, while the untrusted EPT is used during execution
of the operating system and other applications (Figure 2). The con-
tents of both EPTs are entirely managed by the hypervisor, and are
therefore trustworthy. The trusted/untrusted label refers to the con-
tents of the physical frames they map. The trusted EPT primarily
maps physical frames that contain cleartext S-pages, while the un-
trusted EPT maps all other frames, including encrypted S-pages,
data belonging to the OS, and untrusted applications.

Using separate EPTs for trusted and untrusted contexts allows
InkTag to coarsely control access to secure pages. Physical frames
holding cleartext S-pages are not mapped in the untrusted EPT
If the OS or an untrusted application accesses a cleartext S-page
frame, the access causes a fault that is handled by the hypervisor.
InkTag hashes the contents of the frame, encrypts the frame’s con-
tents, maps it in the untrusted EPT, and unmaps it from the trusted
EPT. If the trusted HAP accesses the frame again, the hypervisor
decrypts the frame, verifies the contents against the hash, maps it
in the trusted EPT, and unmaps it from the untrusted EPT.

In addition to the coarse access control provided by EPTs,
InkTag must subdivide access to physical frames among executing
HAPs. When executing in trusted mode, every HAP can potentially
access any physical frame holding a cleartext S-page. However,
not every HAP should have access to all S-pages. The InkTag
hypervisor restricts access for an individual HAP to a subset of
physical frames by managing OS page table updates for the HAP

address space. Importantly, the InkTag hypervisor is only required
to manage HAP page tables, and only for the part of the address
space accessible in user mode (the lower half of the address space
in the x86-64 architecture). All other page tables (including the
kernel address space for HAPs) can be managed by the OS without
hypervisor intervention.

By combining the access control for physical frames provided
by EPT with management of guest page tables only when nec-
essary, InkTag isolates HAPs from an untrusted operating system
while still taking advantage of modern virtualization hardware.

4. Paraverification

The task of managing S-pages requires that the InkTag hypervi-
sor have deep visibility into low-level OS operations, such as up-
dating page tables. This kind of detailed introspection introduces
complexity into the hypervisor that can impede efforts to reason
about its correctness. In addition, interposing on low-level opera-
tions harms performance with needless traps into the hypervisor.

Previous systems have attempted to remove trust from the op-
erating system in a way that is largely transparent to both the ap-
plication and operating system. This section highlights the signif-
icant challenges to application security and system performance
presented by this approach.

4.1 Verification challenges

InkTag creates a secure address space for HAPs by managing only
the user mode portions of HAP page tables, as described in Sec-
tion 3.2. Here we explain all the steps necessary for the InkTag
hypervisor to detect and interpret a page table update. InkTag must
intercept low-level page table updates (“Set page table entry at ad-
dress A to x.”), determine their high-level effects (“Map physical
frame P at virtual address V .”), and compare those effects against
the address space specified by an application (“The application
wants to map the S-page S at address V , do the contents of the
physical frame have the same hash as S?”).



Figure 3. Two kernels mapping the address space of process that share a
file. Both are non-malicious, but kernel B confounds efficient verification
efforts by sharing page tables between processes.

Interpreting low-level updates Consider the task of placing a
memory mapping into an application’s page tables. The InkTag hy-
pervisor can protect page table memory so the OS faults into the
hypervisor when it attempts to write the page table. However, in
order to determine the OS’s intent, the hypervisor must then unpro-
tect page table memory, wait for the OS to update the page table,
and then retroactively determine what state changed by examining
a significant amount of context information, such as saved backups
of previous page table state and the role of the modified page in the
application’s page tables.

To efficiently interpret low-level page table updates, InkTag
maintains state that allows it to determine high-level effects without
reconstructing the entire address space on each update. For exam-
ple, InkTag remembers which physical frames are used in appli-
cation page tables, their position in the page table hierarchy, and
the range of virtual addresses that they might map. Then, when the
kernel sets a single entry at the leaf of the page table tree, InkTag
can determine which virtual address is affected without tracing the
page table from its root.

Maintaining state to efficiently verify page table updates re-
quires InkTag to make basic assumptions about the structure of
page tables. Recording the address mapped by each page of a page
table requires that page tables are arranged in trees, and that sep-
arate page tables do not share any pages. A significant challenge
for InkTag is that it is possible for an operating system to violate
these assumptions, while still correctly managing an application’s
address space.

Figure 3 shows two applications that both map the same 2MB
region of the same file, with both mappings aligned on a 2MB
boundary (2MB is the range of virtual addresses mapped by a single
leaf of a page table in the x86-64 architecture, which maps 512
4KB pages). An operating system could share a page between the
page tables of both applications, while still correctly mapping each
application’s address space.

Even with an operating system that is both non-malicious and
respects assumptions about page table structure, it is possible for
the order in which the hypervisor receives updates to create the
appearance of malicious or non-standard behavior. The technique
of trapping writes to page tables, allowing the OS to make updates,
then later examining the (potentially multiple) modified entries
means that the hypervisor may not perceive updates in the same
order as they were performed by the guest OS. Suppose the OS
deallocates a page of file data, and then reuses that page as a page
table for a different process. In this order, these updates may be
benign. In the other order, it appears that the OS is allowing one
application access to another’s page tables, a likely violation of
address space integrity.

Determining application intent Once a low-level page table up-
date has been interpreted as an operation on a HAP’s virtual address
space, InkTag must determine if the mapping installed by the op-

Figure 4. An Iago attack. An application relying on the OS to allocate its
address space may be subverted by a malicious OS, if the OS allocates
memory regions that are not disjoint.

erating system is consistent with the application’s operations on its
address space. The application itself records its address space op-
erations by making a hypercalls for all such operations, such as the
mmap() system call. The hypervisor must communicate with the
application to synchronize this information, and should do so with
low overhead. Page faults can be a performance-critical operation,
and mechanisms exist in the Linux kernel to quickly query the con-
tents of the address space on a page fault, including balanced trees
and caches of recently faulted areas. InkTag should handle faults
without significant additional overhead, and also without simply
duplicating these performance-oriented structures in both the hy-
pervisor and application.

Protecting applications from OS duplicity Although InkTag can
isolate a HAP from the operating system, the application must still
interact with the OS in order to use essential services, such as
opening files and mapping its address space. Traditionally, through
system calls such as mmap(), applications allow the operating
system to determine where in their address space to map resources.
Although mmap() allows an application to specify a fixed address
for a mapping, this feature is seldom used by application code.
Applications’ reliance on OS allocation of the address space opens
the door to Iago attacks [8], a class of attacks against systems with
untrusted operating systems.

Iago attacks exploit the fact that existing applications and li-
braries, most importantly the standard C library, do not expect a
malicious operating system. They do not verify that a virtual ad-
dress returned by the OS in response to mmap() corresponds to
an existing mapping in the application address space. For example,
an application expects to run with its heap and stack in disjoint re-
gions of its virtual address space. If the application requests a new
memory mapping, the operating system could return an address that
overlaps the application’s stack. Writes to the new mapping will
overwrite portions of the stack, introducing a vector to a traditional
return-to-libc or return-oriented programming attack [43].

4.2 Paraverification

We introduce a new technique called paraverification to simplify
the hypervisor by requiring the untrusted operating system to par-
ticipate in verifying its own behavior. Paraverification helps Ink-
Tag efficiently address the challenges of verifying address space
integrity, drawing inspiration from commonly-used paravirtualiza-
tion techniques [5], which improve performance when an OS is run
in a virtual machine. Both paraverification and paravirtualization
work by having the OS communicate a high-level description of its
intent directly to the hypervisor. Indeed, our paraverification im-
plementation uses the Linux kernel’s paravirtualization interface.
Before modifying a process’s page tables in the example above, the
OS must first make a hypercall to correlate the page table update
with a high-level application request. The kernel’s paravirtualiza-
tion interface includes a natural hook for this hypercall.

Although the guest operating system participates in verifica-
tion, it safely remains untrusted because the hypervisor protects
resources that it does not trust the OS to modify. Rather than pro-
tecting application page tables, detecting faults from the untrusted



Figure 5. Paraverified isolation. A HAP maintains a list of memory map-
pings in its secure address space, providing the untrusted OS indices into the
list. The untrusted OS must pass the same index to the InkTag hypervisor in
order to handle page faults.

OS, and trying to re-verify address space integrity, the InkTag hy-
pervisor protects application page tables and then considers any
access to be malicious. The OS cannot update the tables directly, it
must use the paravirtual interface, and the hypervisor will respond
to unexpected accesses by taking corrective action (such as killing
the OS).

4.3 Paraverified isolation

InkTag isolates a HAP’s address space using paraverified operations
on secure pages. As described in section 4.1, InkTag must validate
OS page table updates to ensure that HAP virtual addresses map
the correct, unmodified S-page. To do so, the untrusted operating
system must pair each page table update with data proving that the
update reflects the application’s intent.

When a HAP maps a region of memory to a file, it provides
the untrusted OS kernel a secure token that describes the mapping.
The token is an unforgeable statement from the application to
the hypervisor that fully describes the requested mapping. One
possibility for a token would be an HMAC on a description of the
desired mapping, using a secret key shared between the HAP and
the hypervisor. InkTag does not use an HMAC, but a simple integer,
which we now explain.

Because InkTag isolates a HAP from the operating system and
must manage HAP page tables, it can optimize the communication
of tokens from application to the untrusted OS to the hypervisor.
All InkTag HAPs maintain a list of the mappings that make up their
address space, in the form of a list with nodes allocated from a
single array at a known virtual address in the application’s address
space. The untrusted OS cannot forge or modify entries in the array,
as it does not have access to the HAP’s address space. Because
the hypervisor intercepts all page table updates for the HAP, it
can trivially keep a small translation lookaside buffer for just the
virtual addresses that map the array of nodes. In InkTag, a token to
describe a memory mapping consists of a simple integer index into
its list of maps.

On initialization, a HAP invokes a hypercall to inform the hy-
pervisor about the base and limit of its mapping list. When the HAP

creates a new memory mapping, it allocates a new entry from its
array of nodes, initializes it with information about the mapping:
the address range, OID and offset the HAP intends to map, as well
as a marker to indicate that this entry is now valid. The HAP then
sends the index of the entry to the untrusted OS as a token. When
the OS incurs a page fault, it uses its existing structures for index-
ing memory mappings (already in service to handle the page fault)
to locate the token and sends it to the hypervisor along with the re-
maining information describing the page table update: the address
of the page table entry, the updated page table value, and the af-
fected virtual address.

Upon receiving the page table update and token, the hypervisor
ensures the token describes a valid index in the HAP’s array. If
so, it uses its lookaside buffer to translate the virtual address and
retrieves the mapping information. If the described address range

matches the fault, the hypervisor uses the provided object and offset
information to verify the contents of the newly mapped physical
frame. If the address range does not match the fault, the index is
not contained within the HAP’s array, or the index does not specify
a valid entry, the hypervisor will not install the new mapping. In
the rare event that the virtual address corresponding to the entry
is not mapped, the hypervisor does not install the mapping and
injects a page fault into the application when it is next scheduled.
The page fault, if correctly handled by the untrusted OS, will cause
the hypervisor to refill its lookaside buffer, the application retries
the original access and faults again, and the hypervisor may now
access the entry for the token.

Paraverification for HAP address spaces significantly reduces
the complexity of the InkTag hypervisor. Significant OS code is
dedicated to efficiently looking up memory ranges during memory
management. Without paraverification, InkTag must duplicate this
code so that it may efficiently respond to changes in the HAP’s page
tables. Instead, InkTag leverages the existing OS index structures
by requiring that the OS look up the relevant token for a new
mapping.

4.4 Verification of address space invariants

An Iago attack subverts application security by violating invariants
that the application assumes are true about its address space: that
mappings returned by the operating system do not overlap. How-
ever, an untrusted OS may violate this invariant at any time. In
response, a HAP could take on the responsibility of allocating re-
gions of its address space, only requesting new mappings at fixed
addresses, and not accepting any variation from the untrusted OS.
However, we wish to avoid importing significant OS functional-
ity into either the hypervisor or application. Alternately, a HAP

may verify that each mapping allocated on its behalf by the OS
respects necessary invariants. We take this approach with InkTag,
while shifting the burden of proving that mappings respect invari-
ants from the HAP to the untrusted operating system.

InkTag HAPs use an array of descriptors to enumerate the con-
tents of their address space. They maintain a linked list of entries,
sorted in address order, with integer indices serving as previous and
next pointers. When a HAP requests a new mapping from the OS, in
addition to returning the newly allocated address, the OS also must
return a token to the application: the index of the application’s entry
in its list of maps that is immediately previous to the new address
allocated by the untrusted OS. As a result, the HAP can trivially
both validate that the new map does not overlap any existing maps,
and insert it into the list in the proper location, without needing to
maintain its own sorting structures.

As with page table updates, paraverification for address space
invariants allows applications to defend against a duplicitous oper-
ating system, while relying on existing indexing structures within
the untrusted OS to perform most verification tasks.

5. Access control

Isolation and address space integrity provide the building blocks
for secure HAP execution under an untrusted operating system.
However, real systems require usable mechanisms for securely
sharing data. InkTag is the first system to provide access control
under an untrusted OS.

Access control mechanisms in InkTag should meet the follow-
ing criteria:
• Efficiency. Ultimately, the hypervisor will be responsible for
enforcing access control, and must do so on performance-
critical events, such as updating page tables. In addition, we
wish to avoid bloating the trusted computing base by requiring
the hypervisor to evaluate complex policy decisions. A good



access control mechanism will have a simple and efficient hy-
pervisor implementation.
• Familiarity. A wide spectrum of access control mechanisms
exist, both in the literature and in practice. However, most
systems still rely on, and are well served by, users and groups.
InkTag’s access control mechanism should map easily onto
these familiar primitives.
• Flexibility. Although users and groups will ease adoption, we
also believe that the security-critical applications that InkTag is
designed to support will benefit from the ability to create cus-
tom, descriptive access control policies. A shared, omnipotent
user such as the Unix “root” creates similar security problems
to a shared operating system, so users of InkTag should be able
to create policies for their data without the blessing of a system
administrator.
Unlike traditional access control systems that define principals

(such as users in Unix), InkTag allows new principals, or even
new types of principals, to be defined in a decentralized way. For
example, an InkTag system might implement decentralized groups,
in which any set of users can create a new group and agree to a
group administrator. Similarly, an InkTag system can implement
decentralized user login: each user must only trust her own personal
login program, not a special system binary (§5.3).

5.1 Attributes for access control

Access control in InkTag is based on attributes. An attribute is a
string, such as .user .alice or .group.prof . Each HAP in InkTag
carries a list of attributes that is inherited across events such as
fork() and exec(), similar to the way in which Unix processes
have an effective user or group id. Each OID has an access control
list that specifies the attributes that must be carried by a HAP for
that HAP to access the object. OID access control lists are divided
into three access modes: read, write, and modify. Each access mode
specifies an attribute formula, a logical formula that must evaluate
to true for a HAP to access the object.

The read and write access modes of an OID specify formulas
that must evaluate to true for a principal to read or write the object.
For example, W = .user .alice is a simple formula that evalu-
ates to true (allowing write access) if a HAP has the .user .alice
attribute. R = (.user .alice) ∨ (.group.prof ) is a formula that
evaluates to true (allowing read access) if a HAP has either the
.user .alice or the .group.prof attribute. The modify access mode
allows a HAP to modify the attribute formula for any of the access
modes in an OID’s access control list.

In addition to access control lists on OIDs, attributes themselves
also specify access control lists, albeit with only two modes: add
and modify. The add access mode allows a HAP that satisfies the
associated attribute formula to add the attribute to its own list. Ac-
cess control lists on attributes are the mechanism by which HAPs
in InkTag can take on the role of different principals, analogous to
a setuid binary in Unix that allows a user to access resources
owned by another principal. For example, the .user .alice attribute
might have the access mode A = .apps.login , which means that
any HAP that has the .apps.login attribute can add the .user .alice
attribute. A HAP can drop an attribute it owns at any time via a
hypercall. As with files, the modify access mode for an attribute
allows a HAP to change an attribute’s access control list. Modifying
attributes is how InkTag HAPs manage their access control creden-
tials.

All attribute formulas are expressed in disjunctive normal form
(DNF) without any negations. This makes attribute formulas sim-
ple to evaluate in the hypervisor, and also easy for people to under-
stand. Checking attribute formulas requires only 207 lines of code
in the InkTag hypervisor.

5.2 Decentralized access control

An important goal for InkTag’s attribute system is decentralization.
An InkTag user should be able to define new principals and poli-
cies to control access to her files. Decentralized access control al-
lows high-assurance, multi-user services to define their own access
control policies, enforced by the hypervisor, without relying on a
system administrator.

InkTag decentralizes attributes with hierarchically named at-
tributes. Attributes are named hierarchically, as a list of compo-
nents separated with a ‘.’ character. If a HAP has attribute X , then
the HAP may create new attributes named X.Y for any Y . For ex-
ample, if user alice is represented using the attribute .user .alice ,
she might create the attribute .user .alice.photos for her photo-
sharing program. This attribute could be used both to restrict photo
access to specific authorized programs, as well as to ensure that a
photo-sharing program does not access unrelated files, by running
it with only the attribute .user .alice.photos , and not the parent
attribute .user .alice .

5.3 Login and decentralized login

User login provides an instructive case study for access control.
First, consider a system that wants to have a single trusted login
program. The system must provide a trusted path from that binary
to a shell that runs with a user’s attribute (e.g., .user .alice ).

The InkTag hypervisor starts every HAP with a special attribute
.bin.〈oid〉, where 〈oid〉 is the string representation of the file’s OID.
The system administrator defines the .apps.login attribute with an
add access mode A = .bin.〈login oid〉 where 〈login oid〉 identifies
the login binary. When the login binary starts, it makes a hypercall
to obtain the .apps.login attribute. The .user .alice attribute has an
add access mode A = .apps.login , allowing the login program
to add the .user .alice attribute when presented with the proper
credential (such as a password). Users trust the login program to
drop the .apps.login attribute, so once Alice has control, the HAP

can no longer change users. The login program then execs Alice’s
shell, which runs with the .user .alice attribute.

With centralized login, all users trust the login binary (and its
administrator). With decentralized login, a user need only trust
her own login binary, though she still must obtain permission for
her user name from an administrator (after all, it is the login pro-
cess being decentralized, not the add user operation). The user
administrator (whoever can run programs that have the .user at-
tribute) establishes the .user .alice attribute with an add access
mode A = .apps.login.alice . Alice compiles her login program,
informs the login administrator (who can run programs that have
the .apps.login attribute), to create the .apps.login.alice attribute
with add access mode A = .bin.〈alice login oid〉.

To log in, Alice executes her login program, which is given the
attribute .bin.〈alice login oid〉 by the hypervisor. The login pro-
gram obtains the .apps.login.alice attribute, dropping the attribute
.bin.〈alice login oid〉. It then checks Alice’s credential (e.g., pass-
word), and if valid, obtains the .user .alice attribute, dropping the
attribute .apps.login.alice , and starting a shell.

With decentralized login, a user can completely control how
they log in, using whatever credentials and process they desire.
There is no single login binary that serves as a target for mali-
cious attacks. A compromised decentralized login binary gives the
attacker credentials only for the compromised user. In practice, sys-
tems would likely provide a default login binary for users who do
not want to create their own.

As part of future work, we plan on investigating the security
implications of InkTag’s attribute-based access control.



5.4 Naming and integrity

InkTag does not currently support sets of OIDS (i.e., directories).
However, the hierarchical layout of traditional file systems does
convey an important property that is essential for application se-
curity: file integrity. Consider the standard Unix /etc directory.
Applications rely on the property that only trusted system admin-
istrators can create or modify files in /etc, because those config-
uration files can dramatically change application behavior. InkTag
must provide some mechanism to convey similar security-essential
information.

InkTag provides integrity guarantees for files with specialized
attributes called namespaces. Namespaces are strings created hi-
erarchically, as attributes, and have access control lists that allow
a HAP to add the namespace to its list of attributes. Although we
consider attributes for access control and namespaces to be con-
ceptually distinct, they are functionally identical.

Namespaces convey integrity information by acting as gate-
keepers to file creation. When an application creates a new file, the
InkTag hypervisor must assign the file an OID. Each OID is gen-
erated from two components: a namespace and an arbitrary string,
similarly to the way in which a file is created within a directory,
with a given file name. To generate an OID, the application must
carry the desired namespace in its list of attributes. The hypervisor
hashes the two components, and uses the result as the new OID.
Any HAP that later accesses the file knows that it was created by a
HAP that carried the associated namespace.

Note that namespaces do not restrict file access—a HAP may
open a file created within a namespace regardless of whether it car-
ries that namespace in its list. Consider a configuration directory
similar to /etc. In InkTag, there would exist a .ns.etc namespace,
with the add access mode A = .group.sysadmin . A HAP run by
a system administrator (member of the sysadmin group, thus car-
rying the .group.sysadmin attribute) may create a file by adding
the .ns.etc attribute, specifying a name (e.g. “passwd”), and pass-
ing both components to the hypervisor, which permits the OID’s
creation.

A HAP opening the file generates the OID by hashing .ns.etc
and “passwd,” though it is not required to carry the .ns.etc names-
pace, only to know of its existence. The HAP can trust that the con-
tents of the file were generated by a system administrator, because
only a member of of the sysadmin group could create the file ini-
tially (as checked by the hypervisor), and it trusts such principals
to correctly manage access control for files they create.

6. Storage and consistency

InkTag stores secure page metadata in memory for any secure pages
whose data segments also reside in memory. The untrusted operat-
ing system is responsible for placing the data segments of secure
pages on the virtual disk. For secure pages to be durable, InkTag
must also store secure metadata: the OID and offset correspond-
ing to each block of data, its hash, and the encryption initialization
vector (IV) necessary to decrypt the data. This section addresses
a number of practical challenges in persistently and transparently
storing S-page metadata, including addressing consistency between
OS and InkTag storage.

Data layout InkTag must synchronize updates to S-pages and
metadata, and should store secure metadata efficiently. When the
OS issues a read request for secure page data, the hypervisor should
not require significant additional lookup work in order to also read
in secure page metadata. Also, storing secure metadata should not
confound OS disk scheduling by adding disk seeks to store or
retrieve secure metadata.

InkTag addresses these goals by interspersing storage of secure
page data and metadata on the physical disk, then presenting the

Figure 6. InkTag disk layout. Data and metadata are interleaved to opti-
mize disk scheduling.

data storage to the untrusted OS as a contiguous virtual disk without
the sectors employed to store secure metadata. The size of the
media, as seen by the untrusted OS, is smaller than the size of the
physical drive or backing file. When reading or writing a secure
page, the secure InkTag metadata will always reside in the closest
metadata storage block, causing limited performance overheads.

Synchronizing storage of secure data and metadata InkTag em-
ploys paraverification techniques to properly synchronize storage
of secure data and metadata. Before the untrusted OS may write
out a page via the virtual disk, it must notify the InkTag hypervi-
sor. If the physical frame being written contains data for an S-page,
InkTag ensures that the page is encrypted, and passes the relevant
metadata to the backend driver for the virtual disk. The backend
consumes this metadata while writing pages to the physical disk,
placing each piece of secure metadata in the metadata block closest
to disk block containing the data for the S-page.

Providing guarantees on data availability Although InkTag is
unable to provide availability guarantees in many cases, the hy-
pervisor can enforce OS deadlines for writing out dirty data. For
example, if a reasonable upper bound for dirty data residing in the
OS is 30 seconds, InkTag may suspect OS malfeasance if it has not
detected a write of a particular secure page after 45 seconds. Al-
though the hypervisor may not be able to retrieve S-pages in mem-
ory that the OS has simply erased, it can prevent applications from
proceeding under the incorrect assumption that S-pages are safely
on disk. Similarly, a HAP may notify the InkTag hypervisor when
it explicitly requests that dirty pages be written out (such as when
invoking the msync system call), and receive confirmation when
the writeback actually occurs, or a warning that the OS has not
complied.

Preventing deletion or loss of high-assurance data Because
filesystem indexing structures vary widely between file systems,
it is difficult to verify their correctness at hypervisor level. As a re-
sult, a malicious OS could appear to comply with InkTag policy by
writing out file data blocks but not updating filesystem metadata,
leaving file data blocks inaccessible.

InkTag provides a secure fsck mechanism for conservation of
high-assurance data in the face of this threat. Secure page metadata
includes file and offset information, allowing InkTag to reconstruct
secure files independently of OS indexing structures. In addition,
InkTag may prevent the OS from overwriting a secure page, unless
the OS is replacing the page with a newer version of the same
secure page, or if a newer version of the page has previously been
written elsewhere on disk.

Consistency for secure pages in the face of crashes InkTag is the
first system to address consistency requirements for an untrusted
operating system. Without proper filesystem consistency, file data
may become unavailable, file updates may be lost, and access
control changes may not be honored.

When the OS writes an S-page to disk on behalf of a HAP, both
the new S-page and its hash must be stored. If the system crashes



after only writing the S-page contents or the hash, valid data could
become unavailable, because InkTag would be unable to verify its
authenticity. InkTag keeps two versions of each S-page’s hash: the
version for the page on disk before the update, and after. Before
a data write, InkTag will store the updated hash on disk. Because
disk drives write blocks atomically, a hash matching the data will
always be on disk, and high-assurance data on the backing store
will always be available.

In our current prototype, per-file metadata (such as access con-
trol information and the file’s length) is stored separately from the
guest filesystem, in storage private to the hypervisor. We leave to
future work enforcing consistency between per-file and per-page
metadata.

7. Implementation

This section describes our prototype implementation of InkTag.
InkTag consists of three major components: the InkTag hypervisor,
extensions to the untrusted guest OS to support paraverification,
and tools to compile user-level applications to run as HAPs.

7.1 InkTag hypervisor

The InkTag hypervisor is built as an extension to the KVM (Ker-
nel Virtual Machine) hypervisor, a standard module included in the
Linux kernel. We extend the Linux 2.6.36 kernel and KVM imple-
mentation. InkTag is built to support Intel’s VMX hardware vir-
tualization support, although we believe its design to be equally
applicable to hardware virtualization support in AMD processors.

During execution of the untrusted guest operating system and
non-InkTag applications, the hypervisor behaves almost identically
to a hypervisor without InkTag support, with most virtualization
tasks handled by hardware virtualization extensions present in the
processor. The untrusted EPT (§3.2) is used to translate guest-
physical addresses during untrusted execution, and most page ta-
ble operations (except for those on a HAP’s address space) occur
without hypervisor intervention.

Scheduling Upon scheduling a HAP, InkTag must ensure that the
untrusted OS cannot execute any code in a high-assurance context.
To protect the HAP from the OS, it disallows automatic vectoring of
interrupts and exceptions by the virtualization hardware. If InkTag
allowed the hardware to vector interrupts automatically, then the
operating system would gain control while still executing in a high-
assurance context, with cleartext access to secure pages. Intel pro-
cessors allow for fine-grained control over enabled virtualization
features via bits in the virtual machine control structure (VMCS),
the hardware descriptor used to control virtualization. To schedule
a HAP, InkTag clears many of the feature bits in the VMCS, installs
the trusted EPT, and then transfers control to the HAP.

When an interrupt or exception occurs during HAP execution,
InkTag saves and then clears the HAP’s register file. The untrusted
OS must be prevented from reading or writing HAP registers. Ink-
Tag directs the instruction pointer to a small untrusted trampoline
in a part of the HAP’s address space unprotected by InkTag. This
trampoline is responsible for interactions between the HAP and the
guest OS (such as invoking system calls), and also for reschedul-
ing the HAP when the HAP’s process context is rescheduled by the
operating system. The HAP receives system call results from the
trampoline, but does not trust it — all information is validated as if
it came from the untrusted OS.

Page tables Each HAP has two page tables, and shares the system-
wide trusted and untrusted EPTs. One page table is written directly
by the untrusted kernel, which we refer to as the OS page table.
It is written directly by the OS (even when using the paravirtual-
ized interface, Linux also updates the page table directly), and its

contents are not trusted. The other page table is written only by the
InkTag hypervisor in response to calls by the untrusted OS that are
successfully verified, which we refer to as the hypervisor page ta-
ble. The hypervisor page table is trusted. For a non-malicious OS,
its page table should be a superset of the hypervisor page table.

When a HAP runs in untrusted mode (e.g., just before making
a system call), cr3 points to the OS page table, and when a HAP

runs in trusted mode, the hypervisor points cr3 to the hypervisor
page table. In trusted mode, there is a single untrusted mapping, for
the pages used to marshal and unmarshal system call arguments.
InkTag must guarantee that the OS has not overlapped the mapping
of this area with any trusted mapping. In untrusted mode, the
process can map any S-page, but access to that page will be detected
by the permission bits in the untrusted EPT, and the hypervisor will
encrypt and hash the page before giving the untrusted code access
to the page.

Although the untrusted OS cannot access the hypervisor page
tables, it is responsible for their allocation. On each page table
allocation on behalf of a HAP, the guest OS must also allocate a
hypervisor page table page and send both to the InkTag hypervisor
in order to successfully add to the page table tree. The hypervisor
protects the hypervisor page table page from the guest OS until that
part of the page table tree is deallocated, at which point the guest
regains access.

7.2 Untrusted OS extensions

We extend the untrusted guest kernel to support paraverification.
Information about updates to HAP page tables form the majority
of paraverification events, and take advantage of existing paravir-
tualization callbacks present in the Linux kernel. We install an un-
trusted module into the guest kernel to handle these callbacks. The
kernel module is responsible for receiving tokens from HAPs re-
questing memory mappings, and passing these tokens to the InkTag
hypervisor on page faults.

Although untrusted, the guest kernel module is cooperative
when uncompromised, and attempts to minimize the amount of
communication with the InkTag hypervisor. Any hypercall causes a
VM-exit (a context switch from guest to hypervisor), thus unneces-
sary communication should be avoided to maximize performance.
The untrusted kernel module tracks which processes contain HAPs,
and communicates page table information only for those processes.
In addition, the kernel module performs extensive batching of page
table updates. While the Linux paravirtualization interface supports
some batching of address space updates (such as a series of page
table updates occurring before a TLB flush), our kernel module
extends this buffering significantly, because the InkTag hypervi-
sor can safely wait to process most updates until directly before
scheduling a HAP. This allows communication of paraverification
information without any additional VM-exits, as scheduling a HAP

already requires passing control to the InkTag hypervisor.

7.3 Building HAPs

In our current prototype, InkTag HAPs must be compiled from C
source code. C applications are built as HAPs primarily by replac-
ing the standard C library and startup files with InkTag-specific ver-
sions. We modify standard C startup files to initialize the current
process as a HAP before passing control to the C library. On ini-
tialization, the HAP sends the OID of its executable to the InkTag
hypervisor, which initializes a HAP context, and adds the .bin.〈oid〉
attribute. Note that any process may invoke initialization claiming
to be any executable OID. However, after initialization the Ink-
Tag hypervisor will ensure integrity for the process address space.
Thus to continue executing as a HAP, the process must construct an
address space that is byte-for-byte identical, and thus functionally
equivalent, to the originally claimed binary.



Linux InkTag Overhead
null 0.04 2.23 55.80×

open/close 0.87 6.90 7.95×
ctxsw 2p/0k 0.71 1.01 1.41×
File create 5.46 12.92 2.36×
File delete 3.40 7.56 2.23×

mmap 4059.20 40360.00 9.94×
pagefault 0.89 6.68 7.50×

fork 99.00 567.80 5.74×
fork+exec 290.60 882.60 3.04×

Table 2. LMbench latency microbenchmark results (in microseconds.)

We automate HAP interaction with the InkTag hypervisor by
interposing on system calls in the standard C library. For example,
when an application calls mmap(), the system call is intercepted
by our trusted InkTag library. The library performs the system call,
validates the result to ensure that the untrusted OS does not violate
invariants for the address space (§4.4), and passes a token to the
untrusted OS for handling page faults in the newly mapped region
(§4.3).

InkTag does not expose information about hashes and encryp-
tion keys for S-pages to applications. Thus HAPs must interact with
secure files by mapping them into their address space. We imple-
ment mmap()-based versions of standard read() and write()
system calls to support applications that rely on those calls for file
I/O.

7.4 Block Driver

To implement transparent loading of S-page metadata, we add a
new block driver implementation to the QEMU (the userspace
portion of KVM) block driver interface. The new block driver
transparently translates read and write requests from the hardware
emulation layer. Doing the translation at this level puts us at the
lowest layer before the actual hardware allowing us to better adjust
and handle the block requests.

Our secure metadata consists of two 32-byte hashes, an OID,
and an offset. We place secure page metadata once every 32 pages
of normal data. We track which disk sectors contain valid S-pages
using a bitmap. This bitmap is mapped and updated as HAPs exe-
cute, and is written to disk only upon shutdown. This policy is safe
even in the event of a crash: there will be enough data on disk to be
able to recover the bitmap.

8. Evaluation

In this section we evaluate the performance overhead imposed by
our InkTag prototype built in the KVM hypervisor. We evaluated
InkTag’s performance using two different machines: we run latency
and SPEC CPU benchmarks on an i7 860 running at 2.80GHz, and
InkTag block storage and application benchmarks on an Intel i7
870 at 2.93GHz. Both machines have quad-core processors, 8GB
of memory, and run Ubuntu 10.04.4.

We modify the 2.6.36 Linux kernel and QEMU 0.12.5 for Ink-
Tag, and run unmodified versions for the baseline. VM guests run
with a single virtual CPU, 2GB of memory, and the same kernel as
the host. In the InkTag guest, all benchmark binaries run as HAPs.

8.1 Microbenchmarks

Table 2 shows results from the LMBench [30] suite of OS mi-
crobenchmarks. LMBench is a series of portable microbenchmarks
focused on measuring individual OS operations in isolation. We
restrict our evaluation to focus on file operations, memory manip-
ulation, and process creation, as these are the areas that will be
affected by running as an InkTag HAP. We modify LMBench only

Figure 7. InkTag storage backend performance as measured by sequential
or random msync()s on a memory-resident file.

enough to turn its components into HAPs: 68 lines of modifications
to the build system and 5 lines of configuration changes.

The null syscall benchmark primarily measures the latency of
switching between an application and the OS, and represents the
worst case for InkTag. A HAP must context switch from user con-
text, to the virtual machine, then into the operating system, and
then return along the opposite path. The high latency for switching
between application and OS directly impacts the performance of
nearly all of the LMBench microbenchmarks, as they measure in-
teractions between an application and the operating system. Addi-
tionally, operations that involve any kind of page table update, such
as mmap, fork, and fork+exec, are also affected due to the Ink-
Tag hypervisor validating each page table update. These overheads
appear large in isolation; however, most applications are signifi-
cantly less sensitive to system call latency than microbenchmarks.
Most of the LMBench benchmarks show a difference in latency
that is 10s of microseconds or less.

8.2 Storage

We evaluate InkTag’s storage backend with a benchmark that syn-
chronizes regions varying in size from a 256MB secure file cached
in memory to the virtual disk. We disable host OS caching for our
virtual disk, to best simulate the effect of actual disk scheduling on
I/O throughput. Figure 7 shows the performance of syncing vary-
ing window sizes, from 4KB to 1MB, either sequentially through
the file or in random order. In addition, we show numbers for a ver-
sion of InkTag in which we have disabled encryption and hashing,
in order to isolate the effect of disk scheduling on performance.
The encryption and hashing occur when the OS touches S-pages
to sync them to disk. Our InkTag prototype interleaves S-page data
and metadata at an interval of 32 pages (128KB). For window sizes
above 128KB, InkTag approaches the performance of a standard
block device, as the InkTag block driver can combine a page of
metadata with 32 data pages in a single write to the backing de-
vice. Beneath that threshold, InkTag’s performance suffers, espe-
cially for sequential writes. This is due to InkTag’s metadata lay-
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Figure 8. SPEC CPU2006 benchmark performance. “Geomean” indicates
the geometric mean of relative performance.

Linux InkTag
Apache latency 195 ms 220 ms (1.13×)
Apache throughput 462.42 req/s 453.93 req/s (1.02×)
Dokuwiki throughput 13.6 req/s 8.83 req/s (1.54×)

Table 3. InkTag performance for large applications.

Apache DokuWiki
Linux InkTag Linux InkTag

Check hash - 209 - 2,911,649
Check zero hash - 57 - 2,893,517
Update hash - 82 - 1,029
EPT fault 689 1,131 10,668 78,055
VM-exit 171,145 1,217,042 138,801 11,216,363

Table 4. Counts of performance-critical events during benchmark execu-
tion. We count the number of times InkTag must hash a data page (“Check
hash”), hash a data page that should be zero-initialized (“Check zero hash”),
encrypt a page and update its hash (“Update hash”), fault on a nested page
table (“EPT fault”), and context-switch out of the guest (“VM-exit”).

out. For example, sequential writes to each of the 4KB pages in a
single cluster of data pages represents a good case for disk schedul-
ing. InkTag, however, must write the metadata page followed by the
data page for each of these writes, causing the disk to seek back and
forth instead of writing sectors in sequential order.

8.3 Application benchmarks

We measure the overhead imposed by InkTag with three different
types of applications: CPU-bound SPEC benchmarks, the Apache
web server, and DokuWiki, a complete wiki application converted
to use InkTag attributes for authentication.

SPEC With little OS interaction, CPU-bound applications exhibit
little performance overhead when running as HAPs. Figure 8 shows
results for selected benchmarks from the SPEC 2006 [19] suite
(InkTag does not support Fortran). Out of twelve benchmarks, nine
benchmarks run within a 3% performance overhead of unmodified
KVM, and gcc benchmark has the largest overhead of 14%.

Apache Table 3 shows results for our evaluation of the perfor-
mance of the Apache webserver when compiled as a HAP. We run
the standard ab benchmarking tool included with Apache on the
machine hosting the virtualized guest, providing nearly unlimited
bandwidth from the web server to client. We execute 10,000 re-
quests from client to server, at a concurrency level of 100. The
Apache web server serves requests with a 13% overhead in la-

tency, and a 2% overhead in throughput relative to normal virtu-
alized execution. Apache represents a relatively good case for Ink-
Tag: with several long-lived processes, Apache rarely has to pay
the increased costs imposed by InkTag for application initialization
and teardown.

DokuWiki In order to demonstrate the ability of InkTag to pro-
vide security for realistic workloads, we modified the DokuWiki2

wiki server to take advantage of InkTag secure files and access con-
trol. DokuWiki is a wiki written in PHP that stores wiki pages as
files in the server filesystem. We recompiled the PHP CGI binary to
work with InkTag and ran DokuWiki as a CGI script. We added an
InkTag authentication module to DokuWiki to allow a user to log
in with their system credentials (similar to the decentralized login
process described in §5.3) and to restrict access to wiki content via
InkTag access control.

To test the effect of InkTag on a representative set of modifi-
cations to a representative DokuWiki installation, we downloaded
a set of 6,430 revisions of 765 pages from the DokuWiki website
(which is itself run using DokuWiki) to simulate wiki activity. We
evaluate DokuWiki with a 90% read workload, which we believe
a reasonable characterization of a wiki workload. Each write re-
places a page with the subsequent revision of a page in the down-
loaded DokuWiki corpus. We measured the total wallclock time for
10 clients to perform a collective 1,000 requests on the wiki. Our
wiki client makes use of an XML RPC interface that DokuWiki
provides to avoid the need for programmatically interfacing with
DokuWiki forms.

As a HAP with InkTag authentication, DokuWiki runs with a
1.54× overhead over a baseline virtualized execution. As a PHP
application, DokuWiki maps a large number of scripts (with in-
tegrity assured by the InkTag hypervisor) into memory and exer-
cises a significant amount of anonymous temporary memory. As
with OS users, InkTag’s authentication aligns along process bound-
aries. Thus, we must run DokuWiki as an inefficient CGI applica-
tion, not as an Apache module. CGI is a performance worst case for
InkTag: each request initializes and destroys an entire application
address space.

Virtualization metrics Table 4 shows counts for a number of
performance-critical events during the execution of our large ap-
plication benchmarks. Specific to InkTag execution are the number
of times physical frames are hashed, as well the number of times
the hash of the associated S-page is updated (this event also counts
the number of times an S-page must be encrypted). With a few
long-lived processes, most of the address space for the Apache web
server remains mapped in the trusted EPT, requiring relatively few
hash updates. DokuWiki, which constructs and destroys an address
space for each request, has a large number of hash operations.

Of particular note are the number of times InkTag is requested to
verify the hash for a page consisting entirely of zeroes. In fact, the
vast majority of hash operations are invoked to determine if a page
is initialized to zero (2.8 out of 2.9 million hash operations for the
DokuWiki benchmark). InkTag optimizes this case: when asked to
verify the hash of a physical frame, InkTag compares the hash value
with the hash of a zero page. If the page should contain only zero,
InkTag simply verifies that property, rather than computing a full
digest. As a result, computation of hashes is not a significant factor
in InkTag’s performance overhead. Similarly, while encryption is
necessary for privacy, it does not significantly affect running time:
the majority of pages that would otherwise be encrypted due to
access by the operating system are in fact anonymous memory
regions that have been unmapped by an application. The entire

2 http://www.dokuwiki.org

http://www.dokuwiki.org


memory region is being destroyed, so it needs only be erased, not
encrypted for privacy and hashed for integrity.

A major factor for InkTag performance is the number of times
the processor must switch context between the virtual machine and
the host. In the DokuWiki benchmark, for example, InkTag must
exit the virtual machine nearly two orders of magnitude more often
than a standard execution. We hope to investigate ways to reduce
the cost of such context switches as part of future work.

9. Related work

Untrusted operating systems InkTag, XOMOS [26], SP3 [47],
and Overshadow [11, 35] share the goal of minimizing the ability
of an untrustworthy system component to tamper with a sensitive
application. Previous work focused on isolating high-assurance ap-
plications from the system, while InkTag focuses on allowing the
application to use untrusted system services, providing access con-
trol and crash recovery for persistent storage. For example, while
Overshadow guarantees that user processes are isolated from the
operating system, it does not implement access control for secure
data: once an application that has created a secure file terminates,
there is no meaningful way for processes to share access to that file.

Just as InkTag allows a trusted process and hypervisor to stop
trusting the OS, CloudVisor [49] allows a trusted process, OS,
and nested hypervisor to stop trusting the hypervisor and other
cloud management software. Another approach, exemplified in
Proxos [44], essentially reimplements portions of the OS in the
application; this approach does not address shared abstractions be-
tween mutually untrusting programs.

Virtual machines The use of virtual machine monitors to help
protect operating system and application execution is not a new
concept; there have been systems ranging from providing dedicated
virtual hardware per secure application [18] to enforcing kernel en-
try and exit points to provide system integrity [42]. By allowing ap-
plications to make use of extensive operating system facilities for
sharing data, while still verifying its behavior, InkTag provides a
much more flexible solution than heavyweight per-application vir-
tualization. At the other end of the spectrum, simple code integrity
is not sufficient to ensure operating system safety [21].

Trusted computing Recent systems, including Flicker [29], TrustVi-
sor [28], and Memoir [33] leverage the TPM to completely isolate
sensitive computations, such as encryption and random number
generation, from the OS. These systems can protect an applica-
tion’s random number generator’s internals from being leaked to
the OS, but they cannot protect larger code that requires OS func-
tionality, such as file access.

Benign OS integrity Another related branch of research attempts
to prevent malicious inputs from compromising a non-malicious
OS, including HookSafe [45], KernelGuard [39], and several oth-
ers [2, 10, 27, 40]. These systems often prevent specific classes of
security problems and are not designed for the strong adversarial
model InkTag can defend against.

VM introspection Several systems attempt to enforce security
properties on a non-malicious guest OS by interpreting low-level
events based on expert information [24, 34, 38, 46], automatic
source code extraction [17, 20, 23], or inferred from observing
program executions [4, 14]. This interpretation is fragile (called
the semantic gap [9]) and, broadly speaking, work in this area
assumes a weak adversarial model. InkTag’s paraverification avoids
the semantic gap and provides fundamentally stronger guarantees.

Sandboxing This work is concerned with assuring the integrity of
necessary OS functionality; yet this is easily conflated with the goal
of isolating untrusted applications, or sandboxing. Several recent

sandboxing architectures have explored techniques that limit OS
access [15, 36, 48], or monitor system calls [3, 6, 16, 22, 37] to
protect the OS’s sharing abstractions from a malicious application.

Hierarchically Named Access Control In recent years, work in
the area of hierarchical naming and attribute based access con-
trol has landed mostly in the area of distributed systems and grid
computing [7, 12]. ABAC [41] and XACML [32] are both projects
aimed at bringing attribute based access control to the enterprise
world. InkTag differs in scope, whereas these projects try to define
attributes on employees, InkTag tries to implement flexible access
control at the level of individual processes.

UserFS [25] allows principals to hierarchically manage creation
and deletion of sub-principals. The system uses traditional UIDs as
a namespace for managing access control of files and resources.
UserFS achieves the goals of efficiency and familiarity but has
difficultly easily expressing group semantics and even more flexible
access control policy since processes can have only one UID or
effective UID at a time. InkTag does not depend on the complicated
code in the guest operating system, and can achieve more flexible
policies through attributes.

10. Conclusion

InkTag represents a significant step forward in verifying the behav-
ior of untrusted operating systems. By removing the burden of at-
tempting to verify a completely unmodified operating system, par-
averification enables a simple, high-performance hypervisor imple-
mentation. InkTag is the first such system to enable access control
for secure data, as well as address essential system issues such as
crash consistency between OS-managed data and secure metadata.
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