In Visser, Ribeiro, Ohashi, Dellaert, editors, RoboCup-2007: Robot Soccer World Cup XI,

pPp-

171--183,

Springer Berlin / Heidelberg, 2008.

Model-based Reinforcement Learning in a
Complex Domain

Shivaram Kalyanakrishnan, Peter Stone, and Yaxin Liu

Department of Computer Sciences
The University of Texas at Austin
Austin, TX 78712-0233

{shivaram, pstone, yxliu}@cs.utexas.edu

Abstract. Reinforcement learning is a paradigm under which an agent
seeks to improve its policy by making learning updates based on the ex-
periences it gathers through interaction with the environment. Model-free
algorithms perform updates solely bas ed on observed experiences. By
contrast, model-based algorithms learn a model of the environment that
effectively simulates its dynamics. The model may be used to simulate
experiences or to plan into the future, potentially expediting the learn-
ing process. This paper presents a model-based reinforcement learning
approach for Keepaway, a complex, continuous, stochastic, multiagent
subtask of RoboCup simulated soccer. First, we propose the design of
an environmental model that is partly learned based on the agent’s ex-
periences. This model is then coupled with the reinforcement learning
algorithm to learn an action selection policy. We evaluate our method
through empirical comparisons with model-free approaches that have
been previously applied successfully to this task. Results demonstrate
significant gains in the learning speed and asymptotic performance of
our method. We also show that the learned model can be used effec-
tively as part of a planning-based approach with a hand-coded policy.

1 Introduction

The reinforcement learning (RL) [12] problem is usually modeled as a Markov
Decision Process (MDP) [10], which is of the form (S, A, R, T,~). S is the set of
states in the environment, and A the set of actions available to the agent. R :
S x A — R is the reward function for the task: it returns the real number reward
provided to the agent for taking an action from a given state. The dynamics of
the environment are encapsulated in the transition function 7' : Sx Ax S — [0, 1];
given a state and action, T returns a probability distribution over next states
to which the agent may be transported. A (deterministic) policy 7 : S — A
specifies the action to be taken by the agent from any given state. Every policy
7 can be associated with an action value function @ : S x A — R that computes
the expected long-term discounted reward the agent will accrue by following 7
after taking some action a from some state S. v € [0,1] is a discount factor in
the expected long-term reward. The problem is to solve for an optimal policy 7,
i.e., one that maximizes max, Q7 (s,a) for every state s, defined by:

Qﬂ(sva) = R(S’a) —|—’}/ZT(S,G,S/)Qﬂ(S/,F(S/)). (1)

s'eS

In most practical settings, the agent must act in the environment to gather
experiences, using which it can improve its policy. An experience (or transition)
is of the form (s,a,,s’), where s is the agent’s state, a an action taken from s,
r the reward received, and s’ the state to which the agent moves. Theoretical
guarantees establish that under some conditions, the optimal policy can indeed
be learned by making temporal difference updates based on the observed ex-
periences, for instance, through methods like Q-learning [16]. Nonetheless, it is
seldom possible in real world tasks to meet the conditions necessary for con-
vergence. Solutions to complex tasks invariably have to adopt an engineering
approach and exploit their underlying structure to the extent possible.

In this paper, we explore the potential of model-based methods in scaling
RL to complex tasks. Whereas model-free methods like Q-learning interpret the
policy directly through the action value function), model-based methods seek
to decouple @ into its “components” T and R, termed the transition and reward
models of the task respectively. By doing so, it becomes possible to use the model
(T and R together) to simulate experiences that can be used to update @, instead
of solely relying on ones gathered from the environment. More specifically, the
model can be used to explore parts of the state space that are possibly under-
represented in the observed experiences. Hence, simulating experiences using
the model can potentially improve the quality of the solution, while achieving
economy in sample complexity. A further benefit gained from learning 7" and
R individually is the advantage of separating the dynamics of the environment
from the objective of the task at hand, offering the flexibility to share parts of
the solution with different tasks in similar environments.

Model-based methods have been applied successfully in the past to several
challenging problems. In domains such as game-playing, a partial or complete
model of the environment is sometimes available, but determining the action
selection policy can still be challenging owing to factors like the intractability of
searching through the state space [14, 15]. On the other hand, for many real-world
domains, learning the environmental model is itself a substantial undertaking.
In past efforts involving learning the model [2, 9], the environment is typically a
physical system that is sampled at some regular frequency, and the actions are
control signals perturbing the state of the system. By contrast, in Keepaway,
the domain we consider for our experiments, the actions are abstract, high-
level skills, which last for extended, variable durations of time. Keepaway is a
large-scale, complex, multiagent task involving both teammates and adversaries,
which are part of the environment being modeled. The approach we follow is
to partially learn the model for this task, and partially describe it using simple
rules. This necessarily approximate model is then used in our Model-based Policy
Improvement (MBPI) algorithm to examine if it can still help expedite learning.

The remainder of the paper is organized as follows. Section 2 describes the
Keepaway task, and Section 3 presents our design of a model for this task.
Section 4 provides details of the model-based RL algorithm. In Section 5 we
present experimental results evaluating our method, providing comparisons with
other algorithms that have been applied to Keepaway. Section 6 discusses related
work, and Section 7 concludes.

2 Keepaway Task Description

Keepaway [11] is a subtask of simulated RoboCup soccer [8] played between
a team of m keepers and a team of n takers inside a rectangular region. The
objective of the keepers is to maintain possession of the ball (have it close enough
to be kicked), while the takers try to steal it. The task is episodic — each episode
starts with the ball in possession of one of the keepers, and ends when some
taker gets the ball or it goes outside the region of play. The version of Keepaway
we consider for our experiments involves 3 keepers and 2 takers (3v2) inside a
20m x 20m region, as depicted in Figure 1. We proceed to describe how Keepaway
is framed as a reinforcement learning problem, outlining the challenges it poses.

A complete state description in Keepaway would include the positions and
velocities of the players and the ball, the players’ body and neck angles, their
stamina levels, and so on. However, we find that their positions alone convey
most of the information required for the purpose of learning. Since the players
and ball may occupy any position inside the region of play, the state space is
continuous. Furthermore, the players are provided noisy sensations of state.

The keepers are the learning agents: the task each
keeper has to learn is which action to take when it
gets possession of the ball. This being the case, it be-
comes necessary to define the concept of a state only
when some keeper has possession. In each state, the
keeper closest to the ball is denoted Ki; the other
keepers are denoted K;,i = 2,3,4,...,m, K; being
the i-th closest keeper to K;. Similarly, the takers are
denoted T;,7 = 1,2,3,...,n, T; being the i-th clos-
Figurel. 3v2 Keepaway. oo taker to K;. K is the keeper that must choose
Ki, K, and K are keep- o) 5 ction to execute. The behaviors of the takers and
ers. Ty and T are takers. keepers who are without possession are fixed: the tak-
ers try to intercept the ball, while Ko, ..., K,, attempt to move to positions to
which a pass from K is likely to succeed.

Figure 1 illustrates the indexing of keepers and takers, also marking out
distances and angles among the players and the center of the field. These serve
as abstract features derived from the players’ positions, which are used as inputs
to the function approximator representing the action value function. We refer
the reader to Stone, Sutton and Kuhlmann [11] for a detailed description of these
abstract state features. Notice that there are 13 for 3v2 Keepaway.

The actions that are available to K7, when it has possession of the ball,
are HoldBall, by which it keeps the ball with itself, and PassBall(i), i =
2,3,4,...,m, which is a direct pass to the K;. While it is convenient to treat
HoldBall and PassBall(i) as actions, they are really high-level skills or op-
tions [13] implemented through a series of low-level actions like Turn and Kick.
Passes can last a variable number of simulator cycles; so the task is effectively
a Semi-Markov Decision Process [4]. The transition dynamics of the extended
high-level actions, which are necessarily stochastic because of the keepers’ noisy
actuators, thus become susceptible to even greater irregularity. Also, the dynam-
ics are not smooth, as some actions can lead to terminal states.

The reward provided for taking an action from a state is simply the number
of cycles elapsed until the next state is reached. Since the task is episodic, no
discounting is required. Maximizing expected long-term reward corresponds to
maximizing the expected overall duration of the episode, also called the hold
time. HoldBall() typically lasts 1-2 cycles; PassBall(¢) can last between 4 and
12 cycles, depending on the distance the pass has to travel. A cycle of simula-
tion lasts 100 milliseconds in real time. In 3v2 Keepaway, a random policy that
chooses uniformly among the actions (HoldBall, PassBall(2), PassBall(3))
registers a hold time of about 4.7 seconds.

In our experiments, we use the same version of 3v2 Keepaway as used by
Kalyanakrishnan and Stone [6], but with one minor change. In their version, K3
executes HoldBall through a series of kicks close to its body that take it away
from the direction of the takers. In our implementation, K simply stops the ball
once it is kick-able, and subsequently leaves it untouched. We find that this helps
our model-based approach by simplifying the transition dynamics. Interestingly,
informal testing reveals that it also leads to better performance with the model-
free methods successfully applied earlier [6,11]. We compare all these algorithms
using our version of HoldBall.

3 Learning the Model

In this section, we describe our design of a model for Keepaway. The precise
requirements of the model are that given state s and action a, it predict a
distribution over next states s’, as well as the reward r for the transition. Since
the actions are disparate, high-level skills, we maintain separate models for each
action. Figure 2 lays out the schematic design. Though Keepaway is indeed a
stochastic domain, we adopt the simple approach of approximating its dynamics
using a deterministic model, i.e., the model returns a unique next state s’ instead
of a distribution over next states. Since some transitions can lead to terminal
states, we employ a separate predictor to compute ¢, a boolean value indicating
whether a given transition is terminal. Likewise, a separate predictor computes
the real-valued transition reward r.
Our main objective is not building an accurate
Model,, model in itself, but rather to evaluate the advantages
S‘“l‘;u‘;::i“‘“ Hlayer , of using a model in conjunction with the RL algo-
(and—codeaf| Coordinates [~ * Tithm. We find it sufficient for this purpose to specify
e parts of the model using intuitive, hand-coded rules,
but nonetheless, necessary to derive other parts of it
by applying machine learning. As shown in Figure 2,
Reﬁi’;ﬁiﬁ;‘” the next state s’ is computed by applying a simple
~r rule to the current state s. The rule simply assumes
the players do not change their positions between s
and s’. In case of the HoldBall action, the ball’s po-
sition in s’ is predicted to be the same as K;’s, and
if the action is PassBall(i), the ball is predicted to
occupy the same position as K;. Figure 3 illustrates through an example from
3v2 Keepaway how the next state prediction is made for a given state and action.

Termination Predictor

Player -
Classifier,

s |- andBall

Coordinates
ins

(Learned)

Abstract
Keepaway

Variables (Learned)

Figure 2. Schematic Dia-
gram of Keepaway Model.

In our model, the termination and reward predictors are trained through
supervised learning using the observed experiences. The reward predictor for
each action is a single-layer neural net with 10 hidden nodes. Its inputs are the
abstract state features derived from the Keepaway state (see Section 2), over
which effective generalization is possible. The output is a real-valued prediction
of the reward. The termination predictor is a single-layer neural net with 5 hidden
nodes. It takes the same inputs as the reward predictor, but computes a boolean-
valued output instead. In 3v2 Keepaway, only roughly 10% of all transitions
are terminal; nonetheless, we increase the weight of terminal transitions in the
training distribution to present each termination predictor an equal number of
terminal and non-terminal transitions.

- Start State Action: Hold Action: Pas2) Action: Pass(3) b The (;FieratiOIl of

* O the model is sum-
.Ba“.Tl 2 @; ®© o Q marized as follows.
o ® o Given a set of train-
3 oD ing experiences D =
{(s,a,7,8")}, we fit
Figure 3. At left is a start state. The subsequent figures show g model as M =
true (shaded) and predicted (outlined) next states reached [eqrn Model(D), the
after each action is taken from the start state.

learning restricted to
the termination and reward predictors for each of the actions. Subsequently, M
can be used to make predictions; given state s and action a, the predictions are of
the form s’ = M.predict NextState(s,a), t = M.predictTermination(s,a), and
r = M.predict Reward(s,a). In Section 4, we explain how the model is employed
under the Model-based Policy Iteration (MBPI) algorithm.

Table 1 lists the prediction errors of the models for the three actions in 3v2
Keepaway. The entries are averages from 5 independent runs — in each run a
model is learned based on transitions from 50 episodes (an episode typically
comprises 10-20 transitions) during which the keepers follow a random policy.
This model is then tested for 1000 episodes, again following random action selec-
tion. For the purpose of computing prediction errors in the positions of players,
we use the same ordering (K7, Ko, K3,T1,T3) in s as seen in s. Thus, if keeper
K4 is K7 in s, and has passed the ball to Kp, K4 is still considered K7 in
s’ while computing the error. Of course, the real ordering of s’ is used while
computing abstract features for s’.

We carried out 3v2 Keepaway inside a 20m x 20m region; distances among
players are typically 5-15m. Notice that for the HoldBall action, the prediction
errors for all the players’ positions are less than 1.0m; this is because the action
itself typically lasts only 1-2 cycles, during which the players do not move very
far. The errors are much higher for the pass actions, and indeed higher for Pass-
Ball(3) than PassBall(2) because of the longer distance the pass has to travel.
The reward predictions errors are quite small for HoldBall, and within about
2 cycles for the pass actions. For the PassBall(i) actions, the misclassification
probabilities of terminal and non-terminal transitions are comparable. The high
error in classifying terminal Hold actions arises because of insufficient training
data: only a very small fraction of HoldBall actions terminate while follow-

ing a random policy. We recognize that there is scope to improve the accuracy
of the model; in particular, the accuracy of the state predictor (see Section 5).
Nonetheless, the measure we seek to evaluate in this paper is not the accuracy of
the model itself, but the performance achieved by the RL algorithm employing
the model. The algorithm is described in the next section.

Action Position Terminal| Non-terminal | Reward
Kl K2 K3 T1 T2 Ball
HoldBall |0.63/0.89|0.91|0.81]0.96|0.64| 0.93 0.004 0.33
PassBall(2)(3.62|3.88(4.03|2.85(2.89|3.74| 0.16 0.13 2.07
PaSSBall(3) 4.03|3.78(4.78/|2.85(2.92|4.98| 0.17 0.12 1.96

Table 1. Errors in the positions are root mean squared values of the distance (in
meters) between true and predicted positions. Terminal and Non-terminal errors are
the fractions of terminal and non-terminal actions misclassified. Reward errors are root
mean squared values of the difference (number of cycles) between true and predicted
values.

4 Using the Model

The central idea underlying our Model-based Policy Improvement (MBPI) algo-
rithm is to use the gathered experiences to learn a model of the environment,
and then use this model extensively to simulate transitions based on which the
action value function is updated. The model and the learned policy are improved
iteratively, as we describe in Algorithm 1.

We begin with some initial @) function (line 1). A policy is interpreted from @
through the select Action() function (line 9), which can implement, for instance,
e-greedy action selection. A batch of experiences D is collected by following this
policy for some fixed number e of episodes (lines 6-14). Once the experiences are
collected, they are used to learn a model M of the environment (line 16). @ is
now updated using transitions that are simulated using M (lines 18-36). This
is accomplished by generating trajectories of depth depth using M, beginning
with some random start state (line 19) and following an action selection policy
specified by the function select ActionSimulate() (line 23). Once @ is updated,
it is used to generate the next batch of experiences; a new model is learned and
the process continues until) converges. MBPI is similar to Lin’s experience
replay algorithm [7], applied to Keepaway by Kalyanakrishnan and Stone [6],
which differs from it in the following manner: in experience replay, no explicit
model is learned, and the policy improvement occurs through (depth 1) updates
solely involving the experiences stored in D.

In all our experiments, we have fixed the values of parameters and choices
for subroutines through informal experimentation. The function approximation
scheme we use for representing @ is the same used by Stone et al. [11] and
Kalyanakrishnan and Stone [6] — a separate CMAC [1] for each action, taking
as input the 13 abstract state features computed from the state. Each CMAC
employs 32 one-dimensional tilings along each feature, the tile widths being
3.0m for features corresponding to distances, and 10° for those corresponding to
angles. The select Action() function implements e-greedy action selection, with
e = 0.01. We fix the number of experiences in each batch, e, to 50. By setting

all CMAC weights to zero in @, the initial action value function, the policy
followed for generating the first batch of experiences is random.

Algorithm 1 Model-based Policy Improvement

1: Q < Qo. //Initialize action value function.
2: D « . //Initialize memory of experiences.
3: //Improve Q iteratively.

4: repeat

5: // Experience Generation

6: for e episodes do

T s < startState FromEnvironment().
8: repeat

9: a « selectAction(Q).
10: r «— rewardFromEnvironment().
11: s" « nextStateFromEnvironment().
12: D «— DU (s,a,r,s").
13: until s’ is terminal.

14: end for

15: // Model Learning
16: M «— learnModel(D).

17: // Policy Improvement

18: for n iterations do

19: s < randomStartState FromSimulator().
20: d — 0.

21: //Simulate trajectories of depth depth.

22: repeat

23: a « selectActionSimulate(Q, s).

24: r «— M.predictReward(s, a).

25: t «— M.predictTermination(s,a).

26: // Update @ based on simulated transitions.
27: if t then

28 Q(s,0) — Q(s,a) + alr — Q(s, a)).

29: else

30: s’ « M.predictNextState(s, a).

31: Q(s,a) «— Q(s,a) + a(r + ymax,, Q(s',a’) — Q(s, a)).
32: s s,

33: end if

34: d—d+1.

35: until ¢t = true or d = depth.

36: end for
37: until Q has converged.

The set of experiences D used in every iteration to learn the model comprises
all the past experiences collected thus far; we find that this yields better per-
formance than obtained by only keeping the most recent batch (or some recent
window) of experiences in D. The termination and reward neural networks for
each action are trained using supervised learning. For the termination predictors,
200, 000 backprop updates are made with a learning rate of 0.0001, picking ter-
minal and non-terminal transitions in D with equal likelihood. 20,000 backprop
updates using randomly chosen experiences from D are made in the case of the
reward predictors, with a learning rate of 0.0005. While making learning updates
to the function approximator representing () using experiences simulated by the
learned model M, we fix the number of (Q-learning) updates to 30,000, each
made with a learning rate of 0.025. We find that doing so offers more stability
than fixing the number of iterations n, under which the actual number of updates
would depend on the size of D. The start states of the trajectories are randomly
chosen start states from the transitions in D, and select ActionSimulate() im-
plements random action selection.

5 Experimental Results and Discussion

In this section, we present the results of our experiments on 3v2 Keepaway.
Figure 4(a) shows the performance of our model-based policy iteration algo-
rithm, using depth = 1 while simulating trajectories (MBPI-1). It is compared
with experience replay (ER), which achieves the best asymptotic performance
on 3v2 Keepaway among the batch methods considered by Kalyanakrishnan and
Stone [6], and simple on-line learning (OL) [11], where a single Q-learning up-
date is made after every transition. We find ER to achieve its best performance
by making 30,000 Q-learning updates during the policy improvement phase,
with learning rate 0.025. Interestingly, the same values were found the best for
MBPI-1. For OL, we used a learning rate of 0.125, the same used by Stone et
al. [11] in their Sarsa-based OL implementation. Figure 4(a) shows that MBPI
outperforms ER and OL right from the beginning, and also betters their asymp-
totic performance (Figure 4(b) shows OL continuing until 20,000 episodes). At
200 episodes, MBPI-1 registers a higher hold time than ER and OL with p-
value at most p < 5 x 1077, under a single-tailed t-test. The best performance
achieved by MBPI-1 (11.62 seconds, 450 episodes) exceeds those of ER (9.24
seconds, 250 episodes) and OL (9.48 seconds, 11,000 episodes) with p-value at
most p < 10713,

12 @ 12 ®)

y MBPI-1 — 11 - MBPL=
g 7 oL
g s R e |
3 9 i § ot .
R R £ 8|~
£ 7 e £ 7F
o oL/ [} |
8 6 8 6
3 LA 3 .
& </ g

4 4

3 3

0 100 200 300 400 500 0 5000 10000 15000 20000

12 Number. f'l'{gi]win‘ Episod 12 Number.of. nir\» Episod:

" MBPI-l-_, | %r/\ . MBPI-L_
@ I
e 10 Pvé/z\(— 8 10
§ X mBPE § A ER
g o ‘ g o
g 8 T g 8 4
2 MBPI-3 F HC S
5 7 5 7 e - /
S 6 / S 6 oL
o -5 N -
2 5 // a 5 //
[=} o ——
w w

4 4

3 3

0 100 200 300 400 500 0 100 200 300 400 500

. Number. of Training Episodes . Nymber of Training Epigodes
Figure 4. The graphs show on the x axis the number olfmtralmng episodes; on the y

axis the hold time achieved by some policy. The reported hold time is the average over
200 episodes in which the policy is frozen and executed. For the first 500 episodes of
training, we evaluate the policies at intervals of 50 episodes. The algorithms making
batch updates do so every 50 episodes; they are evaluated immediately after the update.
Each curve is an average of at least 25 independent runs.

The main reason MBPI-1 and ER achieve an order of magnitude gain in
sample complexity over OL is that they make more efficient use of the collected
experiences through batch updates. The updates made by ER are strictly based
on observed experiences, which reflect the true dynamics of the environment.
Further, only states that are reachable by following the policy used while gener-
ating the experiences get backed up. In contrast, MBPI explores more parts of
the state space by following trajectories randomly generated using the model.
Experiences generated by the (approximate) model are likely to be somewhat
inaccurate, and the states visited along the simulated trajectories may not be
reached in practice. But despite the inaccuracy, the exploration can potentially
result in the discovery of desirable states and thus improve the policy.

Lin [7] compares ER with relazation planning, a model-based approach in a
discrete, grid-world domain. In case the agents have to learn the model, then
the model-based approach performs worse than ER; however, when the agents
are provided a perfect model to begin with, the algorithms have comparable
performances. In our experiments with 3v2 Keepaway, MBPI-1, under which
the model both has to be learned and used, consistently outperforms ER. We
conjecture that for domains with small state spaces, the observed transitions
may themselves be sufficiently representative of the dynamics of the domain,
but as the size of the problem increases, this may cease to be the case, and
the extrapolation afforded by the model may prove beneficial. In this paper,
it is our intention to compare MBPI and ER on Keepaway by studying them
in isolation, but in principle, it is possible to combine them by making policy
updates from both observed and simulated transitions. More specifically, it may
be possible to offset the noise introduced by an incorrect model by making
sufficient updates based on true experiences. Section 6 discusses Sutton and
Barto’s Dyna-Q algorithm [12], which takes a related approach.

Figure 4(c) shows the effect of increasing the depth of the simulated trajec-
tories in our model-based algorithm. It seems plausible that deeper trajectories
will enhance the exploration of the state space, boosting performance. On the
other hand, due to the noise in the model predictions, simulated transitions
are likely to deviate more from the true transitions deeper in the trajectory. In
our experiments, we notice that with increasing depth (MBPI-2 and MBPI-3),
the performance of the model-based approach degrades progressively. To dimin-
ish the adverse effect of noise deep in the trajectories, we decay the learning
rates for updates made deeper down, still keeping the sum of the learning rates
along each trajectory constant (at 0.025) so that the comparisons among the
experiments remain fair. Despite using a sharp decay factor (0.01), the perfor-
mance of MBPI-2 and MBPI-3, as seen in Figure 4(c), fall significantly short
of MBPI-1’s. Nonetheless, MBPI-2 (10.96 seconds, 350 episodes) still achieves
higher performance than ER (9.24 seconds, 250 episodes) and OL (9.48 seconds,
11,000 episodes), with p-values at most p < 2 x 1073.

Surely, a major reason for the loss in performance when exploring deeper is
the approximation in our model. Since the dynamics of Keepaway are stochastic,
a deterministic model is bound to be inaccurate. Further, the function approxi-
mation scheme used in the model may not be sufficiently expressive. Past efforts

in modeling physical systems have focused on learning precise models, and in-
deed modeling environmental noise as well [9]. It is a promising avenue for future
research to develop a more accurate model for Keepaway, and examine if it can
be used to plan deeper into the future. Nevertheless, the performance gain of-
fered by MBPI-1 is evidence that model-based approaches can be viable even
with an approximate model, on a task that is itself continuous and stochastic.

Algorithm 2 Hand-coded Policy (Model M, State s)

1 Apon—terminal «— {a|M.predictTermination(s,a) = false}.

2: if Anon—terminal = 0 then

3: Return random(HoldBall, PassBall(2), PassBall(3)).
4: else

5: if HoldBall € Ayon—terminal then

6: Return HoldBall.

7. else if PassBall(2) € A, on—terminal then
8: Return PassBall(2).

9: else
10: Return PassBall(3).
11: end if
12: end if

In our MBPI algorithm, the learned model is used to update the @ function
through which the action selection policy is interpreted. While this conforms
with the traditional RL approach of learning the @) function, it is not necessary
for putting the model to use. Algorithm 2 lays out a hand-coded policy that
uses an available model to select the action to take. In fact, this policy only
makes use of the termination predictor of the model, implementing the following
intuitive strategy: from any state, choose HoldBall if the model predicts it will
not terminate the episode. If it is predicted to terminate, try PassBall(2) in a
similar manner, and then PassBall(3). If all actions are predicted to terminate,
simply choose a random one. Note that the hand-coded policy is myopic: it
doesn’t perform lookahead to take actions that will avoid future bad states. In
this way it is handicapped when compared to the learning algorithms.

Figure 4(d) plots the performance of this hand-coded policy. As with MBPI,
it begins with a random model that is updated every 50 episodes; however,
the policy followed in between the updates is the hand-coded policy. After 350
episodes, this policy registers 9.04 seconds of hold time, which is within 0.5 sec-
onds of the best reached by OL and ER. The purpose of this experiment is not
to highlight the performance of the hand-coded policy in itself, but to illustrate
that a model can be useful even independent of the action value function. Here,
it is necessary to improve the model iteratively, but one can imagine scenar-
ios where a model is available from past experiences or adapted from related
tasks. A model-based approach provides the flexibility to re-use parts of the
solution in a natural way. It would be promising as part of future research to
adapt the model-based approach followed here to interact with similar tasks in
the RoboCup soccer domain, for instance, 4v3 Keepaway [11] and Half Field
Offense [5]. Another possible avenue for research is to employ the environmental
model as part of a planning algorithm for solving the task.

6 Related Work

In their expository textbook, Sutton and Barto [12] investigate the relationship
between model-based RL and planning. They present the Dyna-Q algorithm, in
which an environmental model is learned and used to simulate experiences for
updating the) function along with direct updates based on real experiences.
Dyna-Q is enhanced by using Prioritized Sweeping, a technique whereby the
model-based updates are concentrated around the regions where the @ function
is changing rapidly. The main motivation for our work is indeed to extend the
qualitative results of model-based approaches like those seen in the simple, rel-
atively small, discrete domains considered by Sutton and Barto to a realistic,
high-dimensional, continuous task. Our MBPT algorithm is similar to their Tra-
jectory Sampling method, where model-based updates are based on the on-policy
distribution of experiences. In our case, an e-greedy policy is used while interact-
ing with the environment, but a random policy is used to generate trajectories
for the model-based updates. The complexity of Keepaway and the real-time
constraints of the RoboCup simulator force us to make model-based updates
off-line, whereas it is possible to make such updates on-line in the example do-
mains used to illustrate Dyna-(Q and Prioritized Sweeping.

In several past efforts of model-based approaches, learning the model is itself
the key issue. Ng et al.[9] successfully learn a model for helicopter control. The
state space is described by 8 body coordinates, and 4 continuous actions serve as
control signals to maneuver the helicopter every 50t" of a second. A stochastic
model is learned using locally weighted regression; an action policy is derived
from this model using the PEGASUS algorithm. 3v2 Keepaway has a state space
of higher dimension (13), with states being more temporally distant. Also, ac-
tions are abstract, high-level skills, unlike control signals to the helicopter that
perturb its state smoothly. Additionally, in Keepaway, it is actually necessary to
iteratively gather experiences based on updated versions of the policy (about 5-6
times using MBPI-1) in order to achieve high performance. The helicopter con-
trol policy, on the other hand, is learned based on a single batch of experiences
obtained by a human pilot flying the helicopter.

Other approaches involving modeling physical systems include, among others,
those of Atkeson and Santamarfa [2], and Boone [3]. The former investigate a
pendulum swing-up problem with 2 state variables and 1 continuous action;
the latter considers the Acrobot problem, having 4 state variables and 3 discrete
actions. Apart from having fewer state variables and actions, these physical world
tasks have smoother transition dynamics than Keepaway: a key component of
our Keepaway model is the termination predictor, which is not required for the
pendulum and acrobot tasks. Nonetheless, the main results from these tasks
concur with ours — that model-based RL can greatly reduce sample complexity,

while improving the quality of the learned solution.
Experience Replay is a model-free batch learning method due to Lin [7],

which has been applied to Keepaway by Kalyanakrishnan and Stone [6]. The
results in this paper show that our model-based approach registers faster learning
and better asymptotic performance than experience replay on Keepaway. We
compare and contrast the approaches in Section 5.

7 Conclusion

We examine the viability of using model-based RL for Keepaway, a complex,
stochastic, continuous, high-dimensional, multiagent task. The actions in this
task are abstract, high-level skills that can last variable periods of time, mak-
ing it novel from a model-learning perspective. Our model is partially specified
through simple rules, partially learned, and then used as a subroutine in the RL
algorithm to learn the action selection policy. Empirical results demonstrate that
such a model-based RL algorithm can yield significant gains in sample complex-
ity and asymptotic performance when compared to model-free approaches that
have been applied to Keepaway successfully in the past. Also, we show that a
model can be used effectively with other static policies, lending flexibility to the
learned solution. Problems for future work include improving upon our design of
the Keepaway model, using it for knowledge transfer among related tasks, and
applying it with planning-based approaches.

Acknowledgements

This research was supported in part by NSF CISE Research Infrastructure Grant
EIA-0303609, NSF CAREER award 11S-0237699, and DARPA grant HR0011-
04-1-0035.

References

J. S. Albus. Brains, Behavior, and Robotics. BYTE Books, Peterborough, 1981.

C. Atkeson and J. Santamaria. A comparison of direct and model-based reinforcement learning.

IEEE International Conference on Robotics and Automation, 4:3557-3564, April 1997.

3. G. Boone. Efficient reinforcement learning: model-based acrobot control. IEEE International
Conference on Robotics and Automation, 1:229-234, April 1997.

4. S. J. Bradtke and M. O. Duff. Reinforcement learning methods for continuous-time Markov

decision problems. In G. Tesauro, D. Touretzky, and T. Leen, editors, Advances in Neural

Information Processing Systems, volume 7, pages 393—400. The MIT Press, 1995.

S. Kalyanakrishnan, Y. Liu, and P. Stone. Half field offense in RoboCup soccer: A multiagent

reinforcement learning case study. Proceedings of the RoboCup International Symposium 2006,

June 2006.

6. S. Kalyanakrishnan and P. Stone. Batch reinforcement learning in a complex domain. In The
Sizth International Joint Conference on Autonomous Agents and Multiagent Systems, May
2007.

7. L.-J. Lin. Self-improving reactive agents based on reinforcement learning, planning and teaching.
Machine Learning, 8:293-321, 1992.

8. M.Chen, E.Foroughi, F.Heintz, Z.Huang, S.Kapetanakis, K.Kostiadis, J.Kummeneje, I.Noda,
0O.0Obst, P.Riley, T.Steffens, Y.Wang, and X.Yin. Users manual: RoboCup soccer server — for
soccer server version 7.07 and later. The RoboCup Federation, August 2002.

9. A.Y.Ng, H. J. Kim, M. I. Jordan, and S. Sastry. Autonomous helicopter flight via reinforcement
learning. In S. Thrun, L. Saul, and B. Schoélkopf, editors, Advances in Neural Information
Processing Systems 16. MIT Press, Cambridge, MA, 2004.

10. M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley and Sons, New York, NY, 1994.

11. P. Stone, R. S. Sutton, and G. Kuhlmann. Reinforcement learning for RoboCup-soccer keep-
away. Adaptive Behavior, 13(3):165-188, 2005.

12. R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, Cam-
bridge, MA, 1998.

13. R. S. Sutton, D. Precup, and S. P. Singh. Between MDPs and semi-MDPs: A framework for
temporal abstraction in reinforcement learning. Artificial Intelligence, 112(1-2):181-211, 1999.

14. G. Tesauro. Practical issues in temporal difference learning. In J. E. Moody, S. J. Hanson,
and R. P. Lippmann, editors, Advances in Neural Information Processing Systems, volume 4,
pages 259-266. Morgan Kaufmann Publishers, Inc., 1992.

15. J. N. Tsitsiklis and B. V. Roy. Feature-based methods for large scale dynamic programming.
Machine Learning, 22(1-3):59-94, 1996.

16. C. J. C. H. Watkins and P. Dayan. Q-learning. Machine Learning, 8(3-4):279-292, 1992.

N =

ot

