Many distributed
computing protocols
require the ability to

achieve consensus

among processors. A
parable of human
communication starts
this survey of the
(im)possibilities.

The Many Faces
of Consensus in

Distributed
Systems

John Turek, IBM T.J. Watson Research Center
Dennis Shasha, New York University

example, they both prefer e-mail to the telephone. On a cold winter day,
Alice sends Bob electronic mail at 10 a.m., saying, “Let’s meet at noon in
front of La Tryste.”

The e-mail connection between our two protagonists is known to lose messages.
but today they are lucky and Alice's message arrives at Bob’s workstation at 10:20
a.m. Bob looks at his calendar and sees that he is free for lunch. So he sends an
acknowledgment.

Alice receives the acknowledgment at 10:45 a.m. and prepares to go out, when
a thought occurs to her: *If Bob doesn’t know that I received his acknowledgment,
he might think [won’t wait for him. I'd better acknowledge his acknowledgment.”

And so it goes. We can show that. ultimately. neither Bob nor Alice will make
it to La Tryste unless at least one of them is willing to risk waiting in the cold
without meeting the other.

B ob and Alice have discovered that they have a lot in common. For

“The Parable of La Tryste” and the consensus
problem

This parable holds several lessons for designers of distributed systems.

e Easier problem lesson. 1f the problem was simply that Alice wanted to be sure
Bob received her original message, then the first acknowledgment would have
sufficed. The issue is that Bob is not sure Alice knows that the first message arrived.
Thus. the problem of transmission is easier than this problem of mutually coordi-
nated action.

e Reliable network lesson. A phone call appears to solve the problem:

OU18-9162/92/0600-0008803.00 & 1992 IEEE COMPUTER

Alice: Let’s meet at noon.
Bob: Sure, see you then.

The basis of this solution is the assump-
tion that one party will hear what the
other says within a bounded delay or
that the existence of a problem will be
evident within a bounded delay. If this
assumption breaks down, either Bobor
Alice might get stuck waiting out in the
cold.

e Probability lesson. Imagine that
Alice and Bob each send a flurry of
duplicate messages instead of a single
message each time. They might act on
the assumption that at least one mes-
sage will arrive. If they were right with
probability p for each flurry, thena two-
message protocol would succeed with
probability p*. Here, success means that
neither would wait in the cold and they
would lunch together at La Tryste.

The price of failure is higher in many
applications. For example, if air traffic
controllers used computers subject to
these kinds of faults, we would be much
more reluctant to use the airlines. For
this reason, the probabilistic approach-
es cited in the literature on consensus
eschew such risks. These approaches
ensure that a decision will be made within
a bounded amount of time with high
probability. However, they insist that if
a decision is eventually reached, it will
be correct.

Consenting adults. In the consensus
problem. a set of agents must all agree
onadecision based on their initial states.
Typically.only two decisions are allowed.
0 and 1. (Once a protocol for two deci-
sions is available it can be extended to
any number of decisions.) The numbers
may represent actions. For example. 1
may represent “commit” and 0 may rep-
resent “abort” in a distributed database
system. The agents must all output the
same value and there must be some
initial state for which Q is the output and
another for which 1 is the output.

Formally,a consensus protocol is cor-
rectif it meets the following conditions:

e Consistency. All agents agree on the
same value and all decisions are final.

e Validity. The agreed-upon value
must have been some agent’s input.

e Termination. Each agent decides on
a value within a finite number of steps.

In our parable. the consistency condi-

tion would be violated if it was possible
for either Bob or Alice to wait outside

June 1992

in the cold alone. The validity condition
would be violated if both Bob and Alice
wanted to meet at La Tryste, but nei-
ther of them went. (This condition rules
out the consistent but uninteresting so-
lution where everyone always decides
the same thing — for example, “Don’t
meet.”) The termination condition would
be violated if they were never to agree.

The right time and place. A promi-
nent application of consensus is in com-
mit protocols for distributed databases.
In such protocols, all server sites must
agree whether to commit or abort, and
if any site wants to abort, then all sites
must abort. The commit problem s strict-
ly harder to solve than the consensus
problem because of this priority in fa-
vor of aborts. Therefore. any result in-
dicating the impossibility of consensus
translates to an impossibility result for
the commit problem.

A second important application area
for consensus is ordered atomic broad-
cast protocols. Such protocols try to
guarantee that if two messages, m and
m’. are sent, then either every working
site will receive m firstor every working
site will receive m’ first. As we will show,
any system that can implement ordered
atomic broadcast can also achieve con-
sensus. Consequently, whenever con-
sensusisimpossible, sois ordered atomic
broadcast.

In fact, consensus is part of any dis-
tributed system that embodies coordi-
nated activity — from the synchroniza-
tion of clocks, to the election of leaders,
to the coordination of rocket firings.'

Moreover. consensus is closely relat-
ed to fault tolerance. A system is syn-
chronous if all processors proceed at
predictable speeds. Otherwise, the sys-
temis asynchronous. A protocol is wait-

freeif no processor canindefinitely block

the progress of any other processor.
Herlihy? among others has shown that
in an environment where n processors
operate asynchronously, the ability to
reach consensus among all the proces-
sors is a necessary condition for wait-
free implementations of many shared-
datastructures and a sufficient condition
for wait-free implementations of any
shared-data structure. In other words,
any asynchronous distributed system for
which data sharing is important must be
capable of consensus if it is to tolerate
certain kinds of failures.

Because consensus is fundamental to
so many distributed operations, its so-

lution provides a fundamental building
block to system designers.

“...begotten by despair upon impos-
sibility.”* Consensus can be easy or dif-
ficult to achieve depending on the kind
of computer system (synchronous or
asynchronous) and the failure assump-
tions. In atamous paper, Fischer, Lynch,
and Paterson® showed the impossibility
of deterministic consensus among two
or more processors in an asynchronous
distributed system. Since then, the con-
sensus problem has been examined un-
der many different synchrony and fail-
ure assumptions. For example, Fischer,
Lynch, and Merritt* showed that con-
sensus cannot be achieved in a synchro-
nous environment if even one third of
the processors are “maliciously” faulty
— that s, if they act in a way that simu-
lates an agent that tries to make the
other processors make inconsistent de-
cisions.

Given therole of consensus as a build-
ing block, these assumptions have alarge
impact on what can be achieved in prac-
tice. In this article, we survey known
results regarding consensus, relating
them to practice and explaining the small
collection of elegant ideas embodied in
their proofs. Our goal is to give practi-
tioners some sense of the system hard-
ware and software guarantees that are
required to achieve a given level of reli-
ability and performance. Our survey
focuses on two categories of failures:

o Fail-stop failures. These occur when
processors fail by stopping. While thisis
not a problem when processors are syn-
chronous, the combination of asynchro-
ny and fail-stop failures can make con-
sensus impossible. We discuss these
failures in the following section, “Hesi-
tate and you're lost.”

o Byzantine failures. These occur when
processors fail by acting maliciously.
This is a useful, though pessimistic,
model of software failures. Depending
on the number of failures in the system,
consensus may be impossible under
Byzantine failures even when the sys-
tem is synchronous. We discuss these
failures in the section titled “Plotting a
Byzantine agreement.”

#*Andrew Marvell, “The Definition of Love.”
The Poems of Andrew Marvell. Hugh MacDonald.
ed., Harvard Univ. Press, Cambridge, Mass., 1952,
p. 34.

Hesitate and you’re lost

A distributed system is made up of
processors communicating through a
shared communications medium, as il-
lustrated in Figure 1. Sometimes we can
assume that the communications media
are reliable (for example, in backplane
networks). Sometimes we can assume
that processors are reliable (for exam-
ple, in quadruple redundant hardware
configurations). Suppose a given dis-
tributed system must solve problems at
least as difficult as consensus. This would
be true, for example, if the system was
to include a distributed database. The
designer should know how reliable the
components must be in order to solve
the consensus problem.

This section looks at how synchrony
affects the spectrum of possibilities.

A world of (im)possibilities. Let’s
return 1o our original scenario where
Bob and Alice are sending each other
messages across a computer network.
The difficulty in this scenario is that
network delay has no bounds and mes-
sages can get lost. We observed that
consensus isimpossible under these con-
straints. Let’s strengthen the network
so that messages are never lost though
they can still be delayed, and let’s add
the condition that either Bob or Alice
could be fired at any time. Since the
network never fails, Alice could send
Bob a message and then wait for his
response. But if Bob gets fired before
he receives Alice’s message, Alice may
end up waiting indefinitely. Under these
conditions, is consensus possible?

Fischer, Lynch,and Paterson®showed
the surprising result that in a distribut-
ed system with an unbounded but finite
message delay, there is no protocol that

Communications
medium

Figure 1. A distributed system.

can guarantee consensus within a finite
amount of time if even a single proces-
sor can fail by stopping. This result im-
plies no possibility of consensus for Bob
and Alice under the redefined circum-
stances. (The reasoning behind this is
discussed later under the subhead “Prov-
ing the impossible.”)

While Fischer, Lynch, and Paterson’s
result shows that a completely asyn-
chronous system cannot guarantee con-
sensus, it does not give much sense of
what can be achieved in practice. More
optimistic assumptions on the timing
constraints within the network and
among processors can yield consensus
protocols, even in the presence of mul-
tiple failures. Dolev, Dwork, and Stock-
meyer® addressed this issue by identify-
ing a set of system parameters for
classifying asynchronous systems. The
following items formally define a subset
of those parameters:

® Processors can be either synchro-
nous or asynchronous. Processors are
synchronous if and only if there exists a
constant s > 1 such that for every s + 1
steps taken by any processor, every oth-
er processor will have taken at least one
step.

e Communication delay can be either
bounded orunbounded. Delay is bound-
edif and only if every message sent by a

Table 1. Conditions under which consensus is possible.

_ Message Order
Processors Unordered Ordered Communication
) No Yes No Unbounded
Asynchronous :)
Bounded

ynchronous ‘ No No Yes Yes Unbounded

i Point- Broadcast Point-

l to-point to-point

Transmission
10

processor arrives at its destination within
t real-time steps, for some predeter-
mined f.

e Messages can be either ordered or
unordered. Messages are ordered if and
onlyif processor P, receives message m,
before message m, when P, sends m, to
P, atreal timet,, P,sends m,to P,atreal
time t,, and 1, < £.. (For ordered atomic
broadcasts, as described earlierin “The
right time and place”and used below in
case 2, the slightly weaker condition
that either all sites either receive m’
before m or all sites receive m before m’
will suffice.)

o Transmission mechanism can be ei-
ther poini-to-point or broadcast. The
transmission mechanism is point-to-
point if a processor can send a message
in an atomic step to at most one other
processor. It is broadcast if a processor
can send a message to all the processors
in an atomic step.

Table 1 summarizes the possibilities for
consensus presented by Dolev, Dwork,
and Stockmeyer. In the system Fischer,
Lynch, and Paterson studied, messages
were unordered, communication was
unbounded, and processors were asyn-
chronous. As the table shows, consen-
susisimpossible under these conditions.
Itis possible, however, in three minimal
cases:

e Case 1. Processors are synchronous
and communication is bounded.

o Case 2. Messages are ordered and
the transmission mechanism is broad-
cast.

e Case 3. Processors are synchronous
and messages are ordered.

We have included the third case for
completeness. However, the bestknown
algorithm for achieving consensus in
this case requires an exponential num-
ber of messages and is therefore of little
practical interest.

Case 1 describes the situationin which
every processor can use time-outs to
tell if another has failed. This assump-
tion is the basis of the standard commit
protocols that work under the fail-stop
assumption, such as three-phase com-
mit.

Case 2 describes a situation in which
processors can be asynchronous and
some of them can also fail. However,
they have an ordered atomic broadcast
primitive (perhaps because they share a

COMPUTER

reliable bus). To achieve consensus, each
processor broadcasts its initial value to
all other processors. The processors then
read messages from the network and
note the first value received. Since mes-
sages are ordered, all the processors
will agree as to which was the first value
placed on the network.

A variation of case 2 is k-casting. This
variation assumes that the transmission
mechanism allows broadcast to at most
k other processors. Dolev, Dwork, and
Stockmeyer show that if k-casting is
possible and messages are ordered, the
system can achieve deterministic con-
sensus in the presence of up to k — 1
failures.

Another variant assumes that pro-
cessors are “nearly” synchronous. If a
processor can read, process, and write
to the network in one atomic step, the
addition of bounded communication
delay and broadcast transmission will
be sufficient for achieving consensus.
The idea is that if processors can exe-
cute a critical section of code within a
predictable amount of time, then the
problems associated with processor asyn-
chrony can be overcome. This can often
be achieved in practice by having pro-
cessors disable interrupts during the
critical code section.

Agreeing on shared memory. Does
consensus become easier to implement
in a system with a reliable shared mem-
ory? Intuition might suggest that the
inherent broadcast capabilities and re-
liability of shared memory could suf-
fice for consensus. While this is true for
the Byzantine failures in synchronous
systems that we will discuss later, it is
not the case for asynchronous systems.

Herlihy? showed the impossibility of
consensus in a distributed system with
asynchronous processors and a shared
memory that supports only reads and
writes. Achieving consensus requires
adding synchronization primitives to the
shared memory. Infact, Herlihy showed
the existence of a hierarchy of increas-
ingly more powerful synchronization
primitives that allow processors to
achieve consensus in the presence of
increasingly many faults.

To understand why shared memory is
not enough, recall the minimum condi-
tions presented by Dolev, Dwork, and
Stockmeyer. Shared memory with read
and write provides the equivalent of a
broadcast mechanism, but does not of-
fer the equivalent of ordered messages.

June 1992

fetch&add(m, v).
begin /* Atomic action*/
oldm «m
me-m+v;
return{oldm); -
end; /* Atomic action*/

Figure 2. Fetch&add (consensus num-
ber = 2).

compare&swap(m, new, old)
begin /*Atomic action*/
if (m = old) then
begin '
m < new;
return (true)
end
else return (false);
end; /* Atomic action*/

Figure 3. Compare&swap (consensus
number = n).

Once two processors have written their
messages to the shared memory, there
is no way for a third processor to deter-
mine which one wrote its message first.
Actually, because of the asynchronous
nature of the processors, even two writ-
ing processors can’t agree which wrote
its message first.

Given an asynchronous shared-mem-
ory system prone to fail-stop failures,
Herlihy defines the consensus number
of a synchronization primitive. A prim-
itive with a consensus number n can
achieve consensus among an arbitrary
number of processors evenifupton -1
processors stop. By definition, a primi-
tive with a consensus number n — 1, but
not n, cannot simulate a primitive with
a consensus number n (otherwise, it too
would have consensus number »). Con-
versely, a primitive with consensus num-
ber n can simulate a primitive with con-
sensus number n — 1.

For example, atomic read and write
operations have a consensus number of
1, but not 2. Therefore, in a shared
memory allowing only reads and writes,
no deterministic algorithm can achieve
consensus among two or more proces-
sors even if only one of the processors is
allowed to fail.

Figure 2 presents fetch&add, a prim-
itive that reads and increments a loca-
tion from memory in one atomic step.
Fetch&add has a consensus number of

2, but not 3. Therefore, adding it or a
variant to the shared memory pushes
the impossibility result out to three or
more processors in the presence of two
or more failures.

The notion of a universal primitive is
important. Such a primitive has a con-
sensus number of n for arbitrary n (that
is, all but one of the processors can stop
and consensus will still be reached). Fig-
ure 3 shows a universal primitive called
compare&swap. It replaces the value in
memory location m with new if and only
if the old value in memory is equal to
old. 1t is not difficult to see that
compare&swap is universal. Assume
that a specified memory location, m,
has an initial value of 1. Each proces-
sor, P, proceeds as follows:

(1) Write initial value tolocation ai].

(2) Compare&swap(v, 1, i). (That
is, attempt to replace the L in location
v with the processor ID.)

(3) Decide a[v].

Only one processor, P, will succeed with
the compare&swap. All processors will
decide on the value that P places in v.

Herlihy’s work shows that the
compare&swap is a more powerful syn-
chronization primitive for achieving
consensus than are the test&set and
the fetch&add, thereby dispelling a
popular myth on the relative power of
the latter two primitives. Of course, this
does not preclude their usefulness; tech-
niques such as combining can make them
more efficient than compare&swap. It
just turnsout that there are certain things
they cannot do.

Recall that a wait-free protocol is one
in which no processor can be held up
indefinitely by the actions, or failures,
of other processors. Since consensus in
the presence of an arbitrary number of
failures cannot be achieved without us-
ing a universal primitive, it follows that
there are computations that cannot be
performed in a wait-free manner in a
distributed system without a universal
primitive. Herlihy showed that in the
presence of a universal primitive, any
computation can be performedin a wait-
free fashion. Thus, the ability toachieve
consensus is necessary for any general-
purpose distributed system that pur-
ports to tolerate failures.

Proving the impossible. Here we de-
scribe the proof of Fischer, Lynch, and

11

Paterson’s impossibility result.> Name-
ly, in a completely asynchronous mes-
sage-passing system (thatis, one in which
messages have unbounded but finite
transit times), no deterministic consen-
sus protocol can tolerate even a single
processor failure.

The state of a system, denoted a con-
figuration, is defined by the messages
that have not yet been delivered to their
destinations and the individual states
(that is. program counter and internal
memory) of the individual processors.
If at some point in the computation
either 0 or 1 can still be reached, the
system is said to be in a bivalent state.
Otherwise, the system is said to be in a
univalent state. We say the system is 0-
valent if O has beendecided and 1-valent
if 1 has been decided.

An event, e, is defined as the receipt
of a message, m, by a processor. For the
sake of generality, m may be an empty
message. Since we assume the protocol
is deterministic, the processors can be
said to make decisions only when an
event occurs. A sequence, or subse-
quence, of events is called a schedule.
The proof shows that an adversary can
keep the protocol going forever by slow-
ing processors down or Kkilling a single
processor. Specifically, the following two
lemmas prove the theorem:

e Lemma 1. There exists an initial
configuration that is bivalent.

® Lemma 2. Given a bivalent configu-
ration, there exists a nonempty sched-
ule leading to another bivalent configu-
ration.

Lemma 1 is best described by a vari-
ation on the bald man’s paradox. A man
with a full head of hair is not bald. A
man with little or no hair is bald. A man
can be either bald or not bald (for exam-
ple, if he has 1,000 or more hairs, he is
not bald; otherwise, he is bald). If we
removed each hair one at a time from a
man with a full head of hair, then we will
reach a point where pulling one more
hair will cause us to change our descrip-
tion of him. However, if he was wearing
a hat and only, say, 999 strands of his
hair were showing, it would be impossi-
ble to determine whether he was bald or
not bald.

If all processors start with an initial
value of 0, then the system must decide
0 to satisfy the validity condition on
consensus. Likewise, if all processors
start with an initial value of 1, then the

12

Processor - Inputs‘to processors
P, e 011 T
P, & 001 111
P, &« 010(0 111
P,, < 0,0{0]... 1)1
P, <« 0(0{0]...]0]1

Decides 0l?121... 1211

Figure 4. Initial inputs to processors
and the resulting decisions.

Figure 5. From one bivalent state to
another.

system should decide 1. As shown in
Figure 4, it is possible to go from a
configuration in which all processors
start with an input value of 0 to a config-
uration in which all processors start with
an input value of 1 by flipping each
processor’s input value one at a time.
Assume that there is no initial bivalent
state. As with the bald man’s paradox,
there must be a single processor where-
by flipping that input bit shifts the deci-
sion from a 0 to a 1. If an adversary
caused the processor corresponding to
that bit to fail before the protocol even
began, then the two configurations would
be impossible to distinguish from each
other and would reach the same deci-
sion. This contradicts the assumption
that one configuration could only have
yielded a 0 and the other a 1.

To prove lemma 2, assume that the
system is currently in a bivalent config-
uration, C. If aschedule exists that takes
the system to another bivalent configu-

ration, then we are done. Otherwise,
since the system was in a bivalent con-
figuration, there exist at least two events,
eand ¢, whereby e takes the system to a
0-valent configuration D, and €’ takes
the system to a 1-valent configuration
D’ (see Figure 5). No events lead to
another bivalent state. Call e and ¢’ the
deciding events. There are two cases:

¢ Deciding events € and € occur on
different processors. Since events de-
note message receptions, applying e and
¢'in either order yields the same config-
uration F. By assumption, if e is applied
first, then F is O-valent. If ¢"is applied
first, then F is 1-valent. This is clearly
absurd. Hence, in a deterministic con-
sensus protocol, any pair of deciding
events yielding different valences must
occur on the same processor.

¢ Deciding events e and e both occur
onsome processor P. If e occurs first and
then P fails, the resulting configuration
should be 0-valent. If ¢ occurs first and
then P fails, the resulting configuration
should be 1-valent. But there is no per-
ceivable difference between these con-
figurations. Again, we get a contradic-
tion.

Since an initial bivalent state exists and
the adversary can keep the system in a
bivalent state for an arbitrary period,
there is no way of guaranteeing consen-
sus in an asynchronous distributed sys-
tem in which one processor can fail.

A different approach to understand-
ing the issues and difficulties of the con-
sensus problem uses a formalism called
knowledge logic. A good reference to
knowledge logic is the set of ACM con-
ference proceedings from 1986 and 1988
entitled Theoretical Aspects of Reason-
ing About Knowledge.

Sharing messages. Herlihy proved
that asynchronous processors, commu-
nicating via a shared memory, cannot
achieve deterministic consensus in the
presence of one faulty processor. He
used a technique similar to the one used
by Fischer, Lynch, and Paterson. Here,
we relate the two results using a differ-
ent kind of glue.

Even though consensus cannot be
achieved in an asynchronous message-
passing environment with faults orin an
asynchronous shared-memory environ-
ment with faults, it would still seem that
shared memory provides a more power-
ful primitive than message passing. In

COMPUTER

one sense, this is true. Shared-memory
systems can solve some problems even
if a majority of the processors fail —
problems that cannot be solved in a
message-passing environment under the
same conditions.

But what if fewer than half of the
processors are allowed to fail? Attiya,
Bar-Noy. and Dolev’ have shown that
under these circumstances the message-
passing system of Fischer, Lynch, and
Paterson can reliably emulate a shared-
memory environment. This immediate-
ly lets us apply results from the Fisher,
Lynch, and Paterson message-passing
model to the read-write shared-memo-
ry model. Thus, the Fischer, Lynch, and
Paterson impossibility result implies
Herlihy’s result and shows the impossi-
bility of achieving consensus in the pres-
ence of even one fault in an asynchro-
nous, read-write, shared-memory
system.

One failure too many. The emulation
result also provides an easier frame-
work for implementing protocols in asyn-
chronous message-passing systems, but
before we show how to implement a
shared memory, we will briefly discuss
what we expect from a shared memory
and why we cannot reliably emulate
shared memory in a message-passing
system in which a majority of the pro-
cessors are allowed to fail.

To tolerate k failures, a system must
maintain at least one copy of an object
atk + 1 different processors. Otherwise,
the k failures could occur at the proces-
sors containing the copies of the object,
and the object’s value would be lost.
However, maintaining at least one copy
does not solve all our problems. Since
the processors holding the copies may
be slow to respond, two processors (or
even the same processor) reading a copy
of an object might not be reading the
same copy. The fact that a
writer may not have complet-

ing the register before processor P, be-
gins accessing the register and one of
the accesses is a write, then P, reads or
writes a “later” version than P,. Specif-
ically, assume that each value written
into the register has a unique version
number, then P, will see (write) a ver-
sion number that is equal to or greater
than that seen (written) by P,.

To see why no algorithm could toler-
ate even half of the processors failing,
consider a scenario in which the proces-
sors are partitioned into two groups of
exactly equal size. Messages from one
group to the other are “slow” while
messages within each of the groups pro-
ceed at predictable rates. Given this
scenario, processors in one group can-
not distinguish between the situations
in which all the processors in the other
group are being slow or have failed. If
the protocol assumes that the proces-
sors are slow, an adversary could cause
the processors in the other group to fail.
The protocol would not terminate and
therefore would not be correct. If the
protocol assumes that the processors in
the other group have failed, then the
two groups could come to different de-
cisions, thus violating the consistency of
the shared memory.

Two majorities always intersect. The
critical problem in the previous subsec-
tion is that if the network can partition
the set of processors, then two indepen-
dent system components can proceed
independently. Gifford® captured this
observation in 1979 when he presented
the idea of a quorum consensus. His
algorithm shows how to reliably main-
tain several replicas of a data item in a
synchronous distributed system prone
only to fail-stop failures.

The idea is to make m copies of a data
object X, {X,, X,, . .., X,}. Writing
proceeds by writing w > k copies of X,

where k is the number of failures that
can be tolerated. This set of writes is
called a write quorum. Reading pro-
ceeds by reading r copies of X. This set
of reads is called a read quorum. The
sum of the read and write quorums, w +
r, must be greater than m to ensure an
intersection between every pair of reads
and writes.

Attiya, Bar-Noy, and Dolev’ used this
idea to show how to emulate a reliable
shared memory in an asynchronous
message-passing system in which fewer
than half the processors can fail. To
illustrate the algorithm, we first give an
algorithm to emulate shared memory in
asynchronous message-passing system.
Associated with each copy is a version
number. At any point in time, the copy
(or copies) with the largest version num-
ber defines the current version. A read
is executed as follows:

(1) Retrieve a read quorum of X.
(2) Select the copy with the largest
version number.

A write is executed as follows:

(1) Retrieve the currently largest ver-
sion number using the read procedure.
(2) Increment the version number.

(3) Send the new value along with the
new version number to a write quorum.

The processors receiving the new value
will replace the “old” value in their
local memory if and only if the version
number of the new value is larger than
the version number of the old value.
Some care must be taken if multiple
writers are allowed. To avoid confu-
sion, all writers must write unique ver-
sion numbers. We can guarantee this by
concatenating the version number with
the writing processor’s ID.
While this algorithm for emulating
the reading and writing of
shared memory works well

ed its write operation means
that the later of two read op-
erations may actually access
an “earlier” version of the ob-

Time step” Processor'l Processor2 Processor3
Ry

L) ®)

in a synchronous system, it
will not work in an asynchro-
noussystem. The primary dif-
ficulty is the impossibility of

i

ject. This leads to inconsis-
tent executions.

The correctness criterion
that we expect from a shared
memory is the ability to im-
plement shared atomic regis-
ters. An atomic register satis-

woh W N

Write X,
Read X,
Read X,

Read X,
Read X;

Write X,

guaranteeing that the copies
will be read in the correct
order. Figure 6 shows one
such situation. There are
three replicas — X, X, X,
— of an object, X. A writer,

fies the following property: If
processor P, finishes access-

June 1992

Figure 6. Example showing how quorums can fail in asyn-
chronous environments.

W,, could succeed in writing
to X, before slowing down.
A subsequent reader, R,,

13

mightread aquorum contain-

ing X, and X,, thereby get- randcon(in)
ting the new version of X begin
written by W,. Later, another ifin=1

reader, R,, might read a quo-
rum consisting of X, and X;.
This quorum does not con-
tain the new version of X. R,
therefore gets an earlier ver-
sion than R, violating the con-
ditions required for atomic
registers.

Attiya, Bar-Noy, and Dolev
get around this problem us- -
ing a technique that turns out
to be quite powerful in de-
signing protocols for asyn-
chronous distributed sys-
tems: altruism. Rather than
being greedy and trying to
complete its own operation

globalcount « globalcount+ 1;

else

globalcount « globalcount - 1;

while —n < globalcount <n
begin

if globalcount <0
globalcount « globalcount - 1;
else if globalcount >0
globalcount « globalcount + 1;
else
begin /* Atomic action*/
ifflip()=1
globalcount « globalcount + 1;
else
globalcount « globalcount - 1,
end; /*Atomic action*/

. . d-
as quickly as possible, each enda, . i
process acts altruistically. If if globalcount .>,0deude(1),
it sees that some other pro- zlse decide(0);
end;

cess may not have completed
its operation, it takes time

algorithm. Assume that pro-
cessors can flip a coin and
either add or subtract 1 from
aglobal counter in one atomic
step. Under this condition,
Figure 7 shows the basic al-
gorithm for randomized con-
Sensus on 7 processors.

Since the adversary has no
control over the coin flips
(or the order in which they
are added to the global
counter), the time required
to hit one of the absorbing
boundaries at either n or —n
corresponds to Bob’srandom
walk. Once one of the bound-
aries has been reached, the
remaining processors will
eventually make the same
decision.

To make the algorithm
work even when itis not pos-
sible to flip a coin and incre-
ment the counter in one
atomic step requires extend-

out to help the process com-
plete. In this case, the read-
ers help the writer. When a

Figure 7. Simplified algorithm for randomized consensus.

ing the regionin whichacoin
can be flipped. Figure 8§ shows
these regions.

reader reads a quorum and
realizes that the writer did

-2n -n 0 n 2n

1 i i i L

The proposed adversary is
more powerful than what one

not finish its job, the reader
plays the role of the writer
and writes a quorum with the
current value and version

-

Decide 0 Decrement

T T 1 T T

Flip coin

counter counter

increment Decide 1

would encounter in practice.
Infact, the adversary will not
maliciously adjust the speeds
of processors. Rather, the

-

number. For this approach
totolerate k failures, the read
and write quorum sizes will
each be at least £ + 1, and the system
must have at least 2k + 1 processors.

Foiling your adversary. We have al-
ready seen that deterministic consensus
cannot be achieved in an asynchronous
system in which even one processor is
allowed to fail. Here we show that prob-
ability provides a powerful tool in this
context. Each processor is allowed to
flip a coin. The adversary cannot affect
the result of this random coin toss, but
in all other ways it remains unaffected.
For example, it can still slow down pro-
cessors at will. The algorithm we present
guarantees both validity and consisten-
cy upon termination. Therefore, the ad-
versary can only affect when the final
decision is reached — not its correct-
ness.

To simplify presentation, we show an
algorithm from Aspnes’ that works in
shared memory. From the previous
section, we know that any such algo-

14

Figure 8. Regions for coin tosses in randomized consensus.

rithm can be converted into an algo-
rithm that will function in a message-
passing system. The algorithm takes its
inspiration from a one-dimensional
random walk, which brings us back to
Bob and Alice.

Unable to agree on a meeting time
with Alice, Bob consoles himself by going
out drinking. He becomes intoxicated.
His house lies at the end of the road on
which the barislocated. Alice’s house is
about the same distance in the other
direction. He is undecided whether to
gohome andsleep or go to Alice’shouse
and chat. Assume that every time he
takes a step he will stagger in the direc-
tion of his house or Alice’s house with
equal probability. If both houses lie n
steps from the bar, how many steps will
Bob take before reaching one of the two
possible destinations?

The answer is on the order of n? (de-
noted O(n?)). The walk provides us with
the basis of the randomized consensus

speeds will be affected ran-
domly. Aspnes and Herlihy'
give an algorithm with the
same running time as the algorithm in
Figure 7, but theirs uses a weakly biased
coin that will land on the same side at all
the processors with high probability.
Since the correctness of that algorithm
is not particularly intuitive, we omit the
details. In practice, the biased coin can
be replaced by a shared table of “ran-
dom” coin flips that the processors read
to get the ith coin flip. With a failure
model in which delays occur randomly,
this modification to their consensus pro-
tocol yields an O(n) algorithm.

Plotting a Byzantine
agreement

Bob, Alice, and Joan are trying to get
together for lunch. To simplify commu-
nication, they have decided to use a
reliable medium — the telephone. Con-
ference calling is not available,so at any

COMPUTER

one time Bob can talk with either Alice
or Joan, but not both. Mistrust and in-
sincerity abound; however, at most one
member of the trio is truly malicious
(we do not know which one) and trying
to make one of the other two wait in the
SNOW.

Is there some protocol that the three
can adopt such that (1) the two honest
individuals will agree on whether or not
to meet; (2) if all honest ones want to
meet, then they will meet; and (3) if no
honest ones want to meet, then they
won’t meet?

This problem is equivalent to the
Byzantine generals problem studied by
Lamport, Shostak, and Pease.!! In their
parable, several divisions of the Byzan-
tine army are posted outside an enemy
camp. Each division, headed by its own
general, is trying to decide whether or
not to attack the enemy camp. Howev-
er, some of the generals are traitors and
will try to keep the honest generals from
reaching an agreement. A Byzantine
failure is one in which a processor be-
comes traitorous and acts maliciously.
The problem of reaching consensusin a
distributed system prone to Byzantine
failures is known as Byzantine agree-
ment.

Byzantine failures were originally used
to model hardware failures (or inher-
ent flakiness) in avionics sensors, but
they can also model software failures. If
the software fails, we have no idea what
it might do. Since it could do anything,
the only fully general assumption to
make is that it will do the worst thing
possible. For it to do that, we
assume that it is omniscient

Figure 9. Graph with connectivity two.

traitor to lie to one person and not the
other. Thus, Byzantine failures are not
a problem under a communication me-
dium that “broadcasts” messages to all
the processors. Therefore, because of
the inherent broadcast capabilities of
shared memory, Byzantine failures do
not constitute a serious problem in that
environment. (The ability to verify the
authenticity of messages partially simu-
lates this broadcast ability and is dis-
cussed later under “Sign on the dotted
line.”)

When authentication is not available,
Lamport, Shostak, and Pease show that
Byzantine agreement is possible if and
only if there are at least 3k + 1 proces-
sors when k of the processors can fail. In
other words, if one third or more of the
processors are malicious, no determin-
isticalgorithm can guarantee consensus
among the honest processors. (We give
their proof of this result under “The
masquerade.”)

When fewer than one third of the
processors in a complete network are

traitorous, deterministic agreement
without authentication is possible. The
solution given in Lamport, Shostak, and
Pease requires a number of messages
that is exponential in the number of
individuals. Other researchers later
showed that a polynomial number of
messages will suffice for solving the prob-
lem under the same constraints.

Fischer, Lynch, and Merritt* extend
the Lamport, Shostak, and Pease result
to show that additional problems arise
when the communication network is not
complete. They define a graph’s con-
nectivity as the minimum number of
nodes whose removal partitions the
graph into two separate components.
For example, Figure 9 shows a graph
with connectivity two. The nodes repre-
sent processors, and the lines indicate
communication between processors. A
minimum of two nodes and their com-
munications lines must be removed to
partition the graph into separate com-
ponents.

Fischer, Lynch, and Merritt showed
that Byzantine agreement is possible if
and only if the graph representing the
communications network between the
processors has connectivity greater than
2k + 1, where k is the number of Byzan-
tine failures that can occur. In other
words, if removing half the individuals
can partition the remaining individuals
into two or more noncommunicating
groups, Byzantine agreement will not
be possible.

The masquerade. When Joan decid-
ed to join Bob and Alice for
lunch, without the ability to

with respect to the state of
the other (honest) processors.

This section discusses the
conditions under which a
synchronous distributed sys-
tem can tolerate Byzantine
failures.

Avoiding traitors. Given a
synchronous message-passing
system, is it possible to reach
consensus in the presence of
Byzantine failures? To an-
swer this question, we need
to be more specificregarding
what the processors can do.

If Bob, Alice, and Joan
were to make a conference
call, then all three would hear

Scenario 3

conducta conference call, no-
body could be sure who was
honest. We first show that
with three agents and at most
one possibly faulty agent, the
other two agents cannot
agree on whether or not to
meet. Intuitively, the diffi-
culty is that Bob, assuming
he is honest, cannot distin-
guish between the case where
Alice is lying and the case
where Joan is lying.
Fischer, Lynch, and Mer-
ritt give a simple proof of
this idea. Suppose there was
an algorithm that solved the
problem at hand. Figure 10
illustrates three scenarios

the same message and it

would be impossible for the ment.

June 1992

Figure 10. Scenarios leading to failure of Byzantine agree-

leading to the failure of any
Byzantine agreement proto-

15

Table 2. Conditions required for consensus.

Networks -
Ordered
Reliable
Time-Bounded Reliable Reliable
Broadcast Time-Bounded Unbounded Unreliable
Processors
never fail Yes Yes Yes No
Site failures
Diagnostic
time-out Yes Yes No No
Site failures
No diagnostic
time-out Yes No No No

col that does not use authentication.
There are three agents, A, B, and C. In
scenario 1, A isfaulty. Band Cstart with
the same input value, 0. B sees A start-
ing with a value of 0, and C sees A
starting with a value of 1. By the validity
condition, the algorithm should ensure
that B and C both decide 0.

In the second scenario, B is faulty, A
starts with a 1, and Cstarts witha 0. If B
sends the same messages to C asit did in

COLLABORATIVE RESEARCH, INC. is an
active participant in the Human Genome Project,
having been awarded major grants and contracts for
projects to map human chromosomes and sequence
the genomes of important microorganisms. We are
also a leader in developing DNA probe technology for
the diagnosis of genetic diseases, for cancer testing
and for use in personal identification.

Computational

Molecular Biologist
Will design innovative algorithms for genetic map-
ping, physical mapping and DNA sequence analysis
for genome research. A Ph.D. or equivalent in
Biology, Mathematics or Computer Science is re-
quired as well as a strong interest in genetics or mol-
ecular biology. Experience in FORTRAN, C, VMS and
UNIX is also required as is experience with relational
and/or object oriented databases. Strong leadership
and excellent communication skills are essential.

CRI's research facilities are located in Waltham,
Massachusetts, a suburb of Boston. We have state-
of-the-art laboratories and interact with the academic
community and biotech industries which are
prevalent in this area. We offer a very competitive
compensation and benefits package.

Interested candidates should submit their curriculum
vitae along with three references to: Collaborative
Research, Inc., Attn: Human Resource, Dept. IEEE,
204 Second Avenue, Waitham, MA 02154,

An Equal Opportunity Employer M/F/HNV

the first scenario, C will see the same
situation as in the first scenario. (We
assume that in the first scenario A, the
traitor, sent the same messages to C as
in this scenario.) Therefore, the algo-
rithm must once again decide 0.

The third scenario is one in which A
starts witha 1, Bstarts witha 1,and Cis
faulty. If C sends the same messages to
A as it did in the second scenario, then
A sees the same situation as in the sec-
ond scenario. (We assume that in the
second scenario B, the traitor, sent the
same messages to A as in this scenario.)
Again, the algorithm must decide 0.
However, the two nonfaulty processors
both have an input value of 1, so the
decision of O violates validity. This proves
that consensus is impossible.

This result can be extended to an
arbitrary number of processors by di-
viding the processors into three equally
sized groups of processors. Allowing
one of the groups to contain all the
faulty processors, the three scenarios
can again be simulated. The simulation
proves the general result that Byzan-
tine agreement is not possible if one
third of the processors are fauity.

Sign on the dotted line. As we saw, if
one of either Joan, Bob, or Alice is
malicious, then the malicious one can
send conflicting messages to the other
two. Suppose Joan is the malicious one.
Evenif Alice forwarded Joan’s message
to Bob, Bob would not know if Alice
was forging Joan’s message or if Joan
was being insincere. Therefore, he does
not know whom to agree with.

However, if Alice forwards a photo-
copy of Joan’s message, Bob can see

that the writing is truly Joan’s and will
become immediately aware of the fact
that Joan is the malicious individual. So
he agrees with Alice. Joan is foiled.

This approach avoids problems be-
cause the traitorous agent can no longer
send any message he or she wishes, since
signatures cannot be forged. Incomput-
er systems, algorithms that guarantee
that signatures are not corrupted are
called authentication algorithms. Encryp-
tion provides the basis for authentica-
tion. Lamport, Shostak, and Pease give
a simple authentication algorithm.

For the sake of simplicity, we assume
the existence of a unique coordinator,
C. When the coordinator is honest, all
honest agents will output the coordina-
tor’s initial input. When the coordina-
tor is dishonest, all honest agents will
output a 0. The algorithm proceeds in £
+ 1 phases. Each message sent by a
processor carries the signatures of all
processors that have seen and transmit-
ted the message. In phase i, there should
be i signatures (in addition to the coor-
dinator’s) and no duplicates. That makes
the message legitimate.

e Phase 1. The coordinator signs and
sends an initial value to all agents. This
constitutes their input. Note that the
coordinator may send different initial
values to different processors or may
fail before sending messages to all pro-
CESSOTS.

e Phase 2 through t + 1. First, each
agent signs and sends all legitimate
messages received in the previous phase
to all the processors. If the message is
legitimate, then the agent records the
value contained in the message.

o At the end of phase t + 1. An agent
decides v if v is the only legitimate value
it received. Otherwise, it decides 0.

The algorithm satisfies termination:
It ends after ¢ + 1 phases. The algorithm
satisfies validity: If all processors func-
tion correctly and all have the same
input, then they will agree on their ini-
tial input. The algorithm satisfies con-
sistency: All correctly functioning pro-
cessors will see the same values as all
other correctly functioning processors
and therefore will reach the same deci-
sion. With less than ¢ + 1 phases, it is
possible for an adversary to force dif-
ferent processors to reach different de-
cisions.

Dolev and Strong'? improved this ex-
ponential algorithm by noticing that old

COMPUTER

messages do not have to be present.
Their algorithm sends a number of mes-
sages that is quadratic in the number of

processors.
I sors to arrive at a common deci-
sion, they must solve the consen-
sus problem. Distributed-system design-
ers can save time by knowing the situa-
tions in which no algorithm is possible
for consensus and those in which algo-
rithms have already been discovered.
The fine line between impossibility
and possibility trades processor reliabil-
ity against network reliability. The more
reliable the processors, the less reliable
the network must be.

n summary, for a group of proces-

» Inasynchronous distributed system
with reliable message delivery and pro-
cessors subject to Byzantine failures,
consensus is possible as long as fewer
than one third of the processors fail.

 In an asynchronous distributed sys-
tem with reliable message delivery and
processors subject to failure by stop-
ping, consensus is not possible even if
only one processor can fail. (Table 2
summarizes the conditions under which
consensus is possible in different asyn-
chronous systems.)

 In asynchronous distributed system
in which messages can be dropped, con-
sensus is not possible even if none of the
processors fail.

Shared memory increases the reli-
ability of the communications medium.
It is essentially equivalent to adding a
broadcast capability to a network. This
avoids many of the problems created by
Byzantine failures, but not the prob-
lems created by asynchrony. To solve
these problems requires adding syn-
chronization primitives such as
compare&swap. The power of shared
memory depends on the primitives it
supports.

Finally. techniques such as random-
ization and authentication offer ways to
overcome many impossibility results and
often yield efficient algorithms.

Besides being useful, the consensus
problem has resulted in many elegant
impossibility proofs. These proofs teach
asimple moral that we should all take to
heart: Global knowledge is much stron-
ger than local knowledge.

Or to put it in terms of our parabile,

June 1992

Bob and Alice should ask to share an
office.

Acknowledgments

We thank Rajat Datta, Maurice Herlihy,
and Farnam Jahanian for helpful discussions
and the anonymous referees for their helpful
comments. We also thank Bob and Alice for
their help in the preparation (and presenta-
tion) of this article.

This research was partially supported by
the National Science Foundation under-
Grants IRI-89-01699 and CCR-91-03953 and
by the Office of Naval Research under Grants
N00014-90-J-1110 and N00014-91-J-1472.

References

1. K. Birman, “How Robust Are Distribut-
ed Systems?” Tech. Report TR 89-1014,
Dept. of Computer Science, Cornell
University, Ithaca, N.Y., 1989.

2. M. Herlihy, “Impossibility and Univer-
sality Results for Wait-Free Synchroni-
zation,” Proc. Seventh Ann. ACM Symp.
Principles of Distributed Computing,
ACM, New York, 1988, pp. 276-290.

3. M. Fischer, N. Lynch, and M. Paterson,
“Impossibility of Distributed Consensus
with One Faulty Process,” J. ACM, Vol.
32, No. 2, Apr. 1985, pp. 374-382.

4, M. Fischer, N. Lynch, and M. Merritt,
“Easy Impossibility Proofs for Distribut-
ed Consensus Problems,” Distributed
Computing, Vol. 1, Jan. 1986, pp. 26-39.

5. D.Dolev, C. Dwork, and L. Stockmeyer,
“On the Minimal Synchronism Needed
for Distributed Consensus,”J. ACM, Vol.
34, No. 1, Jan. 1987, pp. 77-97.

6. P.Bernstein, V.Hadzilacos, and N. Good-
man, Concurrency Control and Recovery
in Database Systems, Addison-Wesley,
Reading, Mass., 1987.

7. H. Attiya, A. Bar-Noy, and D. Dolev,
“Sharing Memory Robustly in Message
Passing Systems,” Proc. Ninth Ann. ACM
Symp. Principles of Distributed Comput-
ing, ACM, New York, 1990, pp. 363-382.

8. D. Gifford, “Weighted Voting for Repli-
cated Data,” Proc. Seventh ACM SIGOps
Symp. Operating System Principles, ACM,
New York, 1979, pp. 150-159.

9. J. Aspnes, “Time- and Space-Efficient
Randomized Consensus,” Proc. Ninth
Ann. ACM Symp. Principles of Distrib-
uted Computing, ACM, New York, 1990,
pp- 325-331.

10. J. Aspnes and M. Herlihy, “Fast Ran-
domized Consensus Using Shared Mem-~
ory,” J. Algorithms, Vol. 11, No-3, Sept.
1990, pp. 441-461.

11. L. Lamport, R. Shostak, and M. Pease,
“The Byzantine Generals Problem,”
ACM Trans. Programming Languages
and Systems, Vol. 4, No. 3, July 1982, pp.
382-401.

12. D. Dolev and H. Strong, “ Authenticated
Algorithms for Byzantine Agreement,”
SIAM J. Computing, Vol. 12, No. 4, Nov.
1983, pp. 656-666.

John Turek is a research staff member at the
IBM T.J. Watson Research Center. His re-
search interests are parallel and distributed
systems and algorithms. He obtained his BSc
degree from MIT and his MS and PhD from
the Courant Institute of Mathematical Sci-
ences of New York University.

Dennis Shasha is an associate professor at
New York University’s Courant Institute,
where he does research on transaction pro-
cessing, real-time algorithms, and pattern
matching. He also consults at Unix System
Laboratories.

Shasha received his BS from Yale in 1977
and his PhD from Harvard in 1984. He has
written a professional reference book, Data-
base Tuning: A Principled Approach (Pren-
tice Hall,1992), and two books about a math-
ematical detective: The Puzzling Adventures
of Dr. Ecco (1988) and Codes, Puzzles, and
Conspiracy (1992), both published by W.H.
Freeman.

Readers can contact Turek at the IBMT.J.
Watson Reasearch Center, PO Box 704,
Yorktown Heights, NY 10598, e-mail
turek@cs.nyu.edu, and Shasha at New York
University, Courant Institute of Mathemat-
ical Sciences, 251 Mercer St., New York, NY
10012, e-mail shasha@cs.nyu.edu.

17

