
Reinforcement Learning of Sensing Strategies
Cody Kwok and Dieter Fox

University of Washington, Computer Science & Engineering, Seattle, WA

Abstract— Mobile robots often have to make decisions on
where to point their sensors, which have limited range and
coverage. A good sensing strategy allows the robot to collect
useful information for its tasks. Most existing solutions to this
active sensingproblem choose the direction that maximally
reduces the uncertainty in a single state variable. In more com-
plex problem domains, however, uncertainties exist in multiple
state variables, and they affect the performance of the robot in
different ways. The robot thus needs to have more sophisticated
sensing strategies in order to decide which uncertainties to
reduce, and to make the correct trade-offs. In this work, we
apply least squares reinforcement learning methods to solve this
problem. We implemented and tested the learning approach in
the RoboCup domain, where the robot attempts to reach a ball
and accurately kick it into the goal. We present experimental
results that suggest our approach is able to learn highly effective
sensing strategies.

I. I NTRODUCTION

To successfully operate in its environments, a robot needs
to know the states of the objects that are relevant for its
tasks. For example, an office delivery robot needs to know
its own location in the environment, the location of the letter
it is supposed to deliver, and whether the door to the office
containing the letter is open or closed. These states have to be
estimated from noisy sensor information. Bayes filters such as
Kalman filters or particle filters integrate sensor information
over time in order to estimate such states [1], [7].

Since sensors only have limited range and coverage, a
robot has to decide where to point its sensors so as to
collect information that is most valuable for its task. Bayesian
techniques typically address this problem by choosing the
sensing action that minimizes the expected uncertainty of the
state, where uncertainty is measured by the entropy of the
posterior probability distribution over the state space. Typi-
cally, these active sensing techniques consider uncertainty in
only one state variable (e.g., robot location [6], [15] or object
position [5]). In many situations, however, multiple relevant
state variables carry uncertainty and the sensor cannot collect
information about all of them at the same time.

To see, consider the problem of scoring a goal in the
RoboCup domain. In order to kick the ball into the goal,
a robot has to know where the ball is and in which direction
the goal is located. Since the robot cannot observe the ball
and the goal at the same time, it has to decide whether to
look at the ball in order to minimize uncertainty in the ball
location, or to point the camera in a direction that helps it to
determine the relative location of the goal. Obviously, there
is a trade-off, since looking at the goal increases uncertainty
in the ball location and vice versa. Furthermore, it is not
clear which uncertainty should be reduced at any point in
time, since there is a highly non-linear relationship between
the uncertainties and the success of the goal kick. While in

(a)

Fig. 1: The RoboCup domain is highly dynamic. We introduce
reinforcement learning to develop sensing strategies that decide
where a robot should point its camera so as to best score a goal.

principle, techniques such as POMDPs [14] and augmented
MDPs [15] are well suited to address such problems, they do
not scale to highly complex state spaces and they assume that
a good model of the robot and its environment is available.

In this paper, we show how to solve such multi-state active
sensing problems using reinforcement learning. More specif-
ically, we use least squares policy iteration (LSPI) to learn a
robot’s sensing strategy. LSPI has been introduced recently
for highly efficient model-free reinforcement learning [11].
To take uncertainties in the state estimation into account, we
augment the state space such that it explicitly contains the
uncertainties in the different state variables. The approach
is implemented and tested in the context of RoboCup. The
legged AIBO robot is able to learn a sensing strategy that
results in superior performance in a goal scoring task.

This paper is organized as follows. After discussing related
work, we review the basics of reinforcement learning and
least squares policy iteration in Section III. Then, in Sec-
tion IV, we show how to apply LSPI to our active sensing
problem. Section V presents experimental results, followed
by our conclusions.

II. RELATED WORK

Active sensing has been applied in various areas ranging
from robot localization [6] to vision [5] to sensor manage-
ment for target tracking [9]. Most existing approaches use
information theoretic measures of uncertainty and choose the
sensing action that minimizes expected uncertainty (e.g., in
robot or target location). While such greedy approaches are
very efficient, they do not consider the long term impact of
sensor information. Furthermore, these techniques typically
consider uncertainty in one state variable only and are not
directly applicable to the problems we consider in this work.

In principle, partially observable Markov decision pro-
cesses (POMDPs) are well suited to overcome these limi-
tations. POMDPs generate sensing and action policies that

take uncertainty into account. However, even recent solu-
tions to POMDPs are intractable for realistic problems [14].
Augmented MDPs provide an alternative approximation to
POMDPs [15]. The augmented state space of such Markov
decision processes contains uncertainty variables in addition
to the original state variables. The uncertainty variables
represent the uncertainty (measured in entropy) in the original
state variables. Such MDPs have been applied successfully
to the problem of robot path planning under uncertainty in
a robot’s position [15]. However, their work assumes the
availability of an accurate model of a robot’s actions and
observations. Furthermore, they rely on a discretization of the
augmented state space, a representation that does not scale
to higher dimensional problems such as ours. Our technique
overcomes these limitations by using reinforcement learning
on the augmented state space in combination with efficient
linear function approximation.

The technique most closely related to our work is the
one proposed by Busquets and colleagues [4]. They apply
reinforcement learning to minimize the travel distance and
camera usage as a robot moves to a target. A very coarse
grid is used to represent the state space and associated
uncertainties. Even though their technique worked well in
simulated scenarios, the discretization requires careful hand
tuning and it is not clear how the technique can be applied
to more noisy and dynamic environments such as ours.

In the RoboCup domain, Mitsunaga and Asada [12] in-
troduced a technique that uses decision-trees over navigation
actions. The sensing action is then chosen so as to minimize
uncertainty in which navigation action to perform next.
Over the last years, reinforcement learning has been applied
with great success to problems in the RoboCup domain.
Areas include multi-robot coordination [16], [2], behavior
acquisition [18], and actuator control [13]. The focus of this
paper is on using reinforcement learning to acquire sensing
strategies in the RoboCup domain.

III. L EAST SQUARESREINFORCEMENTLEARNING

In this section, we shall review the basics of reinforcement
learning using least squares policy iteration; see [17], [11]
for details. Reinforcement learning provides a framework by
which an agent can learn control policies based on experience
and rewards. The concept underlying reinforcement learning
is that of a Markov decision process (MDP).

An MDP models an agent acting in an environment as
a tuple 〈S, A, P,R〉, where S is the set of states, andA
is a finite set of actions.P (s′|s, a) is the transition model
that describes the probability of ending up in states′ after
executing actiona in states. R(s, a, s′) is the reward obtained
when the agent executes actiona in states and transitions
to s′. The goal of solving an MDP is to find a policy,π :
S 7→ A, that maps states to actions such that the agent’s
cumulative future reward is maximized. If the parameters of
P andR are known, then the optimal control policy for the
agent can be determined efficiently using techniques such as
value iteration.

Unfortunately, in many situations, the exact parameters of
an MDP are not known. In such cases, reinforcement learning

can be used to determine the optimal control policy. There are
two different families of reinforcement learning techniques,
model-based and model-free. The first class of techniques
aims at learning the parameters of the transition and reward
functions,P and R, and then uses standard MDP solution
techniques to determine the optimal policy.P and R are
learned by observing the agent acting in the environment.
Model-free approaches, on the other hand, do not attempt
to learn the model parametersP and R, but rather aim at
learning a policy directly.

Here, we apply least squares policy iteration (LSPI), a
recently introduced approach to efficient model-free rein-
forcement learning [11]. Like SARSA(λ), LSPI aims at
learning a policyπ that maximizes the correspondingQ-
function, whereQπ(s, a) is the expected cumulative reward
of executing actiona in states, assuming that the agent will
follow the policy π in the future. For a given policy, the
values of theQ-function are given by solving the following
Bellman equations:

Qπ(s, a) = r(s, a) + γ
∑
s′

P (s′|s, a)Qπ(s′, π(s′)) (1)

The first term on the right hand side of (1),r(s, a), is
the expected reward of executing actiona in s. It is
given by averaging over the possible next states:r(s, a) =∑

s′ P (s′|s, a)R(s, a, s′). The second term describes the ex-
pected future reward when following policyπ, whereπ(s′) =
argmaxa Qπ(s′, a). The discount factorγ models the fact
that future reward is less valuable than immediate reward.

Policy iteration is an iterative procedure to learn the
optimal policy, π∗. Denote by πt the policy at the be-
ginning of the t-th iteration of the learning procedure. In
the value determination step, the agent interacts with the
environment using the policyπt(s) to determine its actions.
These interactions are used to estimate theQ-function of
this policy, denotedQt. In the following policy improvement
step,Qt is used to generate a new, improved policyπt+1,
where πt+1(s) = argmaxa Qt(s, a). It can be shown that
by iterating through these two steps until convergence, the
algorithm learns the optimal policy, that is, the policy that
maximizes the cumulative, expected reward.

A. Estimation of the LinearQ-function

A key step in policy iteration is the value determination
step, which estimates theQ-function (1) for a fixed policyπ.
As a model-free approach, LSPI does not explicitly estimate
P and R, it rather estimates theQ-function directly from
interactions with the environment. In order to avoid the
complexity of grid-based approximations, LSPI uses a linear
function, Q̂π(s, a), to approximate theQ-function:

Qπ(s, a) ≈ Q̂π(s, a) =
k∑

i=1

φi(s, a) wi = φ(s, a)Tw (2)

The features,φi(s, a), represent information extracted from
the state-action pairs; they are designed manually. Thek
weightswi are the parameters of the function.

LSPI learns the weights of the linear function approxima-
tion using temporal difference learning. More specifically,

each interaction between the agent and the environment
provides a tuple〈s, a, r, s′〉, which describes the rewardr
received upon executing actiona in states and ending in
state s′. The sequence of tuples is then used to update a
k × k matrix, A, and ak-dimensional vector,b, as follows:

A ← A + φ(s, a)(φ(s, a)T − γφ(s, π(s′i))
T) (3)

b ← b + φ(s, a) r (4)

Initially, both A and b are set to zero. In essence, the algo-
rithm “remembers” the experience the agent has seen so far
using theA matrix, and records the rewards inb. At any time,
an estimate of the weights of the linear functionQ̂π(s, a) can
be extracted fromA andb by solving the systemw = A−1b.
Lagoudakis and Parr show that these estimates converge to
the optimal weights of the linear function approximation
as the number of samples increases [11]. An advantage of
this technique over traditional approaches, such as gradient-
descent TD(λ) or SARSA(λ), is that it converges faster with
less samples, since the samples are used efficiently. It also
does not require the carefully chosen step size parameter in
the traditional approaches. As [3] pointed out, this approach
can converge very fast whenk is not extremely large.

B. Least Square Policy Iteration Algorithm

The estimation of theQ-function discussed above plays
the role of the policy evaluation step in policy iteration.
Whenever the weights of the approximation are updated,
policy improvement is done easily by selecting for each state
the action with the highestQ-value:

π(s|w) = argmax
a

φ(s, a)T w (5)

To summarize, LSPI iterates between policy estimation and
policy improvement as follows. Each interaction with the
environment provides a tuple〈s, a, r, s′〉. This tuple is used
to update the matrixA and the vectorb using the update
equations (3) and (4), respectively. Inversion ofA and mul-
tiplication with b yields the weightsw for the new linearQ-
function (policy evaluation step). ThisQ-function estimate
is then used to update the policy according to (5) (policy
improvement step). The agent then chooses the next action
according to this policy. Typically, policy evaluation and
improvement are performed over many accumulated tuples
before inverting theA matrix.

IV. REINFORCEMENTLEARNING FORACTIVE SENSING

A key limitation of MDPs is that they assume full observ-
ability, which means the agent can always observe the true
state of the world. The only uncertainty is in the outcome of
actions. Unfortunately, the assumption of full observability is
violated in most applications, since a robot can observe the
environment only through its noisy sensors. While POMDPs
extend MDPs to partially observable environments, they are
intractable for all but rather small problems [14]. Augmented
MDPs [15] extend MDPs by adding information-theoretic
measures of uncertainty to the state space. Augmented MDPs
have the key advantage that they are tractable and consider
uncertainty in the state space. In this section we will show

how to apply reinforcement learning to augmented MDPs in
the context of active sensing in the RoboCup domain.

A. Task Description

In this paper we illustrate and evaluate our approach to
active sensing using the task of kicking a ball into the
opponent’s goal. Our legged AIBO robots use detections of
field markers, goals, the ball, and other robots to estimate
their own location on the field, the location of the ball, and the
location of other robots. Individual detections are integrated
over time using a particle filter for the robot location and a
multi-model Kalman filter for the ball location [8], [10]. State
estimation on legged robots is complicated by very noisy
odometry and observations. Motion is highly imprecise, and
motion errors are often biased in some way due to unbalanced
wear and tear on the leg joints. Thus a robot must frequently
observe landmarks if it needs reliable location estimates.
Observations are very noisy due to low resolution images
that are often blurred by the bumpy locomotion of the robot.

To kick the ball into the goal, a robot needs to know the
relative position of the ball and its own position relative to
the goal. Unfortunately, the robot’s camera has a limited field
of view, so that it can only observe a subset of important
features at a time. For example, to estimate the location
of the ball, the robot has to point its camera at the ball.
However, the robot cannot observe the goal at the same time,
hence it becomes more uncertain in the relative location of
the goal as it moves toward the ball. On the other hand, to
estimate the location of the goal, the robot has to point the
camera at the goal or a field marker, which increases the risk
of losing track of the ball. Obviously, there is a trade-off
between reducing uncertainty in the different state variables.
Furthermore, the system is highly non-linear and it is not
clear how the different uncertainties affect the outcome of
the actions, for example, of grabbing the ball or kicking it
toward the goal.

B. Augmented State Space

In order to apply reinforcement learning to the active
sensing problem, we add uncertainty variables to the state
space of the robot. For the goal kicking task, each state
s in the augmented state space is represented bys =
〈db, θb, θg,Hr,Hb,Hθg

〉. The first three components are the
distance to the ball, the relative angle of the ball, and the
relative angle of the goal, respectively (see Fig. 2(a)). The
other three components describe the uncertainties in the
robot, ball, and goal location. The uncertainties, measured
by entropy, are extracted from the particle filter and Kalman
filters estimating the robot and ball location.

To reduce the complexity of the learning problem, we
decouple the active sensing problem from the motion control
of the robot. Our control strategy uses the mean estimates of
the robot, ball, and goal position to guide the robot to the
ball so that it can kick the ball toward the goal (this control
strategy has been developed beforehand, see Fig. 2(b)). The
learning task is to generate a sensing policy that determines
at which object the robot should look. A head controller will
then move the head to the most likely position where the

Ball

Marker

d b

Robot

Goal

θ

θ

 g

b

(a)

Marker

Robot

Ball
Goal

(b)

Fig. 2: (a) The state space contains the relative position of the ball
and the relative orientation of the goal. The distance to the ball
is discretized using tile coding. (b) The motion controller uses the
estimated ball and goal location to guide the robot to one of three
possible ball docking locations. Depending on the docking location,
the robot chooses a straight kick or a left/right head kick.

robot will see the object. There are nine sensing actions,
pointing either at the ball, the six field markers, or the
two goals. Note that executing these actions can often have
unpredictable results. The robot may fail to see the object
because it has an incorrect location estimate in the case of
landmarks, or when the ball has moved. On the other hand,
multiple objects can also be seen, further complicating the
learning task.

As described in Section III, least squares policy iteration
approximates theQ-function by a linear function of features
extracted from the state space. In our case, we use a mixed
discrete / continuous representation of the state space. TheQ-
function is learned for each of the nine actions independently.
Furthermore, the distance to the ball,db, is discretized into six
overlapping intervals. The first interval covers distances be-
low 20cm and the last interval covers distances above 60cm.
The other four intervals evenly split the distances between
20cm and 60cm1. For each of the resulting 54 combinations
(9 actions times 6 distances) we use the following feature
vectors

φ(s, a) = 〈|θb|,Hb,Hθg
,Hr, |θn|, 1〉. (6)

Thus the total number of variables is 324. The different
components ofφ(s, a) are as follows:

• |θb|: the absolute-valued orientation of the ball relative
to the robot. We assume symmetry w.r.t. the relative
angle.

• Hb: the entropy of the ball estimate is extracted in
closed-form from the ball Kalman filters [10], [1].

• Hr: the entropy of the robot’s location estimate is
extracted from the particle filter [8]. To do so, the
samples of the particle filter are put in a 3d grid, and if
pj is the sum of the weights in cellj, then the entropy
Hr is computed by−

∑
j pj log pj .

• Hθg
: the entropy of the robot’s orientation towards the

goal. Extracted from the particle filter by computing for
each sample the robot’s orientation to the goal.

• |θn|: the angular difference between the pan of the
current neck position and the target neck position of
a. This value encodes the cost of the sensing action.

1We use tile coding (CMACs) [17] with two overlapping tilings offset by
5cm. The reason for the discretization is thatdb greatly affects the trade-
offs between state variables, and the non-linear influence is best captured
by learning a different linear function for each group.

• 1: a constant that represents the feature of selecting
actiona for the current distance interval.

Like db, |θb| captures information about the position of
the robot relative to the ball. The entropies represent the
uncertainties to be traded off. They are balanced against the
cost of an action, which is the angular distance the neck has
to travel for the action. One key advantage of representing
the active sensing problem with linear approximation, besides
lower complexity, is that the importance of each factor
involved in the trade off can be represented in a simple and
intuitive manner by a combination of linear weights. With a
grid/tabular approach, it is not clear how the variables should
be discretized, and some finer distinctions may require very
fine grids, which increases the size of the state space.

The reward structure and learning procedure are described
in more detail in the next section.

V. EXPERIMENTS

We have performed experiments both in a simulated envi-
ronment and on real robots.

A. Simulated Experiments

Since it is expensive to obtain data from a real robot, we
learn a policy using our AIBO robot simulator. The simulator
models noise in sensing and robot motion at the level of
individual observations and fine-grained motion commands.
Furthermore, it takes constraints such as maximum velocities
and limited camera view into account. The simulator uses a
2D model of the robot body to determine when the robot
touches or can grab/kick a ball. On top of the simulator, we
run the complete control software, including the particle filter,
the ball Kalman filters, and the motion control described
above.

At the beginning of a training episode, we place the robot
and the ball at random locations on the field, and the robot
attempts to kick the ball into the goal. The robot makes
a sensing decision and executes it every 0.5 second. The
episode completes when one of the following four cases
happens:

1) The ball is kicked into the goal:reward +4.
2) The robot kicks the ball but misses the goal. The reward

is given by a linear function of the distance from the
goal (measured where the ball hits the border on the
goal side). The function gives a maximumreward
of 1.5 immediately next to the goal and reaches a
minimum reward of 0.1 50cm away from the goal.

3) The robot fails to grab the ball by accidentally touching
it with its legs: reward -5.

4) The robot loses track of the ball:reward -5.
Additionally, for each time period4t elapsed, a reward of
−0.05 is given as we want the sensing strategy to support a
fast approach to the ball.

We use LSPI to train a policy, where one policy evaluation
step contains 50 episodes. That is, the transitions and rewards
obtained during such a batch of 50 episodes are accumulated
using update equations (3) and (4). After 50 episodes, theA
matrix is inverted and multiplied by theb vector to obtain
the weights of the linearQ-function for the current policy.

-8

-6

-4

-2

0

2

4

0 500 1000 1500 2000 2500

A
ve

ra
ge

 re
w

ar
ds

Trials

Learned
Pointing
Panning

(a)
0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500

S
uc

ce
ss

 R
at

io

Trials

Learned
Pointing
Panning

(b)
0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500

Lo
st

 B
al

l R
at

io

Trials

Learned with prior
Learned from scratch

Prior

(c)

Fig. 3: (a) Average rewards during learning. The thick line indicates the average rewards for each each batch of 50 episodes. The thin lines
provide results for hand tuned policies. (b) Success ratio: Fraction of goals scored per episode. (c) Fraction of ball lost during episodes
with opponent robot. The thick line gives results when the robot starts with the policy learned without considering other robots.

The updatedQ-function is then used to generate the policy
applied in the next 50 episodes. We use anε-greedy policy
with ε = 0.05. The discount factorγ is set to 0.9. Learning
is stopped when the difference between the weights of two
consecutive policy evaluations falls below 0.01.

The evolution of the average reward during a learning run
is given by the thick line in Fig. 3(a). A different evaluation
of this experiment is given in Fig. 3(b). Shown there is the
success ratio measured by fraction of goals scored. During
the first 500 episodes, we observed that the robot learns to
focus on the ball in order to avoid penalties associated with
losing track of the ball and improper docking. After that,
it learns to look at different landmarks to improve the goal
scoring accuracy. Eventually, it converges at the best trade-off
between the different sensing actions, resulting in a success
rate of 80% (Fig. 3(a)).

To gauge the quality of the learned policy, we compared
it to two hand-tuned sensing strategies. Thepanningpolicy
focuses the camera on the ball, and performs a180◦ head
sweep to look at all markers in its visible range whenever
the goal orientation uncertainty is above a certain threshold.
The pointing policy also focuses the camera on the ball, but
looks up to a single marker when the goal orientation uncer-
tainty threshold is exceeded. The choice of marker is made
according to the relative angle of the marker from the robot.
The robot switches between looking at the closest and the
second closest marker. Switching between markers increases
the information gained from each individual detection. The
choice of uncertainty thresholds are tuned to give optimal
performance for the respective policies. To improve docking,
both policies constantly look at the ball once the robot is
less than 30cm away from it. The rewards and success ratios
of the panning and pointing policies are indicated by the
thin dashed and solid lines in Fig. 3(a) and (b), respectively.
Obviously, our approach is able to learn a superior sensing
strategy.

An analysis of the learned policy showed that it captures
the resilient features of the hand tuned policies, and improves
upon them. Most of the time the robot chooses to look at the
ball, because this action gives it the best estimate of where
the ball is and allows it to walk the shortest path to the ball. It
also looks at various landmarks from time to time. The choice
of landmarks appears to reflect the shifting importance ofHr

to Hθg
. Initially, Hr is important because if the robot is lost,

it cannot predict the location of landmarks. Later, when the
robot is close to the ball, it only needs to be sure where the
goal is in order to score, so it frequently looks at the goal
instead. The robot often looks at a landmark one last time
at 25-30cm from the ball to enable a final adjustment, and
focuses solely on the ball afterward for successful docking.

Goal scoring with opponent robot:In this set of exper-
iments we increase the difficulty of the task by adding an
opponent robot. A randomly placed opponent moves straight
to the ball and kicks it as soon as it reaches it. Even though
the robot is not able to reach the ball if the opponent is
closer, it is clear that it should avoid looking away from the
ball when the opponent reaches the ball. This way, it is much
less likely to lose track of the kicked ball. For this task, we
add the following features to the feature vectorφ(s, a):

• vb: velocity of the ball.
• od: distance of closestdetected opponent.
• ou: minimal distance anundetected opponent must be

away from the ball.
The additional featuresod andou represent information about
how close to the ball an opponent can be.od represents
positivedetections; if the robot detects the opponent when it
looks at the ball, then it can estimate how close the opponent
is to the ball. This distance is stored inod. If the robot looks
at the ball and does not detect any opponent in the same
camera frame, then it knows that all opponents must be at
least a certain distance away from the ball (estimated from
the field of view). Thisnegativeinformation is stored inou.
If the robot looks at a landmark, then both distances decrease
according to the maximum velocity an opponent can move.
Thus, if any of these two distances becomes small, the robot
should look at the ball in order to avoid losing track of it.

The ratio of episodes the robot loses track of the ball when
using the policy learned without considering the opponent is
indicated by the dashed, thin line in Fig. 3(c). The robot loses
track of the ball in approximately 40% of the episodes. We
can use this policy at the beginning of learning a new, adapted
policy (in essence, we initialize theA and b values). As is
shown by the thick line in Fig. 3(c), the robot learns to use the
additional information so as to improve its performance under
these new circumstances. The resulting policy loses track of
the ball in only half as many episodes. The solid, thin line in
the figure gives the learning curve when starting from scratch.
Obviously, the learning process is speed up significantly

Goals Misses Average Kick
Miss Distance Failures

Learned 31 10 6 ±; 0.3 cm 4
Pointing 22 19 9 ±; 2.2 cm 4
Panning 15 21 22 ±; 9.4 cm 9

Table 1: Results of the various policies on the ball scoring task,
using the real robots. 45 episodes were performed for each policy.

when starting with prior experience (thick line). For clarity,
we omit the hand-tuned policies, since their performance is
much inferior to all learned policies. An analysis of the policy
showed that the robot learned to always look at the ball when
it knows that an opponent is near (od small). If it only knows
that an opponentmight be near, then it occasionally looks at
landmarks and the goal (ou small).

B. Real Robot Experiments

After learning the sensing policy on the simulator, we
tested it on the real robots. The task is again to move to
the ball and kick it into the goal. For each policy (learned
and two hand-tuned), we performed 3 batches of 15 episodes,
each run based on one of 3 selected robot starting positions
and one of 5 ball positions on the field (all positions were
within 2m of the goal). The results are summarized in Tab. 1.
These results are very similar to the simulated experiments,
except the success rate is slightly lower, with the 69% success
rate for the learned policy here versus the 80% achieved
in simulation. This difference is not surprising since the
simulation does not model uneven ground, which makes
the real ball move on non-straight trajectories. However, the
learned policy is still significantly better than the hand-tuned
policies, even though these policies were additionally tuned
for the real robot.

The third column shows that even when the ball misses
the goal, on average it ends up closer to the goal with the
learned policy. While the robot never loses the ball in these
trials, the kick failures for both the learned and the pointing
head strategy are caused by errors in executing the kicks,
which happen probabilistically.

VI. CONCLUSIONS ANDFUTURE WORK

We showed how to learn active sensing strategies for a
mobile robot using least square policy iteration. LSPI is
an efficient, model-free reinforcement learning technique for
continuous state spaces. To apply LSPI to the active sensing
problem, we used an augmented state representation. In
addition to the state variables a robot needs to consider for its
control, the augmented state space contains the uncertainties
in these variables. As a result, the robot can learn which
uncertainties it should reduce to achieve best performance.

We implemented and tested our approach in the context
of learning a sensing strategy that enables a legged robot
to score a goal in the RoboCup domain. Both simulated
and real robot experiments show that our learned sensing
strategy significantly outperforms two hand tuned strategies.
Our technique learned the best trade-off between minimizing
the different uncertainties involved in the task. Furthermore,
the technique was able to adapt to situations in which an

opponent kicks the ball before the robot can reach it. The
learned strategy reflects the intuition that the robot should
look at the ball as the opponent approaches it, thereby it
avoids losing track of the ball when it is kicked by the
opponent.

These results are extremely encouraging and we are con-
vinced that our technique is applicable to a wide range of
active sensing problems. There is still venues for future
research. Currently, we assume that there already exists a
fixed motion policy. Our next step will be to add robot motion
to the action space of the robot, thereby enabling the approach
to learn joint motion and sensing strategies. Furthermore, we
will improve policies learned in the simulator using the real
robot. An interesting question will be how the simulation
experience should be weighed relative to the robot’s real
world experience. Finally, we will test reinforcement learning
for active sensing in the context of multi-robot systems.

REFERENCES

[1] Y. Bar-Shalom, X.-R. Li, and T. Kirubarajan.Estimation with Appli-
cations to Tracking and Navigation. John Wiley, 2001.

[2] M. Bowling and M. Veloso. Simultaneous adversarial multi-robot
learning. InProc. of the International Joint Conference on Artificial
Intelligence (IJCAI), 2003.

[3] Justin A. Boyan. Least-squares temporal difference learning. In
Proc. of the International Conference on Machine Learning, 1999.

[4] D. Busquets, R.L. de M̀antaras, C. Sierra, and T.G. Dietterich. Rein-
forcement learning for landmark-based robot navigation. InProc. of the
International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS), 2002.

[5] J. Denzler and C.M. Brown. Information theoretic sensor data selection
for active object recognition and state estimation.IEEE Transactions
on Pattern Analysis and Machine Intelligence (PAMI), 24(2), 2002.

[6] D. Fox, W. Burgard, and S. Thrun. Active Markov localization for
mobile robots.Robotics and Autonomous Systems, 25:195–207, 1998.

[7] D. Fox, J. Hightower, L. Liao, D. Schulz, and G. Borriello. Bayesian
filtering for location estimation. IEEE Pervasive Computing, 2(3),
2003. Special Issue on Dealing with Uncertainty.

[8] J.S. Gutmann and D. Fox. An experimental comparison of localization
methods continued. InProc. of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2002.

[9] C. Kreuchner, K. Kastella, and A.O. Hero. Sensor managment using
an active sensing approach.IEEE Transactions on Signal Processing,
2004. Special Issue on Machine Learning, to appear.

[10] C.T. Kwok and D. Fox. Map-based multiple model tracking of
a moving object. www.cs.washington.edu/balltracking
under review.

[11] M.G. Lagoudakis and R. Parr. Model-free least squares policy iteration.
In Advances in Neural Information Processing Systems 14, 2001.

[12] N. Mitsunaga and M. Asada. Visual attention control for a legged
mobile robot based on information criterion. InProc. of the IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2002.

[13] M. Ogino, Y. Katoh, M. Aono, M. Asada, and K. Hosoda. Rein-
forcement learning of humanoid rhythmic walking parameters based on
visual information. InProc. of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2003.

[14] N. Roy and G. Gordon. Exponential family pca for belief compression
in POMDPs. InAdvances in Neural Information Processing Systems
15 (NIPS), 2002.

[15] N. Roy and S. Thrun. Coastal navigation for mobile robots. In
Advances in Neural Information Processing Systems 12 (NIPS), 1999.

[16] P. Stone and R.S. Sutton. Scaling reinforcement learning toward
RoboCup soccer. InProc. of the International Conference on Machine
Learning (ICML), 2001.

[17] R. Sutton and A.G. Barto.Reinforcement Learning: An Introduction.
MIT Press, 1998.

[18] Y. Takahashi, K. Hikita, and M. Asada. Incremental purposive behavior
acquisition based on self-interpretation of instructions by coach. In
Proc. of the IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2003.

