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Abstract. Teams of mobile robots often need to divide up subtasks ef-
ficiently. In spatial domains, a key criterion for doing so may depend
on distances between robots and the subtasks’ locations. This paper
considers a specific such criterion, namely how to assign interchange-
able robots to a set of target goal locations such that the makespan
(time for all robots to reach their target locations) is minimized while
also preventing collisions among robots. We present a scalable multia-
gent dynamic role assignment system, used for formational positioning
of mobile robots, known as SCRAM (Scalable Collision-avoiding Role
Assignment with Minimal-makespan). SCRAM uses a graph theoretic
approach to map robots to target goal locations such that our objectives
for both minimizing the makespan and avoiding robot collisions are met.
The system was originally designed to allow for decentralized coordina-
tion among physically realistic simulated humanoid soccer playing robots
in the partially observable, non-deterministic, noisy, dynamic, and lim-
ited communication setting of the RoboCup 3D simulation league. In its
current form, SCRAM generalizes well to many realistic and real-world
multiagent systems, and scales to thousands of robots, as role assignment
algorithms run in polynomial time.

1 Introduction

Coordinated movement among autonomous mobile robots is an important re-
search area with many applications such as search and rescue and warehouse
operations. Research within this space spans multiple topics including role as-
signment (deciding which robot should move to which position or role) [7, 12,
16, 21, 27], path planning [20, 25], and collision avoidance [11, 24].

The work in this paper focuses on role assignment—specifically tackling the
problem of assigning homogeneous mobile robots to move to a set of fixed target
positions such that a robot is present at every target position in as little time
as possible. Path planning and collision avoidance issues are addressed during
role assignment, as mappings of robots to target positions operate under the
constraint that no robots collide.



Previous work on assigning robots to target positions has focused on min-
imizing the sum of distances all robots must travel which is the well known
assignment problem [23]. Work related to our own [5] has added the constraint
of avoiding collisions among agents to the assignment problem by requiring that
all paths from agents to target positions be disjoint. Our work differs as we min-
imize the makespan (time for all robots to reach goal positions) instead of the
sum of distances traveled.

Minimizing the makespan is a decisive factor in performance when robots
are moving to target positions to complete a shared task where all robots must
be in place before the task can be completed and/or started. Such tasks include
those requiring robots be synchronized when they start jobs at their target posi-
tions (e.g. mobile robots assuming necessary positions on an assembly line) and
scenarios for which the bottleneck is the time it takes for the last robot to get
to its target position (e.g. warehouse robots delivering items for an order to be
shipped and mobile robots being used as pixels to display an image [3]).

We refer to our role assignment and positioning system as SCRAM (Scal-
able Collision-avoiding Role Assignment with Minimal-makespan). It provides
a collision free mapping of robots to target positions, minimizes the makespan,
and scales to thousands of robots. The primary contributions of this paper are a
complete specification of SCRAM,1 as well as a thorough theoretical and empir-
ical analysis of the role assignment problem, with application to the RoboCup
robot soccer domain and potentially far beyond.

The remainder of the paper is organized as follows. Section 2 provides a
formulation of the role assignment problem we are solving. Two role assignment
functions, as well as algorithms implementing them, are presented in Section 3,
with an empirical evaluation of them given in Section 4. Section 5 provides case
studies of complete SCRAM role assignment positioning systems used within
the RoboCup 2D and 3D simulation domains, and Section 6 concludes.

2 Role Assignment Problem

Let there be n homogeneous mobile robots with current positions A := {a1, ..., an},
and we want to assign the robots to move to n specified target goal positions
or roles P := {p1, ..., pn} such that the time for robots to have reached every
goal position is minimized under the constraint that no robots collide with each
other. Figure 1 illustrates an example problem with six robots and target posi-
tions. This problem can be thought of as finding a perfect matching M∗ within
the set of perfect matchings M of a weighted bipartite graph G := (A,P,E) that
meets the above criteria with the weight for each edge in E being the Euclidean
distance between associated robot and target positions.

Similar to work by Broucke [5], we model robots as point masses with zero
width. Additionally, we make two more assumptions. First, no two robots and no

1 Videos of SCRAM in action, as well as C++ implementations of the role assign-
ment algorithms, can be found at http://www.cs.utexas.edu/~AustinVilla/sim/

3dsimulation/AustinVilla3DSimulationFiles/2013/html/scram.html



two target positions occupy the same position. Second, we assume that all robots
move toward fixed target positions along a straight line at the same constant
speed.

Fig. 1: Role assignment problem where we want to assign robots (circles) {a1,...,a6} to target posi-
tions (crosses) {p1,...,p6}. Dashed arrows show solution.

We call a role assignment CM valid (Collision-avoiding with Minimal-makespan)
if it satisfies two properties:

1. Minimizing longest distance - M∗ minimizes the longest distance from a
robot to target, with respect to all possible mappings. A valid mapping
for the problem shown in Figure 1 would not include a2 → p5 (the longest
distance between a robot and target). Instead a valid mapping includes a1 →
p3 (the minimal longest distance any robot travels across all mappings).

2. Avoiding collisions - robots do not collide as they move to their assigned
positions. In Figure 1 a mapping including both a1 → p1 and a2 → p2 would
be invalid as it would cause robots a1 and a2 to collide.

A third desirable property, although not necessary for a role assignment
function f to be CM valid, is the following:

3. Dynamically consistent - Given a fixed set of target positions, if f outputs a
mapping M of robots to targets at time T , then f outputs M for every time
t > T as robots move to the targets specified by M .

The first two properties come directly from the definition of the role as-
signment problem. The third property guarantees that once a role assignment
function f outputs a mapping, f will always output that same mapping as long
as there is no change in the target positions. This guarantee is desirable as oth-
erwise robots might unduly thrash between roles thus impeding progress. In the
following section we construct CM valid role assignment functions.

3 Role Assignment Functions

The following subsections present two CM valid assignment functions for the
role assignment problem detailed in Section 2. Algorithmic implementations of
the functions and analysis of their time and space complexities are also given.



3.1 Minimum Maximal Distance Recursive
(MMDR) Role Assignment Function

One potential role assignment function is to find a mapping of robots to target
positions which recursively minimizes the maximum distance that any robot
travels. We refer to this as this the Minimum Maximal Distance Recursive
(MMDR) role assignment function. It is also known as the lexicographic bot-

tleneck assignment problem [23]. In this section we first analyze properties of
MMDR, and then identify algorithms to compute MMDR.

Let M be the set of all one-to-one mappings between robots and roles. If there
are n robots and n target role positions, then there are n! possible mappings M ∈
M. Let the cost of a mapping M be the n-tuple of distances from each robot to its
target, sorted in decreasing order. We can then sort all the n! possible mappings
based on their costs, where comparing two costs is done lexicographically. Sorted
costs of mappings for a small example are shown in Figure 2.

Fig. 2: Lowest lexicographical cost (shown with arrows) to highest cost ordering of mappings from
robots (A1,A2,A3) to role positions (P1,P2,P3). Each row represents the cost of a single mapping.

1:
√

2 (A2→P2),
√

2 (A3→P3), 1 (A1→P1)

2: 2 (A1→P2),
√

2 (A3→P3), 1 (A2→P1)

3:
√

5 (A2→P3), 1 (A1→P1), 1 (A3→P2)

4:
√

5 (A2→P3), 2 (A1→P2),
√

2 (A3→P1)
5: 3 (A1→P3), 1 (A2→P1), 1 (A3→P2)

6: 3 (A1→P3),
√

2 (A2→P2),
√

2 (A3→P1)

Denote the role assignment function that always outputs the lexicographically
smallest cost mapping as MMDR. Here we provide an informal proof sketch that
MMDR is CM valid and is also dynamically consistent; we provide a longer, more
thorough derivation in Appendix A and B.

Theorem 1. MMDR is CM valid and dynamically consistent.

MMDR minimizes the longest distance (Property 1) as the lexicographical
ordering of distance tuples sorted in descending order ensures this. If two robots
in a mapping are to collide (Property 2) it can be shown, through the trian-
gle inequality, that MMDR will find a lower cost mapping as switching the two
robots’ targets reduces the maximum distance either must travel. Finally, as
we assume all robots move toward their targets at the same constant rate, the
distance between a robot and any target will not decrease any faster than the
distance between any robot and the target that robot is assigned to. This ob-
servation provides dynamic consistency (Property 3) by preserving the lowest
lexicographical cost ordering of a MMDR mapping across all timesteps.



Dynamic Programming Algorithm for MMDR

Theorem 2. Let A and P be sets of n agents and positions respectively. Denote

the mapping M := MMDR(A,P ). Let M0 be a subset of M that maps a subset

of agents A0 ⊂ A to a subset of positions P0 ⊂ P . Then M0 is also the mapping

returned by MMDR(A0, P0).

A key recursive property of MMDR that allows us to exploit dynamic pro-
gramming is expressed in Theorem 2. This property stems from the fact that if
a subset M0 ⊂ M can be replaced by a lower cost mapping M0

′, then we can
replace M0 with M0

′ in M to obtain a lower cost MMDR mapping M ′. The
savings from using dynamic programming comes from only evaluating mappings
whose subset mappings are also returned by MMDR. This is accomplished in
Algorithm 1 by iteratively building up optimal mappings for position sets from
{p1} to {p1, ..., pn} and using optimal mappings of k − 1 agents to positions
{p1, ..., pk−1} (line 6) as a base when constructing each new mapping of k agents
to positions {p1, ..., pk} (line 7). Then, we save the lowest cost mapping for the
current set of k agents to positions {p1, ..., pk} (line 8).

Algorithm 1 MMDR Dynamic Programming Implementation

Input:

Robots := {a1, ..., an};Positions := {p1, ..., pn}

1: HashMap bestRoleMap := ∅

2: for k := 1 to n do

3: for each a ∈ Robots do

4: S :=
`n−1

k−1

´

sets of k − 1 agents from Robots \ {a}
5: for each s ∈ S do

6: Mapping m0 := bestRoleMap[s]
7: Mapping m := (a→ pk) ∪mo

8: bestRoleMap[a ∪ s] := mincost(m, bestRoleMap[a ∪ s])

9: return bestRoleMap[Agents]

During the kth iteration of the dynamic programming process to find a map-
ping for n agents, where k is the current number of positions that agents are
being mapped to, each agent is sequentially assigned to the kth position and
then all possible subsets of the other n− 1 agents are assigned to positions 1 to
k − 1 based on computed optimal mappings to the first k − 1 positions from the
previous iteration of the algorithm. These assignments result in a total of

(

n−1
k−1

)

agent subset mapping combinations to be evaluated for mappings of each agent
assigned to the kth position. The total number of mappings evaluated by the
dynamic programming algorithm for each of the n agents across all n iterations
of dynamic programming can be written as

n
∑

k=1

n

(

n − 1

k − 1

)

= n

n−1
∑

k=0

(

n − 1

k

)

= n2n−1

As it takes O(n) time to compare the cost of two mappings the time com-
plexity of the algorithm is O(n22n−1). Additionally, for the kth iteration of the



dynamic programming process we must store the
(

n
k

)

best mappings for the next
iteration to use. As the maximum number of mappings will be stored at the
n
2 th iteration, and each mapping takes O(n) space, the space complexity of the
algorithm is O(n

(

n
n/2

)

).

O(n5) Polynomial Time Algorithm for MMDR An issue with the dynamic
programming algorithm presented in Section 3.1 is that its time complexity is
exponential and thus does not scale well to large values of n. We can compute
the MMDR role assignment function in polynomial time, however, by trans-
forming MMDR into the assignment problem (finding a perfect matching in a
bipartite graph that minimizes the sum of edge weights) which is solvable by the
Hungarian algorithm [15] in O(n3) time.

Lemma 1. Denote Wn := {w0, ..., wn} where wi := 2i. Then ∀W ∈ P (Wn−1) :
wn >

∑

W .

To transform MMDR into the assignment problem we modify the weights of
the edges of our bipartite graph to be a set of values such that the weight of
any edge e is greater than the sum of weights of all edges with weight values less
than that of e. A key insight into this transformation is expressed in Lemma 1.
By sorting all edges in ascending order by distance, and then relabeling edge
weights to be the value 2i where i is the index of an edge in this sorted list,
the sum of all edge weights of shorter distance edges will be less than any sum
of edge weights with a longer edge. Solutions to the assignment problem return
lowest cost MMDR mappings as the sum of modified weights of any mapping
with a higher cost is greater than that of a lower cost mapping.

Algorithm 2 gives a polynomial time solution for computing MMDR. First,
weights are sorted in ascending order of distance (line 1). Next, edge weights are
transformed into appropriate values for the assignment problem as expressed
in Lemma 1 (line 8). Finally, the re-weighted edges are given as input into the
Hungarian algorithm which returns the lowest cost MMDR mapping (line 10).
Time complexity is dominated by the O(n3) Hungarian algorithm. Note that
our transformed edge weights, represented as bit vectors with the ith bit of a 2i

value turned on, are of size n2. The Hungarian algorithm must do comparisons
of these weights and thus the time complexity of Algorithm 2 is O(n5). As our
implementation of the Hungarian algorithm requires us to store length n lists of
size n2 transformed weights, Algorithm 2 has a space complexity of O(n3).

There exists previous work in modifying edge weights to transform the lexi-

cographic bottleneck assignment problem into the assignment problem. For cases
in which there are n2 edges, with each having a unique cost, a higher complexity
O(n5logn) algorithm exists [6]. Work by Croce et al. [9] changes edge weights
into weight vectors of length n before solving the assignment problem and has
the same time complexity as our method of O(n5). However, on modern com-
puter architectures Algorithm 2 is more efficient as we represent edge weights
as bit vectors instead of vectors of integers. The compact format of bit vectors
allows for integer operations to be performed on w bits in parallel where w is the



Algorithm 2 MMDR O(n5) Polynomial Time Implementation

Input:

Robots := {a1, ..., an}; Positions := {p1, ..., pn}
Edges := {a1p1, a1p2, ..., anpn}; |aipj | := euclideanDist(ai,pj)

1: edgesSorted := sortAscendingDist(Edges)
2: lastDistance := −1
3: rank, currentIndex := 0
4: for each e ∈ edgesSorted do

5: if |e| > lastDistance then

6: rank := currentIndex
7: lastDistance := |e|
8: |e| := 2rank

9: currentIndex := currentIndex + 1

10: return hungarianAlg(edgesSorted)

size of a processor’s maximum word length. This parallelism reduces the running
time of Algorithm 2 by a factor of w (e.g. a factor of 64 on a 64-bit architecture).

O(n4) Polynomial Time Algorithm for MMDR Another approach to
compute MMDR, presented by Sokkalingam and Aneja [26], and detailed in
Algorithm 3, alternates between solving the bottleneck assignment problem [23]
(finding the smallest maximum edge in a perfect matching) and a 0-1 cost version
of the assignment problem.

Algorithm 3 MMDR O(n4) Polynomial Time Implementation

Input:

Robots := {a1, ..., an}; Positions := {p1, ..., pn}
Edges := {−−→a1p1,−−→a1p2, ...,−−−→anpn}; |−−→aipj | := euclideanDist(ai,pj)

1: function getTightEdges(poten)
2: return ea,p ∈ Edges, s.t. poten(a) + poten(p) = cost(ea,p)

3: numEdgesLeft := n
4: loop

5: minLongestEdge := getMinimalMaxEdgeInPerfectMatching(Edges)

6: ∀e ∈ Edges

8

<

:

|e| < |minLongestEdge| : cost(e) := 0
|e| = |minLongestEdge| : cost(e) := 1
|e| > |minLongestEdge| : cost(e) :=∞

7: {matching, poten} := hungarianAlgWithEdgeCosts(Edges)
8: numLongestEdges :=

P

e∈matching

cost(e)

9: numEdgesLeft := numEdgesLeft− numLongestEdges
10: if numEdgesLeft = 0 then

11: return matching

12: Edges := getTightEdges(poten)
13: ∀e ∈ Edges, s.t. |e| = |minLongestEdge| : |e| := −1

At every iteration of Algorithm 3 solving the bottleneck assignment problem

(line 5 which is implemented by Algorithm 4 discussed later in this section)
returns the current largest edge weight value in the MMDR mapping. Next
solving the assignment problem using the Hungarian algorithm (line 7), with 0-1
edge costs as specified in line 6, returns a mapping whose sum of costs (line 8)
reveals the number of edges of this weight in the MMDR mapping.



At the same time the Hungarian algorithm naturally computes a potential
function poten over the set of vertices in the bipartite graph such that ∀ea,p ∈
Edges : poten(a) + poten(p) <= cost(ea,p). It is revealed by Sokkalingam and
Aneja [26] that all perfect matchings of the subset of tight edges (defined as edges
for which poten(a) + poten(p) = cost(ea,p)) contain exactly numLongestEdges

edges of length |minLongestEdge|. Given this knowledge we remove all non-tight
edges from consideration in the MMDR mapping (line 12). The reduction to tight
edges, and reducing the weight of edges of length |minLongestEdge| (line 13),
results in subsequent solutions of the bottleneck assignment problem revealing
the next largest edge weight value in the MMDR mapping as every perfect
matching will have exactly numLongestEdges edges of length |minLongestEdge|.
We learn the weight of numLongestEdges edges in the MMDR mapping during
every iteration of Algorithm 3, and after determining the weights for n edges, the
solution returned by the Hungarian algorithm is the MMDR mapping (line 11).

Algorithm 4 finds the minimal maximum edge in a perfect matching by incre-
mentally adding edges to the graph in order of increasing distance from the list
of edges sorted in ascending order of weight (line 23). It interleaves adding edges
(line 30) with running the Ford-Fulkerson algorithm [10] for finding a maximum
cardinality (number of edges) matching. Ford-Fulkerson (implemented with the
flood, resetFlood, and reversePath functions) works by using a breath-first
search to find augmenting paths from a robot to a target.

Algorithm 4 starts with a graph with the empty set of edges allowedEdges

(line 1), and whenever the breadth-first search of the Ford-Fulkerson algorithm
is unable to find a path from a robot to a target, we add an edge to the graph
(line 30) and continue the breadth-first search. At the point when we find n

paths from robots to target, the last edge we added is the minimal maximum
edge for a perfect matching.

An important factor for performance in Algorithm 4 is that we can pick up
the Ford-Fulkerson breadth-first search where it left off after adding an edge as
any nodes previously reachable in the graph remain reachable. Because we do
not lose state in each breadth-first search, each breadth-first search takes O(E)
time. Thus the total time for running Algorithm 4 to find a perfect matching
with the minimum maximal edge length is O(nE) which is less than the O(n3)
time complexity of the Hungarian algorithm.

We determine at least one new minimal maximum edge in a perfect matching
during every iteration of the loop in Algorithm 3. Thus no more than n instances
of both the Hungarian algorithm and Algorithm 4 need to be computed. As the
O(n3) time complexity of the Hungarian algorithm dominates Algorithm 3’s
loop, the time complexity of Algorithm 3 is O(n4). The breadth-first search of
Ford-Fulkerson in Algorithm 4 gives a space complexity of O(n2).

3.2 Minimum Maximal Distance + Minimum Sum Distance2

(MMD+MSD2) Role Assignment Function

Another role assignment function to map robots to target goal positions is one
which minimizes the maximum distance any robot has to travel (but not re-



Algorithm 4 Minimal-maximum Edge Perfect Matching

Input:

Robots := {a1, ..., an}; Positions := {p1, ..., pn}
Edges := {−−→a1p1,−−→a1p2, ...,−−−→anpn}; |−−→aipj | := euclideanDist(ai,pj)

1: matchedRobots, allowedEdges := {}

2: function flood(curNode, prevNode)
3: curNode.visited := true

4: curNode.previous := prevNode
5: if curNode ∈ Positions and 6 ∃ e ∈ allowedEdges, s.t. e.start = curNode then

6: return currentNode
7: for each e ∈ allowedEdges, s.t. (e.start = curNode andnot e.end.visited) do

8: val := flood(e.end, e.start)
9: if val 6= ∅ then

10: return val
11: return ∅

12: function resetFlood

13: for each node ∈ {Robots ∪ Positions} do

14: node.visited := false

15: node.previous := ∅

16: for each a ∈ {Robots \matchedRobots} do

17: flood(a, ∅)

18: function reversePath(node)
19: while node.previous 6= ∅ do

20: reverseEdgeDirection(
−−−−−−−−−−−−−−→
node, node.previous)

21: node := node.previous

22: return node

23: edgeQ := sortAscendingDist(Edges)
24: longestEdge := ∅

25: for match := 1 to n do

26: resetFlood()
27: matchedPosition := ∅

28: while matchedPosition = ∅ do

29: longestEdge := edgeQ.pop()
30: allowedEdges← longestEdge
31: matchedPosition := flood(longestEdge.end, longestEdge.start)

32: matchedRobot := reversePath(matchedPosition)
33: matchedRobots← matchedRobot
34: return longestEdge

cursively as done by MMDR in Section 3.1), after which it minimizes the sum
of distances squared that all robots travel. We call this the Minimum Maximal
Distance + Minimum Sum Distance2 (MMD+MSD2) role assignment function.
Specifically we want to find a perfect matching M∗ such that

M
′′ := {X ∈ M | ‖X‖∞ = min

M∈M

(‖M‖∞)} (1)

M∗ := argmin
M∈M′′

(‖M‖
2
2) (2)

Here we provide an informal proof sketch that MMD+MSD2 is a CM valid

role assignment; we provide a longer, more thorough derivation in Appendix A.

Theorem 3. MMD+MSD2 is CM valid.

By only considering the set of perfect matchings M
′′ with minimal longest

edges (equation 1) we are minimizing the longest distance any robot must travel



(Property 1). If two robots in a mapping are to collide (Property 2), it can be
shown, through the triangle inequality, that MMD+MSD2 will find a lower cost
mapping as switching the two robots’ targets reduces, but never increases, the
distance that one or both must travel thereby reducing the sum of distances
squared (equation 2) and the longest distance (equation 1).

Unlike MMDR, MMD+MSD2 is not dynamically consistent because dis-
tances squared do not decrease at a constant rate, but in fact decrease at faster
rates for larger distances, as robots move toward targets (e.g. the difference in
distance squared as a robot moves from 5 meters to 4 meters from a target
(52 − 42 = 9) is greater than the difference moving from 4 meters to 3 meters
(42−32 = 7)). This lack of a constant rate of decrease for distances squared allows
for squared distances between a robot and targets it is not assigned to travel to-
ward to decrease faster than the squared distance between a robot and the target
it is assigned to. The sum of distances squared for non-MMD+MSD2 mappings
can thus become less than the current MMD+MSD2 mapping as robots travel
to their targets. An example where MMD+MSD2 is not dynamically consistent
is provided in Appendix B.

Polynomial Time Algorithm for MMD+MSD2 Algorithm 5 implements
MMD+MSD2 by first finding a perfect matching with the smallest maximum
edge (line 1) which is computed by Algorithm 4 presented earlier in Section 3.1.
We then create a set of minimalEdges consisting of all edges with length less
than or equal to the longest edge in our perfect matching (line 2) and use it
as input to the Hungarian algorithm (line 3). Note that edge weights are their
distances squared and thus the Hungarian algorithm minimizes the sum of dis-
tances squared. As all edges greater in length than the minimal maximum edge
in a perfect matching are removed before running the Hungarian algorithm, the
maximum distance any robot travels is also minimized.

Algorithm 5 MMD+MSD2 O(n3) Polynomial Time Implementation

Input:

Robots := {a1, ..., an}; Positions := {p1, ..., pn}
Edges := {−−→a1p1,−−→a1p2, ...,−−−→anpn}; |−−→aipj | := euclideanDist(ai,pj)

2

1: longestEdge := getMinimalMaxEdgeInPerfectMatching(Edges)
2: minimalEdges := e ∈ Edges, s.t. |e| ≤ |longestEdge|
3: return hungarianAlg(minimalEdges)

The O(n3) time complexity of the Hungarian algorithm dominates Algo-
rithm 4 and thus the time complexity of Algorithm 5 is O(n3). The breadth-first
search of Ford-Fulkerson in Algorithm 4 gives a space complexity of O(n2).



Table 1: Time and space complexities of role assignment algorithms.
Algorithm Time Complexity Space Complexity

MMD+MSD2 O(n3) O(n2)

MMDR O(n4) O(n4) O(n2)

MMDR O(n5) O(n5) O(n3)

MMDR dyna O(n22(n−1)) O(n
` n

n/2

´

)

brute force O(n!n) O(n)

Table 2: Average running time in milliseconds for role assignment algorithms and different values
of n as measured on an Intel(R) Xeon(R) CPU E31270 @ 3.40GHz.
Algorithm n = 10 n = 20 n = 100 n = 300 n = 103 n = 104

MMD+MSD2 0.016 0.062 1.82 21.2 351.3 115006

MMDR O(n4) 0.049 0.262 17.95 403.0 14483 —

MMDR O(n5) 0.022 0.214 306.4 40502 — —
MMDR dyn. 0.555 2040 — — — —
brute force 317.5 — — — — —

4 Role Assignment Function and Algorithm Analysis

To evaluate role assignment algorithms, we generated mapping scenarios for n

robots and targets. Both robots and targets were assigned random integer value
positions on a two dimensional square grid with sides of length n2. Table 2
shows the average run-time of the role assignment algorithms for different val-
ues of n. By far the slowest was the brute force method of evaluating all n!
possible mapping permutations of robots to targets. Not surprisingly the fastest
was MMD+MSD2 which has the lowest time complexity as shown in Table 1.
MMD+MSD2’s relatively low time and space complexities allow it to scale well
such that it is able to compute the mapping for 1000 robots in less than half a
second, and a mapping for 10,000 robots in less than two minutes. The polyno-
mial time implementations of MMDR scale well to 100s of robots and are much
faster than the dynamic programming implementation of MMDR. The O(n4)
implementation of MMDR scales to 1000 robots and is faster than the O(n5)
implementation except for smaller (n <= 20) inputs where it takes a little longer
due to the extra computations needed in its main loop.

Table 3: Role assignment function properties discussed in Section 2.
Assignment Function Minimizes Makespan Avoids Collisions Dynamically Consistent

MMD+MSD2 Yes Yes No
MMDR Yes Yes Yes

MSD2 No Yes No
MSD No No No

Random No No No
Greedy No No No

In Table 4 we compare MMDR and MMD+MSD2 against the following role
assignment functions when assigning 10 robots to targets on a 100 X 100 grid.

MSD Minimize sum of distances between robots and targets.
MSD2 Minimize sum of distances squared between robots and targets.
Greedy Assign robots to targets in order of shortest distances.
Random Random assignment of robots to targets.



Table 4: Average makespan, average distance, and distance standard deviation computed across a
million assignments of 10 robots to 10 targets on a 100 X 100 grid.

Assignment Function Average Makespan Average Distance Distance StdDev

MMD+MSD2 45.79 27.38 10.00
MMDR 45.79 28.02 9.30

MSD2 48.42 26.33 10.38
MSD 55.63 25.86 12.67

Random 90.78 52.14 19.38
Greedy 81.73 28.66 18.95

Both MMDR and MMD+MSD2 have the same lowest average makespan for
they are defined so as to minimize the makespan. As can be seen in Table 3 none
of the other role assignment functions are CM valid as they fail to minimize
the makespan (further analysis of how other role assignment functions fail to
hold properties necessary for SCRAM assignment functions is provided in Ap-
pendix C). MMDR is the only dynamically consistent function of the ones we
compare.

Average distance is not something SCRAM role assignment functions explic-
itly attempt to minimize. However, this metric can be useful if robots exhaust a
shared resource such as fuel when moving. MSD by definition minimizes the av-
erage distance and thus represents the best possible value for this metric. MMDR
and MMD+MSD2 both have average distance values close to that of MSD with
MMD+MSD2 being slightly better than MMDR. A third metric is distance
standard deviation which is useful if there is a preference for having robots
travel similar distances (e.g. wanting to have equal wear and tear across robots).
MMDR has the best value for this with MMD+MSD2 being second best. While
they are the simplest to implement and compute, the Random and Greedy role
assignment functions do poorly across all metrics. MMDR and MMD+MSD2,
on the other hand, do well across all metrics in Table 4.

5 RoboCup Case Studies

While the empirical analysis presented in Section 4 of grid-based role assignment
instances is good for isolating different properties of role assignment functions,
our original motivation is the performance seen in richer domains involving dy-
namic role assignment such as robot soccer. RoboCup2 robot soccer has served as
an excellent research domain for autonomous robots and multiagent systems over
the past decade and a half. In this domain, teams of autonomous robots compete
with each other in complex, real-time, noisy and dynamic environments. One of-
ten thinks of the soccer teamwork challenge as being about where the player with
the ball should pass or dribble, but at least as important is where the robots
position themselves when they do not have the ball [14]. Positioning the players
in a formation requires the robots to coordinate with each other and determine
where each robot should position itself on the field. As RoboCup necessitates
that robots coordinate movement as a team to be successful, it provides an
ideal testbed for SCRAM. In the following sections, we provide case studies and
analysis of SCRAM systems employed in two different RoboCup leagues and

2 http://www.robocup.org/



used by our champion RoboCup team UTAustinVilla. In Section 5.1, we focus
on the deployment of a SCRAM system in the RoboCup 3D simulation league.
Section 5.2 evaluates SCRAM’s usage in the RoboCup 2D simulation league.

5.1 RoboCup 3D Simulation

The RoboCup 3D simulation environment is based on SimSpark,3 a generic phys-
ical multiagent system simulator. SimSpark uses the Open Dynamics Engine4

(ODE) library for its realistic simulation of rigid body dynamics with collision
detection and friction. ODE also provides support for the modeling of advanced
motorized hinge joints used in the humanoid agents.

The robot agents in the simulation are modeled after the Aldebaran Nao
robot.5 Visual information about the environment is given to robots through
noisy measurements of the distance and angle to objects within a restricted
vision cone (120◦). Additionally, robots can communicate with each other every
other simulation cycle (40 ms) by sending messages limited to 20 bytes. Games
consist of two five minute halves of 11vs11 robot teams playing soccer.

In UTAustinVilla’s positioning system players’ positions are determined in
three steps. First, a full team formation is computed using Delaunay triangula-
tion [2] based on set offset positions from the ball (formations used are provided
in [18]). Second, each player computes an assignment of players to positions in
this formation according to its own view of the world using the MMD+MSD2

role assignment function. An important factor in any SCRAM-based system is
that robots have reasonably accurate knowledge of where all robots are cur-
rently located. We use robot communication to share and synchronize robot
world models as discussed in [17]. For the third and final step a voting coordi-
nation mechanism detailed in [17] synchronizes players’ computed assignments.
While outside the scope of this paper, others have used auction algorithms [4]
for distributed computation and synchronization. Additionally, if needed, robots
employ a local collision avoidance system discussed in [17].

Table 5: Average goal difference across 1000 games when playing against the top three teams at
the RoboCup 2013 competition (with standard error shown in parentheses).

Function 1. Apollo3d 2. UTAustinVilla 3. FCPortugal
MMDR 0.710 (0.027) 0.007 (0.013) 0.469 (0.024)

MMD+MSD2 0.698 (0.027) 0.000 ( self ) 0.465 (0.023)
Static 0.604 (0.027) -0.012 (0.016) 0.356 (0.024)
Greedy 0.530 (0.028) -0.044 (0.016) 0.315 (0.024)

Greedy Offense 0.670 (0.027) -0.039 (0.016) 0.435 (0.024)

A SCRAM positioning system using the MMDR role assignment function was
a key component in winning the RoboCup 3D simulation world championship
in 2011 [19] and 2012 [18]. SCRAM using the MMD+MSD2 role assignment
function was also an important factor in achieving 2nd place at the 2013 com-
petition. In Table 5 we show how our team’s performance is affected by using

3 http://simspark.sourceforge.net/
4 http://www.ode.org/
5 http://www.aldebaran-robotics.com/eng/



the following alternative role assignment functions when playing against released
binaries of the top three teams at the 2013 RoboCup competition.

Static Role assignments are fixed based on a player’s uniform number.
Greedy Greedily assign robots to targets in order of shortest distances.
Greedy Offensive Similar to previously reported work in the RoboCup 3D simula-

tion domain [8], assign closest robots to role positions in order of most offensive to
least offensive role positions.

The SCRAM role assignment functions are superior to the other functions as
they perform better against all opponents.

5.2 RoboCup 2D Simulation

As one of the oldest RoboCup leagues, 2D simulation soccer has been well ex-
plored, both in competition and in research. The domain consists of two teams
of eleven autonomous agents playing soccer on a simulated 2D field. Agents re-
ceive sensory information, including the position of the ball and other robots,
from a central game server. After processing this information, robot agents tell
the server what actions they want to take such as dashing, kicking, and turning.
2D soccer abstracts away many of the low-level behaviors required for humanoid
robot soccer in the 3D simulation league, including walking, and thus affords
the chance to focus on higher-level aspects of playing soccer such as multirobot
coordination and strategic play.

To test SCRAM in the RoboCup 2D simulation league we used the Agent2D [1]
base code release which provides a fully functional soccer playing agent team.
Agent2D includes default formation files using Delaunay triangulation [2] to
specify robot role positions. In the Agent2D base code, robots are statically
assigned to roles based on their uniform numbers. Agent2D teams only modi-
fied to use the MMDR and MMD+MSD2 assignment functions beat the default
Agent2D team by an average goal difference of 0.118 (+/- 0.025) and 0.105 (+/-
0.024) respectively over 10,000 games.

New at RoboCup 2013 was the addition of a drop-in player challenge6 where
robot agent teams consisting of different players randomly chosen from partic-
ipants in the competition play against each other. This event is also known as
an ad hoc teamwork challenge. Performance in the challenge was measured by
a robot’s average goal difference across all games played. An important aspect
of the challenge is for a robot to be able to adapt to the behaviors of its team-
mates: for instance if most of a robot’s teammates are assuming offensive roles,
that robot might better serve the team by taking on a defensive role. SCRAM
implicitly allows for this adaptation to occur as it naturally chooses roles for a
robot that do not currently have another robot nearby.

Using released binaries from the RoboCup 2013 drop-in player challenge, we
played 2800 drop-in player matches with both the default version of Agent2D

6 Full rules of the challenge can be found at http://www.cs.utexas.

edu/~AustinVilla/sim/2dsimulation/2013_dropin_challenge/2D_

DropInPlayerChallenge.pdf



and a version of Agent2D with SCRAM (MMD+MSD2). Empirically we found
most robots used static role assignment thus underscoring the need for adapting
to teammates’ fixed roles as it was unlikely that teammates would adapt to
roles assumed by you. Adding SCRAM to Agent2D improved performance in
the challenge from an average goal difference of 1.473 (+/-0.157) with static role
assignments to 1.659 (+/-0.153) with SCRAM. This result shows promise for
SCRAM as not only a way to coordinate motion among one’s own teammates,
but also for adapting to unknown teammates in an ad hoc teamwork setting.

6 Summary and Discussion

This paper introduces SCRAM, a dynamic role assignment system for forma-
tional positioning of autonomous mobile robots, and provides theoretical and em-
pirical analysis of the role assignment problem. SCRAM minimizes the makespan
for robots to reach target goal positions while also avoiding collisions among
robots. As role assignment algorithms run in polynomial time SCRAM scales to
thousands of robots.

Our ongoing research agenda in the area of role assignment includes extending
SCRAM to role assignment problems for heterogeneous robots. Example problem
instances include robots specialized for different tasks such that particular robots
are restricted to going to only a certain subset of target positions, as well as
robots moving at different varying speeds. Another scenario to consider is when
there are fixed obstacles that robots must avoid. Algorithms reported to be faster
than the Hungarian algorithm for solving the assignment problem, such as the
Jonker-Volgenant algorithm [13], and the dynamic Hungarian algorithm [22] for
the case when most robots have reached their targets and few distances are
changing, can also be explored to speed up role assignment algorithms.
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Appendix

A Role Assignment Function CM Validity

The following is a more in depth analysis of the CM validity of the role assignment
functions MMDR and MMD+MSD2 described in Section 3.

A.1 Minimizing Longest Distance

It is trivial to determine that both MMDR and MMD+MSD2 select a mapping of robots
to role positions that minimizes the time for all robots to have reached their target
destinations. The total time it takes for all robots to move to their desired positions
is determined by the time it takes for the last robot to reach its target position. As
the first comparison between mapping costs for both role assignment functions is the
maximum distance that any single robot in a mapping must travel, and it is assumed
that all robots move toward their targets at the same constant rate, the property of
minimizing the longest distance holds for both MMDR and MMD+MSD2.

A.2 Avoiding Collisions

Given the assumptions that no two robots and no two role positions occupy the same
position on the field, and that all robots move toward role positions along a straight line
at the same constant speed, if two robots collide it means that they both started moving
from positions that are the same distance away from the collision point. Furthermore
if either robot were to move to the collision point, and then move to the target of the
other robot, its total path distance to reach that target would be the same as the path
distance of the other robot to that same target. Considering that we are working in a
Euclidean space, by the triangle inequality we know that the straight path from the first
robot to the second robot’s target will be less than the path distance of the first robot
moving to the collision point and then moving on to the second robot’s target (which
is equal to the distance of the second robot moving on a straight line to its target).
Thus if the two colliding robots were to switch targets the maximum distance either
is traveling will be reduced (along with the sum of the squared distances traveled),
thereby reducing the cost of the mapping for both MMDR and MMD+MSD2, and the
collision will be avoided. Figure 3 illustrates an example of this scenario.

Fig. 3: Example collision scenario. If the mapping (A1→P2,A2→P1) is chosen the robots will follow
the dotted paths and collide at the point marked with a C. Instead both MMDR and MMD+MSD2

will choose the mapping (A1→P1,A2→P2), as this minimizes both maximum path distance and
sum of distances squared, and the robots will follow the paths denoted by the solid arrows thereby
avoiding the collision.

The following is a proof sketch related to Figure 3 that no collisions will occur.



Assumption. Robots A1 and A2 move at constant velocity v on straight line paths to

static positions P2 and P1 respectively. A1 6= A2 and P1 6= P2. Robots collide at point

C at time t.

Claim. A1→P2 and A2→P1 is an optimal mapping returned by MMDR.

Case 1. P1 and P2 6= C.
By assumption:
A1C = A2C = vt

A1P2 = A1C + CP2 = A2C + CP2

A2P1 = A2C + CP1 = A1C + CP1

By triangle inequality:
A1P1 < A1C + CP1 = A2P1

A2P2 < A2C + CP2 = A1P2

max(A1P1, A2P2) < max(A1P2, A2P1)

A1P1

2

+ A2P2

2

< A1P2

2

+ A2P1

2

∴ cost(A1 → P1, A2 → P2) < cost(A1 → P2, A2 → P1) and claim is False.

Case 2. P1 = C, P2 6= C.
By assumption:
CP2 > CP1 = 0
A2C ≤ A1C = vt

A1P1 = A1C < A1C + CP2 = A1P2

By triangle inequality:
if A1C = A2C

A2P2 < A2C + CP2 = A1C + CP2 = A1P2

otherwise A2C < A1C

A2P2 ≤ A2C + CP2 < A1C + CP2 = A1P2

max(A1P1, A2P2) < max(A1P2, A2P1)

A1P1

2

+ A2P2

2

< A1P2

2

+ A2P1

2

∴ cost(A1 → P1, A2 → P2) < cost(A1 → P2, A2 → P1) and claim is False

Case 3. P2 = C, P1 6= C.
Claim False by corollary to Case 2.

Case 4. P1, P2 = C.
Claim False by assumption.

As claim is False for all cases MMDR does not return mappings with collisions.

B Dynamic Consistency

Dynamic consistency is important such that as robots move toward fixed target role
positions they do not continually switch or thrash between roles thus impeding their
progress in reaching target positions. Given the assumption that all robots move toward
target positions at the same constant rate, all distances to targets in a MMDR mapping



of robots to role positions will decrease at the same constant rate as the robots move
until becoming 0 when a robot reaches its destination. Considering that robots move
toward their target positions on straight line paths, it is not possible for the distance
between any robot and any role position to decrease faster than the distance between
a robot and the role position it is assigned to move toward. This means that the cost
of any MMDR mapping can not improve over time any faster than the lowest cost
MMDR mapping being followed, and thus dynamic consistency is preserved. Note that
it is possible for two mappings of robots to role positions to have the same MMDR
cost as the case of two robots being equidistant to two role positions. In this case one
of the mappings may be arbitrarily selected and followed by the robots. As soon as
the robots start moving the selected mapping will acquire and maintain a lower cost
than the unselected mapping. The only way that the mappings could continue to have
the same MMDR cost would be if the two role positions occupy the same place on the
field, however, as stated in the given assumptions, this is not allowed.

MMD+MSD2 is not dynamically consistent as minimizing the sum of distances
squared (MSD2) is not dynamically consistent. (MSD2) is shown to be not dynamically
consistent in Appendix C.

C Other Role Assignment Functions

Other functions for mapping robots to target positions include minimizing the sum of
all distances traveled (MSD), minimizing the sum of all path distances squared (MSD2),
and assigning robots to targets in order of shortest distances (Greedy). None of these
functions preserve both required properties listed in Section 2 for CM validity. Also
none of them are dynamically consistent.

Fig. 4: Example where minimizing the sum of path distances fails to hold desired properties. Both
mappings of (A1→P1,A2→P2) and (A1→P2,A2→P1) have a sum of distances value of 8. The map-
ping (A1→P2,A2→P1) will result in a collision and has a longer maximum distance of 6 than the
mapping (A1→P1,A2→P2) whose maximum distance is 4. Once a mapping is chosen and the robots
start moving the sum of distances of the two mappings will remain equal which could result in
thrashing between the two.

As can be seen in Figure 4, none of the properties necessarily hold for MSD.

The first property of all robots having reached their target destinations in as little
time as possible is not always true for MSD2 as shown in Figure 5. MSD2 does avoid
collisions as explained in Appendix A.2. The following is an example in which MSD2

is not dynamically consistent:

At time t = 0:
A1 = (3, 0)
A2 = (2, 999)
P1 = (0, 0)
P2 = (1, 0)



Fig. 5: Example where minimizing the sum of path distances squared fails to hold desired property
of minimizing the time for all robots to have reached their targets. The mapping (A1→P1,A2→P2)
has a path distance squared sum of 19 which is less than the mapping (A1→P2,A2→P1) for which
this sum is 27. Both MMDR and MMD+MSD2 will choose the mapping with the greater sum as
its maximum path distance (proportional to the time for all robots to have reached their targets) is√

17 which is less than the other mapping’s maximum path distance of
√

18.

A1 → P1, A2 → P2

A1P1 = 3, A2P2 =
√

998002; A1P1

2

+ A2P2

2

= 998011

A1 → P2, A2 → P1

A1P2 = 2, A2P1 =
√

998005; A1P2

2

+ A2P1

2

= 998009

MSD2 mapping (A1 → P2, A2 → P1) ∵ 998009 < 998011

At time t = 2:
A1 = (1, 0)
A2 = (∼ 2,∼ 997)
P1 = (0, 0)
P2 = (1, 0)

A1 → P1, A2 → P2

A1P1 = 1, A2P2 =
√

994010; A1P1

2

+ A2P2

2

= 994011

A1 → P2, A2 → P1

A1P2 = 0, A2P1 =
√

994013; A1P2

2

+ A2P1

2

= 994013

MSD2 mapping (A1 → P1, A2 → P2) ∵ 994011 < 994013

As the mapping switched MSD2 is not dynamically consistent.

Fig. 6: Example where greedily choosing shortest paths fails to hold desired properties. The shortest
distance is from A2→P1 resulting in a mapping of (A2→P1,A1→P2) to be chosen. The mapping
(A2→P1,A1→P2) will result in a collision and has a longer maximum distance of 6 than the mapping
(A1→P1,A2→P2) whose maximum distance is 4. Once the robots collide it is possible that A1 will
move on top of P1 thus pushing A2 off of P1 and towards P2. This displacement of A2 may result
in a switch between mappings and potential thrashing.

As can be seen in Figure 6, none of the properties necessarily hold for Greedy.


