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Abstract—Mobile robots often have to make decisions on
where to point their sensors, which have limited range and
coverage. A good sensing strategy allows the robot to collect
useful information for its tasks. Most existing solutions to this
active sensingproblem choose the direction that maximally
reduces the uncertainty in a single state variable. In more com-
plex problem domains, however, uncertainties exist in multiple
state variables, and they affect the performance of the robot in
different ways. The robot thus needs to have more sophisticated
sensing strategies in order to decide which uncertainties to
reduce, and to make the correct trade-offs. In this work, we
apply least squares reinforcement learning methods to solve this _. L . .
problem. We implemented and tested the leaming approach in F19- 11 The RoboCup domain is highly dynamic. We introduce
the RoboCup domain, where the robot attempts to reach a ball reinforcement learning to dpvelop sensing strategies that decide
and accurately kick it into the goal. We present experimental where a robot should point its camera so as to best score a goal.
results that suggest our approach is able to learn highly effective
sensing strategies.

principle, techniques such as POMDPs [14] and augmented
. INTRODUCTION MDPs [15] are well suited to address such problems, they do
To successfully operate in its environments, a robot neeglgt scale to highly complex state spaces and they assume that
to know the states of the objects that are relevant for iSgood model of the robot and its environment is available.
tasks. For example, an office delivery robot needs to know|n this paper, we show how to solve such multi-state active
its own location in the environment, the location of the lettefensing problems using reinforcement learning. More specif-
it is supposed to deliver, and whether the door to the offiggally, we use least squares policy iteration (LSPI) to learn a
containing the letter is open or closed. These states have ta#¥6ot's sensing strategy. LSPI has been introduced recently
estimated from noisy sensor information. Bayes filters such@g highly efficient model-free reinforcement learning [11].
Kalman filters or particle filters integrate sensor informatiomo take uncertainties in the state estimation into account, we
over time in order to estimate such states [1], [7]. augment the state space such that it explicitly contains the
Since sensors only have limited range and coverageygcertainties in the different state variables. The approach
robot has to decide where to point its sensors so as jf0implemented and tested in the context of RoboCup. The
collect information that is most valuable for its task. Bayesigagged AIBO robot is able to learn a sensing strategy that
techniques typically address this problem by choosing thesults in superior performance in a goal scoring task.
sensing action that minimizes the expected uncertainty of theThis paper is organized as follows. After discussing related
state, where uncertainty is measured by the entropy of therk, we review the basics of reinforcement learning and
posterior probability distribution over the state space. Typleast squares policy iteration in Section IIl. Then, in Sec-
cally, these active sensing techniques consider uncertaintytigh v, we show how to apply LSPI to our active sensing
only one state variable(g, robot location [6], [15] or object problem. Section V presents experimental results, followed
position [3]). In many situations, however, multiple relevarty our conclusions.
state variables carry uncertainty and the sensor cannot collect
information about all of them at the same time. Il. RELATED WORK
To see, consider the problem of scoring a goal in the Active sensing has been applied in various areas ranging
RoboCup domain. In order to kick the ball into the goafrom robot localization [6] to vision [5] to sensor manage-
a robot has to know where the ball is and in which directioment for target tracking [9]. Most existing approaches use
the goal is located. Since the robot cannot observe the haflormation theoretic measures of uncertainty and choose the
and the goal at the same time, it has to decide whethergensing action that minimizes expected uncertaiptg,(in
look at the ball in order to minimize uncertainty in the balfobot or target location). While such greedy approaches are
location, or to point the camera in a direction that helps it teery efficient, they do not consider the long term impact of
determine the relative location of the goal. Obviously, theensor information. Furthermore, these techniques typically
is a trade-off, since looking at the goal increases uncertairdgnsider uncertainty in one state variable only and are not
in the ball location and vice versa. Furthermore, it is natirectly applicable to the problems we consider in this work.
clear which uncertainty should be reduced at any point inIn principle, partially observable Markov decision pro-
time, since there is a highly non-linear relationship betweeesses (POMDPs) are well suited to overcome these limi-
the uncertainties and the success of the goal kick. While tations. POMDPs generate sensing and action policies that



take uncertainty into account. However, even recent soltan be used to determine the optimal control policy. There are
tions to POMDPs are intractable for realistic problems [14iwo different families of reinforcement learning techniques,
Augmented MDPs provide an alternative approximation tmodel-based and model-free. The first class of techniques
POMDPs [15]. The augmented state space of such Markawns at learning the parameters of the transition and reward
decision processes contains uncertainty variables in additiomctions, P and R, and then uses standard MDP solution
to the original state variables. The uncertainty variabléschniques to determine the optimal polidy. and R are
represent the uncertainty (measured in entropy) in the originehrned by observing the agent acting in the environment.
state variables. Such MDPs have been applied successfillgdel-free approaches, on the other hand, do not attempt
to the problem of robot path planning under uncertainty ito learn the model parametef? and R, but rather aim at
a robot’'s position [15]. However, their work assumes thkearning a policy directly.
availability of an accurate model of a robot's actions and Here, we apply least squares policy iteration (LSPI), a
observations. Furthermore, they rely on a discretization of thecently introduced approach to efficient model-free rein-
augmented state space, a representation that does not doatement learning [11]. Like SARSAJ, LSPI aims at
to higher dimensional problems such as ours. Our technigearning a policyr that maximizes the correspondin@-
overcomes these limitations by using reinforcement learnifignction, whereQ™ (s, a) is the expected cumulative reward
on the augmented state space in combination with efficiesftexecuting actior in states, assuming that the agent will
linear function approximation. follow the policy 7 in the future. For a given policy, the
The technique most closely related to our work is thealues of theQ-function are given by solving the following
one proposed by Busquets and colleagues [4]. They ap@gliman equations:
reinforcement learning to minimize the travel distance and x
camera usage as a robot moves to a target. A very coars& (@) =7(s:0) +WZP(S/|S’G)Q (,7(s)) @
grid is used to represent the state space and associated *
uncertainties. Even though their technique worked well ifhe first term on the right hand side of (1)(s,a), is
simulated scenarios, the discretization requires careful hdhg expected reward of executing actianin s. It is
tuning and it is not clear how the technique can be appligven by averaging over the possible next statés;a) =
to more noisy and dynamic environments such as ours. s £(5's,a)R(s, a,s’). The second term describes the ex-
In the RoboCup domain, Mitsunaga and Asada [12] irRected future reward when following poliey wherer (s) =
troduced a technique that uses decision-trees over naviga@iéamax, @™ (s', ). The discount factory models the fact
actions. The sensing action is then chosen so as to minimt@at future reward is less valuable than immediate reward.
uncertainty in which navigation action to perform next. Policy iteration is an iterative procedure to learn the
Over the last years, reinforcement learning has been appl@@imal policy, =*. Denote by’ the policy at the be-
with great success to problems in the RoboCup doma@inning of thei-th iteration of the learning procedure. In
Areas include multi-robot coordination [16], [2], behaviothe value determination step, the agent interacts with the
acquisition [18], and actuator control [13]. The focus of thi§hvironment using the policy’(s) to determine its actions.
paper is on using reinforcement learning to acquire sensihfese interactions are used to estimate ¢héunction of

strategies in the RoboCup domain. this policy, denoted)’. In the following policy improvement
step, Q! is used to generate a new, improved policyt?,
I1l. L EAST SQUARES REINFORCEMENTLEARNING where 7tt1(s) = argmax, Q(s,a). It can be shown that

In this section, we shall review the basics of reinforcemeRY iterating through these two steps until convergence, the
learning using least squares policy iteration; see [17], [1&]gorithm learns the optimal policy, that is, the policy that
for details. Reinforcement learning provides a framework gjaximizes the cumulative, expected reward.
which an agent can learn control policies based on experience estimation of the Linea€)-function

and rewards. The concept underlying reinforcement IearningA K ten in policy iteration is the value determination
is that of a Markov decision process (MDP). €y siep In policy lteration 1S the vaiue dete atio

A WDP models an agon ating n an enionment i, WU SUTAeS MG TG (D R DA REIO
a tuple (S, 4, P, ), where 5 is the set of states, and P and R, it rathelPE:‘stimaies thé)-function di[?ectly from
is a finite set of actionsP(s'|s,a) is the transition model : .’ . ) y
that describes the probability of ending up in stateafter |ntera|(:t|9ns fw'thd tge ednwronmgnt. .In order to av0|d|'the
executing actiom in states. R(s, a, s’) is the reward obtained ;:omp exﬂXTro grid-base approxmf;tlor}s, LS_Pl.uses alinear
when the agent executes actiann states and transitions unction, Q" (s, ), to approximate the)-function:
to s’. The goal of solving an MDP is to find a policy, : N k
S — A, that maps states to actions such that the agerf®€ (s.a) ~ Q(s,a) = > ¢i(s,a) w; = ¢(s,a) w (2)
cumulative future reward is maximized. If the parameters of i=1
P and R are known, then the optimal control policy for theThe featuresg; (s, a), represent information extracted from
agent can be determined efficiently using techniques suchtlhs state-action pairs; they are designed manually. Fhe
value iteration. weightsw; are the parameters of the function.
Unfortunately, in many situations, the exact parameters ofLSPI learns the weights of the linear function approxima-
an MDP are not known. In such cases, reinforcement learnitign using temporal difference learning. More specifically,



each interaction between the agent and the environméwiv to apply reinforcement learning to augmented MDPs in

provides a tuple(s,a,r, s’), which describes the reward the context of active sensing in the RoboCup domain.

received upon executing actian in states and ending in o

state s'. The sequence of tuples is then used to update”a T@sk Description

k x k matrix, A, and ak-dimensional vector), as follows: In this paper we illustrate and evaluate our approach to

active sensing using the task of kicking a ball into the

A = A+9(s,0)(6(s,0)" —7o(s,m(s)T)  (3) opponent’s goal. Our legged AIBO robots use detections of
b «— b+d¢(s,a)r (4) field markers, goals, the ball, and other robots to estimate

their own location on the field, the location of the ball, and the

Initially, both A andb are set to zero. In essence, the algq- .. Vo . .
. J " . cation of other robots. Individual detections are integrated
rithm “remembers” the experience the agent has seen so Tar

using the4 matrix, and records the rewardstinAt any time, over time using a partlcle filter for the ro_bot location and a
. : . A multi-model Kalman filter for the ball location [8], [10]. State
an estimate of the weights of the linear functi@fi(s, a) can

be extracted fromd andb by solving the systerm — A~1b. estimation on legged robots is complicated by very noisy

Lagoudakis and Parr show that these estimates convergeoqgmetry and observathns. Mot|on is highly imprecise, and
. . . ) . .Y motion errors are often biased in some way due to unbalanced
the optimal weights of the linear function approximation

as the number of samples increases [11]. An advantageW(?ar and tear on the. Ieg joints. Thuls a robot must freguently
o?%serve landmarks if it needs reliable location estimates.

this technique over traditional approaches, such as gradieB servations are very noisy due to low resolution images

descent TDX) or SARSAQ), is that it converges faster with ihat are often blurred by the bumpy locomotion of the robot.
less samples, since the samples are used efficiently. It als

. . . To kick the ball into the goal, a robot needs to know the
does not require the carefully chosen step size parameter in

" . . relative position of the ball and its own position relative to
the traditional approaches. As [3] pointed out, this approa , - '
) e goal. Unfortunately, the robot's camera has a limited field
can converge very fast whenis not extremely large.

of view, so that it can only observe a subset of important
B. Least Square Policy Iteration Algorithm features at a time. For example, to estimate the location
N . : of the ball, the robot has to point its camera at the ball.
The estimation of the)-function discussed above pla ' )

& P y%—|owever, the robot cannot observe the goal at the same time,

the role of the policy evaluation step in policy iteration nce it becomes more uncertain in the relative location of
Whenever the weights of the approximation are updated; :
9 PP b e goal as it moves toward the ball. On the other hand, to

Fhoellgc;irzgr\?v\iﬁ]n:ﬁgtr:?gﬂce);g-sgﬁjg by selecting for each Stagstimate the location of the goal, the robot has to point the

camera at the goal or a field marker, which increases the risk
7(sjw) = argmax ¢(s,a)’ w (5) of losing track of the ball. Obviously, there is a trade-off
a between reducing uncertainty in the different state variables.
To summarize, LSPI iterates between policy estimation afdirthermore, the system is highly non-linear and it is not
policy improvement as follows. Each interaction with the&lear how the different uncertainties affect the outcome of
environment provides a tuplés, a,r, s’). This tuple is used the actions, for example, of grabbing the ball or kicking it
to update the matrixd and the vecton using the update toward the goal.
equations (3) and (4), respectively. InversionAfand mul-
tiplication with b yields the weightsv for the new linear@-
function (policy evaluation step). Thi@-function estimate In order to apply reinforcement learning to the active
is then used to update the policy according to (5) (policsensing problem, we add uncertainty variables to the state
improvement step). The agent then chooses the next actapace of the robot. For the goal kicking task, each state
according to this policy. Typically, policy evaluation ands in the augmented state space is representeds by
improvement are performed over many accumulated tuples, 6,,0,, H.., Hy, Hyp, ). The first three components are the
before inverting thed matrix. distance to the ball, the relative angle of the ball, and the
relative angle of the goal, respectively (see Fig. 2(a)). The
other three components describe the uncertainties in the
A key limitation of MDPs is that they assume full observfobot, ball, and goal location. The uncertainties, measured
ability, which means the agent can always observe the trg entropy, are extracted from the particle filter and Kalman
state of the world. The only uncertainty is in the outcome dilters estimating the robot and ball location.
actions. Unfortunately, the assumption of full observability is To reduce the complexity of the learning problem, we
violated in most applications, since a robot can observe thecouple the active sensing problem from the motion control
environment only through its noisy sensors. While POMDRY the robot. Our control strategy uses the mean estimates of
extend MDPs to partially observable environments, they atfee robot, ball, and goal position to guide the robot to the
intractable for all but rather small problems [14]. Augmenteball so that it can kick the ball toward the goal (this control
MDPs [15] extend MDPs by adding information-theoretistrategy has been developed beforehand, see Fig. 2(b)). The
measures of uncertainty to the state space. Augmented MD&arning task is to generate a sensing policy that determines
have the key advantage that they are tractable and consiaiewhich object the robot should look. A head controller will
uncertainty in the state space. In this section we will shotien move the head to the most likely position where the

B. Augmented State Space

IV. REINFORCEMENTLEARNING FORACTIVE SENSING



= « 1: a constant that represents the feature of selecting
Ball L . actiona for the current distance interval.
() Ball Like dp, |0y| captures information about the position of
Goal < . Goal . .

/ the robot relative to the ball. The entropies represent the
uncertainties to be traded off. They are balanced against the
cost of an action, which is the angular distance the neck has

Rohot () Robot (b)|  to travel for the action. One key advantage of representing

Fig. 2: (a) The state space contains the relative position of the bl active sensing problem with linear approximation, besides
and the relative orientation of the goal. The distance to the badwer complexity, is that the importance of each factor

is discretized using tile coding. (b) The motion controller uses ”]ﬁvolved in the trade off can be represented in a simple and
estimated ball and goal location to guide the robot to one of three

possible ball docking locations. Depending on the docking Iocatiopf‘,t.UitiVe manner by a gornbination of linear Weights' With a
the robot chooses a straight kick or a left/right head kick. grid/tabular approach, it is not clear how the variables should

be discretized, and some finer distinctions may require very
robot will see the object. There are nine sensing actioiffhe grids, which increases the size of the state space.
pointing either at the ball, the six field markers, or the The reward structure and learning procedure are described
two goals. Note that executing these actions can often haMemore detail in the next section.
unpredictable results. The robot may fail to see the object
because it has an incorrect location estimate in the case of V. EXPERIMENTS
landmarks, or when the ball has moved. On the other handWe have performed experiments both in a simulated envi-
multiple objects can also be seen, further complicating tlhenment and on real robots.
learning task. . .

As described in Section Ill, least squares policy iteratio'%" $|mul_at_ed Expen_ments )
approximates thé)-function by a linear function of features Since it is expensive to obtain data from a real robot, we
extracted from the state space. In our case, we use a mi}@@fn a policy using our AIBO robot simulator. The simulator
discrete / continuous representation of the state spacegTheModels noise in sensing and robot motion at the level of
function is learned for each of the nine actions independentijdividual observations and fine-grained motion commands.
Furthermore, the distance to the bdl), is discretized into six urthermore, it takes constraints such as maximum velocities
overlapping intervals. The first interval covers distances b0d limited camera view into account. The simulator uses a
low 20cm and the last interval covers distances above 60c&y model of the robot body to determine when the robot
The other four intervals evenly split the distances betwed@tiches or can grab/kick a ball. On top of the simulator, we
20cm and 60cm. For each of the resulting 54 combinationgun the complete control software, including the particle filter,
(9 actions times 6 distances) we use the following featutge ball Kalman filters, and the motion control described

vectors above. o o .
At the beginning of a training episode, we place the robot

#(s,a) = (|0y|, Hy, Hy,, H, 0], 1). (6) and the ball at random locations on the field, and the robot
attempts to kick the ball into the goal. The robot makes
Thus the total number of variables is 324. The differer{ sensing decision and executes it every 0.5 second. The
components ofj(s,a) are as follows: episode completes when one of the following four cases
« |6y]: the absolute-valued orientation of the ball relativBappens:
to the robot. We assume symmetry w.r.t. the relative 1) The ball is kicked into the goateward +4.

angle. 2) The robot kicks the ball but misses the goal. The reward
o Hy: the entropy of the ball estimate is extracted in is given by a linear function of the distance from the
closed-form from the ball Kalman filters [10], [1]. goal (measured where the ball hits the border on the

o H,: the entropy of the robot’s location estimate is goal side). The function gives a maximureward
extracted from the particle filter [8]. To do so, the of 1.5 immediately next to the goal and reaches a
samples of the particle filter are put in a 3d grid, and if minimum reward of 0.1 50cm away from the goal.

p; is the sum of the weights in cejl then the entropy  3) The robot fails to grab the ball by accidentally touching
H,. is computed by Zj pjlogp;. it with its legs:reward -5.

« Hy,: the entropy of the robot's orientation towards the 4) The robot loses track of the bateward -5.
goal. Extracted from the particle filter by computing fodditionally, for each time period\¢ elapsed, a reward of
each sample the robot's orientation to the goal. —0.05 is given as we want the sensing strategy to support a

e |6,]: the angular difference between the pan of thgst approach to the ball.
current neck position and the target neck position of we use LSPI to train a policy, where one policy evaluation
a. This value encodes the cost of the sensing action.step contains 50 episodes. That is, the transitions and rewards

obtained during such a batch of 50 episodes are accumulated
1we use tile coding (CMACs) [17] with two overlapping tilings offset byusing update equations (3) and (4). After 50 episodesAthe
5cm. The reason for the discretization is tligt greatly affects the trade- . - .
atrix is inverted and multiplied by th& vector to obtain

offs between state variables, and the non-linear influence is best capturr)g ) ) ) c
by learning a different linear function for each group. the weights of the linea€)-function for the current policy.
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Fig. 3: (a) Average rewards during learning. The thick line indicates the average rewards for each each batch of 50 episodes. The thin lines
provide results for hand tuned policies. (b) Success ratio: Fraction of goals scored per episode. (c) Fraction of ball lost during episodes
with opponent robot. The thick line gives results when the robot starts with the policy learned without considering other robots.

The updated)-function is then used to generate the policit cannot predict the location of landmarks. Later, when the
applied in the next 50 episodes. We useeagreedy policy robot is close to the ball, it only needs to be sure where the
with ¢ = 0.05. The discount factoty is set to 0.9. Learning goal is in order to score, so it frequently looks at the goal
is stopped when the difference between the weights of tirstead. The robot often looks at a landmark one last time
consecutive policy evaluations falls below 0.01. at 25-30cm from the ball to enable a final adjustment, and

The evolution of the average reward during a learning rdoncuses solely on the ball afterward for successful docking.
is given by the thick line in Fig. 3(a). A different evaluation Goal scoring with opponent robotin this set of exper-
of this experiment is given in Fig. 3(b). Shown there is thinents we increase the difficulty of the task by adding an
success ratio measured by fraction of goals scored. Duripgponent robot. A randomly placed opponent moves straight
the first 500 episodes, we observed that the robot learnsteothe ball and kicks it as soon as it reaches it. Even though
focus on the ball in order to avoid penalties associated withe robot is not able to reach the ball if the opponent is
losing track of the ball and improper docking. After thatgloser, it is clear that it should avoid looking away from the
it learns to look at different landmarks to improve the godlall when the opponent reaches the ball. This way, it is much
scoring accuracy. Eventually, it converges at the best trade-sf$s likely to lose track of the kicked ball. For this task, we
between the different sensing actions, resulting in a succesil the following features to the feature vecigs, a):
rate of 80% (Fig. 3(a)). « vy velocity of the ball.

To gauge the quality of the learned policy, we compared e« o4: distance of closedletected opponent.
it to two hand-tuned sensing strategies. Tanningpolicy « 0,: Minimal distance amundetected opponent must be
focuses the camera on the ball, and performs3@® head away from the ball.
sweep to look at all markers in its visible range whenevéthe additional features; ando,, represent information about
the goal orientation uncertainty is above a certain thresholtbw close to the ball an opponent can lg. represents
The pointing policy also focuses the camera on the ball, bytositivedetections; if the robot detects the opponent when it
looks up to a single marker when the goal orientation uncdooks at the ball, then it can estimate how close the opponent
tainty threshold is exceeded. The choice of marker is maideto the ball. This distance is storeddp. If the robot looks
according to the relative angle of the marker from the robait the ball and does not detect any opponent in the same
The robot switches between looking at the closest and tbamera frame, then it knows that all opponents must be at
second closest marker. Switching between markers increalssst a certain distance away from the ball (estimated from
the information gained from each individual detection. Thehe field of view). Thisnegativeinformation is stored ir,.
choice of uncertainty thresholds are tuned to give optimHlthe robot looks at a landmark, then both distances decrease
performance for the respective policies. To improve dockingccording to the maximum velocity an opponent can move.
both policies constantly look at the ball once the robot iBhus, if any of these two distances becomes small, the robot
less than 30cm away from it. The rewards and success ratgp®uld look at the ball in order to avoid losing track of it.
of the panning and pointing policies are indicated by the The ratio of episodes the robot loses track of the ball when
thin dashed and solid lines in Fig. 3(a) and (b), respectivelysing the policy learned without considering the opponent is
Obviously, our approach is able to learn a superior sensimglicated by the dashed, thin line in Fig. 3(c). The robot loses
strategy. track of the ball in approximately 40% of the episodes. We

An analysis of the learned policy showed that it capturesn use this policy at the beginning of learning a new, adapted
the resilient features of the hand tuned policies, and improveslicy (in essence, we initialize thd and b values). As is
upon them. Most of the time the robot chooses to look at tlsdown by the thick line in Fig. 3(c), the robot learns to use the
ball, because this action gives it the best estimate of whexdditional information so as to improve its performance under
the ball is and allows it to walk the shortest path to the ball. these new circumstances. The resulting policy loses track of
also looks at various landmarks from time to time. The choi¢he ball in only half as many episodes. The solid, thin line in
of landmarks appears to reflect the shifting importancé&/pf the figure gives the learning curve when starting from scratch.
to Hy, . Initially, H, is important because if the robot is lostObviously, the learning process is speed up significantly



Goals| Misses| Average Kick opponent kicks the ball before the robot can reach it. The
Miss Distance| Failures| |earned strategy reflects the intuition that the robot should
Learned| 31 10 6 +;0.3 cm 4 look at the ball as the opponent approaches it, thereby it
Pointing | 22 19 9 +;2.2.cm 4 avoids losing track of the ball when it is kicked by the
Panning| 15 21 22 4+;9.4 cm 9 opponent.

Table 1: Results of the various policies on the ball scoring task, 1"€S€ results are extremely encouraging and we are con-
using the real robots. 45 episodes were performed for each poligginced that our technique is applicable to a wide range of
active sensing problems. There is still venues for future
when starting with prior experience (thick line). For clarityresearch. Currently, we assume that there already exists a
we omit the hand-tuned policies, since their performance figed motion policy. Our next step will be to add robot motion
much inferior to all learned policies. An analysis of the policyo the action space of the robot, thereby enabling the approach
showed that the robot learned to always look at the ball whémlearn joint motion and sensing strategies. Furthermore, we
it knows that an opponent is neaiy(small). If it only knows will improve policies learned in the simulator using the real
that an opponennight be near, then it occasionally looks atobot. An interesting question will be how the simulation
landmarks and the goab( small). experience should be weighed relative to the robot’s real
) world experience. Finally, we will test reinforcement learning
B. Real Robot Experiments for active sensing in the context of multi-robot systems.
After learning the sensing policy on the simulator, we
tested it on the real robots. The task is again to move to
the ball and kick it into the goal. For each policy (learned1] Y. Bar-Shalom, X.-R. Li, and T. KirubarajarEstimation with Appli-

_ : cations to Tracking and Navigatiordohn Wiley, 2001.
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s . . [3] Justin A. Boyan. Least-squares temporal difference learning. In
within 2m of the goal). The results are summarized in Tab. 1. Proc. of the International Conference on Machine Learnihg99.

These results are very similar to the simulated experimentgy D. Busquets, R.L. de Kintaras, C. Sierra, and T.G. Dietterich. Rein-
except the success rate is slightly lower, with the 69% success forcement learning for landmark-based robot navigatiomroe. of the

. . International Joint Conference on Autonomous Agents and Multiagent
0
rate for the learned pollcy here versus the 80% achieved Systems (AAMASR002.

in simulation. This difference is not surprising since thejs] J. Denzler and C.M. Brown. Information theoretic sensor data selection
simulation does not model uneven ground, which makes for active object recognition and state estimatié®BEE Transactions
the real ball move on non-straight trajectories. However thg6 on Pattern Analysis and Machine Intelligence (PANE(2), 2002.

L. DR ] D. Fox, W. Burgard, and S. Thrun. Active Markov localization for
learned policy is still significantly better than the hand-tuned ~ mobile robots.Robotics and Autonomous Syste®f:195-207, 1998.

policies, even though these policies were additionally tuneff] D. Fox, J. Hightower, L. Liao, D. Schulz, and G. Borriello. Bayesian
for the real robot filtering for _Iocatlon estimation. IEEE Pervasive Computing2(3),

] ’ . 2003. Special Issue on Dealing with Uncertainty.
The third column shows that even when the ball misseg] J.s. Gutmann and D. Fox. An experimental comparison of localization

the goal, on average it ends up closer to the goal with the methods continued. IRroc. of the IEEE/RS] International Conference

. . . on Intelligent Robots and Systems (IRO&)02.
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