Proposal for the Input and the Notation of the System. EWD147 - O

EWD147.html

Q. Intreduction.

Input of the system will take place in two stages.

From the written documents we shall punch on Flexowritars the tape
HACOSYS (Hand Codad System), an assembler will read HACOSYS and punch the
tape BICOSYS (Binary Coded System). The tape BICOSYS will load the system into
a virgin machine, BICOSYS, which will be handled daily by the operetor will be
very much shorter than HACOSYS, which is only handled at system modification,

1, The General Structure of BICOSYS.

FPaper tape can be read

1) for the sake of initial input into the virgin mechine under complete
control of Charon

2) ander normal program control {(with Charon as program controlled slave).

We call the two farms of input primary and secandary input,

Frimary input is unchecked; for this reason we shall restrict it to =

minimum, i.e.

1) an interrupt jump in ML24] to the starting address of the sscondary input
program

2) the secondary input progrem itself., The latter will be stored in a future
core page.

The tasks of the secondary input program are the following ones

1) It has to verify its correct presance in core store, say by msans of a sum
check. It bas to clear the remainder of the memary.
2} It has to clean all the necessary teeth in the normal manner but for the
real time clock, which has to remain dormant {ssy by LVCA false )
3) ALl LVIF's can be set in their future pogition end IV cen be set true
4) Now the secondary input progrem starts to read paper tape over the golden
reader in a most unorthodox manner, viz,

4.1) it will give tape read commands directly to the golden reader
XX 4.2) it will keep the IFT-value negative, it will nat rely on the

interrupt mechenism but will inspect the IFT increases.

5) Secondary reading will consist of two phases, core filling, followed by
segment filling.

During core filling all core locations with permanent meaning are filled.
They are filled in such a way that at the end of core filling the primary input
program looks as a program in PM1., All mechanisms to dump segments are then
present, the clock, if necessary, can be started and secondary reading continues
to fill the segments. The multirunning system is then working but for the infor-
mation streams.
o) Finally the golden reader is set in accordance with the initial state of
the corresponding CM and PM] ends its activity as normal programs do.

The information on BICOSYS consists of
a) the text of the secondary input program
b} the information to be read during core filling
c) the information to be read during segment filling.,


http://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD147.html

EwD147 ~ 1

2. The Structure of HACOSTS‘

HACOSYS will consist of two parts
i) the Table, followed by
2} the Contents, the latter subdivided into
2.1) the secondary input program
2.2) the core information
2.3) the segment information

2.1. The S&tructure of the HACDS5YS Table.

The identifiers occurring on the HACOSYS Table identify parameters, the
HACOSYS Table specifies their constant type and value according to rules to
be explained in this section. The identifiers have the complete HACUSYS Contents
as their scope.

They are of thres different typses

1) constants
1.1) fixed constants
12.2) derived constants
1.3%) invariant addresses

2} dynamic addresses

3) static addresses

On the HACOSYS Tabls they are introduced in the following order

t} the fixed constants

2) the dynamic addresses

3) the static addresses, the invariant asddresses and the derived constants in
order of increasing CCA (Current Core Addeess)

The CR (if desired,preceded by comment introduced by guotes) acts as
separator.

2.1.1. The Fixed Constants.

The fixed constant is given by its identifier, followed by "=", followed
by its value; its value —a single word¥~ may be given KKIQ%!!XUKXHN!XQK!H by a
(signed or unsigned) decimal integer or by a (signed or unsigned} octal number
(at most 9 octal digits enclosed within apostrophes). Then one or more separators
bave to follow,

1
2.3.2. The dynamic Addresses,

Dynamic addresses sre defined in terms of the value of CDA (Current Dynamic
Address); CDA is initialized by "d p[q]", where "p" (unsigned decimal integer)
and "q" (decimal integer) specify a dynamic address in the usual manner. Thenone
or more separators must follow.

A dynamic address is then given by its identifier, followed by an unsigned
decimal number enclosed within parentheses. The value of CDA is themassigned to
the parameter identified, whereafter CDA is increesed by the amount given within
the parentheses. Une or more separators follow,



EWD147 - 2

2.1.%3. The Btatic Addresses.

The static addresses can only be given after the first CCA initialization,
that specifies the value of CCA (Current Care Address)

The CCA initialization consists of c, followed by an address value,
given as unsigned (decimal or octal ) number, followed by one or more separators,
This value is the next CCA value, CCA must be monotonically non decreasing.

A static addres is then given by its identifier, followed by an unsigned
decimal number within parentheses, followed by one or more separators. The
value of [CA is assigned to the parameter identified, whereafter CCA is increased
by the amount given within the parentheses.

2.1.4. The Derived Constants.

After the definition of a static address, one aor more "derived constants®
may be given. Each derived constant is given by its identifier, followed by
"=", followed by a word, given as decimal or octal number. The value of the
derived waxd constant is this word increased by the static address value
just assigned to the last static address. (In a ~be it clumsy~ manner, this
facility ensbles us to introduce "SE1" with the value "SUBCD(:PSEI)" as socn
as PSE1 has been defined,)

2.1.5. The Invariant Addresses.

When CLA points to a location that shall contain an 5V, then the moment
has come to give the invariant addresses, related tao that corresponding sagment,

By "s" invarient address definition is announced and the variable
CLN(Current Line Number) is set to zero. From then onwards invariant addresses
related to this segment can be given by giving their identifier, followed by an
unsigned decimal number between parentheses.

The value assigned to the patametsr is the invariant address, composad of
CLA and CLN (which must be less than 512), whereafter CLN is increased by the
amount given within the parentheses. Invariant address definition with respect
to this sagment is sndedX by "t", which ¥XN¥ causes CCA to be increased by t.

The individusl invariant address definitions belonging to the same ssgment
must be separated by one or more separators. Following XER "s" and preceding

"i" no separator is required.

2.2. The Structure of the HACOSYS Contents.

On the MX¥& HACOSYS Contents we find in order on the tape
1) the primary input
2) the core information
3) the segment informatidn.

2.2.1, The Primary Input.

A piece of primary input is snnounced by "p", followed by an unsigned
(decimal or ¥ actal) number or a static address, KEXX&MMM (i.e. the identifier
of a static address) indicating the starting sddress, followed by an unsigned
decimal number between parentheses'indicating the number of words that follow,
followed by one or more ssparators. Then the succesive words will follow,

all separated from aqne another,



EWD147 - 3

Un account of such part of the HACOSYS Contents, a part of BICOSYS will
be made, intended for primary input, on successive locations, starting at the
address given, This BICDSYS portion will contasin at the end a word more, computed
in such a way that the total sum of this portion is = Q.

A number of such pieces of primary input may follow. (E.g. one for H[24]
and one for the secondary input program).

2.2.2. A Piece of Core Filling,

Such a piece is announced by the identifier of its static starting
address, followed by an unsigned decimal integer between parentheses, indicating
the number of words that follow. Thenthe wards follow, announcement#X and words
all followed by one or more separatars.

Many such pieces may follow.

2.2.5. KR A Piece of Segment Filling,

Such a piace is a&s a piece of care filling but for the fact that it is
announced by the identifisr of an invariant address. Many such piecas may follow.

2.2.4., The End of HACDSYS,

An "e" indicates thea end of HACDSYS,

2.2.5. The Words.

We shall now describe how the words on the HACDSYS Contents are written
down, They are of two different layouts, called "constants" and "instructions".
In the following description an “aptional sign" is "+", "-" or "empty™; an
octal number is an apostrophe, followed by at most 9 octel digits, followed
by an apostropbe.

2.2.5.1. The Layout of HACOSYS constants.

The following 6 basic forms are admissible
a) an optional sign, followed by an unsigned decimal integer
k) an optional sign, followed by an unsigned ¥ octal number
c) an optional sign, followed by ths identifier of a fixed constant
d) an optional sign, followed by the identifier of a derived constant
e) an optional sign, followed by the identifier of an invariant address
f) an optional sign, followed by a colon ":", followed by the identifier of
a static sddress.

All six may be followed by the aptional increment; this consists of
(zarq or more timea) a "[", followed by one of the six constant formats, follwed

by "}

Remark 1. The character sequences "][+" and “][—“, that may thus arise
may be contracted into "+" and "-" respectively.

Remakr 2. If the conskant starts with a minus sign, this minus sign applies
to the complete constant: all incremsnts are added {(mad 2 ' 27 — 1) &nd at the
end the result is inverted.



EWD147 ~ 4

2:2.5.2. The Layout af HACOSYS5 instructions.

The instruction notation is an adaptation of the ELAN conventions.

Instructions with an address of type "STAT" may meve this address in the
form
a)M
b) the identifier of a static address

followed by the optional increment as described in 2.2.5.1. (The identifier
"M" is regarded as static address = Q). The resulting address muast KWK fit
into the 15 bits available.

Instructions with an address of type "STATB" may have this address in
the form
a) M B]

b) identifier of & static address, followed by "[B]

followed by the optional increment (also after "H", the contraction convention
applies). The resulting address must fit ints the 15 bits available.

instructions with an address of type "DYN" may have this address in
the form
a) MG, MA, M5, MC, MT, MD, Mp
b} the identifiar of a dynamic addrasss

followed by the optional increment.

In the abuve cases the corrections are applied to the futura address part
of the instructiun.

The addres operand of type ":DYN" has the form ":" followad by one of the
forms dynamic addrass just described; the adress operand ":STAT" has the form of
an unsigned constant (see 2,2.5.1). Both followed by the optional increment.

All increments thet follow are added to the unsigned aperand thus described.
The result must be less than 32768 in absolute value, X an initial plus or
minus sign applies to the result thus obtained, the reaulting sign is processed
in building up the instruction part.



