25 July 1967 EWD206 ~ O

A seguel to EWD201.

In taday's letter 1 shall give some hardware considerations, because all the
time they are at the back of my mind and it may be confusi¥ing if I keep silent about
them much longer.

The first observation is that ¥ inmside a sequential machine an important
logical function has to be attached to the notion of simultaneity, This naotion
is never an exact one (in the mathematical sense) it is g8lways with respect to
a certain grain of time. The faster the sequential machihe, the smaller its time
grain. It is also obvious (at least to my teste, formed by theoretical physics
years agD!) that the physical dimensions of such an sequential component must be
small compared with the distance travelled by light during such a grair of time,
i.e. the fast comporents must be small. One answer to this has heen given hy
(micrn)miniaturizatian, but I am looking for anather answer, viz. the coupling of
a8 number of such fast components,

I presume that each fast companent will have its aown, private cleck, its
"local time", and I am looking to an arrangement, where the various components
can really work independent of each other, temporarily unsychronized with respect
to each other.

Immediate consequences of this approach are the following twa.

Firstly, the individual fast camponents must have their Erivate mEMOIy,
coupled with ore or more processors: without a private memory XNpx they will npt
be able to work on their own for a considerable numbzr of microseconds.

Secondly, we shall have to arrange the co—operation between these components,
and this will minimally imply an information traffic betwesn these companents. The
actions taking place in this co-operation must XEXEXKNX correspond to a much ¥XMXXX¥
coaarser grain of time.

In order to visualize thing a little bit more clearly, I have been thinking
about a number of fast comporents grouped around a centre. This centre should
have a great amount of store and it should have logic. I assume that bulk information
traffic from ane companernt to another will always teske place via the centre, I have
verified that a single centre ean be coupled to & number of mutually asynchronized
campanents. It is particularly simple if we conceive the components as being in one af
two mutually exclusive states, either working, independently and geared to its private
clock, or XEMMMMEEEXHAX communicating, to a large extsnt geared to the clock of
the centre, that probably must be able to maintain a rumber of communications
simultaneously, say word wise merged. Information trafficM from centre to component
is the easiest of the two: the cemtre will only sx send it when the component is
standby available to receive it and the centre should send it not too fast (ar
in the case af conflict at centre side) slower. Information traffic in the other
direction requires a signal from the centrez to the companent, that the centre is
ready to sccept alXong that chaprel the next information unit. If the channel has
such a long delay, that its capacity slows down, then I presume a private buffer
at the centre end of the channel. All this can be done if necessary, the main thing
to take care of is to avoid urgency situations as may ariss due to causes of combi-
natorics, i.e, where a number of chamnels share the same memory and its access
mecharnism. (in the above picture the receiving component is faced with an urgency
situation, but that is rot too bad, for the component has nothing else to do and
is MXAXMXKY "standing by".)

The potential advantage of such a configuration would be, that configuratiom
extension with some more components should not be the cause of a major software
revision. A conseguence is that the total work load is presented to the xm machine
in such =z way, that the possibility of paralleilism is given and reed not he detected.



EWD206 - 1

Previous experiences seem to indicate that in the mutual synchronization
of sequential processes we have two distinct, and in a3 sense complementory, aspects.
On the one hand we have the critical sections, of which we only know, that
they exclude each other in time, but where we do not define any priority rules;
total time spent in critical sections must be such a smakl fraction of real time
that the queueing strategy can be regarded as irrelevant. With an implementation
for critical sections and the notion of the private semaphore for % each seguential
process, we can implement whatever stratagy we want.

this knowledge may give a hint how the system should he divided over
hardware and saftware and what should take place in the centre and what in the
components. At least = hint as to what is attractive fram = logical point of view.

My present hope is the following.

All processing, also the execution of "systems program" in critical sections
will be done by the companents. The centre is fairly neutral (although its logic
will be programmed it will be a special purpose device) but caters for mutual exclusion
altomatically. I hope that the mutual exclusions needed can be coupled to the
accessibility claim towards a certain amount of information.

It is obviously associated with the state of embedding of a sequentisl
process: if a process operates on its private variables only, as long as it
moves in ite own state space, than this process together with the variables
being the coordinates in this state space, can be delegated for the time being to
one of the components (having processor and store). As soon as communication with
the puter world implies aperating on "common 'variables", thep also thes= common
variasbles must be semt to the componemt, and therefore canmot be somewhere else.
But these are exactly the critical sections: one of the processes claims and gets
the privilége to inspect and modify in a universe it shares with others,

In our present multiprogramming system we have at bottom level the task
of processor allecation; if we follaw an analogous approach we should get here
the task of "compenent allocation”; logically speaking ane should expect the
implementation of the component allocation in the centre. The little experience
we have has not yet belied our assumption that the problem of processor allocation
is relatively trivial and it is conceivable that a non—sophisticgted standard
solutien, implemented in the centre, will indeed do the job of component allocation.

Warning. Here I must be very careful not to make too hasty an extrapalation.
In our present enviranment processor reallocation does not imply extemsive moving
around of bulk information. In the case of compenent allocation this will no longer
hold. So maybe the centre will have more refined logic (of a special component, put
aside permanently, to do this scheduling job).



